2,193 research outputs found

    Dynamic Assembly for System Adaptability, Dependability, and Assurance

    Get PDF
    (DASASA) ProjectAuthor-contributed print ite

    (I) A Declarative Framework for ERP Systems(II) Reactors: A Data-Driven Programming Model for Distributed Applications

    Get PDF
    To those who can be swayed by argument and those who know they do not have all the answers This dissertation is a collection of six adapted research papers pertaining to two areas of research. (I) A Declarative Framework for ERP Systems: • POETS: Process-Oriented Event-driven Transaction Systems. The paper describes an ontological analysis of a small segment of the enterprise domain, namely the general ledger and accounts receivable. The result is an event-based approach to designing ERP systems and an abstract-level sketch of the architecture. • Compositional Specification of Commercial Contracts. The paper de-scribes the design, multiple semantics, and use of a domain-specific lan-guage (DSL) for modeling commercial contracts. • SMAWL: A SMAll Workflow Language Based on CCS. The paper show

    A method for building and evaluating formal specifications of object-oriented conceptual models of database systems

    Get PDF
    This report describes a method called MCM (Method for Conceptual Modeling) for building and evaluating formal specifications of object-oriented models of database system behavior. An important aim of MCM is to bridge the gap between formal specification and informal understanding. Building a MCM model is a process that moves from the informal to the formal, evaluating the model is a process that moves back from the formal to the informal. First, a general framework for information system development methods is given, that is used to indicate which elements are needed to build a particular information system development method. In general, the following elements are needed (see figure 0.1) l. Requirements determination methods that can be used to determine the information needs of the environment, and to find functional and nonfunctional requirements specifications. 2. Conceptual modeling methods that can be used to elaborate the statement of functional require­ ments into a formal specification of observable system behavior. 3. Implementation methods that can be used to transform the conceptual model specification into an implementation within the constraints indicated by the nonfunctional requirements. 4. Project management methods that can be used to manage the development process in the presence of limited resources and a potentially disturbing environment. MCM is a conceptual modeling method, and must therefore in any information system development project be supplemented with three other kinds of methods. MCM contains three kinds of methods (figure 0.1). 1. Observation methods to find relevant data about the required database system. 2. Induction methods that allow one to go from a finite set of data about required system behavior to a conceptual model that represents all of this behavior. 3. Evaluation methods that allow one to test the quality of a specification of a conceptual model. In this report, I concentrate on induction and evaluation methods and merely make a list of relevant observation methods. The induction methods listed in figure 0.1 are not exhaustive. MCM can be viewed as a framework within which methods and techniques for conceptual modeling can be plugged. Some of these methods and techniques are mentioned in this report but not elaborated. There are three kinds of evaluation methods, that deal with the validity of the conceptual model, the utility of the specified behavior, and the quality of the use that is made of the available modeling constructs. Prototyping and animation are briefly discussed as evaluation methods. The quality checks, however, are listed exhaustively. The result of following MCM is a conceptual model. In the philosophy of MCM, a conceptual model consists of three components (see figure 0.2): 1. The UoD model is a model of the part of reality represented by the database system. 2. The DBS model represents DBS behavior, such as the queries to be asked from the DBS, the user interface, the contents and layout of reports produced by the DBS, etc. 3. A model of the boundary between the DBS and the UoD. This is a list of all possible transactions that the DBS can engage in, plus the function that this behavior has for the user of the DBS

    Semantic Business Process Modeling

    Get PDF
    This book presents a process-oriented business modeling framework based on semantic technologies. The framework consists of modeling languages, methods, and tools that allow for semantic modeling of business motivation, business policies and rules, and business processes. Quality of the proposed modeling framework is evaluated based on the modeling content of SAP Solution Composer and several real-world business scenarios

    Handling Data Consistency through Spatial Data Integrity Rules in Constraint Decision Tables

    Get PDF

    Creation and extension of ontologies for describing communications in the context of organizations

    Get PDF
    Thesis submitted to Faculdade de Ciências e Tecnologia of the Universidade Nova de Lisboa, in partial fulfillment of the requirements for the degree of Master in Computer ScienceThe use of ontologies is nowadays a sufficiently mature and solid field of work to be considered an efficient alternative in knowledge representation. With the crescent growth of the Semantic Web, it is expectable that this alternative tends to emerge even more in the near future. In the context of a collaboration established between FCT-UNL and the R&D department of a national software company, a new solution entitled ECC – Enterprise Communications Center was developed. This application provides a solution to manage the communications that enter, leave or are made within an organization, and includes intelligent classification of communications and conceptual search techniques in a communications repository. As specificity may be the key to obtain acceptable results with these processes, the use of ontologies becomes crucial to represent the existing knowledge about the specific domain of an organization. This work allowed us to guarantee a core set of ontologies that have the power of expressing the general context of the communications made in an organization, and of a methodology based upon a series of concrete steps that provides an effective capability of extending the ontologies to any business domain. By applying these steps, the minimization of the conceptualization and setup effort in new organizations and business domains is guaranteed. The adequacy of the core set of ontologies chosen and of the methodology specified is demonstrated in this thesis by its effective application to a real case-study, which allowed us to work with the different types of sources considered in the methodology and the activities that support its construction and evolution

