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Abstract

This dissertation is a collection of six adapted research papers pertaining to
two areas of research.
(I) A Declarative Framework for ERP Systems:

• POETS: Process-Oriented Event-driven Transaction Systems. The paper
describes an ontological analysis of a small segment of the enterprise
domain, namely the general ledger and accounts receivable. The result is
an event-based approach to designing ERP systems and an abstract-level
sketch of the architecture.

• Compositional Specification of Commercial Contracts. The paper de-
scribes the design, multiple semantics, and use of a domain-specific lan-
guage (DSL) for modeling commercial contracts.

• SMAWL: A SMAll Workflow Language Based on CCS. The paper shows
how workflow patterns can be encoded in CCS and proceeds to design a
macro language, SMAWL, for workflows based on those patterns. The
semantics of SMAWL is defined via translation to CCS.

• Using Soft Constraints to Guide Users in Flexible Business Process Man-
agement Systems. The paper shows how the inability of a process lan-
guage to express soft constraints—constraints that can be violated occa-
sionally, but are closely monitored—leads to a loss of intentional informa-
tion in process descriptions. This in turn makes it difficult for a process
execution engine to help its users adhere to established practices. The
paper then describes how soft constraints can be used to capture pre-
ferred practices explicitly in process descriptions.

• A Work Allocation Language with Soft Constraints. Based on the idea
of soft constraints the paper explains the design, semantics, and use of
a language for allocating work in business processes. The language lets
process designers express both hard constraints and soft constraints.

(II) The Reactors programming model:

• Reactors: A Data-Oriented Synchronous/Asynchronous Programming Mo-
del for Distributed Applications. The paper motivates, explains, and
defines a distributed data-driven programming model. In the model a
reactor is a stateful unit of distribution. A reactor specifies constructive,
declarative constraints on its data and the data of other reactors in the
style of Datalog. An attempt to update the data of a reactor starts a
reaction during which other reactors may be affected. The reaction ends
when all constraints of all affected reactors are satisfied or when it is
clear that this is not possible (conflict).
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Preface

This dissertation is submitted in partial fulfillment of the requirements for the Ph.D.
degree at the Department of Computer Science (DIKU), University of Copenhagen. The
work has been supervised by Professor Fritz Henglein, Ph.D. The disseration contains six
selected and adapted research papers and a short introduction to each of them. Table 1
provides an overview; a full list of publications including position papers and technical
reports can be found in Appendix A.

The dissertation contains two distinct areas of research: Chapter 1, A Declarative
Framework for ERP Systems, enumerates some widespread problems in current Enter-
prise Resource Planning (ERP) systems and proposes a new architecture as a partial
solution. The architecture relies on formalizations of data (for accounting and event
tracking), contracts (to handle business obligations), workflows (to support the execu-
tion of work), and reports (to monitor the state of the company). After an overview of
the architecture, the following sections introduce the papers on contracts and workflows.
Due to space concerns some work related to data (specifically, accounting models) in the
architecture had to be left out (see the list of publications in Appendix A). Reports are
not covered in this work, but interested readers are referred to Brixen [5], who applied
finite differencing [7] on a small report language, FunSETL, in a manner suitable for the
architecture presented here. The reader should be advised that much work still needs to
be done before the architecture can be built. The work at hand represents a set of papers
that have one thing in common: they are all intended as the bits and pieces that one day,
when all parts are done, will come together in a unified architecture.

Chapter 2, Reactors, presents a programming model for synchronous and asynchronous
distributed applications based on stateful units of distribution called reactors. Compu-
tation is data-driven in the sense that it is controlled by declarative constraints on the
state of reactors.

The dissertation is intended for people who have a technical interest in developing
ERP systems or in Internet programming models. A background in computer science is
strongly recommended.

Acknowledgments
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Chapter 1

A Declarative Framework for ERP
Systems

The objective of the work introduced in this chapter is to design

a declarative framework for writing process-oriented ERP systems.

We begin by sketching the preliminaries to that objective, namely: what are ERP (Enter-
prise Resource Planning) systems, how did they come about, and what challenges do they
face now and in the future. We then review the objective in more detail and introduce
each of the papers that contribute to this objective.

1.1. A Brief History of ERP Systems

Throughout the history of computers, business systems have always been among the
first to establish a foothold in industry when new technological advances were made. The
financial sector was among the first to utilize mainframe computers for critical business
applications, and with the introduction of the personal computer pioneered by ibm in
the 80s, software packages for small business financials were among the first to reach a
broader market. The foundation of all financial systems was the principle of double-entry
bookkeeping, a system first employed widely by merchants in Venice in the 15th century.
The system was described in 1458 by the merchant Benedetto Cotrugli in Il libro dell’arte
di mercatura, and the first printed account was given by Luca Pacioli in 1494 in Summa
de Arithmetica, Geometria, Proportioni et Proportionalita. Double-entry bookkeeping
subsequently became the authoritative method of accounting.

Double-entry bookkeeping in its pure form, however, handles only financial account-
ing. Even before computers entered the realm of accounting, one had to resort to auxiliary
systems outside the ledger. There were paper-based systems such as customer address
books, inventory lists, payroll records, and contracts. In the days before computers the
development of such ad hoc systems did not matter much because ideas such as interop-
erability and distribution were only theoretical. When the first systems were developed,
they too were developed as stand-alone systems specific to one department or function
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of the company (e.g. project management, sales or payroll). Integration between these
system was time-consuming if possible at all.

ERP (Enterprise Resource Planning) systems sought to change this by integrating
several systems to share data and better connect processes across departments. A typical
sales process, for instance, might take the concerted effort sales, inventory, and accounting
to complete. ERP systems were designed in modules, and those modules were integrated
with each other so as to support the flow of data mandated by common business practices.
This was very reasonable in that the systems kept strict boundaries between their sub-
systems.

Processes. The 80s and 90s saw a significant shift from data-centric to process-centric
management, and the introduction of a large set of new jargon: Value Chain, Business
Process Reengineering, Supply-Chain Management, etc. [3]. In essence, these regard the
enterprise as a collection of processes designed with the purpose of generating added
value to its customer from its input to its output. If some enterprises, processes or
parts of processes do not generate added value, they should be trimmed or they will be
out-competed, the theory goes. To this end Business Process Reengineering—accused
of being a reincarnation of Taylorism/Scientific Management that had fallen from grace
earlier—prescribed continuous measurement and process improvement in a style similar
to the Japanese management principle of continuous improvement, Kaizen, part of the
Toyota Production System (TPS).

Whereas ERP systems had been designed with the specific intent of supporting busi-
ness processes better, the common business processes were often tied intimately with the
system design; fundamentally changing the processes and still having the ERP system
support them was often cumbersome or even economically untenable. ERP system ven-
dors responded by building dedicated business process modules. However, the system
architecture remained modular based on the historic division of the company. The chal-
lenge of adapting the systems to support frequently changing processes gave rise to the
term business-to-IT alignment. It remains a pivotal issue to design systems that can
accommodate changes in business practice with the least possible delay.

Reporting/costing. The shared data in ERP systems made reporting faster and made it
possible to report directly on a larger set of data. At the same time, the process per-
spective suggested new ways of reporting costs. The shortcomings of current accounting
had been discussed for a while, and a host of ideas under the general label of Manage-
ment Accounting emerged. In this vein, Robert Kaplan and Robin Cooper proposed a
new cost allocation method, activity-based costing (ABC). In activity-based costing one
allocates costs to products and services, rather than to traditional functional divisions
of the enterprise. This makes apparent the cost of maintaining a product line, not just
in actual production, but throughout the entire enterprise from requisition to post-sale
support—it gives an approximate allocation of costs to business processes. Activity-based
costing—not a profound idea on the surface of things—was made possible in part by ERP
systems, which allowed a much finer-grained registration of business activities than what
had been possible before. As a result there was a continuing effort to improve reporting
in order to react to problems early, get the big picture by integrating data from several
modules and identify cost reduction opportunities.
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Supply-chain integration. Another management trend was that of Just-In-Time manage-
ment (JIT), also part of the Toyota Production System (TPS). Toyota Motor Corporation,
the Japanese car manufacturer, sought ways of reducing the capital tied up in inventory
at any given time. To this end, parts would be produced not to stock, but just in time to
be finished for their immediate assembly and delivery. This gave rise to the idea of Supply
Chain Integration. Not only would the enterprise’s own production be just in time, so
would (recursively) ordering parts from the suppliers. The impact was clear in the ERP
market: enterprises needed systems that would integrate with the inventories and order
systems of their suppliers—and with the procurement systems of their customers. Fluc-
tuations in market demand, one hoped, would automatically propagate back through the
supply-chain to avoid excessive stock-piling or supply shortages.

Compliance and globalization. A series of serious corporate scandals—notably Enron
whose downfall resulted in the dissolution of Arthur Andersen, one of the world’s five
largest accounting firms—lead to the introduction in the United States of the hotly con-
tended Sarbanes–Oxley Act1. But this was just one example of legislation on the na-
tional level. Companies operating globally or multi-nationally found themselves spending
significant resources on compliance with ever-changing local legislation. Furthermore,
companies (and hence ERP system vendors) were increasingly pressured to adhere to in-
ternational standards and recommendations such as BASEL II, International Financial
Reporting Standards (IFRS), and International Accounting Standards (AIS).

Interweaving. Since all companies were different, or at least conceived of themselves as
different, ERP were designed to be highly customizable. Except perhaps SME-market
systems (Small and Medium Enterprises) or specialized solutions, all ERP systems today
have their own development platforms using which companies can add more functionality
using proprietary domain-specific languages (DSLs). This raises serious interweaving
issues when a system consists of interacting pieces of logic and code expressing standard
procedures, national legislation, industry practices, and company customizations—and
the situation becomes particularly taxing when existing customization need to be merged
with a system upgrade from the vendor.

Interoperability/system integration. The emphases on outsourcing, supply-chain integra-
tion, and business processes applied pressure on current ERP systems: they needed a
higher degree of interoperability, and they needed, it was posited, to accommodate a
process-oriented view of the world. In the first iteration, these observations lead to a
surge of ERP system vendor interest in interoperable data formats (e.g. XML), automat-
ing business processes over the Internet (cf. WS-CDL, WS-BPEL), and Service-Oriented
Architecture (SOA).

1Officially known as the “Public Company Accounting Reform and Investor Protection Act of 2002”.
In particular the aptly named section 404(a) has an impact on internal business processes in stating: (a)
Rules Required. The Commission shall prescribe rules requiring each annual report required by section
13(a) or 15(d) of the Securities Exchange Act of 1934 to contain an internal control report, which shall—
(1) state the responsibility of management for establishing and maintaining an adequate internal control
structure and procedures for financial reporting; and (2) contain an assessment, as of the end of the most
recent fiscal year of the issuer, of the effectiveness of the internal control structure and procedures of the
issuer for financial reporting.
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Vendors. The last few years have seen a concentration in the market for ERP systems, and
after a series of acquisitions the biggest five vendors in terms of market share (2005) are
sap, Oracle, The Sage Group, Microsoft Dynamics, and ssa Global Technologies (later
acquired by Infor Global Solutions). A few open source systems have appeared, most
notably Compiere, but their impact remains negligible.

1.2. Objective

To summarize the previous section we are seeing (at least) six areas of significant
challenges:

1. Business processes and business–IT alignment
2. Supply-chain integration
3. Regulatory compliance (nationally and internationally)
4. Interoperability
5. Customization weaving and evolution
6. Integrated and instantaneous reporting

Rather than soldiering on and adhering to the historic design of ERP systems, it is en-
ticing to attempt to address these challenges by designing an ERP system architecture
completely from first principles—even if this means confronting the dogma that account-
ing must be based on double-entry bookkeeping. This work seeks to do so with a particular
focus on processes. Whereas current ERP systems have both designated process mod-
ules and integrated best practices, no ERP system to our knowledge is based directly on
processes. We therefore aim to design

a declarative framework for writing process-oriented ERP systems.

Our hypothesis is that a process-based architecture will make it easier to: (i) have changes
to processes reflected immediately in the running system, (ii) provide reminders, schedule
tasks, perform on obligations, and exercise due diligence, (iii) know what to do next
and what is urgent, (iv) report on running processes, (v) get early warnings in running
processes, (vi) perform what-if analysis on processes, and (vii) derive a graphical user
interface that adapts to changes in processes.

All the papers introduced in the following sections contribute to the goal of a unified
architecture, but more research is required before the architecture can be built convinc-
ingly and used in practice. In particular, reporting and data definitions—important parts
of the architecture—are outside the scope of this dissertation. Readers interested in
reporting are referred to Brixen [5] and Larsen and Nissen [6], who have implemented
domain-specific languages (DSLs) for reporting for the architecture.

This work considers neither supply-chain integration, regulatory compliance, interop-
erability nor customization, but it is certainly possible—and, indeed, the intension—that
problems in those areas can be alleviated by the architecture presented here. Note,
though, that it would be fully possible to build the architecture without concern for those
challenges. For the architecture and its associated DSLs we do not consider performance,
security or formal verification for now.
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1.3. Architecture

The first paper, POETS: Process-Oriented Event-driven Transaction Systems (Sec-
tion 3.1), presents a high-level system architecture for enterprise systems. Its point of
departure is reporting, in other words, the desire to know the status of the company.
Employees, managers, stakeholders, owners, and authorities require to know parts of the
state of the company at various times to act according to their respective commissions.
Starting from some of the most common reports, the paper proceeds to derive what
real-world events must be captured in order to eventually produce those reports.

The first outcome is an ontological argument to support the architecture shown in
Figure 1.1. The elements of the architecture are then defined formally and coded in a
prototype in F#. In doing so the paper demonstrates that it is possible and, indeed,
promising to construct an accounting system without using double-entry bookkeeping.
The architecture comprises the following components:

Data The fundamental data entities are agents, resources, information, and events.

Events The basic observation is that if one tracks all relevant changes to the state of
the world, it is always possible to generate the desired reports. Crucially, the word
“relevant” is defined as exactly that which is necessary to produce the desired reports.
This is simple, to the point of being inane, but an important difference is made here:
events are registered as-is with the least possible amount of interpretation. Contrary
to double-entry bookkeeping, this enables us to separate what has unequivocally
happened (the events) from how we choose to understand what has happened (our
interpretation).

Log The log can be thought of conceptually as a list that allows events to be added,
but never removed or modified. This is consistent with the definition of events
above: they represent observable changes in the state of the world and cannot be
undone. Should we wish to undo an event, we facilitate another (inverse) event,
and the reports should then be defined accordingly to understand those two evenst
as cancelling each other out. This is similar to the venerable feature of double-
entry bookeeping that transactions can be cancelled out by inverse transactions but
never edited or removed. The log can be thought of informally as a “flight recorder”
or a “time machine” because it enables users to go back to any point in time and
investigate the state of the company at that time. This is contrary to many existing
ERP systems that use destructive updates for some data.

Reports Reports are functions on the log. To know some part of the state of the com-
pany, e.g. the revenue for the fiscal year, invoices that are overdue or average em-
ployee retention time, one must sift through the log to extract and accumulate
the relevant events. An important part of the paper is to show that even if the
events look nothing like double-entry transactions, the income statement, the bal-
ance sheet, and other typical fiscal reports can be expressed as reports on the log
of events.
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Figure 1.1 System architecture
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Contracts Contracts are explicit representations of processes. They guard the system
and specify what is allowed in the sense that events must be valid according to
one of the ongoing contracts to be admitted in the system log. Having an explicit
representation of (running) contracts enables us to analyze, formally verify, monitor,
expose, persist, and move running instances.

The remaining sections treat selected elements of the architecture. Note again, that
reporting and data definitions are not part of this dissertation. The last section presents
research on workflows. Workflows are not part of the core architecture, but essential as
an interface between the core system and human workers.

1.4. Business Data: Accounting Models

An important part of the architecture is how business data are represented. Since
the desire is to have a uniform data model for ERP systems, double-entry bookkeeping
must either be replaced or subsumed. Due to space concerns my work in this area is
not included here. Interested readers are referred to the qualification report [8] for a
formalization of double-entry bookeeping and a critique of the Resources/Events/Agents
(REA) model (also published separately [4]).

1.5. Business Processes: Contracts

In the paper Compositional Specification of Commercial Contracts (Section 3.2) we
consider how contracts can be expressed in a domain-specific language designed as part of
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the overall architecture. The language design is based on an ontological analysis of a pool
of more than twenty actual contracts. The paper explains the properties and multiple
semantics of the contract language and shows how selected contracts are written in the
language.

