7,373 research outputs found

    User preferences on route instruction types for mobile indoor route guidance

    Get PDF
    Adaptive mobile wayfinding systems are being developed to ease wayfinding in the indoor environment. They present wayfinding information to the user, which is adapted to the context. Wayfinding information can be communicated by using different types of route instructions, such as text, photos, videos, symbols or a combination thereof. The need for a different type of route instruction may vary at decision points, for example because of its complexity. Furthermore, these needs may be different for different user characteristics (e.g., age, gender, level of education). To determine this need for information, an online survey has been executed where participants rated 10 different route instruction types at several decision points in a case study building. Results show that the types with additional text were preferred over those without text. The photo instructions, combined with text, generally received the highest ratings, especially from first-time visitors. 3D simulations were appreciated at complex decision points and by younger people. When text (with symbols) is considered as a route instruction type, it is best used for the start or end instruction

    Functional Skills Support Programme: Developing functional skills in physical education

    Get PDF
    This booklet is part of "... a series of 11 booklets which helps schools to implement functional skills across the curriculum. The booklets illustrate how functional skills can be applied and developed in different subjects and contexts, supporting achievement at Key Stage 3 and Key Stage 4. Each booklet contains an introduction to functional skills for subject teachers, three practical planning examples with links to related websites and resources, a process for planning and a list of additional resources to support the teaching and learning of functional skills." - The National Strategies website

    Indoor navigation for the visually impaired : enhancements through utilisation of the Internet of Things and deep learning

    Get PDF
    Wayfinding and navigation are essential aspects of independent living that heavily rely on the sense of vision. Walking in a complex building requires knowing exact location to find a suitable path to the desired destination, avoiding obstacles and monitoring orientation and movement along the route. People who do not have access to sight-dependent information, such as that provided by signage, maps and environmental cues, can encounter challenges in achieving these tasks independently. They can rely on assistance from others or maintain their independence by using assistive technologies and the resources provided by smart environments. Several solutions have adapted technological innovations to combat navigation in an indoor environment over the last few years. However, there remains a significant lack of a complete solution to aid the navigation requirements of visually impaired (VI) people. The use of a single technology cannot provide a solution to fulfil all the navigation difficulties faced. A hybrid solution using Internet of Things (IoT) devices and deep learning techniques to discern the patterns of an indoor environment may help VI people gain confidence to travel independently. This thesis aims to improve the independence and enhance the journey of VI people in an indoor setting with the proposed framework, using a smartphone. The thesis proposes a novel framework, Indoor-Nav, to provide a VI-friendly path to avoid obstacles and predict the user s position. The components include Ortho-PATH, Blue Dot for VI People (BVIP), and a deep learning-based indoor positioning model. The work establishes a novel collision-free pathfinding algorithm, Orth-PATH, to generate a VI-friendly path via sensing a grid-based indoor space. Further, to ensure correct movement, with the use of beacons and a smartphone, BVIP monitors the movements and relative position of the moving user. In dark areas without external devices, the research tests the feasibility of using sensory information from a smartphone with a pre-trained regression-based deep learning model to predict the user s absolute position. The work accomplishes a diverse range of simulations and experiments to confirm the performance and effectiveness of the proposed framework and its components. The results show that Indoor-Nav is the first type of pathfinding algorithm to provide a novel path to reflect the needs of VI people. The approach designs a path alongside walls, avoiding obstacles, and this research benchmarks the approach with other popular pathfinding algorithms. Further, this research develops a smartphone-based application to test the trajectories of a moving user in an indoor environment

    The Role of Situation Awareness Metrics in the Assessment of Indoor Orientation Assistive Technologies that Aid Blind Individuals in Unfamiliar Indoor Environments