    Tackling Dierent Business Process Perspectives

    Get PDF
    Business Process Management (BPM) has emerged as a discipline to design, control, analyze, and optimize business operations. Conceptual models lie at the core of BPM. In particular, business process models have been taken up by organizations as a means to describe the main activities that are performed to achieve a specific business goal. Process models generally cover different perspectives that underlie separate yet interrelated representations for analyzing and presenting process information. Being primarily driven by process improvement objectives, traditional business process modeling languages focus on capturing the control flow perspective of business processes, that is, the temporal and logical coordination of activities. Such approaches are usually characterized as \u201cactivity-centric\u201d. Nowadays, activity-centric process modeling languages, such as the Business Process Model and Notation (BPMN) standard, are still the most used in practice and benefit from industrial tool support. Nevertheless, evidence shows that such process modeling languages still lack of support for modeling non-control-flow perspectives, such as the temporal, informational, and decision perspectives, among others. This thesis centres on the BPMN standard and addresses the modeling the temporal, informational, and decision perspectives of process models, with particular attention to processes enacted in healthcare domains. Despite being partially interrelated, the main contributions of this thesis may be partitioned according to the modeling perspective they concern. The temporal perspective deals with the specification, management, and formal verification of temporal constraints. In this thesis, we address the specification and run-time management of temporal constraints in BPMN, by taking advantage of process modularity and of event handling mechanisms included in the standard. Then, we propose three different mappings from BPMN to formal models, to validate the behavior of the proposed process models and to check whether they are dynamically controllable. The informational perspective represents the information entities consumed, produced or manipulated by a process. This thesis focuses on the conceptual connection between processes and data, borrowing concepts from the database domain to enable the representation of which part of a database schema is accessed by a certain process activity. This novel conceptual view is then employed to detect potential data inconsistencies arising when the same data are accessed erroneously by different process activities. The decision perspective encompasses the modeling of the decision-making related to a process, considering where decisions are made in the process and how decision outcomes affect process execution. In this thesis, we investigate the use of the Decision Model and Notation (DMN) standard in conjunction with BPMN starting from a pattern-based approach to ease the derivation of DMN decision models from the data represented in BPMN processes. Besides, we propose a methodology that focuses on the integrated use of BPMN and DMN for modeling decision-intensive care pathways in a real-world application domain

    A modeling language for multi-tenant data architecture evolution in cloud applications

    Get PDF
    Multi-tenancy enables efficient resource utilization by sharing application resources across multiple customers (i.e., tenants). Hence, applications built using this pat- tern can be offered at a lower price and reduce maintenance effort as less application instances and supporting cloud resources must be maintained. These properties en- courage cloud application providers to adopt multi-tenancy to their existing applications, yet introducing this pattern requires significant changes in the application structure to address multi-tenancy requirements such as isolation of tenants, extensibility of the application, and scalability of the solution. In cloud applications, the data layer is often the prime candidate for multi-tenancy, and it usually comprises a combination of different cloud storage solutions such as blob storage, relational and non-relational databases. These storage types are conceptually and tangibly divergent, each requiring its own partitioning schemes to meet multi-tenancy requirements. Currently, multi-tenant data architectures are implemented using manual coding methods, at times following guidance and patterns offered by cloud providers. However, such manual implementation approach tends to be time consuming and error prone. Several modeling methods based on Model-Driven Engineer- ing (MDE) and Software Product Line Engineering (SPLE) have been proposed to capture multi-tenancy in cloud applications. These methods mainly generate cloud deployment configurations from an application model, though they do not automate implementation or evolution of applications. This thesis aims to facilitate development of multi-tenant cloud data architectures using model-driven engineering techniques. This is achieved by designing and implementing a novel modeling language, CadaML, that provides concepts and notations to model multi-tenant cloud data architectures in an abstract way. CadaML also provides a set of tools to validate the data architecture and automatically produce corresponding data access layer code. The thesis demonstrates the feasibility of the modeling language in a practical setting and adequacy of multi-tenancy implementation by the generated code on an industrial business process analyzing application. Moreover, the modeling language is empirically compared against manual implementation methods to inspect its effect on developer productivity, development effort, reliability of the application code, and usability of the language. These outcomes provide a strong argument that the CadaML modeling language effectively mitigates the high overhead of manual implementation of multi-tenant cloud data layers, significantly reducing the required development complexity and time

