8,670 research outputs found

    Map Management Approach for SLAM in Large-Scale Indoor and Outdoor Areas

    Get PDF
    This work presents a semantic map management approach for various environments by triggering multiple maps with different simultaneous localization and mapping (SLAM) configurations. A modular map structure allows to add, modify or delete maps without influencing other maps of different areas. The hierarchy level of our algorithm is above the utilized SLAM method. Evaluating laser scan data (e.g. the detection of passing a doorway) triggers a new map, automatically choosing the appropriate SLAM configuration from a manually predefined list. Single independent maps are connected by link-points, which are located in an overlapping zone of both maps, enabling global navigation over several maps. Loop- closures between maps are detected by an appearance-based method, using feature matching and iterative closest point (ICP) registration between point clouds. Based on the arrangement of maps and link-points, a topological graph is extracted for navigation purpose and tracking the global robot's position over several maps. Our approach is evaluated by mapping a university campus with multiple indoor and outdoor areas and abstracting a metrical-topological graph. It is compared to a single map running with different SLAM configurations. Our approach enhances the overall map quality compared to the single map approaches by automatically choosing predefined SLAM configurations for different environmental setups

    An adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In previous work we introduced a method to update the reference views in a topological map so that a mobile robot could continue to localize itself in a changing environment using omni-directional vision. In this work we extend this longterm updating mechanism to incorporate a spherical metric representation of the observed visual features for each node in the topological map. Using multi-view geometry we are then able to estimate the heading of the robot, in order to enable navigation between the nodes of the map, and to simultaneously adapt the spherical view representation in response to environmental changes. The results demonstrate the persistent performance of the proposed system in a long-term experiment

    Long-term experiments with an adaptive spherical view representation for navigation in changing environments

    Get PDF
    Real-world environments such as houses and offices change over time, meaning that a mobile robot’s map will become out of date. In this work, we introduce a method to update the reference views in a hybrid metric-topological map so that a mobile robot can continue to localize itself in a changing environment. The updating mechanism, based on the multi-store model of human memory, incorporates a spherical metric representation of the observed visual features for each node in the map, which enables the robot to estimate its heading and navigate using multi-view geometry, as well as representing the local 3D geometry of the environment. A series of experiments demonstrate the persistence performance of the proposed system in real changing environments, including analysis of the long-term stability

    Appearance-based localization for mobile robots using digital zoom and visual compass

    Get PDF
    This paper describes a localization system for mobile robots moving in dynamic indoor environments, which uses probabilistic integration of visual appearance and odometry information. The approach is based on a novel image matching algorithm for appearance-based place recognition that integrates digital zooming, to extend the area of application, and a visual compass. Ambiguous information used for recognizing places is resolved with multiple hypothesis tracking and a selection procedure inspired by Markov localization. This enables the system to deal with perceptual aliasing or absence of reliable sensor data. It has been implemented on a robot operating in an office scenario and the robustness of the approach demonstrated experimentally

    An adaptive appearance-based map for long-term topological localization of mobile robots

    Get PDF
    This work considers a mobile service robot which uses an appearance-based representation of its workplace as a map, where the current view and the map are used to estimate the current position in the environment. Due to the nature of real-world environments such as houses and offices, where the appearance keeps changing, the internal representation may become out of date after some time. To solve this problem the robot needs to be able to adapt its internal representation continually to the changes in the environment. This paper presents a method for creating an adaptive map for long-term appearance-based localization of a mobile robot using long-term and short-term memory concepts, with omni-directional vision as the external sensor

    Robust spatial memory maps encoded in networks with transient connections

    Full text link
    The spiking activity of principal cells in mammalian hippocampus encodes an internalized neuronal representation of the ambient space---a cognitive map. Once learned, such a map enables the animal to navigate a given environment for a long period. However, the neuronal substrate that produces this map remains transient: the synaptic connections in the hippocampus and in the downstream neuronal networks never cease to form and to deteriorate at a rapid rate. How can the brain maintain a robust, reliable representation of space using a network that constantly changes its architecture? Here, we demonstrate, using novel Algebraic Topology techniques, that cognitive map's stability is a generic, emergent phenomenon. The model allows evaluating the effect produced by specific physiological parameters, e.g., the distribution of connections' decay times, on the properties of the cognitive map as a whole. It also points out that spatial memory deterioration caused by weakening or excessive loss of the synaptic connections may be compensated by simulating the neuronal activity. Lastly, the model explicates functional importance of the complementary learning systems for processing spatial information at different levels of spatiotemporal granularity, by establishing three complementary timescales at which spatial information unfolds. Thus, the model provides a principal insight into how can the brain develop a reliable representation of the world, learn and retain memories despite complex plasticity of the underlying networks and allows studying how instabilities and memory deterioration mechanisms may affect learning process.Comment: 24 pages, 10 figures, 4 supplementary figure
    corecore