1.6. Business Processes: Workflows

Workflows are not part of our core ERP system architecture, but they act as signifi-
cant producers of events (as proxies to human workers), and they are closely related to
contracts. Three papers on workflow have been included:

1. SMAWL: A SMAll Workflow Language Based on CCS (Section 3.3) begins by inves-
tigating if a process calculus, namely CCS (Calculus of Communicating Systems),
can be used to model workflows. A popular, albeit somewhat inaccurate, litmus test
is the suite of workflow patterns published by van der Aalst et al. [9]. Unsurprisingly,
the patterns can, indeed, be modeled in CCS, but the resulting code easily becomes
crufty. The paper therefore proceeds to define via translation the semantics of a
small macro language, SMAWL.

2. Using Soft Constraints to Guide Users in Flexible Business Processes Management
Systems (Section 3.4) represents a departure from the idea that workflows are strict.
It argues that workflows must be pliable and sketches how this might be done.

3. A Work Allocation Language with Soft Constraints (Section 3.5) implements the
ideas of the previous paper. It develops a language for expressing flexible work
allocation rules. It functions orthogonally to any process language in the sense that
the allocation aspect can be toggled on and off. When toggled off, all allocations are
permitted. The language is based on requirements from both academia and industry
representatives, and its semantics is defined with particular care that the language
can be used in a wide range of settings.
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Chapter 2

Reactors

The Reactors programming model came about from the desire to write declarative, con-
structive constraints on distributed data. Reactors are stateful units of distribution that
communicate with each synchronously and asynchronously to maintain their data con-
straints. The paper, Reactors: A Data-Oriented Synchronous/Asynchronous Program-
ming Model for Distributed Applications (Section 3.6), explains the model, defines its
semantics, and makes the case that it is applicable to Internet programming in general.
The model is inspired by Datalog (see Abiteboul [1] for a thorough introduction) and to
a limited extent by the Actor model (see e.g. Agha [2]).
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Research Papers
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POETS:

Process-Oriented Event-driven

Transaction Systems ?

Fritz Henglein, Ken Friis Larsen, Jakob Grue Simonsen,
Christian Stefansen

Department of Computer Science, University of Copenhagen (DIKU)

Abstract

We present a high-level enterprise system architecture that closely models the
domain ontology of resource and information flows in enterprises. It is:
Process-oriented: formal, user-definable specifications for the expected exchange of

resources (money, goods, and services), notably contracts, are represented explicitly in
the system state to reflect expectations on future events;

Event-driven: events denote relevant information about real-world transactions, specif-
ically the transfer of resources and information between economic agents, to which the
system reacts by matching against its portfolio of running processes/contracts in real
time;

Declarative: user defined reporting functions can be formulated as declarative functions
on the system state, including the representations of contractual residual obligations.

We introduce the architecture and demonstrate how analyses of the standard report-
ing requirements for companies—the income statement and the balance sheet—can
be used to drive the design of events that need registering for such reporting pur-
poses. We then illustrate how the multi-party obligations in trade contracts (sale,
purchase), including pricing and VAT payments, can be represented as formal con-
tract expressions that can be subjected to analysis.

To the best of our knowledge this is the first architecture for enterprise resource
accounting that demonstrably maps high-level process and information requirements
directly to executable specifications.

Key words: process, contract, type, event, financial system, enterprise resource
planning, ERP

Preprint submitted to Elsevier 20 September 2008
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1 Introduction

Enterprise Resource Planning (ERP) systems integrate several information sys-
tems of an organization into one system. Financials, manufacturing, project man-
agement, supply chain management, human resource management, and customer
relationship management are typical components of an ERP system 1 .

Enterprise Resource Planning (ERP) systems do in principle a simple thing: they
model activities in an enterprise and register relevant information about them so
they can be queried and interpreted for whatever is deemed important or required to
run the company, ranging from high-level strategy to down-on-the-floor operations.

It may be surprising then to learn that even ERP systems targeted at small and
medium-sized enterprises such as Microsoft Dynamics NAV 2 or AX 3 comprise
several million lines of code and thousands of tables in a relational database man-
agement system. The software architecture of such systems typically consists of a
decomposition of the system in terms of tables, code units, (user interface) forms
specifications, data mappers for input/output, etc., built as a three-tier client-server
system running on centralized database servers for their data repository. They do
not reflect the “architecture” of enterprises, which consists of resources (goods, ser-
vices, money) being bought, processed, sold, and moved around between different
parts, whether physical, functional or organizational, of a company. As a result
the translation of business requirements into running code has to span a large and
costly semantic and architectural divide.

Despite the widespread use and business reliance on ERP systems little effort has
been spent applying sound theoretical principles to designing an ERP system from
first principles. We argue that using well-known principles from process algebra
and functional programming, as we do here, gives an elegant and much cleaner
architecture for ERP systems.

? This work has been supported by the Danish National Advanced Technology Foun-
dation under Project 3rd generation enterprise resource systems (3gERP). See http:
//www.3gERP.org.

Email addresses: henglein@diku.dk (Fritz Henglein), kflarsen@diku.dk (Ken Friis
Larsen), simonsen@diku.dk (Jakob Grue Simonsen), cstef@diku.dk (Christian
Stefansen).
1 http://en.wikipedia.org/wiki/Enterprise resource planning retrieved on June
10th 2008.
2 http://www.microsoft.com/dynamics/nav retrieved on June 10th 2008.
3 http://www.microsoft.com/dynamics/ax retrieved on June 10th 2008.
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Taking as our fundamental goal that the ontological architecture for requirements
also be the architecture (our motto is: the (formalized) requirements are the sys-
tem.), we develop an event-driven architecture aimed at directly reflecting the
domain-oriented requirements. The key motivation is shortening the distance be-
tween requirements and their formal expression for rapid system prototyping, im-
plementation, and continuous system adaptation to changing processes and infor-
mation needs.

Given the size of ERP systems, it is not possible to cover all functionality. Hence this
paper restricts itself to only consider some of the functionality typically contained
in the finance module of ERP systems.

1.1 Contributions

The paper contributes the following:

An ERP system model An ERP system model that
• directly and declaratively reflects enterprise domain concepts, notably resources,

events, agents, information/reports and processes
• does not encumber the system with non-enterprise concepts such as “database

management system”, “client-server”, memory management, etc.
• separates interpretation and registration of (business) events
• separates (monetary) valuation from resources and thus enables re-valuation
• supports user-defined contract specifications, which can be executed and ana-

lyzed
Design methodology An enterprise design methodology based on identifying rel-

evant events to be registered and, consequently, processes to be modeled from
reporting requirements

Formal semantics A formal semantics (architecture reduction semantics) that is:
• event-trace based, yet
• orthogonal to the contract (choreography) language, rendering the concrete

choice of language independent of the architecture (we have used the contract
language by Andersen et al. [AEH+06], but, e.g., WS-CDL could be used in-
stead).

Prototype Illustrative parts of a text-based prototype in F#.
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1.2 Overview

In Section 2 we address the question of what to model, i.e., represent as data, and
what not. We start with the premise that only the information required for report-
ing purposes need be modeled. We take the standard reports that every company
must supply as our starting point. Section 3 formalizes the entities discovered in this
process: agents, resources, valuations of resources (prices), and events that must
me registered for the given reporting requirements. Section 4 illustrates how declar-
ative reports can be mapped in a natural fashion to the functional programming
language F#.

Section 5 discusses the need for representing not only ex post events, but also
processes, specifically contracts. Section 5.2 describes the resulting architecture:
incoming events modeling real-world activities are matched against process/con-
tract states expressing current expected/legal events and then put into a log. In
Section 5.3 we describe an example of a contract specification language and show
how it integrates with the overall architecture.

We discuss related work in Section 6 and conclude in Section 7.

2 Domain model of resource accounting

In this section we derive a stringent description of the functionality of any system
that models the economic status of a company. Initially, we notice that at any given
point in time, such a status can be derived if we have registered with sufficient
granularity the events that have occurred up to that point. Events are any atomic,
observable change in the state of the world. The challenge lies in selecting what
events to register and what events to ignore—and in particular in doing so without
a bias to existing methods of accounting.

Receiving an amount into the company’s bank account seems inherently relevant,
whereas the acquisition of a cup of coffee from the machine on the second floor
by the clerk may keep the coffee-drinking accountant happy for a while, but is
unlikely to have a direct, causal, unequivocal, and important effect on the economic
status of the company. But this distinction is vague. A better first approximation
to the requirements of relevant events for any accounting system is the union of
all events that are mentioned in (accounting) legislation and current accounting
practice. However, this approach imports exactly the unfortunate bias towards
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existing accounting practices which we seek to avoid. For example, many simple
accounting systems do not register when a customer accepts a quote and it becomes
an order. This is because such an event has no direct effect on any account or in
a traditional ledger or on the income statement. Granted, it has the indirect effect
of starting a process that generally leads to invoicing, and invoicing has a direct
effect on an A/R (Accounts receivable) account and a revenue account.

In this distinction lies the key to the definition of a relevant event: the receipt of an
order was not relevant because it had no effect on the income statement (assume
for the sake of argument that the income statement is our only company status
report of interest). Therefore receipt of an order is not registered. This leads to a
pleasant and quite obvious definition of relevant: an event is relevant if and only if
it has a direct effect on any of the reports of the company status that we want the
system to produce.

The first step is to determine what reports will be needed. Once these are estab-
lished, we can proceed to find the event types that affect those reports.

2.1 Reports

We assume that the company needs to produce the following five reports: an in-
come statement, a balance sheet, a cash flow statement, a list of open (not yet
paid) invoices and a VAT (value-added tax, somewhat similar to sales tax) report.
These are chosen because they constitute the core functionality of the traditional
accounting system that is our benchmark—as well as the legal requirements faced
by any registered company. For brevity of exposition, however, we shall concern
ourselves with only two reports: the income statement and the balance sheet.

We now consider as an example a company that sells goods. That is, the company
sustains itself by buying goods and selling them with a profit.

For ease of exposition we shall ignore taxes (other than VAT), interests, mortgages,
and other advanced accounting phenomena. We argue that this is without loss of
generality, as these are similar to the basic accounting phenomena outlined here.

What follows are bare-bones definitions of the reports. For a more thorough expo-
sition the reader is referred to a standard text on accounting [WKK04].
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Revenue (Gross income)

– Cost of goods sold

= Contribution margin

– Fixed costs

– Depreciation

= Net operating income

Fig. 1. Income Statement The Income Statement summarizes the profits and losses of
the company over a given period (hence also the name Profit & Loss Statement).

Assets

Fixed assets

Current assets

Inventory

Accounts receivable

Cash and cash equivalents

Total assets

Liabilities and owners’ equity

Liabilities

Accounts payable

VAT payable

Owners’ equity

Total liabilities and owners’ equity

Fig. 2. The Balance Sheet The Balance Sheet summarizes assets, liabilities, and
owners’ equity at a particular point in time. The balance sheet should always sat-
isfy the fundamental invariant known as the Accounting Equation, which states that
Assets = Liabilities + Owners’ equity.

2.2 Events

To be able to generate the reports outlined above we must identify the changes in
the state of the world that affect each item that report. Such changes in the state
of the world are reported as events, and we will assume—based on The Theory of
the Firm [Cre75]—that the events of interest are transfers of economic resources
or information between self-interested agents (economic entities).

All that happens can be expressed in terms of a few basic types of events:
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• Transmit a resource or money from one agent to another
• Convey information from one agent to another
• Transform a set of resources into another set of resources

These events can (and should) also be further refined, which is what we will do
next. Receiving a resource can be something for the company (land, property,
paper clips) or something intended for selling with a profit. Some resources are put
in stock for later consumption or sale, whereas other resources are consumed the
moment they are received (e.g., a session with a business consultant).

Recall that we are trying to mimic only the functionality of a standard accounting
system. For this reason the events we need to register—although chosen based on
what the desired reports mandate rather than just what events we think might be
necessary—look strikingly similar to that which a traditional accounting system
registers in its ledger. However, the point remains: we do not randomly decide
what events are relevant and made such a decision subject to biased models or
paradigms; we simply choose what gives the necessary granularity for what we
eventually desire to report.

Events that affect the Income Statement

Revenue Affected by sending an invoice for normal sale (not fixed assets, for
instance) to a customer.

Cost of goods sold Affected by making an inventory requisition relating to a
customer order. Notice that the requisition event does not inherently contain
information about the purchase price, and thus the purchase price must be looked
up or computed. The time of registration varies, but commonly the cost of goods
sold is registered at the time where the sale is invoiced to the customer.

Fixed costs Affected by receiving an invoice for a fixed cost.
Depreciation Not an event, but a continuous process. Here depreciation is com-

puted (based on the events describing purchases and sales of assets). That is,
depreciation is computed as a report (an interpretation) which can be invoked
per need. If depreciation were registered as discrete phantom events—as typical
accounting practice mandates—it would be difficult to change the depreciation
method retro-actively.

Events that affect the Balance Sheet

Fixed assets Affected (a) by receiving an invoice for a fixed asset and (b) by
sending an invoice for a fixed asset
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Raw materials Affected (a) by receiving an invoice for raw materials or (b) by
making a requisition for raw materials from the inventory for production.

Finished goods Affected by (a) sending an invoice to a customer for a good or
(b) by receiving finished goods from the production process.

Accounts receivable Affected by (a) sending an invoice or credit note to anyone
and (b) receiving payment pertaining to an invoice into the money bin or the
bank account

Cash Affected by (a) money being put in the money bin and (b) money being
taken from the money bin

Bank account Affected by (a) money being deposited into our bank account and
(b) money being withdrawn from out bank account

Accounts payable Affected by (a) receiving an invoice or credit note from anyone
and (b) sending payment pertaining to an invoice from the money bin or the bank
account

VAT payable Affected by issuing or receiving an invoice containing items on
which VAT is due.

Owners’ equity Affected by transferring money or resource to and from the own-
ers.

2.3 An Example

Figure 3 shows an example of the events that need to be registered by a company
over a period of time.

3 Formal model of resource accounting

3.1 Agents

Agents represent whole companies as well as categorizations within a company
such as organizational unit, location, etc. They can be thought of as partitioning a
company, possibly along multiple dimensions for any suitable purpose. To be able
to distinguish resources determined for (re)sale, for use inside the company, but
with long-term depreciation or instantaneous depreciation, we require conceptual
resource containers such as operations, fixed assets, losses. In our model agents are
thus not restricted to modeling only legal persons, organizational units, roles, and
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1 Receive 3 iPhones and 2 MacBooks from supplier X

2 Receive 2 iPhones and 1 MacBooks from supplier Y

3 Receive an invoice from X for 3 iPhones (3 * 400 USD
incl. VAT) and 2 MacBooks (2 * 2000 USD incl. VAT) and
rush delivery charge (20 USD – VAT exempt)

4 Receive invoice from Y for 3 iPhones (3 * 420 USD incl. VAT)
and 2 MacBooks (2 * 1940 USD incl. VAT) and shipping (100
USD incl. VAT)

5 Deposit 5220 USD into X’s bank account

6 Send check to Y to the amount of 5240 USD

7 Observe on our bank account that check has been cashed

8 Receive order from A of 1 MacBook and 1 iPhone priced at
3000 USD incl. VAT

9 Deliver 1 MacBook and 1 iPhone to A

10 Receive from A 3000 USD into our bank account

11 Pay VAT due

12 A year passes

13 Deliver, invoice, and receive payment for 1 MacBook worth
800 USD incl. VAT to Z

Fig. 3. An example of events relevant to a company

actual persons in the real world as in the REA-model.

We have seen that for the reporting purposes presented and analyzed in Section 2
it is sufficient to have an agent representing a company and a set of internal agents,
where each internal agent has a unique company that it belongs to. This can be
captured by defining

Agent =CompanyName × InternalAgentName

CompanyName = String

InternalAgentName = String

where the empty string ε, also written as “me”, is the designated internal name for
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the company itself. We write C.I instead of (C, I) and C instead of C.ε. We write
A ≤ C if A = (C, I) for some I ∈ InternalAgentName.

3.2 Resources

A resource is either: empty; a unit of a resource identified by a unique resource
name such as “iPhone”, “water”, “Picasso’s Guernica painting”; a scaled resource;
or the formal sum of two resources, which models taking their union.

Resource types are usually categorized into uncountable, countable or binary (unique,
one either has that particular resource or not), corresponding to allowing Real+0 , N
or {0, 1} as scaling factors. We shall not distinguish between resource types here,
but model all resource types as being uncountable. To simplify the presentation
of the semantic resource model we shall not dwell on the handling of unique and
countable resources, but treat all resources as uncountable. This is without loss of
expressive power since N and {0, 1} can be embedded into the nonnegative reals,
and we can maintain a mapping from resource types to their category and referring
to it during computations on resources to ensure that the corresponding invariant
is satisfied. Finally, we also allow “negative” resources, which ensures that the dif-
ference between resources is always defined. (compound) resource is a finite from
resource. Since resources can be added a compound resource thus is represented
by a finite map from resource types (such as “iPhone”, “water”, etc.) to the real
numbers Real .