    Get PDF
    The importance of raising user\u27s situation awareness has proven to be an important factor in the successful use of systems that involve mission-critical tasks. Indoor Orientation Assistive Technology (OAT) that supports blind individuals is one of the systems that needs to be oriented to support user\u27s situation awareness. In the tasks involved in this system, blind individuals try to maintain their spatial understanding of the environment. The current evaluation methods of Orientation Assistive Technology that aids blind travelers within indoor environments rely on the performance metrics. When enhancing such systems, evaluators conduct qualitative studies to learn where to focus their efforts. The main purpose of this thesis is to investigate the use of an objective method to facilitate blind travelers situation awareness when traveling unfamiliar indoor environments. We investigate the use of in-task probes using the Situation Awareness Global Assessment Technique (SAGAT) method, and post self-reported questionnaire using the Situation Awareness Rating Technique (SART) method. The goal of this metric is to design an objective method that can highlight design areas that need improvements when evaluating such systems. Also, we investigate the relationship between user\u27s situation awareness and user\u27s confidence, satisfaction, and stress levels

    A robot swarm assisting a human fire-fighter

    Get PDF
    Emergencies in industrial warehouses are a major concern for fire-fighters. The large dimensions, together with the development of dense smoke that drastically reduces visibility, represent major challenges. The GUARDIANS robot swarm is designed to assist fire-fighters in searching a large warehouse. In this paper we discuss the technology developed for a swarm of robots assisting fire-fighters. We explain the swarming algorithms that provide the functionality by which the robots react to and follow humans while no communication is required. Next we discuss the wireless communication system, which is a so-called mobile ad-hoc network. The communication network provides also the means to locate the robots and humans. Thus, the robot swarm is able to provide guidance information to the humans. Together with the fire-fighters we explored how the robot swarm should feed information back to the human fire-fighter. We have designed and experimented with interfaces for presenting swarm-based information to human beings

    Evaluación y comparación de sistemas de planificación de navegación de robots en entornos dinámicos

    Get PDF
    Este trabajo aborda un análisis comparativo de diferentes técnicas de planificación de movimientos en entornos dinámicos. Se basa en trabajos anteriores, en los que se desarrollaron dos técnicas de planificación de movimientos para un robot que se mueve en un entorno dinámico. Se trata de técnicas de navegación robocéntricas en las que el modelo del entorno dinámico se basa en el espacio de velocidad-tiempo del robot, donde se representan tanto los objetos estáticos como dinámicos. La primera técnica trabaja sobre un espacio de velocidades bidimensional (velocidad lineal-velocidad angular). Explota la idea de identificar la mejor estrategia en función de la situación en la que se encuentra el robot. La segunda técnica optimiza una función objetivo en el espacio de velocidad-tiempo para obtener comandos óptimos y trayectorias seguras. Además, incorpora la técnica desarrollada en el primer trabajo como heurística para mejorar la toma de decisiones, dando lugar a Strategies-Optimization. Para evaluar el rendimiento de la navegación con dichas técnicas se define una serie de métricas, que permiten seleccionar los mejores parámetros de optimización para cada tipo de escenario. Estas métricas evalúan y comparan los comportamientos en diferentes escenarios, lo que permite tener una evaluación completa de todas las técnicas. Además, en aplicaciones reales los robots tienen que moverse en escenarios tanto de interior como de exterior. Sin embargo, para que los robots construyan un mapa del entorno, se localicen y naveguen utilizan diferentes sensores, debido al tipo de información disponible y a la incertidumbre de cada sensor en cada momento. Esto provoca discontinuidades en localización o incluso pérdida de ello, lo que debe evitarse. En este trabajo se presenta una técnica de localización unificada para entornos de interior-exterior que permite una transición continua entre una zona de la que se dispone un mapa construido con los sensores láser a bordo del robot y una zona que utiliza el GPS para la localización del robot

    Digital places: location-based digital practices in higher education using Bluetooth Beacons

    Get PDF
    The physical campus is a shared space that enables staff and students, industry and the public, to collaborate in the acquisition, construction and consolidation of knowledge. However, its position as the primary place for learning is being challenged by blended modes of study that range from learning experiences from fully online to more traditional campus-based approaches. Bluetooth beacons offer the potential to combine the strengths of both the digital world and the traditional university campus by augmenting physical spaces to enhance learning opportunities, and the student experience more generally. This simple technology offers new possibilities to extend and enrich opportunities for learning by exploiting the near-ubiquitous nature of personal technology. This paper provides a high-level overview of Bluetooth beacon technology, along with an indication of some of the ways in which it is developing, and ways that it could be used to support learning in higher education
    • …
    corecore