    Data sources for quantitative marine traffic accident modeling

    Get PDF
    Utilization of data in quantitative accident modeling is the main concern of this report. Various data sources exist in the maritime field on a global level, but the primary interest in this report are the data sources that cover the Gulf of Finland. Other databases are included for comparison purposes or when Finland does not maintain a similar database. Special attention is given to collision and grounding accidents, and to data useful in analyzing human and organizational factors. The analyzed data sources are divided into three categories: general ship traffic data, accident data, and incident data. The sources are analyzed considering following: (1) What type of data is collected and stored; (2) What is the quantity and the quality of the data; (3) Is data available to researchers and/or public; (4) Can data be utilized in quantitative accident modeling? It is found that the data sources differ in the scope and purpose and they all have their strengths and weaknesses. The existing sources are not perfect and using any of them as the only source of input to a quantitative model seems risky. This was also acknowledged by the participants of the workshops held at IMISS conference, who agreed that marine traffic accident and incident data collection and storing has to be improved in areas such as eliminating underreporting, differences in database taxonomies, and missing and erroneous data. As the improvement of data collection systems is a long term process, an alternative approach might be to improve the models for example by combining multiple sources of data and utilizing additional prior information

    SeaFlows – A Compliance Checking Framework for Supporting the Process Lifecycle

    Get PDF
    Compliance-awareness is undoubtedly of utmost importance for companies nowadays. Even though an automated approach to compliance checking and enforcement has been advocated in recent literature as a means to tame the high costs for compliance-awareness, the potential of automated mechanisms for supporting business process compliance is not yet depleted. Business process compliance deals with the question whether business processes are designed and executed in harmony with imposed regulations. In this thesis, we propose a compliance checking framework for automating business process compliance verification within process management systems (PrMSs). Such process-aware information systems constitute an ideal environment for the systematic integration of automated business process compliance checking since they bring together different perspectives on a business process and provide access to process data. The objective of this thesis is to devise a framework that enhances PrMSs with compliance checking functionality. As PrMSs enable both the design and the execution of business processes, the designated compliance checking framework must accommodate mechanisms to support these different phases of the process lifecycle. A compliance checking framework essentially consists of two major building blocks: a compliance rule language to capture compliance requirements in a checkable manner and compliance checking mechanisms for verification of process models and process instances. Key to the practical application of a compliance checking framework will be its ability to provide comprehensive and meaningful compliance diagnoses. Based on the requirements analysis and meta-analyses, we developed the SeaFlows compliance checking framework proposed in this thesis. We introduce the compliance rule graph (CRG) language for modeling declarative compliance rules. The language provides modeling primitives with a notation based on nodes and edges. A compliance rule is modeled by defining a pattern of activity executions activating a compliance rule and consequences that have to apply once a rule becomes activated. In order to enable compliance verification of process models and process instances, the CRG language is operationalized. Key to this approach is the exploitation of the graph structure of CRGs for representing compliance states of the respective CRGs in a transparent and interpretable manner. For that purpose, we introduce execution states to mark CRG nodes in order to indicate which parts of the CRG patterns can be observed in a process execution. By providing rules to alter the markings when a new event is processed, we enable to update the compliance state for each observed event. The beauty of our approach is that both design and runtime can be supported using the same mechanisms. Thus, no transformation of compliance rules in different representations for process model verification or for compliance monitoring becomes necessary. At design time, the proposed approach can be applied to explore a process model and to detect which compliance states with respect to imposed CRGs a process model is able to yield. At runtime, the effective compliance state of process instances can be monitored taking also the future predefined in the underlying process model into account. As compliance states are encoded based on the CRG structure, fine-grained and intelligible compliance diagnoses can be derived in each detected compliance state. Specifically, it becomes possible to provide feedback not only on the general enforcement of a compliance rule but also at the level of particular activations of the rule contained in a process. In case of compliance violations, this can explain and pinpoint the source of violations in a process. In addition, measures to satisfy a compliance rule can be easily derived that can be seized for providing proactive support to comply. Altogether, the SeaFlows compliance checking framework proposed in this thesis can be embedded into an overall integrated compliance management framework
    • …
    corecore