Formally, this amounts to resources being modeled by the infinite coordinate space
Real∞ over the field Real of real numbers, an infinite dimensional vector space
whose elements are infinite vectors of reals (k1, k2, ...) with finitely many nonzero
elements. We shall also write them as

∑∞
i=0 kiXi to emphasize their treatment as

elements of a vector space with scalar multiplication and addition defined by:

k(
∞∑
i=0

kiXi) =
∞∑
i=0

(kki)Xi

(
∞∑
i=0

kiXi) + (
∞∑
i=0

k′iXi) =
∞∑
i=0

(ki + k′i)Xi

For convenience we also use descriptive strings as names for the different resource
types instead of formals Xi; such as 2 iPhone +3 MacBook denotes the com-
pound resource consisting of the 2.0 times one unit of the resource type denoted
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by “iPhone” plus 3.0 times one unit of the resource type denoted by “MacBook”.
This is instead of using 2X234 + 3X4117 or (0, . . . , 0, 2, 0, . . . , 0, 3, 0, . . .) where the
2 occurs in the 234th component and the 3 in the 4117th component of the infi-
nite vector and 234 is the “item number” of one resource (presumably iPhones)
and 4117 of another (presumably MacBooks—the strings do not mean anything by
themselves).

To summarize, we have the following spaces for modeling resource names and re-
sources

ResourceName = String

Resource ∼= Real∞

where we assume the existence of numbering function that maps resource names
to natural numbers for indexing resource vectors. (Such a function corresponds to
an product catalog with item numbers serving as indexes of the resource vectors.)

Apart from the vector operations scaling and addition (including subtraction), we
shall define an additional vector operation, which is used in connection with costing.

We say resource R =
∑∞

i=0 kiXi is nonnegative and write R ≥ 0 if ki ≥ 0 for all
i ∈ N. We write R ≤ R′ if R′ −R ≥ 0.

We define the operation Subtract : Resource ×Resource → Resource ×Resource as
follows: For R1, R2 ≥ 0 we define Subtract(R1, R2) = (R′

1, R
′
2) if: (1) R′

1, R
′
2 ≥ 0;

(2) R1 +R′
2 = R′

1 +R2, and (3) R′
1, R

′
2 are least with respect to ≤ amongst vectors

that have the first two properties.

Subtract models the situation where we would like to subtract a compound resource
R2 from another resource R1. If there are more units of a particular resource type
in R1 than in R2, after subtracting those in R2 from those in R1 the remaining
units are returned as part of R′

1, with R′
2 receiving 0. If there are fewer, the roles

of R′
1 and R′

2 are reversed. E.g.,

Subtract(2 iPhone + 1 MacBook + 1 Guernica, 1 iPhone + 5 MacBook) =

(1 iPhone + 1 Guernica, 4 MacBook).
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3.3 Valuations

Valuations are an integral part of resource accounting. A valuation is a linear map
from resources to a subspace of the resources, normally a single resource type that
represents some designated currency (say USD). They are used for a number of
purposes: The most obvious is as a price list, that is, the basis of a sales contract.
Another is to express the result of reappraisal of certain resources a company may
have (e.g., as a basis for extraordinary write-downs of assets).

Valuations distribute over scaling of resources and taking their union (sum):

Value(R1 + R2) =Value(R1) + Value(R2)

Value(kR1) = kValue(R1)

In other words, the total value of two resources R1 and R2 is the sum of their
values; and the value of k copies of a resource is k times the individual cost.
This is tantamount to saying that valuations are linear functions (homomorphisms)
between the vector spaces Resource and Real .

Valuation =Hom(Resource,Real)

The linearity requirement does not limit pricing in sales contracts to only applying
the “same” unit price in every trade. Larger volumes may just let the buyer nego-
tiate a lower price, corresponding to a different valuation as the basis for a sales
contract. Linearity rather models distributing value of resources when they are split
up as part of movement to and from inventory, production units (modeled as other
agents), etc. Here the basic assumption is always that items acquired in the same
transaction are all equally priced. So, if 8 iPhones were bought for stock and 4 of
them are transferred to operations later on, the original 4 and the transferred ones
are given the same unit price, whatever that is.

3.4 Events

As stated in Section 2.2 we need events to model transmission of resources, trans-
formation of resources, and conveyance of information. We will refer to these col-
lectively as transactional events—or in the definition TransactEvent . Each event
is equipped with a time stamp and an identifier for correlating different events
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to each other. Time-stamps are represented by real numbers that model the time
difference to some given base point (say, January 1, 1970, 00:00:00). We use strings
for identifiers.

We arrive at the following definitions:

Event =LogEvent × (Time × Ident)

LogEvent =TransactEvent

TransactEvent =TransmitEvent ] TransformEvent ] InformEvent

Time =Real

Ident = String

TransmitEvent =Agent × Agent × Resource

TransformEvent =Agent × Resource × Resource

InformEvent =Agent × Agent × Information

Note that ] denotes disjoint union.

We are left with modeling the information conveyed in information events. The
only information events that need be captured for the given reporting purposes
is the transmission of invoices. An invoice carries a lot of information in practice:
sender and receiver, their contact information, company tax code information (for
VAT purposes), which resources are delivered, and expenses for delivering them
such as shipping and handling. The resources are usually also split up into resource
names, number of units (scale), and what each unit costs.

Sender, receiver, time and an identification are conveyed as part of the event it-
self. The remaining information needed we represent in the information part. Note
that we only capture information that is required for our reporting purposes! This
consists of the resources delivered/to be delivered and price information: 4

Information =Resource × PriceInformation

The price information, in turn, consists of a price of the resources and their value

4 We simplify matters somewhat by not modeling here expenses for facilitating the deliv-
ery. For convenience we assume their cost is already amortized over the actually resources
delivered.
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added tax (VAT).

PriceInformation =Price × VAT

The price is a valuation. To simplify matters we disregard the rather complex
conglomerate of legislation on VAT calculation, and represent VAT as a valuation
as well.

Price =Valuation

VAT =Valuation

Note that we can model bundled prices. A bundle is a compound resource, but with
its own price different from the valuation of the bundle in terms of its constituent
resources. This can be modeled by introducing the bundles as an “abstract” new
resource resource type, whose “implementation” (definition) is the compound re-
source it is made up of. This allows pricing of that resource independently of its
constituent resources.

Beyond the above information an invoice also contains payment terms and other
information. Following our principle of capturing information that is required to
produce our target reports and no more, this is not represented. In practice, a
reference to the actual invoice from the information event will give access to all
such information.

With the above formalization the events of the example in Figure 3 can be rendered
as shown in Figure 4.

3.5 Reports

Let us reconsider our reports from Section 2. They are parameterized over:

• a time period, with starting date and end date,
• a time-stamped set of events,

The first requirement also holds for the balance sheet: the difference is that the
period of interest for it usually covers the starting date of the company until a
particular period end date, whereas the other reports use a more recent start date.
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1 Receive 3 iPhones and 2 MacBooks from
supplier X

transmit(X, C, 3 iPhone + 2
Mac, 2008-01-15)

2 Receive 2 iPhones and 1 MacBooks from
supplier Y

transmit(Y, C, 2 iPhone + 1
Mac, 2008-01-19)

3 Receive an invoice from X for 3 iPhones
(3 * 400 USD incl. VAT) and 2 Mac-
Books (2 * 2000 USD incl. VAT) and
rush delivery charge (20 USD – VAT ex-
empt)

inform(X, C, invoice (iPhone, 3,
400 USD, 25%), (Mac, 2, 2000
USD, 25%), (fee, 1, 20 USD,
0%), 2008-01-19)

4 Receive invoice from Y for 3 iPhones (3
* 420 USD incl. VAT) and 2 MacBooks
(2 * 1940 USD incl. VAT) and shipping
(100 USD incl. VAT)

inform(Y, C, invoice (iPhone, 3,
1680 USD, 25%), (Mac, 2, 7760
USD, 25%), (shipping, 1, 400
USD, 25%), 2008-01-19)

5 Deposit 5220 USD into X’s bank ac-
count

transmit(C.bank, X.bank,
26100 USD, 2008-01-22)

6 Send check to Y to the amount of 5240
USD

transmit(C, Y, right to draw
26.300 USD from C.bank, 2008-
01-22)

7 Observe on our bank account that check
has been cashed

transmit(C.bank, Y.bank,
26300 USD)

8 Receive order from A of 1 MacBook and
1 iPhone priced at 3000 USD incl. VAT

enter contract for exchange of (1
iPhone + 1 Mac, 1, 12000 USD,
25%)

9 Deliver 1 MacBook and 1 iPhone to A transmit (C, A, 1 Mac, 2008-01-
26)

10 Receive from A 3000 USD into our bank
account

transmit (A.bank, C.bank,
15000 USD 2008-01-30)

11 Pay VAT due transmit (C.bank, IRS,
VAT due())

12 A year passes

13 Deliver, invoice, and receive payment for
1 MacBook worth 800 USD incl. VAT to
Z

transmit (C.ops, Z, 1 Mac,
2009-01-30); inform (C, Z, in-
voice (Mac, 1, 3200 USD, 25%),
2009-01-30); transmit (Z.bank,
C.bank, 4000 USD, 2009-02-06);

Fig. 4. Example with formal events
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InvoicesReceived = {(i, (A,R, (price, t)))

: (inform(A,B, (R, price)), t, i) ∈ Events | B ≤ me, A 6≤ me}

InvoicesSent = {(i, (B,R, (price, t)))

: (inform(A,B, (R, price)), t, i) ∈ Events | A ≤ me, B 6≤ me}

InvAcq = Sort{(R, (price, t))
: (transmit(me,me.Inventory , R), t, i) ∈ Events,

(A,R′, price) = InvoicesReceived(i)}

GoodsSold =
∑

{R : (i, (A,R, (price, t))) ∈ InvoicesSent}
FIFOCost = foldl(accumCost , (0,GoodsSold), InvAcq)

accumCost((R, ((p, m), t)), (total , Q)) =

let (R′, Q′) = Subtract(R,Q) in

(total + p(R−R′), Q′)

end

Fig. 5. Definitions of selected subreports

Note that the time period is solely used to filter events out that are outside the
designated period. Once that is done, each report can then be defined as a function
on the remaining events.

In other words, we can define each report as a function from a set of time-stamped
events, represented as an event sequence obeying the the events’ timestamps, to
the designated information of the report.

3.5.1 Subreports

In this section we consider some subreports that are necessary to create the income
statement and the balance sheet, which are then defined in the next section.

Below we give the definitions of some of the reports. We use set-comprehension
notation, as it first appeared in the SETL programming language [SDDS86]. These
are simplified specifications for reasons of exposition. We assume that all goods
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purchased and transferred into inventory are for eventual sale only, and fixed assets
are written as if acquired and sold the first day of the accounting period (usually
year).

We would like to emphasize that we use the term “report” here to denote any
computable function on sets of events. This is in contrast to accounting system
practice, where the term usually conveys an expectation that the result be rendered
in some graphical format (as a printable document), and where functions computed
as part of other systems (such as data warehouses and OLAP engines) may carry
other designations even though they are computable functions on business events.

Figure 5 contains the mathematical definition of the subreports necessary to de-
fine the report FIFOCost ; all of which will be described shortly. The remaining
subreports can be found in Appendix A.

The InvoicesSent and InvoicesReceived reports As a basic report we need a
map from identifiers to corresponding invoice information. Payment and goods/ser-
vice delivery events are correlated to invoices via their identifiers that they share
with their invoice.

The InvAcq report We call a set of resources, where each is associated with a
time-stamped price and VAT valuation, priced resources.

The inventory acquisitions are the priced resources that have been transferred to
internal agent Inventory , sorted according to their time-stamp. The identifier of an
internal transmit event is used to indicate from which original purchase the price
information comes.

The GoodsSold report The most interesting reports are costing because they
reflect accounting decisions as to attributing a cost (valuation) to goods sold. For
unique resources we can uniquely associate a valuation by looking up the price
information in the invoice received for it. For non-unique resources, however, many
purchases may contain the same resource. Costing is about allocating a valuation
to goods sold that is normally derived from their purchase prices. There are several
generally accepted methods for inventory valuation: first-in-first-out (FIFO) cost-
ing, last-in-first-out (LIFO) costing, average costing. For illustration purposes we
use FIFO costing here.
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Revenue ,
∑{p(R) : (i, (A, R, ((p, m), t))) ∈ InvoicesSent}

– Cost of goods sold , #1(FIFOCost)

= Contrib. margin , Revenue − Cost of goods sold

– Fixed costs ,
∑{p(R) : (R, ((p, m), t)) ∈ Expenses}

– Depreciation , Depreciation

= Net op. income , Contrib. margin − Fixed costs − Depreciation

Fig. 6. Income Statement The Income Statement summarizes the profits and losses of
the company over a given period (hence also the British term Profit & Loss Account).

The goods sold in the period are the resources invoiced to another company, which
means that they have been or are committed to being delivered. We assume that
all such resources must be moved out of inventory in connection with the sale, and
that the identifier of the move indicates which sale (invoice) it relates to.

The FIFOCost report FIFOCost returns the value of goods removed from
inventory for sale, combined with any remaining goods that could not be found
in inventory. Ordinarily the latter is always 0 for a reporting period. However, the
function is general enough to handle cases where items have been sold before they
have been moved into inventory.

The function foldl is defined as:

foldl(f, e, [x1, x2, ..., xn]) = f(xn, . . . f(x2, f(x1, e)) . . .)

3.5.2 Financial statements

With the basic reports of the previous section it is possible to define the income
statement and the balance sheet. These are shown in Figures 6 and 7.

4 Prototyping in F#

Many details are easy to overlook without a machine-checkable and executable
model. For this reason we have produced a proof-of-concept implementation in

30



Assets

Fixed assets , FAssetAcq − Depreciation

Current assets , Inv . + Acc. rec. + Cash + equiv .

Inventory ,
∑{p(R) : (R, ((p, m), t)) ∈ InvAcq}

−#1(FIFOCost)

Acc. receivable ,
∑{p(R) : (i, (A, R, ((p, m), t))) ∈ InvoicesSent}

−∑{a : (i, a) ∈ PaymentsReceived}

Cash+equiv. ,
∑{a : (i, a) ∈ PaymentsReceived}

−∑{a : (i, a) ∈ PaymentsMade}

Total assets , Fixed assets + Current assets

Liabilities and owners’ equity

Liabilities

Acc. payable ,
∑{p(R) : (i, (A, R, ((p, m), t))) ∈ InvoicesReceived}

−∑{a : (i, a) ∈ PaymentsMade}

VAT payable , VATOutgoing − VATIncoming

Owners’ eq. , Total assets − Liabilities

Total liab.+eq. , Liabilities + Owners ′ equity

Fig. 7. The Balance Sheet The Balance Sheet summarizes assets, liabilities, and
owners’ equity at a particular point in time. The balance sheet should always sat-
isfy the fundamental invariant known as the Accounting Equation, which states that
Assets = Liabilities + Owners’ equity.

F# [SGC07], an ML dialect similar to O’Caml. An important point of this section
is to show that once we have the rigorous formal model, the actual coding of the
system is simple, and even reports that are considered complex in standard ERP
systems can be implemented in a succinct way.

We start with some type definitions for modeling agent specifications and resources:

type company_name = string
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type internal_agent_name = string
type agent_spec = {company: company_name;

agent: internal_agent_name option
}

type resource_name = string
type resource = (resource_name * float) list

The definitions are straightforward as one would expect. The only thing worth
noticing is that we represent the elements of Real∞ by association lists.

We model information in invoices as:

type invoice_line = {no_items: float;
resource: resource_name;
price: int; (* per item in std. currency *)
vat: int; (* VAT per item in std. currency *)
}

type invoice = invoice_line list

This does not directly correspond to the definition of Information, but it contains
the same information and reflects more directly the known line item structure of
invoices.

Finally, we model events, log entries, and the log with the following definitions:

type ident = string
type log_event =
| Transmit of agent_spec * agent_spec * resource
| Transform of agent_spec * resource * resource
| Inform of agent_spec * agent_spec * invoice

type log_entry =
| Event of log_event * date * ident

type log = log_entry = log_entry list

Here we use dates (year–month–day) as timestamps and strings as identifiers.

In the proof-of-concept implementation F# doubles as the preliminary report lan-
guage, i.e., the implementation of the architecture itself is in F#, and to avoid in-
troducing a separate report language at this stage F# is also used to write reports.
Although F# is quite suitable for that purpose, a complete system would most
likely use a report language designed specifically for enterprise reporting rather
than a general-purpose language. Reports, for now, are simply F# functions that
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take the log as an argument (and possibly additional context arguments).

We present two subreports from Section 3.5.1 of varying complexity: one for listing
the received invoices, the other for computing the accumulated cost of inventory
requisitions using the FIFO method.

Invoices Received The set of invoices received can be found by simple in-
spection of the log. The following function invoices_received runs through the
log, finds the relevant Inform events, filters out the resources (using the function
choose_informs_where), and builds an association list for all invoice ids:

let choose_informs_where f log =
let match_trans = function
| Event(Inform(sender, receiver, inv), d, id) ->

f sender receiver inv d id
| _ -> None in

List.choose match_trans log

let invoices_received me log =
choose_informs_where (fun sender receiver inv d id ->
if sender.company = me && receiver.company <> me
then Some (id, (inv, d))
else None) log

The function invoices_received takes two arguments: the name of my company,
me, and the log. Notice that the function ignores the internal agent specifica-
tion by only looking at the company attribute. Analogously to the utility function
choose_informs_where we define the utility function choose_transmits_where

that is used in the following reporting function.

FIFO Inventory Costing To find the cost of what has been taken out of the
inventory using FIFO ordering as described in Section 3.5, we define the following
function fifo:

let addf key map f = Map.add key (Map.tryfind key map |> f) map

let fifo inventory time log me =
let stuff_in_inv =

choose_transmits_where (fun sender receiver res d id ->
if receiver = inventory && d <= time then Some(res, d, id)
else None) log in
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(* Assumes that log is time-sorted, thus inList is also sorted *)
let inList = List.map (fun (r,t,id) -> lookup_price log me r id)

stuff_in_inv in
let price_map =

List.fold_right (fun inv map -> (* use fold_left for LIFO *)
List.fold_left (fun map (name, no, price) ->
addf name map

(function
| Some s -> (no, price) :: s
| None -> [no,price])) map inv) inList Map.empty in

let outList =
choose_transmits_where (fun sender _ res d _ ->
if sender = inventory && d <= time then Some res
else None) log in

(* Outflows *)
let outSum = List.fold_left add_res null_resource outList in
let price_atomar (name, total) =

let prices = Map.find name price_map in
let rec loop remaining ((n,p)::prices) =
if remaining > n then (n*p) + loop (remaining - n) prices
else remaining * p in

loop total prices in
let total_price = List.sumByFloat price_atomar outSum in
total_price

It uses the following helper functions to lookup the prices of a resource in the
corresponding invoices.

let find_in_invoice resource invoice =
List.map (fun (name, no) ->

let line = List.find (fun line -> line.resource = name) invoice
in name, no, line.price) resource

let lookup_price log me r id =
let match_invoice = function

| Event(Inform(sender, receiver, lines), _, ident)
when receiver = me && ident = id -> Some lines

| _ -> None in
let invoice = List.first match_invoice log |> Option.get in
find_in_invoice r invoice
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5 A contract-oriented event-based architecture

In this section we describe the formal semantics of a contract-oriented event-based
architecture. The architecture is deliberately designed to allow any contract lan-
guage to be used. We begin by providing background, proceed to describe the
architecture, and afterwards give a concrete example of a contract language.

5.1 Background

The most basic form of economic interaction is that of an exchange of resources
between agents. If we take || to be the basic composition operator, we could imagine
describing an exchange by writing:

transmit (X, Y, 1 apple) || transmit (Y, X, 1 USD)

This represents a particular contract between X and Y that, if and when it is
entered, obliges X to transfer an apple to Y and Y to give X a dollar in consideration.
It says very little else. It sets no time limits and it mandates no particular ordering.
It does, however, say that until an apple has been transmitted and a dollar has
been transmitted in consideration hereof, obligations remain.

If the event occurs that X transmits an apple to Y, the event should be logged, and,
moreover, the state of the contract should now reflect that only one obligation re-
mains. We say that the event matched (i.e., satisfied) an obligation in the contract,
and the result is a residual contract representing the remaining obligations.

In general, it is clear that the state of a company requires representation of the
processes that it is committed to following, either for contractual reasons or for
non-legal reasons. We suggestively call all such processes contracts, even though
they may also represent processes that have no legal significance, such as internal
processes.

The portion of the contract life cycle, that we need to model is sketched in Figure 8.
The steps in the contract life cycle are as follows:

negotiate The terms are negotiated between two or more parties (independent
agents). We do not model this stage.

start The contract is started (i.e., entered). At this point the contract describes
potential different series of resource and information transfer steps that must
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Start End

Register

Fig. 8. State diagram showing the life cycle of contracts

happen over time
register A transmit or inform event is matched against a contract; that is, it is

checked to see whether it is a valid step according to the contract. If it is, the
event is registered, and the contract is updated to represent only the remaining
obligations. If it is not, both the offending event and a representation of the
residual obligations in the contract at that time are returned for error processing.

end The contract is ended. This can happen for a variety of reasons, most com-
monly because no obligations remain. If a breach of contract has occurred, we
might choose to end it, albeit unsuccessfully; what happens thereafter is decided
outside of the system.

This means that in addition to logging all transaction events (transmit, transform,
and inform), we must log whenever a contract is started or ended.

All of this leads to an architecture consisting of a contract engine, a log, and a
report engine.

5.2 Architecture

Figure 9 shows a birds-eye view of the architecture. We assume that there is an
environment that takes care of collecting and buffering events. These are then
matched, manually or automatically, with an ongoing contract. The environment
can be a GUI, a workflow engine or other systems that interact with the contract
engine or the report engine.

Since the report engine has been developed in a related paper [LN07], we will con-
centrate on a formal model of the log and the running contracts. The log, L, is a
set containing elements of the type Event . The precise structure of the abstract
representation, C, of the running contracts depends on the concrete contract lan-
guage being used. Each of the running contracts can be identified uniquely via a
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Environment Core 
system

Workflow 
engine

GUI

Peers

Contract engine

Report engine

start (contractId, auxData, contract, time, ident)
register (contractId, auxData, event, time, ident)
end (contractId, auxData, time, ident)

addReport (report)
delReport (reportName)
getReport (reportName)
query (reportName, args)

Running 
contracts

Report 
definitionsOther 

systems

events

query results

events

updates

query results

add/get/del reports
observables

Event 
log

Fig. 9. Event-driven, contract-based architecture. Only the components in bold are
treated in this paper; for reports readers are referred to Nissen and Larsen [NL08].

contract identifier, cid.

The system changes over time via a sequence of events. Given e ∈ Event , the
transition relation on the state of the core system looks as follows

〈L, C〉 e−→ 〈L′, C ′〉

The definition of Event from Section 3.4 must be extended (a) to accommodate
events that start and end contracts and (b) to allow for any auxiliary data that
the contract language may need:

Event =LogEvent × (Time × Ident)

LogEvent = (StartEvent ] RegisterEvent ] EndEvent)

StartEvent = Start × ContractID × AuxData × Contract

RegisterEvent = Register × ContractID × AuxData × TransactEvent

EndEvent = End × ContractID × AuxData

TransactEvent =TransmitEvent ] TransformEvent ] InformEvent
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start
cid does not exist in C C ′ = C ⊕ (cid, x, c)

〈L, C〉 start(cid,x,c)@(t,id)−→ 〈(start(cid, x, c)@(t, id)) :: L, C ′〉

register C
(cid,x,e)−→ C ′

〈L, C〉 reg(cid,x,e)@(t,id)−→ 〈(reg(cid, x, e)@(t, id)) :: L, C ′〉

end
C

(cid,x)−→ C ′ C ′′ = C ′ 	 cid

〈L, C〉 end(cid,x)@(t,id)−→ 〈(end(cid, x)@(t, id)) :: L, C ′′〉

Fig. 10. Transition relation for the core architecture

Time =Real

Ident = String

TransmitEvent =Agent × Agent × Resource

TransformEvent =Agent × Resource × Resource

InformEvent =Agent × Agent × Information

A LogEvent can now be either a start event, a register event or an end event. All
of these three carry a contract identifier to indicate the contract being started,
matched against or ended. They also carry auxiliary data, which are any data
specific to the contract language. StartEvent additionally contains the body of the
contract being inserted into the system, and RegisterEvent has a TransactEvent as
part of its payload. As before all events contain a time stamp of type Time as well
as an event identifier, Ident , chosen by the environment to be able to refer to the
event later.

5.2.1 State transitions

We can now begin to consider the state transitions of the core architecture. The
transitions are described by the inference rules displayed in Figure 10.

start The start rule inserts a new contract into the system state and logs it.
start(cid, x, c)@(t, id) denotes a start event with contract identifier cid, auxiliary
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data x, contract c, time stamp t, and event ID id. The contract language-specific
operation C ⊕ (cid, x, c) adds the contract c with identifier cid and auxiliary data
x to the running contracts represented by C. The rule applies only if the chosen
identifier, cid, is, indeed, previously unused.

register In this rule e is the TransactEvent payload of the register event. The
operational semantics of the register rule relies on the operational semantics of

the contract language: if the contract language permits the transition C
(cid,x,e)−→ C ′,

the register event is logged, and C ′ is the new state of the running contracts.

end The end rule removes a contract, cid, from the running contracts, provided

that the contract language permits the transition C
(cid,x)−→ C ′. The removal is written

as C 	 cid where 	 is a contract language-specific operator.

5.3 An example contract language

In this section we show how to describe contracts as compositional specifications
in the language of Andersen et al. [AEH+06]:

c ::= Success | Failure | f(~a) | c1 + c2 | c1 ‖ c2 | c1; c2

| transmit(A1, A2, R, T | P ). c

| transform(A, R1, R2, T | P ). c

| inform(A1, A2, I, T | P ). c

Success denotes the trivial or (successfully) completed contract: it carries no obli-
gations on anybody. Failure denotes the inconsistent or failed contract; it signifies
breach of contract or a contract that is impossible to fulfill. The contract expression

transmit(A1, A2, R, T | P ). c

represents the commitment transmit(A1, A2, R, T | P ) followed by the contract c.
The commitment must be matched by a transmit event

e = transmit(v1, v2, r, t)

39



of resource r from agent v1 to agent v2 at time t where the predicate

P [A1 7→ v1, A2 7→ v2, R 7→ r, T 7→ t]

holds. If the event matches the commitment, the residual contract is c with A1, A2, R, T
bound to v1, v2, r, t, respectively. In other words, A1, A2, R, T are binding variable
occurrences whose scope is P and c. In this fashion the subsequent contractual
obligations expressed by c may depend on the actual values in the event e.

The contract combinators ·+ ·, · ‖ · and ·; · are used to express choice, parallelism,
and sequence, respectively. E.g., the contract

transmit (vendor, customer, Y, T | T < deadline)
|| ( transmit (customer, vendor, $100, T | T < deadline)

+ (transmit (customer, vendor, $55, T | T < deadline) ;
transmit (customer, vendor, $55, T | T < deadline + 60 days)))

expresses a sale of resource Y . The customer is given a choice between paying $100
before a given deadline (line 2) or just paying $55 before the deadline (line 3) and
then paying $55 before 60 days after the original deadline (line 4). Both the delivery
and the initial payment (whichever is chosen) must occur before the deadline, but
because · ‖ · is used, no particular order is mandated.

The language also provides facilities for defining and instantiating contract tem-
plates. The construct f(~a) is an instantiation of a previously defined contract tem-
plate, f , with actual parameters ~a. Contract templates definitions can be recursive,
enabling us to express repetition using this construct. The mechanics of contract
template definition and instantiation are outside the scope of this paper, but inter-
ested readers are referred to Andersen et al. [AEH+06] for a complete description.

Example: sales contract A somewhat more realistic contract for simple ex-
changes is captured in the following contract template:

Sale (vendor, customer, resource, pinfo as (p, m), deadline) =
transmit (vendor, customer, resource, T | T <= deadline) ||
(inform (vendor, customer, (resource, pinfo), T’).
(transmit (Tax, vendor, -m(resource) DKK, _ ) ||
transmit (customer, vendor, (p + m)(resource) DKK, T’’

| T’’ <= T’ + 8 days)))

Once instantiated with a particular vendor, a customer, a resource to be delivered,
the pricing of those resources, and a deadline for delivery, the contract expresses
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a set of legal executions: the first transmit expresses an obligation on the vendor
to deliver the resource to the customer by the given deadline. The vendor must
also send an invoice to the customer, which then results in an obligation by the
tax autorities to collect the VAT amount for the invoiced resources and by the
customer to pay the vendor the agreed-upon price, plus VAT.

Example: internal processes The term contract is suggestive of modeling
certain multi-party commitments with mutual consideration, specifying who the
parties are, which resources are involved, and by when they are to be transmitted.

Formally, though, our contract specifications just specify sets of event sequences:
they can also be used to structure and express internal processes within a company
and then monitor their execution. We can define a universal process as a contract
that can be matched by any transmit, transform or inform event, as long as the
agents involved are both internal agents of the subject company:

UniversalProcess() =

( transmit (A, B, R, T | A <= Me, B <= Me) +

inform (A, B, info, T | A <= Me, B <= Me) +

transform (A, R1, R2, T | A <= Me)

);

UniversalProcess()

5.3.1 Routing information

Consider a variation of the contract for the sale of Y :

transmit (vendor, customer, Y, T | T < deadline)
|| ( transmit (customer, vendor, $100, T | T < deadline)

+ (transmit (customer, vendor, $55, T | T < deadline) ||
transmit (customer, vendor, $55, T | T < deadline + 60 days)))

Lines 3 and 4 are now conjoined using ‖ rather than ; . If the customer transmits
$55 to the vendor before the deadline, this event can match both line 3 and line
4. Although clumsily written, the contract illustrates the need for a way to disam-
biguate between several possible matches. We will call such disambiguation routing
information.

The basic idea is that all nondeterminism can be reduced to a series of routing
decisions to identify the particular commitment the event is to be matched with.
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We can express such a series as a sequence of routing decisions of R = {f, s, l, r},
where f (first) and s (second) indicate what choice to make when a + construct
is encountered, and l (left) and r (right) indicate what side of a ‖ construct to
continue on. E.g., to ensure that the early payment of $55 is, indeed, matched to
line 3, the routing information would be rsl.

5.3.2 Integration with the main architecture

With the contract language in place we can provide the remaining definitions of
ContractID , Contract , and AuxData to integrate it with the architecture:

ContractID = String

Contract = c

AuxData =RoutingInformation

RoutingInformation = {f, s, l, r}∗

Here c denotes the contract body in the syntax of the contract language.

Some contract language-specific definitions remain, namely the running contracts,
C, the transition relation, C −→ C ′, and the operators⊕ and	. These require some
care to ensure that the contract language’s function and variable environments are
handled properly. Since these have been omitted here for the sake of simplicity, we
do not delve into the details, but instead refer readers to Andersen et al. [AEH+06].

6 Related work

6.1 Accounting Models

Since Paccioli’s Quaderno work dating back to the 15th century the dominant
tradition in all financial accounting has been Double-Entry Bookkeeping (DEB)
(see [WKK04] for a standard financial accounting text). However, as pointed out
by McCarthy in his seminal paper introducing the Resources-Events-Agents (REA)
accounting model [McC82] there are possible advantages to be reaped from other
approaches. We have adopted the use of Resources, Events and Agents from REA
and added our own contracts as formal, structured processes. REA is sometimes
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described as being in contrast with DEB. Event-based accounting does not preclude
the use of the ideas presented here in conjunction with DEB, however.

In the last two decades new management accounting methods have been proposed;
notably activity-based costing (ABC) [ABKY01]. A distinctive feature of our model
is the separation of events and interpretation – something which is not found in
DEB – and this facilitates management accounting, because one does find one-
self get locked into a specific method of interpretation (say, FIFO valuation). A
key aspect of our architecture is that it, accordingly, separates events representing
real-world (ordinarily incontrovertible) events from interpretation (such as the var-
ious valuation method employed), which are defined as report functions. Multiple
interpretations can coexist, such as tax-based depreciation and internal deprecia-
tion schemes. New interpretations can be added as report functions at any time.
Conversely, a report function that is no longer of interest leaves no garbage data
behind.

6.2 Contract management

Contract management is a term broadly applied to concepts, models and systems
for managing contractual agreements throughout their lifecycle, from negotation
through creation to execution and termination There are numerous papers that
investigate organizational, system integration and, to a lesser degree, semantic as-
pects of contract management; see [Bou02,SLO06].

There are also a good number of commercial IT-applications that support contract
management. 5

5 Here is a sample of contract management software in arbitrary order, with-
out prejudice and without any claim as to completeness or representation: To-
talContracts (www.procuri.com), Livelink ECM–eDOCS for Contract Management
(www.opentext.com), Meridian (www.meridiansystems.com), CompleteSource Con-
tract Management (www.moai.com), UpsideContract (www.upsidesoft.com), Stat-
sLog4 (www.statslog.com) for construction contracts, Contraxx (www.ecteon.com),
Salesforce.com (www.salesforce.com), SAP xApp Contract Lifecycle Management
(www.sap.com), 8over8.com (www.8over8.com) for oil and gas contracts, IntelliCon-
tract (www.intellicontract.com), Softrax (www.softrax.com), On Demand Contract
Management (www.ketera.com), Contract Assistant (www.blueridgesoftware.bz), Au-
totask (www.autotask.com), Contract Web (cobblestonesystems.com), Accruent cm-
Suite (www.accruent.com), Memba Context (www.memba.com), Emptoris Enterprise
Contract Management (www.emptoris.com), Contract Advantage (www.greatminds-
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Judging by their descriptions these systems are primarily aimed at supporting the
reliable production of contracts as natural-language documents and maintaining
some key information about them. They do not seem to contain an expressive,
yet declarative formal language for user-defined contract templates, nor a theory
(or tools for) correct transformation and analysis. In particular, they are generally
advertised as integrating with ERP systems, but not, as proposed here, as being at
their core.

6.3 Process languages

A core component of the architecture is the explicit representation of contracts or,
more generally, processes that model legal/acceptable sequences of events, which
are time-stamped transfers of resources and information between companies and
their actual or virtual parts.

Since the seminal publications on business process reengieering in the early 90s
[Ham90,DS90] there has been a marked shift towards a process-oriented view
of the world in management science. This has naturally induced an interest in
process-aware information systems [DvdAtH05] and enterprise process modeling
[DKKS04]. A large part of this interest was devoted to various ways of express-
ing business processes, or—since they are commonly seen as an instance hereof—
workflows. This has lead to efforts to express workflows in Petri nets [vdAHKB03],
π-calculus [Ste05a,Ste05b], and a variety of other formalisms. A significant other
strand of research was that of integrating processes—however they may be repre-
sented formally—with existing information systems, most saliently ERP systems.
The ARIS framework is an important example of this [Sch00a]. Both commercial
and open source ERP system (such as, SAP and Compiere, respectively) have intro-
duced process concepts. As of now, however, no other ERP system has been based
on processes from first principles to our knowledge. In other words there has been
significant research of business process reengineering, workflow systems, process-
aware information systems, and how to build process on top of ERP systems. This
has lead to a consensus that processes are a useful way to think about how business
operate, and a further consensus that information systems need to closely mirror
the business—this is often referred to as business/IT-alignment. However, no publi-
cations have attempted to revise the standard ERP system architecture to directly
accommodate a process-oriented view of the world as we have done here.

As said numerous formalisms exist for specifying processes, and a number of them

software.com). Please note that trademark notices have been omitted for readability.
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have been applied to modeling contracts in the business domain. Timed finite state
systems such as timed automata [AD94] enhance the corresponding finite state
system with deadline constraints on state transitions. Careful limitation of the
expressive power of the timing constraints combined with the finite-state nature
enable powerful model checking techniques.

Daskalopulu demonstrates how model checking can be applied to a sales contract
whose interactions are modeled as a timed Petri Net [Das00]. Molina-Jimenez et al.
show how contracts represented as finite state machines can be monitored during
execution [MJSSW03]. To ensure the finite-state property of the space of control
states, their data components—the actual resources exchanged—are removed, how-
ever. Control dependency of interactions on data must be abstracted in the model
when rendering it as timed finite state system. In particular, simple data-dependent
protocols such as payment by installment—pay as often as necessary until the
amount due is paid up as long as they all occur within a certain deadline—must be
approximated in some fashion in the model. The same argument seems to apply to
Event-driven Process Chains (EPC) [vdA99,Kin03] and other workflow languages
with event-driven transitions on a finite set of control states. Again, at that level of
modeling, they factor out the data into a separate part and treat events as atomic
data with no internal structure.

An interesting recent development is the explicit declarative representation of the
Deontic notions [McN06] of permissions and obligations by Pace, Priscariu, and
Schneider [PS07,PPS07] for declaratively representing contractual relations. What
makes this work engaging is that they demonstrate an “isomorphic” translation of
contractual stipulations to the formalization in their language CL; and that CL
still can be subjected to model checking.

In contrast to the above finite state systems the contract language of Andersen
et al. [AEH+06] employed here models completely all the relevant data uncovered
in our analysis of what is relevant for reporting purposes: the actions in our state
transitions are events that carry full data representations of resources and agents
and constitute thus, by themselves, an infinite domain. The data part is not fac-
tored into unspecified off-process database updates with no data-dependent control
state transitions. Unsurprisingly this makes the complexity of semantically faithful
contract analysis hard: Equivalence with Fail, the impossible-to-satisfy contract, is
NP-complete for contracts without recursion [Nis05], and it is undecidable [Nis07]
with full recursion, even when restricted to a very simple predicate language with
deadlines as in timed automata. We expect the paucity of the control constructs—
sequential and parallel composition; recursion— however to enable practically use-
ful analyses that include precise analysis of the resource flows. The contract lan-
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guage has been developed as a match for ERP systems. An empirical evaluation in
that domain is future work. We expect to find the need for variations on and exten-
sions to it, specifically support for parallel composition of contractual commitments
whose interdependencies are expressed declaratively by constraints, which is why
it has deliberately been designed to be a minimal core language.

It is important to observe that the contract language specifies process types in
the sense of protocols or behavioral types, rather than executable systems. As
such it is more basic than, but analogous to, the “global” Web Services Chore-
ography Description Language (WS-CDL 6 ) rather than a “local” orchestration
(executable process) language such as Web Services Business Process Execution
Language (WS-BPEL 7 ). The global communication perspective in our contract
language is motivated by and inherited from the application domain, specifically
the REA accounting model (see above); it constitutes, as such, a “natural” way of
formulating processes in that domain. Such a global language with a well-defined
formal semantics enables an automatic, provably correct transformation to the
(parallel) subprocesses of the individual agents (partners, roles) in a process, as
has been demonstrated by Carbone, Honda and Yoshida [CHY07] for an expressive
WS-CDL-like language. We believe this to be an important enabling step in gener-
ating process-specific role-based user interfaces, which are expected to be important
in future ERP systems.

6.4 Event-driven architectures

An event-driven architecture is any architecture that is built on the notion of
components reacting to events and generating events.

As such any run-time monitoring/verification system can be thought of as an event-
driven (sub)system. This includes active databases [RG03, Section 5.8], security
automata [Sch00b,SMH01], policy engines [GRF06], access control/resource moni-
tors, etc., whether based on automata specifications, temporal logics such as LTL
[KPA03,BLS08] or, for that matter, low-level code that implements state transi-
tions.

What makes our architecture a process-oriented event-driven architecture is that
each process (contract specification) is a denotation for a set of expected event
sequences. It furthermore offers a syntax for composing and subsequently automat-

6 http://www.w3.org/TR/ws-cdl-10 retrieved on June 10th 2008.
7 http://www.oasis-open.org/committees/wsbpel retrieved on June 10th 2008.
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ically manipulating/transforming such denotations: run-time events are matched
against events and transformed to represent the residual process, and residual pro-
cesses can be input as data to—in principle arbitrary— analysis functions.

Complex Event Processing [LF98] also relies on the event view of the world, but
is primarily intended for the purpose of monitoring events from several layers in a
network by installing predicates and aggregators. In contrast, in our architecture
events are matched against contracts that prescribe the expected arrival of events
and act as run-time monitors. Simultanously their syntactic representation can be
used as inputs to analyses for generating information, including new events for
matching.

7 Conclusions

We have presented an event-driven architecture consisting of an event processing
engine that matches economic and information events against their process spec-
ifications, and user-definable functions providing information on the state of the
system. As we have seen, these functions can be specified compactly in set notation,
and the specifications map closely to the actual reports in F# code.

At any given point in time the state of the system consists of the logged events
and residual contracts modeling expected future events. Reports can be defined
as arbitrary functions. In this fashion derived data, expressed as report functions,
are strictly separated from base data, which model real-world events. Theory and
technology exist for turning naively formulated functions that read the whole state
each time they are executed into efficient on-line algorithms [Bri05,NL08].

The explicit representation of contracts enables defining reporting functions, rang-
ing from useful to-do lists to, as demonstrated by Peyton-Jones and Eber [JE03],
sophisticated valuations. By formulating analyses for all possible (specifiable) con-
tracts, it is possible to break the binding time dependencies that normally require
that a process be coded up first before a corresponding set of specific reports can
be (hand-)coded for it. Notably, we believe that role-specific user interfaces can
be generated from process specifications that always reflect the present state of a
process, even if changed as the result of case (process instance) specific changes at
run-time.

Formal contract specifications thus build the core of a process-oriented event-driven
architecture: Contracts function as behavioral types for event traces. In the architec-
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ture an event is matched against a user-specified contract specification to validate
the contractual validity of the event and compute the residual obligations as an
explicit contract specification in its own. Contract specifications cannot only used
in this passive fashion of matching and flagging errors, but are likely to be most
useful in enabling functions to be formulated on them, ranging from to-do lists
via automatically generated user interfaces to sophisticated stochastic analyses for
valuation purposes.
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PaymentsReceived = {(i,USD(R))
: (transmit(A,B, R), t, i) ∈ Events | B ≤ me}

CashReceived =
∑

{k : (i, k) ∈ PaymentsReceived}
PaymentsMade = {(i,USD(R))

: (transmit(A,B, R), t, i) ∈ Events | A ≤ me}
CashPaid =

∑
{k : (i, k) ∈ PaymentsMade}

NetCashFlow = CashReceived − CashPaid

FAssetAcq = Sort{(R, (price, t))
: (transmit(me,me.FixedAssets, R), t, i) ∈ Events,

(A,R′, price) = InvoicesReceived(i)}
Expenses = Sort{(R, (price, t))

: (transmit(me,me.Expenses, R), t, i) ∈ Events,
(A,R′, price) = InvoicesReceived(i)}

VATOutgoing =
∑
{m(R) : (i, (A,R, ((p, m), t))) ∈ InvoicesSent}

VATIncoming =
∑
{m(R) : (i, (A,R, ((p, m), t))) ∈ InvoicesReceived}

Fig. A.1. Definitions of more subreports

A Subreport descriptions

Depreciation Another interesting aspect is depreciation of fixed assets, again
because it reflects certain accounting assumptions, whether mandated by law or to
reflect realistic wear-and-tear or resale considerations. For example, in the straight
line depreciation method the depreciation per time is the same over the useful life-
time of an asset; in other words, the value of a resource is a linear function of time
over its depreciation period, thereafter it is 0. The declining balance depreciation
method writes down value of priced resources by a certain percentage after each
equally long period, with special write-down to 0 once the value has become suf-
ficiently small; in other words, it is a discrete (periodicized) approximation to an
exponential decay function.

We can model such depreciation as report functions or even higher-order functions
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on valuations. Given a priced resource (R, ((p, m), t)), and a depreciation period
d, valuation pt′ of R at time t′ according to the straight line method such that
t ≤ t′ ≤ t+d is t′−t

d
p. The declining balance method can also be modeled as a time-

dependent scaling of a resource’s purchase valuation, with the notable exception of
the final write-down to zero, since that step does not distribute over set union of
priced resources. This can be handled by associating the write-down-to-0 threshold
with the internal agent containing the resources, such as FixedAssets : The value of
the priced resources at time t is computed according the depreciation formula in
use (linear or exponential), and then the total value is compared to the threshold
value associated with the internal agent whose resources are being value. If it is
above the threshold value, its value is returned; otherwise 0 is returned.

The NetCashFlow report Cash-flow can be simply given by gathering up all
money flows in the events.

Here USD is the base vector (as a linear function) for a currency resource. Multi-
currency cash flow can be performed by taking the sum of all such base vectors;
for instance USD + Euro + DKK . 8

The FAssetAcq and Expenses reports Analogously to the inventory acquisi-
tions we define fixed asset acquisitions and operational expenses. Note that the
internal agent Expenses stands for resources that are consumed instantaneously.

VATOutgoing and VATIncoming The incoming and outgoing VAT amounts are
computed from the invoices by employing their VAT valuation components.

8 Recall that currencies such as USD, Euro, DKK are treated as regular resource names.
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Abstract

We present a declarative language for compositional specification of contracts gov-
erning the exchange of resources. It extends Eber and Peyton Jones’s declarative
language for specifying financial contracts [JE03] to the exchange of money, goods
and services amongst multiple parties, and it complements McCarthy’s Resources,
Events and Agents (REA) accounting model [McC82] with a view-independent for-
mal contract model that supports definition of user-defined contracts, automatic
monitoring under execution, and user-definable analysis of their state before, dur-
ing and after execution. We provide several realistic examples of commercial con-
tracts and their analyses. A variety of (real) contracts can be expressed in such a
fashion as to support their integration, management and analysis in an operational
environment that registers events.

The language design is driven by both domain considerations and semantic lan-
guage design methods: A contract denotes a set of traces of events, each of which
is an alternative way of concluding the contract successfully, which gives rise to
a CSP-style [BHR84,Hoa85] denotational semantics. The denotational semantics
drives the development of a sound and complete small-step operational semantics,
where a partially executed contract is represented as a (full) contract that repre-
sents the remaining contractual commitments. This operational semantics is then
systematically refined in two stages to an instrumented operational semantics that
reflects the bookkeeping practice of identifying the specific contractual commitment
a particular event matches at the time the event occurs, as opposed to delaying this
matching until the contract is concluded.
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1 Introduction

When entrepreneurs enter contractual relationships with a large number of other
parties, each with possible variations on standard contracts, they are confronted
with the interconnected problems of specifying contracts, monitoring their execu-
tion for performance 1 , analyzing their ramifications for planning, pricing and other
purposes prior to and during execution, and integrating this information with ac-
counting, workflow management, supply chain management, production planning,
tax reporting, decision support etc.

1.1 Contract Management and Information Systems

Judging by publically available information, support for contracts in most present-
day enterprise resource planning (ERP) systems is delegated to functional silos,
specialized (sub)systems supporting a fixed catalogue of predefined contracts for
specific application domains; e.g. creditor/debitor modules in ERP systems such as
Microsoft Business Solutions’ Navision 3.60 and Axapta [nav] for simple commer-
cial contracts, SAP’s specialized contract management subsystems for particular
industries such as the beverage industry [sap], or independent systems for managing
portfolios of financial contracts such as Simcorp’s IT/2 system for managing trea-
suries [sim]. Common to these systems seems to be that they support a fixed and
limited set of contract templates specialized to a particular application domain
and lack flexible integration with other (parts of) enterprise systems. A notable
exception is LexiFi [lex] whose products for complex financial derivatives incorpo-
rate some of the ideas pioneered in Peyton Jones, Eber, and Seward’s research in
financial engineering [JES00,JE03].

In the absence of support for user-definable (custom) contracts users are forced to
adhere to stringent business processes or end up engaging in “off-book” activities,
which are not easily tracked or integrated; e.g. oral or written contracts in natural
language. Furthermore, development of new specialized contract modules incurs
considerable development costs with little possibility for supporting efficient divi-
sion of labor in a multi-stage development model where a software vendor produces
a solution framework, partners with domain expertise specialize (instantiate) the
framework to particular industries, and customers (individual companies) configure
and deploy specialized systems for their end users.

1 Performance in contract lingo refers to compliance with the promises (contractual
commitments) stipulated in a contract; nonperformance is also termed breach of contract.
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1.2 Problems with Informal Contract Management

Typical problems that can arise in connection with informal modeling and repre-
sentation of contracts and their execution include the following:

(1) Disagreement on what a contract actually requires. Many contract disputes
involve a disagreement between the parties about what the contract requires,
and many rules of contract law pertain to interpretation of terms of a contract
that are vague or ambiguous.

(2) Agreement on contract, but disagreement on what events have actually hap-
pened (event history); e.g. buyer of goods claims that payment has been made,
but seller claims not to have received it (“check is in the mail” phenomenon).

(3) Agreement on contract and event history, but disagreement on remaining con-
tractual obligations; e.g., seller applies payment by buyer to one of several
commitments buyer has, but buyer intends it for another commitment.

(4) Breach or malexecution of contract: A party overlooks a deadline on a commit-
ment and is in breach of contract (missed payment deadline) or incurs losses
(deadline on lucrative put or call option overlooked).

(5) Entering bad or undesirable contracts/missed opportunities; e.g., a company
enters a contract or refrains from doing so because it cannot quickly analyze
its value and risk.

(6) Coordination of contractual obligations with production planning and supply
chain management; e.g., company enters into an otherwise lucrative contract,
but overlooks that it does not have the requisite production capacity due to
other, preexisting contractual obligations.

(7) Impossibility, slowness or costliness in evaluating state of company affairs; e.g.,
bad business developments are detected late, or high due diligence costs affect
chances and price of selling company.

Anecdotal evidence suggests that costs associated with these problems can be con-
siderable. Eber estimates that a major French investment bank has costs of about
50 mio. Euro per year attributable to 1 and 4 above, with about half due to legal
costs in connection with contract disputes and the other half due to malexecution
of financial contracts [Ebe02].

In summary, capturing contractual obligations precisely and managing them con-
scientiously is important for a company’s planning, evaluation, and reporting to
management, shareholders, tax authorities, regulatory bodies, potential buyers,
and others.

56



1.3 A Domain-Specific Language for Contracts

ERP systems used today capture the activities of an enterprise based on the prin-
ciples of double-entry bookkeeping. Since the integration of this with subsystems
for handling contract execution is characterized by ad hoc, makeshift solutions, it
is interesting to consider if a specification language can be designed and integrated
with the data model in which historic activities of the enterprise are collected. We
argue that a declarative domain-specific (specification) language (DSL) for com-
positional specification of commercial contracts (defining contracts by combining
subcontracts in various, well-defined ways) with an associated precise operational
semantics is ideally suited to alleviating the above problems. 2

Note that contracts are not only put to a single use as programs are, whose sole
use usually consists of execution. They are subjected to monitoring, which can be
considered to be the standard semantics for contracts, plus various user-defined
analyses.

In this sense contract specifications are more like intelligent data that are subjected
to various uses. This is in contrast to programs that are exclusively executed.

As a consequence, both the syntactic structure of contract specifications and the
ability of limiting their expressive (programming) power are of particular signifi-
cance in their design.

We believe the DSL facilitates multi-stage development as the central interface
between framework developer and partner:

(1) The framework developer provides the DSL, which allows specification of an
infinity of contracts in a domain-oriented fashion, but without (too much) prej-
udice towards specific industries; delivers a run-time environment for managing
execution of all definable contracts; and provides a number of useful general-
purpose standard contracts. Furthermore, the framework developer provides
a language (or library) and run-time system for defining contract analyses,
and defines a number of standard analyses applicable to all definable con-
tracts; e.g., next-point-of-interest computation for alerting users – human or
computer – to commitments that require action (sending payment, making
deliveries) or computation of accounts receivable and accounts payable for

2 Please note that our language is rendered in ordinary linear syntax, but we do not
intend to limit the scope of the term ’language’ to specifying linear sequences of characters
only, but to include graphical objects and the like.
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financial reporting.
(2) The partner defines a collection of contract templates using the DSL for use

in a particular industry and adds relevant industry-specific analyses using the
vendor’s analysis language. No general-purpose low-level programming exper-
tise is required, but primarily domain knowledge and the ability to formalize
it in the DSL and to express specialized analysis functions in the vendor’s
analysis language. The partner may leave some aspects (parameters) of the
specialized system open for final configuration at the end user company.

(3) The customer organization receives its system from the partner and configures
and deploys it for use by its end users.

Note that the DSL provides encapsulation and division of labor in this pipeline:
Discussions between end users and partners are performed in terms of domain con-
cepts close to the DSL, but the end user does not need to know the DSL itself.
Discussions between partners and the framework provider on design, functionality,
limitations are in terms of the design and semantics of the DSL, not in terms of
its underlying (general-purpose) implementation language; in particular, specific
implementation choices by the framework developer are unobservable by the part-
ners. The DSL encapsulates its implementation and thus facilitates upgrading of
software throughout the pipeline.

1.4 Contributions

We make the following contributions in this article:

• We define a contract language for multi-party commercial contracts with iteration
and first-order recursion. They involve explicit agents and transfers of arbitrary
resources (money, goods and services, or even pieces of information), not only
currencies. Our contract language is stratified into a pluggable base language
for atomic contracts (commitments) and a combinator language for composing
commitments into structured contracts.

• We provide a natural contract semantics based on an inductive definition for
when a trace—a finite sequence of events—constitutes a successful (“perform-
ing”) completion of a contract. This induces a trace-based denotational seman-
tics, which compositionally maps contracts to trace sets.

• We systematically develop three operational semantics in a stepwise fashion,
starting from the denotational semantics:

(1) A (sound and complete) reduction semantics for monitoring contract execution
during arrival of events. It represents the residual obligations of a contract after
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an event as a bona fide (full) contract specification and defers matching of
events to specific commitments until the whole contract has completed. It can
be implemented by backtracking where events are tentatively matched to the
first suitable commitment and backtracking is performed if that choice turns
out to be wrong later on.

(2) A nondeterministic reduction semantics for eager matching, where matching
decisions are made as events arrive and cannot be backtracked. Eager matching
corresponds to bookkeeping practice, but leads to nondeterminacy in the case
multiple commitments in a contract can be matched by the same event; in
particular, the parties to a contract may perform different matches and may
end up disagreeing on the contract’s residual obligations.

(3) An instrumentation of the eager matching semantics that equips events with
explicit control information that routes the event unambiguously to the par-
ticular commitment it is to be matched with. This yields an eager matching
semantics with a deterministic reduction semantics and thus ensures that all
parties to a contract agree on the residual contract if they agree on the prior
contract state and on which event (including its routing information) has hap-
pened.

• We validate applicability of our language by encoding a variety of existing con-
tracts in it, and illustrate analyzability of contracts by providing examples of
compositional analysis.

The denotational semantics has been an instrumental methodological tool in de-
riving a small-step semantics.

Our work builds on a previous language design by Andersen and Elsborg [AE03]
and is inspired by:

• Peyton-Jones and Eber’s language for compositional specification of financial
contracts [JES00], which has been the original impetus for the language design
approach we have taken;

• McCarthy’s Resources-Events-Agents (REA) accounting model [McC82], which
has provided the ontological justification for modeling commercial contracts as
being built from atomic commitments stipulating transfers (economic events) of
scarce resources between between agents (and nothing else);

• Hoare’s Calculus of Sequential Processes (CSP), specifically its view-independent
event synchronization model, and its associated trace theoretic semantics
[BHR84,Hoa85].

See Section 7 for a more detailed comparison with this and other related work.
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2 Modeling Commercial Contracts

A contract is an agreement between two or more parties which creates obligations
to do or not do the specific things that are the subject of that agreement. A
commercial contract is a contract whose subject is the exchange of scarce resources
(money, goods, and services). Examples of commercial contracts are sales orders,
service agreements, and rental agreements. Adopting terminology from the REA
accounting model [McC82] we shall also call obligations commitments and parties
agents.

It is worth noticing that contracts may be express or implied. When two parties
decide to exchange goods, more often than not there is no express contract. There
is, however, an implied contract of the form of “Party A expects to pay X in
exchange for party B’s provision of goods Y ”. Usually when no express contract is
present, the contractual obligations are taken from common practice, general terms
of trade, or legislation. Thus the term contract should be understood in a broader
sense as a structure that governs any trade or production even if it is not verbal.

2.1 Contract Patterns

In its simplest form a contract commits two contract parties to an exchange of
resources such as goods for money or services for money; that is to a pair of transfers
of resources from one party to the other, where one transfer is in consideration of
the other.

The sales order template in Figure 1 commits the two parties (seller, buyer) to
a pair of transfers, of goods from seller to buyer and of money from buyer to
seller. Note that both commitments are predicated on when they must be satis-
fied: seller may deliver any time, but must do so by a given date, and buyer must
pay at the time delivery happens. We can think of the sales order as being composed
sequentially of two atomic contracts : the seller’s commitment to deliver goods,
followed by the buyer’s commitment to pay for them. If goods are not delivered
there is no commitment by buyer to pay anything, and only seller is in breach of
contract. In a barter (goods for goods or goods for services) the commitments on
each party may be composed concurrently ; that is, both commitments are uncon-
ditional and must be satisfied independently of each other. If no party delivers on
time and no explicit provision for this is made in the contract, both parties may be
in breach of contract. Many commercial contracts are of this simple quid-pro-quo
kind, but far from all. Consider the legal services agreement template in Figure 2.
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Fig. 1 Agreement to Sell Goods

Section 1. (Sale of goods) Seller shall sell and deliver to buyer (description of
goods) no later than (date).

Section 2. (Consideration) In consideration hereof, buyer shall pay (amount in
dollars) in cash on delivery at the place where the goods are received by buyer.

Section 3. (Right of inspection) Buyer shall have the right to inspect the goods
on arrival and, within (days) business days after delivery, buyer must give notice
(detailed-claim) to seller of any claim for damages on goods.

Fig. 2 Agreement to Provide Legal Services

Section 1. The attorney shall provide, on a non-exclusive basis, legal services up
to (n) hours per month, and furthermore provide services in excess of (n) hours
upon agreement.

Section 2. In consideration hereof, the company shall pay a monthly fee of
(amount in dollars) before the 8th day of the following month and (rate) per
hour for any services in excess of (n) hours 40 days after the receival of an
invoice.

Section 3. This contract is valid 1/1-12/31, 2004.

Here commitments for rendering of a monthly legal service are repeated, and each
monthly service consists of a standard service part and an optional service part.
More generally, a contract may allow for alternative executions, any one of which
satisfies the given contract.

We can discern the following basic contract patterns for composing commercial
contracts from subcontracts (a subcontract is a contract used as part of another
contract):

• a commitment stipulates the transfer of a resource or set of resources between
two parties; it constitutes an atomic contract ;

• a contract may require sequential execution of subcontracts;
• a contract may require concurrent execution of subcontracts, that is execution of

all subcontracts, where individual commitments may be interleaved in arbitrary
order;

• a contract may require execution of one of a number of alternative subcontracts;
• a contract may require repeated execution of a subcontract.

Furthermore, commitments and, more generally, contracts usually carry temporal
constraints, which stipulate when the actual resource transfers must happen.

In the remainder of this report we shall explore a declarative contract specification
language based on these contract patterns.
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3 Compositional Contract Language

In this section we present a core contract specification language and its properties.
All proofs are relegated to Appendix A.

The language should satisfy the following design criteria:

• Contracts should be specifiable compositionally, reflecting the contract compo-
sition patterns of Section 2.1.

• The language should separate contract composition (contract language) from
definition of the atomic commitments (base language), including their tempo-
ral constraints; this is to make sure that the design can accommodate changes
and extensions to the base language without simultaneously forcing substantial
changes in the contract language.

• The language should obey good language design principles such as naming and
parameterization, orthogonality and compositional semantics.

• The language should be expressive enough to represent partially executed con-
tracts as (full) contracts and have a reduction semantics that reduces a contract
under arrival of an event to a contract that represents the residual obligations.
By representing partially executed contracts as contracts any contract analysis
will also be applicable to partially executed contracts.

• The reduction semantics should be a good basis for ’control’ of execution; in
particular, for matching of events against the specific (intended) commitment in
a contract that it satisfies.

3.1 Syntax

Our contract language CP is defined inductively by the inference system for deriving
judgements of the forms Γ; ∆ ` c : Contract and ∆ ` D : Γ. Here Γ and ∆ range
over maps from identifiers to contract template types and to base types, respectively.
The map extension operator on maps is defined as follows:

(m⊕m′)(x) =

 m′(x) if x ∈ domain(m′)

m(x) otherwise

The language is built on top of a a base structure of domains (A,R, T ) of agents,
resources, time where (T ,≤T ) is totally ordered. It consists of a typed base lan-
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guage of expressions P , for which we assume the existence of a set of valid typing
judgements ∆ ` a : τ for expressions a, which include variables X and constants
for each element in the base structure. Types τ include Agent, Resource, Time,
which denote (A,R, T ), respectively, as well as Boolean for predicates (Boolean

expressions). The expression language has a notion of substitution b[~a/ ~X] 3 and a
denotation function Q[[∆ ` a : τ ]] that maps valid typing judgements to elements
of domains Dom[[∆ → τ ]]. (See Figure 6 for a brief description of the thus denoted
domains.) The only properties we shall assume are that substitution is compatible

with judgements: if ∆ ⊕ ~X : ~τ ` b : τb and ∆ ` ~a : ~τ then ∆ ` b[~a/ ~X] : τb where

~a = a1 . . . an and ~X = X1 . . . Xn for some n ≥ 0; and that the denotation function
is compositional; that is, Q[[∆ ` b[~a/ ~X] : τ ]]δ = Q[[∆ ` b : τ ]]δ⊕{Xi 7→Q[[∆`ai:τi]]

δ}i .

We use metavariable P for Boolean expressions and abbreviate ∆ ` P : Bool
to ∆ ` P . For brevity and readability, we also abbreviate Q[[∆ ` a : τ ]] to Q[[a]],
leaving ∆ and τ to be understood from the context. Finally, we write δ |= P for
Q[[P ]]δ = true.

The language P provides the possibility of referring to observables [JES00,JE03].
We shall introduce suitable base language expressions on an ad hoc basis in our
examples for illustrative purposes.

The context-free structure of contracts directly reflects the contract patterns we
discussed in Section 2.1:

c ::= Success | Failure | f(~a) | transmit(A1, A2, R, T | P ). c

| c1 + c2 | c1 ‖ c2 | c1; c2

Success denotes the trivial or (successfully) completed contract: it carries no obli-
gations on anybody. Failure denotes the inconsistent or failed contract; it signi-
fies breach of contract or a contract that is impossible to fulfill. The environment
D = {fi[ ~Xi] = ci}m

i=1 contains named contract templates where ~Xi is a vector of for-
mal parameters for use in the embedded contract ci. A contract template needs to
be instantiated with actual arguments from the base language. (The ni on the τ in-
dicates that different contracts may have a different number of formal parameters.)
For a Boolean predicate P the contract expression transmit(A1, A2, R, T | P ). c
represents a contract where the commitment transmit(A1, A2, R, T | P ) must be
satisfied first. Note that A1, A2, R, T are binding variable occurrences whose scope

3 We use the general convention that metavariables in boldface denote vectors (se-
quences) of what the metavariable denotes.
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Fig. 3 Syntax for contract specifications

Γ; ∆ ` Success : Contract Γ; ∆ ` Failure : Contract

Γ(f) = ~τ → Contract ∆ ` ~a : ~τ

Γ; ∆ ` f(~a) : Contract

∆′ = ∆⊕ {A1 : Agent, A2 : Agent, R : Resource, T : Time}
Γ; ∆′ ` c : Contract
∆′ ` P : Boolean

Γ; ∆ ` transmit(A1, A2, R, T | P ). c : Contract

Γ; ∆ ` c1 : Contract Γ; ∆ ` c2 : Contract

Γ; ∆ ` c1 + c2 : Contract

Γ; ∆ ` c1 : Contract Γ; ∆ ` c2 : Contract

Γ; ∆ ` c1 ‖ c2 : Contract

Γ; ∆ ` c1 : Contract Γ; ∆ ` c2 : Contract

Γ; ∆ ` c1; c2 : Contract

Γ = {fi 7→ τi1 × . . .× τini
→ Contract}m

i=1

Γ; ∆⊕ {Xi1 : τi1, . . . , Xini
: τini

} ` ci : Contract

∆ ` {fi[ ~Xi] = ci}m
i=1 : Γ

∆ ` {fi[ ~Xi] = ci}m
i=1 : Γ Γ; ∆ ` c : Contract

∆ ` letrec {fi[ ~Xi] = ci}m
i=1 in c : Contract

is P and c. The commitment must be matched by a (transfer) event

e = transmit(v1, v2, r, t)

of resource r from agent v1 to agent v2 at time t where P (v1, v2, r, t) holds. After
matching, the residual contract is c in which A1, A2, R, T are bound to v1, v2, r, t,
respectively. In this fashion the subsequent contractual obligations expressed by c
may depend on the actual values in event e. The contract combinators ·+ ·, · ‖ · and
·; · compose subcontracts according to the contract patterns we have discerned: by
alternation, concurrently, and sequentially, respectively. A (contract) context is a
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finite set of named contract template declarations of the form f( ~X) = c. By using
the contract instantiation (or contract application) construct f(~a) contract tem-
plates may be (mutually) recursive, which, in particular, lets us capture repetition
of subcontracts. Contract template definitions occur only at top level.

Since the contract language CP is statically typed its syntax is formally defined by
the inference system in Figure 3. If top-level judgement ∆ ` letrec D in c : Contract
is derivable we shall say that c is well-formed in context D. Henceforth we shall
assume that all contracts are well-defined, where D may be implicitly understood.

What we call contracts should justly be called precontracts as they do not nec-
essarily satisfy the legal requirement for validity. In particular, Success, Failure
and any expression that obligates only one agent are not judicially valid contracts.
Following [JES00,JE03], we shall freely use the term contract, however. Note that
consideration (reciprocity in REA terms) is not built into our language as a syn-
tactic construct. This allows flexible definitions of contracts where commitments
are not in a simple, syntactically evident one-to-one relation, and it allows differ-
ent, user-defined notions of consideration to be applied as analyses to the same
language.

In the following we shall adopt the convention that A1, A2, R, T must not be bound
in environment ∆. If a variable from ∆ or any expression a only involving vari-
ables bound in ∆ occurs as an argument of a transmit, we interpret this as an
abbreviation; for example, transmit(a, A2, R, T | P ). c abbreviates

transmit(A1, A2, R, T | P ∧ A1 = a). c

where A1 is a new (agent-typed) variable not bound in ∆ and different from A2, R
and T .
We abbreviate transmit(A1, A2, R, T | P ). Success to transmit(A1, A2, R, T | P ).

The contract from Figure 1 is encoded in Figure 4, and the contract in Figure 2 is
treated in depth in Sections 4 and 5.

3.2 Event Traces and Contract Satisfaction

A contract specifies a set of alternative performing event sequences (contract ex-
ecutions), each of which satisfies the obligations expressed in the contract and
concludes it. In this section we make these notions precise for our language.
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Fig. 4 Specification of Agreement to Sell Goods
letrec

nonconforming [seller, buyer, goods, payment, days, t1, notice] =
transmit (buyer, seller, notice, T |

T < t1 + days d and #(goods,broken,t1) = 1).
transmit (seller, buyer, payment/2, T’ | T’ < T + days d).

sale [seller, buyer, goods, payment, t1, days, notice] =
transmit (seller, buyer, goods, T | T < t1).
transmit (buyer, seller, payment, T’ | T’ < t1).
(Success + nonconforming (seller, buyer, goods, days, T’, notice))

in
sale ("Furniture maker", "Me", "Chair", 40, 2004.7.1, 8, "Chair broken")

Recall that our base structure is a tuple (R, T ,A) of sets of resources R, agents A
and a totally ordered set (T ,≤T ) of dates (or time points). Whenever convenient,
we will extend base structures with other sets for other types, as needed. A (trans-
fer) event e is a term transmit(v1, v2, r, t), where v1, v2 ∈ A, r ∈ R and t ∈ T . An
(event) trace s is a finite sequence of events that is chronologically ordered; that is,
for s = e1 . . . en the time points in e1 . . . en occur in nondescending order. We adopt
the following notation: 〈〉 denotes the empty sequence; a trace consisting of a single
event e is denoted by e itself; concatenation of traces s1 and s2 is denoted by jux-
taposition: s1s2; we write (s1, s2) ; s if s is an interleaving of the events in traces

s1 and s2; we write ~X for the vector X1, . . . , Xk with k ≥ 0 and where k can be
deduced from the context; we write c[~v/ ~X], where ~v = v1 . . . vn and ~X = X1 . . . Xn

for some n ≥ 0, for the result of simultaneously substituting elements vi for the
all free occurrences of the corresponding Xi in c. (Free and bound variables are
defined as expected.)

We are now ready to specify when a trace satisfies a contract, i.e. gives rise to
a performing execution of the contract. This is done inductively by the inference
system for judgements δ′ `δ

D s : c in Figure 5, where D = {fi[ ~Xi] = ci}m
i=1 is a finite

set of named contract templates and δ is a finite set of bindings of variables to
elements (values of a domain) of the given base structure. A derivable judgement
δ′ `δ

D s : c expresses that event sequence s satisfies—successfully executes and
concludes—contract c in an environment where contract templates are defined as
in D, δ is the top-level environment for both D and c, and δ′ is a local environment
for additional free variables in c. Conversely, if δ′ `δ

D s : c is not derivable then
s does not satisfy c for given D, δ, δ′. The condition δ ⊕ δ′′ |= P in the third rule
stipulates that P , with free variables bound as in δ ⊕ δ′, must be true in the base
language for an event to match the corresponding commitment.
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Fig. 5 Contract satisfaction

δ′ `δ
D 〈〉 : Success

~X 7→ ~v `δ
D s : c (f( ~X) = c) ∈ D, ~v = Q[[~a]]δ⊕δ′

δ′ `δ
D s : f(~a)

δ ⊕ δ′′ |= P δ′′ `δ
D s : c (δ′′ = δ′ ⊕ { ~X 7→ ~v})

δ′ `δ
D transmit(~v) s : transmit( ~X|P ). c

δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2 (s1, s2) ; s

δ′ `δ
D s : c1 ‖ c2

δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2

δ′ `δ
D s1s2 : c1; c2

δ′ `δ
D s : c1

δ′ `δ
D s : c1 + c2

δ′ `δ
D s : c2

δ′ `δ
D s : c1 + c2

3.3 Denotational Semantics

A denotational semantics maps contract specifications compositionally into a do-
main of mathematical objects; that is, by induction on the syntax (inference tree)
of contract expressions as given by the inference rules of Figure 3. A denotational
semantics supports reasoning by structural induction on the syntax. In particular,
any subcontract of a contract can be replaced by any other subcontract with the
same denotation without changing the behavior of the whole contract.

The satisfaction relation relates each contract to a set of traces. We can use that
to define the extension of a contract c to be the set of its performing executions:
E [[letrec D in c]]δ = {s : `δ

D s : c}. This, however, is not a denotational semantics
since it is not compositional. Turning it into a compositional definition we arrive at
the semantics given in Figure 7. Note that each contract denotes a trace set, and
the meaning of a compound contract can be explained in terms of a mathematical
operation on the trace sets denoted by its constituent subcontracts without any
reference to the actual syntax of the latter.

The presence of recursive contract definitions requires domain theory; see e.g.
Winskel [Win93]. Briefly, each type in our language is mapped to a complete partial
order (cpo); that is, a set equipped with a partial order where each directed subset
has a least upper bound (in the set). A pointed complete partial order (pcpo) is a
cpo that has a least element. All our domains in Figure 6 are cpos since we can
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Fig. 6 Domains for CP

Dom[[Boolean]] = ({true, false}, =)

Dom[[Agent]] = (A, =)

Dom[[Resource]] = (R, =)

Dom[[Time]] = (T , =)

E = A×A×R× T

Tr = (E∗, =)

Dom[[Contract]] = (2Tr ,⊆)

Dom[[τ1 × . . .× τn → Contract]] = Dom[[τ1]]× . . .× Dom[[τn]] → Dom[[Contract]]

Dom[[Γ]] = {{fi 7→ vi}m
i=1 | vi ∈

Dom[[τi1]]× . . .× Dom[[τini
]] → Dom[[Contract]]}

where Γ = {fi 7→ τi1 × . . .× τini
→ Contract}m

i=1

Dom[[∆]] = {{Xi 7→ vi}m
i=1 | vi ∈ Dom[[τi]]}

where ∆ = {Xi : τi}m
i=1

Dom[[Γ; ∆ ` c : Contract]] = Dom[[Γ]]× Dom[[∆]] → Dom[[Contract]]

choose equality for the base domains A,R, T . Furthermore, 2Tr , the powerset of all
finite event sequences, is a pcpo under ⊆, and the function space D → D′ is a pcpo
under pointwise ordering if D′ is a pcpo. A function between cpos is continuous
if the result of applying it to the least upper bound of a directed set is the same
as the least upper bound of applying it to each element of the directed set indi-
vidually. It is well-known that each continuous function from a pcpo to the same
pcpo has a least (unique minimal) fixed point. It is a routine matter to check that
C[[.]]., E [[.]]. and D[[.]]. map contracts under function environments, contract specifi-
cations, and contract function environments, respectively, to continuous functions.
Consequently the least fixed point in line 3.3 of Figure 7 always exists.

We say c denotes a trace set S in context D, δ, if C[[c]]D;δ = S. The following theorem
states that the denotational semantics characterizes the satisfaction relation.
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Fig. 7 Denotational semantics

C[[Success]]γ;δ = {〈〉}

C[[Failure]]γ;δ = ∅

C[[f(~a)]]γ;δ = γ(f)(Q[[~a]]δ)

C[[transmit( ~X | P ). c]]γ;δ = {transmit(~v) s : ~v ∈ E , s ∈ Tr |

Q[[P ]]δ⊕
~X 7→~v = true ∧ s ∈ C[[c]]γ;δ⊕ ~X 7→~v}

C[[c1 + c2]]
γ;δ = C[[c1]]

γ;δ ∪ C[[c2]]
γ;δ

C[[c1 ‖ c2]]
γ;δ = {s : s ∈ Tr |

∃s1 ∈ C[[c1]]
γ;δ, s2 ∈ C[[c2]]

γ;δ. (s1, s2) ; s}

C[[c1; c2]]
γ;δ = {s1s2 : s1, s2 ∈ Tr | s1 ∈ C[[c1]]

γ;δ ∧ s2 ∈ C[[c2]]
γ;δ}

D[[{fi[ ~Xi] = ci}m
i=1]]

δ = least γ : γ = {fi 7→ λ~vi.C[[ci]]
γ;δ⊕ ~Xi 7→~vi}m

i=1

E [[letrec {fi[ ~Xi] = ci}m
i=1 in c]]δ = C[[c]]D[[{fi[ ~Xi]=ci}m

i=1]]δ ;δ

Theorem 1 (Denotational characterization of contract satisfaction)

C[[c]]D[[D]]δ ;δ⊕δ′ = {s | δ′ `δ
D s : c}

3.4 Contract Monitoring by Residuation

Extensionally, contracts classify traces (event sequences) into performing and non-
performing ones. We are not only interested in classifying complete event sequences
once they have happened, though, but in monitoring contract execution as it un-
folds in time under the arrival of events.

We say a trace is consistent with a trace set S if it is a prefix of an element of S;
it is inconsistent otherwise.

Given a trace set S denoted by a contract c and an event e, the residuation function
·\· captures how c can be satisfied if the first event is e. It is defined as follows: 4

4 Conway [Con71] calls e\S the e-derivative for a language S and alphabet symbol e. We
use the term residuation instead to emphasize that e\S represents the residual obligations
of a contract after execution of event e.
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e\S = {s′ | ∃s ∈ S : es′ = s}

Conceptually, we can map contracts to trace sets and use the residuation function
to monitor contract execution as follows:

(1) Map a given contract c0 to the trace set S0 that it denotes. If S0 = ∅, stop
and output “inconsistent”.

(2) For i = 0, 1, . . . do:
Receive message ei.
(a) If ei is a transfer event, compute Si+1 = ei\Si. If Si+1 = ∅, stop and output

“breach of contract”; otherwise continue.
(b) If ei is a “conclude contract” message, check whether 〈〉 ∈ Si. If so, all obli-

gations have been fulfilled and the contract can be terminated. Stop and
output “successfully completed”. If 〈〉 6∈ Si, output “cannot be concluded
now”, let Si+1 = Si and continue to receive messages.

To make the conceptual algorithm for contract life cycle monitoring from Section 3.4
operational, we need to represent the residual trace sets and provide methods for
deciding tests for emptiness and failure. In particular, we would like to use contracts
as representations for trace sets. Not all trace sets are denotable by contracts,
however. In particular, given a contract c that denotes a trace set Sc it is not a
priori clear whether e\Sc is denotable by a contract c′. If it is, we call c′ the residual
contract of c after e.

Let us momentarily extend contract specifications with a residuation operator,
which is the syntactic analogue of residuation, but for contracts instead of trace
sets:

C[[e\c]]γ;δ = {s′ | ∃s ∈ C[[c]]γ;δ : es′ = s}.

Let us write D, δ |= c = c′ if C[[c]]γ;δ⊕δ′ = C[[c′]]γ;δ⊕δ′ for all δ′, where γ = D[[D]]δ;
analogously for D, δ |= c ⊆ c′. To elide parentheses we use the following operator
precedence order in contract expressions (highest precedence first): residuation ·\·,
concurrent composition · ‖ ·, alternation ·+ ·, sequential composition ·; ·.

Lemma 2 (Correctness of residuation) The reduation equalities in Figure 8
are true.

For the proof of this lemma we need an auxiliary lemma that extends the compo-
sitionality of the base language to the contract language:

Lemma 3 (Agreement of substitution and environments) For all c, γ and
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Fig. 8 Residuation equalities

D, δ |= e\Success = Failure

D, δ |= e\Failure = Failure

D, δ |= e\f(~a) = e\c[~v/ ~X] if (f( ~X) = c) ∈ D,~v = Q[[~a]]δ

D, δ |= transmit(~v)\(transmit( ~X | P ). c) =

 c[~v/ ~X] if δ ⊕ { ~X 7→ ~v} |= P

Failure otherwise

D, δ |= e\(c1 + c2) = e\c1 + e\c2

D, δ |= e\(c1 ‖ c2) = e\c1 ‖ c2 + c1 ‖ e\c2

D, δ |= e\(c1; c2) =

 (e\c1; c2) + e\c2 if D, δ |= Success ⊆ c1

e\c1; c2 otherwise

δ:

C[[c]]γ;δ⊕ ~X 7→~v = C[[c[~v/ ~X]]]γ;δ

Executing the residuation equations as left-to-right rewrite rules eliminates the
residuation operator in e\c, assuming c is residuation operator free to start with.
That computation does not always terminate, however. Consider, e.g.,

letrec f(N) = (transmit(a1, a2, r, T | T ≤ N) ‖ f(N + 1)) in f(0)

and event transmit(a1, a2, r, 0). Applying the rewrite rules will not terminate. Intu-
itively, this is because transmit(a1, a2, r, 0) can be matched against any one of the
infinitely many commitments

transmit(a1, a2, r, T0|T0 ≤ 0) ‖ · · · ‖ transmit(a1, a2, r, Ti|Ti ≤ i) ‖ · · ·

since transmit(a1, a2, r, 0) satisfies the match condition of each one of them. Note
that, semantically, f(N) = transmit(a1, a2, r, T | T ≤ N) ‖ f(N + 1), ∅ |= f(0) =
Failure, but left-to-right rewriting according to Figure 8 does not rewrite f(0) to
Failure.
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3.5 Nullable and Guarded Contracts

In this section we characterize nullability of a contract and introduce guarding,
which is a sufficient condition on contracts for ensuring that residuation can be
performed by reduction on contracts.

Fig. 9 Nullable contracts

D ` c nullable (f( ~X) = c) ∈ D

D ` f(~a) nullable
D ` c nullable

D ` c + c′ nullable

D ` c′ nullable
D ` c + c′ nullable

D ` Success nullable

D ` c nullable D ` c′ nullable
D ` c ‖ c′ nullable

D ` c nullable D ` c′ nullable
D ` c; c′ nullable

Definition 4 (Nullability) (1) We write D |= c nullable if D, δ |= Success ⊆ c
for some δ; that is, 〈〉 ∈ C[[c]]D;δ.

(2) We say c is nullable (or terminable) in context D if D ` c nullable is derivable
by the inference system in Figure 9.

A nullable contract can be concluded successfully, but may possibly also be con-
tinued. E.g., the contract Success + transmit(a1, a2, r, t|P ) is nullable, as it may
be concluded successfully (left choice). Note however, that it may also be contin-
ued (right choice). It is easy to see that nullability is independent of δ and δ′:

〈〉 ∈ C[[c]]γ;δ⊕δ′ if and only if 〈〉 ∈ C[[c]]γ;δ̂⊕δ̂′ for any other δ̂ and δ̂′, where γ = D[[D]]δ.
Deciding nullability is required to implement Step 2b in contract monitoring. The
following proposition expresses that nullability characterizes semantic nullability.

Proposition 5 (Syntactic characterization of nullability)

D |= c nullable ⇐⇒ D ` c nullable.

Definition 6 (Guarded contract, guarded declarations) Let D = {fi[ ~Xi] =
ci}m

i=1 be contract template declarations.

A contract c is guarded in context D if D ` c guarded is derivable from Figure 10.
We say D is guarded if ci is guarded in context D for all i with 1 ≤ i ≤ m.
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Intuitively, guardedness ensures that we do not have (mutual) recursions such as

{f( ~X) = g( ~X), g( ~X) = f( ~X)} that cause the residuation algorithm to loop in-
finitely. Guarded declarations ensure that all contracts built from them are guarded:

Lemma 7 (Guardedness of contracts using guarded declarations) For all
D, c, if D is guarded then D ` c guarded.

Fig. 10 Guarded contracts

D ` Success guarded D ` Failure guarded

D ` transmit( ~X | P ). c guarded
D ` c guarded (f( ~X) = c) ∈ D

D ` f(~a) guarded

D ` c guarded D ` c′ guarded

D ` c + c′ guarded

D ` c guarded D ` c′ guarded

D ` c ‖ c′ guarded

D ` c nullable D ` c guarded D ` c′ guarded

D ` c; c′ guarded

D 6` c nullable D ` c guarded

D ` c; c′ guarded

As we shall see, guardedness is key to ensuring termination of contract residuation
and thus that every (guarded) contract has a residual contract under any event in
the reduction semantics of Figure 11.

3.6 Operational Semantics I: Deferred Matching

The denotational semantics tells us what trace set is denoted by a contract, and
residuation on trace sets tells us how to turn the denotational semantics conceptu-
ally into a monitoring semantics. In this section we present a reduction semantics
for contracts, which lifts residuation on trace sets to contracts and is derived sys-
tematically from the residuation equalities of Figure 8.

The ability of representing residual contract obligations of a partially executed con-
tract and thus any state of a contract as a bona fide contract carries the advantage
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Fig. 11 Deterministic reduction (delayed matching)

D, δ `D Success
e−→ Failure D, δ `D Failure

e−→ Failure

δ ⊕ { ~X 7→ ~v} |= P (~v = Q[[~a]]δ)

D, δ `D transmit( ~X|P ). c
transmit(~v)−→ c[~v/ ~X]

δ ⊕ { ~X 7→ ~v} 6 |=P (~v = Q[[~a]]δ)

D, δ `D transmit( ~X|P ). c
transmit(~v)−→ Failure

D, δ `D c[~v/ ~X]
e−→ c′ (f( ~X) = c) ∈ D, ~v = Q[[~a]]δ

D, δ `D f(~a)
e−→ c′

D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c + c′
e−→ d + d′

D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c ‖ c′
e−→ c ‖ d′ + d ‖ c′

D ` c nullable D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c; c′
e−→ (d; c′) + d′

D 6` c nullable D, δ `D c
e−→ d

D, δ `D c; c′
e−→ d; c′

that any analysis that is performed on “original” contracts automatically extends
to partially executed contracts as well. E.g., an investment bank that applies val-
uations to financial contracts before offering them to customers can apply their
valuations to their portfolio of contracts under execution; e.g., to analyze its risk
exposure under current market conditions.

Likewise, a company that analyzes production and capacity requirements of a con-
tract before offering it to a customer can apply the same analysis to the contracts
it has under execution; e.g., to adjust planning based on present capacity require-
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ments. The reduction semantics is presented in Figure 11. The basic matching rule
is

δ ⊕ { ~X 7→ ~v} |= P (~v = Q[[~a]]δ)

D, δ `D transmit( ~X|P ). c
transmit(~v)−→ c[~v/ ~X]

It matches an event with a specific commitment in a contract. There may be
multiple commitments in a contract that match the same event. The semantics
captures the possibilities of matching an event against multiple commitments by
applying all possible reductions in alternatives and concurrent contract forms and
forming the sum of their possible outcomes (some of which may actually be Failure).

The rule
D, δ `D c

e−→ d D, δ `D c′
e−→ d′

D, δ `D c + c′
e−→ d + d′

thus reduces both alternatives c and c′ and then forms the sum of their respective
results d, d′.

Likewise, the rule

D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c ‖ c′
e−→ c ‖ d′ + d ‖ c′

for concurrent subcontracts expresses that the match could be in either one of c or
c′ and represents the result as the sum of those two possibilities.

Finally, the rule

D ` c nullable D, δ `D c
e−→ d D, δ `D c′

e−→ d′

D, δ `D c; c′
e−→ (d; c′) + d′

captures that e can be matched in c or, if c is nullable, in c′. Note that, if c is not
nullable, e can only be matched in c, not c′, as expressed by the rule

D 6` c nullable D, δ `D c
e−→ d

D, δ `D c; c′
e−→ d; c′

.

In this fashion the semantics keeps track of the results of all possible matches in
a reduction sequence as explicit alternatives (summands) and defers the decision
as to which specific commitment is matched by a particular event during contract
execution until the very end: By selecting a particular summand in a residual
contract after a number of reduction steps that represents Success (and the contract
is thus terminable) a particular set of matching decisions is chosen ex post. As
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presented, the reduction semantics gives rise to an implementation in which the
multiple reducts of previous reduction steps are reduced in parallel, since they
are represented as summands in a single contract, and the rule for reduction of
sums reduces both summands. It is relatively straightforward to turn this into a
backtracking semantics by an asymmetric reduction rule for sums, which delays
reduction of the right summand.

The operational semantics fully and faithfully implements residuation (when the
residuation equalities are oriented):

Theorem 8 (Residuation by deferred matching) (1) For any c, c′, δ, e and
D: if D, δ `D c

e−→ c′ then D, δ |= e\c = c′.
(2) For all c, δ and guarded D, there exists a unique c′ such that D, δ `D c

e−→ c′;
furthermore, D ` c′ guarded.

Using Theorem 8 we can turn our conceptual contract monitoring algorithm into
a real algorithm.

(1) Let contract c0 be given. If c0 is inconsistent, stop and output “inconsistent”.
(2) For i = 0, 1, . . . do:

Receive message ei.
(a) If ei is a transfer event, let ci+1 be such that `D ci

ei−→ ci+1. If ci+1 is
inconsistent, stop and output “breach of contract”; otherwise continue.

(b) If e is a “terminate contract” message, check whether ci is nullable. If so,
all obligations have been fulfilled and the contract can be terminated. Stop
and output “successfully completed”. If ci is not nullable, output “cannot
be terminated now”, let ci+1 = ci and continue to receive messages.

Proposition 5 provides a syntactic characterization of nullability, which can easily
be turned into an algorithm. Deciding D, δ |= c = Failure, that is whether a
contract has actually failed, is a much harder problem. See Figure 21 for a sketch
for a conservative approximation (some failed contracts may not be identified as
such) to this.

3.7 Operational Semantics II: Eager Matching

The deferred matching semantics of Figure 11 is flexible and faithful to the natural
notion of contract satisfaction as defined in Figure 5. But from an accounting
practice view it is weird because matching decisions are deferred. In bookkeeping
standard modus operandi is that events are matched against specific commitments
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eagerly ; that is online, as events arrive. 5

We shall turn the deferred matching semantics of Figure 11 into an eager match-
ing semantics (Figure 12). The idea is simple: Represent here-and-now choices as
alternative rules (meta-level) as opposed to alternative contracts (object level).
Specifically, we split the rules for reducing alternatives and concurrent subcon-
tracts into multiple rules, and we capture the possibility of reducing in the second
component of a sequential contract by adding τ -transitions, which “spontaneously”
(without a driving external event) reduce a contract of the form Success; c to c.
For this to be sufficient we have to make sure that a nullable contract indeed can
be reduced to Success, not just a contract that is equivalent to Success, such as
Success ‖ Success. This is done by ensuring that τ -transitions are strong enough
to guarantee reduction to Success as required.

Based on these considerations we arrive at the reduction semantics in Figure 12,
where meta-variable λ ranges over events e and the internal event τ . Note that it
is nondeterministic and not even confluent: A contract c can be reduced to two
different contracts by the same event. Consider e.g., c = a; b+a; b′ where a, b, b′ are
commitments, no two of which match the same event. For event e matching a we
have D, δ `N c

e−→ b and D, δ `N c
e−→ b′, but neither b nor b′ can be reduced to

Success or any other contract by the same event sequence. In reducing c we have
not only resolved it against e, but also made a decision: whether to apply it to the
first alternative of c or to the second. Technically, the reduction semantics is not
closed under residuation: Given c and e it is not always possible to find c′ such that
D, δ `N c

e−→ c′ and D; δ |= e\c = c′. It is sound, however, in the sense that the
reduct always denotes a subset of the residual trace set. It is furthermore complete
in the sense that the set of all reductions do preserve residuation.

Theorem 9 (Soundness of eager matching)

(1) If D, δ `N c
e−→ c′ then D, δ |= c′ ⊆ e\c.

(2) If D, δ `N c
τ−→ c′ then D, δ |= c′ ⊆ c.

Even though individual eager reductions do not preserve residuation, the set of all
reductions does so:

5 There are standard accounting practices for changing such decisions, but both default
and standard conceptual model are that matching decisions are made as early as possible.
In general, it seems representing and deferring choices and applying hypothetical reasoning
to them appears to be a rather unusual phenomenon in accounting.
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Fig. 12 Nondeterministic reduction (eager matching)

D, δ `N Success
e−→ Failure D, δ `N Failure

e−→ Failure

δ ⊕ { ~X 7→ ~v} |= P,~v = Q[[~a]]δ

D, δ `N transmit( ~X | P ). c
transmit(~v)−→ c[~v/ ~X]

δ ⊕ { ~X 7→ ~v} 6 |=P,~v = Q[[~a]]δ

D, δ `N transmit( ~X|P ). c
transmit(~v)−→ Failure

(f( ~X) = c) ∈ D, ~v = Q[[~a]]δ

D, δ `N f(~a)
τ−→ c[~v/ ~X]

D, δ `N c + c′
τ−→ c D, δ `N c + c′

τ−→ c′

D, δ `N c
λ−→ d

D, δ `N c ‖ c′
λ−→ d ‖ c′

D, δ `N c′
λ−→ d′

D, δ `N c ‖ c′
λ−→ c ‖ d′

D, δ `N Success ‖ c
τ−→ c D, δ `N c ‖ Success

τ−→ c

D, δ `N Success; c′
τ−→ c′

D, δ `N c
λ−→ d

D, δ `N c; c′
λ−→ d; c′

D, δ `N c
τ−→ c′ D, δ `N c′

e−→ c′′

D, δ `N c
e−→ c′′

D, δ `N c
e−→ c′

δ `N letrec D in c
e−→ letrec D in c′

Theorem 10 (Completeness of eager matching)
If D, δ `D c

e−→ c′ then there exist contracts c1, . . . , cn for some n ≥ 1 such that
D, δ `N c

e−→ ci for all i = 1 . . . n and D, δ |= c′ ⊆ ∑n
i=1 ci.

As a corollary, Theorems 9 and 10 combined yield that the object-level nondeter-
minism (expressed as contract alternatives) in the deferred matching semantics is
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faithfully reflected in the meta-level nondeterminism (expressed as multiple appli-
cable rules) of the eager matching semantics.

3.8 Operational Semantics III: Eager Matching with Explicit Routing

Consider the following execution model for contracts: Two or more parties each have
a copy of the contract they have previously agreed upon and monitor its execution
under the arrival of events. Even if they agree on prior contract state and the
next event, the parties may arrive at different residual contracts and thus different
expectations as to the future events allowed under the contract. This is because
of nondeterminacy in contract execution with eager matching; e.g., a payment
of $50 may match multiple payment commitments, and the parties may make
different matches. We can remedy this by making control of contract reduction
with eager matching explicit in order to make reduction deterministic: events are
accompanied by control information that unambiguously prescribes how a contract
is to be reduced. In this fashion parties that agree on what events have happened
and on their associated control information, will reduce their contract identically.
6

The basic idea is that all nondeterminism in our reduction semantics (see Figure 12)
can be reduced to a series of choices and routing decisions to identify the particular
commitment the event is to be matched with; in particular, we can express such
a series as an element of I∗ where I = {f, s, l, r}; see below. A control-annotated
event then is an element of I∗E . (Recall that E denotes the set of transfer events.)
In Figure 13 we note that d ∈ I∗.

The τ -reductions in Figure 13 rewrite a contract into a simplified form while pre-
serving its semantics faithfully:

Proposition 11 (Soundess of τ-reduction) For all D, δ, c, c′, if D, δ `C c
τ−→ c′

then D, δ |= c = c′.

Furthermore, they are strong enough to guarantee that any contract equivalent to
Success actually reduces to Success.

6 The question of which party has the right of generating control information is very
important, of course. It will be discussed only briefly later, as it is beyond the scope of
this paper. We only require that a consensus on the events and their associated control
information has been achieved, whether dictated by one party or the other having the
(contractual) right to do so or by an actual consensus process.
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Fig. 13 Eager matching with explicit reduction control

D, δ `C Success
e−→ Failure D, δ `C Failure

e−→ Failure

δ ⊕ { ~X 7→ ~v} |= P (~v = Q[[~a]]δ)

D, δ `C transmit( ~X | P ). c
transmit(~v)−→ c[~v/ ~X]

δ ⊕ { ~X 7→ ~v} 6 |=P (~v = Q[[~a]]δ)

D, δ `C transmit( ~X|P ). c
transmit(~v)−→ Failure

(f( ~X) = c) ∈ D (~v = Q[[~a]]δ)

D, δ `C f(~a)
τ−→ c[~v/ ~X]

D, δ `C c
τ−→ d

D, δ `C c + c′
τ−→ d + c′

D, δ `C c′
τ−→ d′

D, δ `C c + c′
τ−→ c + d′

D, δ `C Success + Success
τ−→ Success

D, δ `C c
~de−→ c′

D, δ `C c + d
f ~de−→ c′

D, δ `C d
~de−→ d′

D, δ `C c + d
s~de−→ d′

D, δ `C c
τ−→ d

D, δ `C c ‖ c′
τ−→ d ‖ c′

D, δ `C c′
τ−→ d′

D, δ `C c ‖ c′
τ−→ c ‖ d′

D, δ `C c
~de−→ d

D, δ `C c ‖ c′
l~de−→ d ‖ c′

D, δ `C c′
~de−→ d′

D, δ `C c ‖ c′
r~de−→ c ‖ d′

D, δ `C Success ‖ c
τ−→ c D, δ `C c ‖ Success

τ−→ c

D, δ `C c
τ−→ d

D, δ `C c; c′
τ−→ d; c′

D, δ `C c
e−→ d

D, δ `C c; c′
e−→ d; c′

D, δ `C Success; c′
τ−→ c′
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Proposition 12 (Completeness of τ-reduction for concluded contracts)

For all D, δ, c, c′: D, δ � c = Success if and only if D, δ `C c
τ∗−→ Success.

Finally, τ -rewriting is strongly normalizing and confluent, which means that each
contract has a unique τ -normal form, which can be computed by applying the
τ -rewriting rules exhaustively in arbitrary order.

Lemma 13 (Unique normalization of τ-reduction) For all δ and guarded D
there is a unique c′ such that

(1) D, δ `C c
τ∗−→ c′ and

(2) for no c′′ do we have D, δ `C c′
τ−→ c′′.

We say c′ in Lemma 13 is τ -normalized or simply normalized and we call it the
τ -normalized form of c. We can observe that a contract is nullable if and only if its
τ -normalized form has the form . . .+Success+ . . .; that is, has a Success-summand.

The following theorem expresses that sequences of labels f, s, l, r preceding an eco-
nomic event unambiguously determine how a contract should be reduced.

Theorem 14 (Correctness of eager matching with routing) For each δ, D,
normalized c and event e we have that D, δ `N c

e−→ c′ if and only if there exists

~d ∈ {f, s, l, r}∗ such that D, δ `C c
~de−→ c′. Furthermore, for all c′′ such that D, δ `C

c
~de−→ c′′ we have c′ = c′′; that is, given c and control-annotated event ~de the residual

contract c′′ is uniquely determined.

Intuitively, a control-annotated event ~de conveys an event e and information ~d
that unambiguously routes the event to the particular commitment it is to be
matched with: f, s determine which branch of a . + .-contract is to be chosen, and
l, r identify in which subcontract of a . ‖ .-contract the economic event is to be
matched. This routing information ensures that all trading partners in a contract,
each maintaining their own state of the contract, match events to the same atomic
commitment and thus can be assured that they will also be in agreement on the
residual contract. Other methods for controlling reduction in an eager matching
semantics are discussed by Andersen and Elsborg [AE03].

Some of these left/right choices may be further eliminated in practice (that is,
inferred automatically) where they are “forced” (no other choice allows successful
completion of contract).
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4 Example Contracts

We previously saw an encoding of the Agreement to Sell Goods (Figure 4). In this
section, two additional real-life example contracts are considered.

First, the previously presented abbreviated version of the natural language Legal
Services Agreement (Figure 2) is encoded in our contract specification language.
Second, we present a natural language contract for software development (Fig-
ure 15) and provide its encoding in our language (Figure 16).

Before it is possible to express real-life contracts, however, the predicate language
and the arithmetic language must be defined. For the purpose of demonstration
we will afford ourselves a fairly advanced language that has multiple datatypes
(e.g. integers and dates), common arithmetic operators, logical connectives, lists
and a number of built-in functions. The syntax is common and straightforward,
and hence we shall not delve into the technical details here. Later, in Section 5, we
will define the language and consider possible restrictions that ameliorate contract
analysis.

Fig. 14 Specification of Agreement to Provide Legal Services
letrec
extra (att, com, invoice, pay) =

( Success
+ transmit (att, com, invoice, T2).
transmit (com, att, pay, T3 | T3 <= T2 + 45d))

legal (att, com, fee, invoice, pay, n, m, end) =
transmit (att, com, H, T | n < T and T <= m).
( extra (att, com, invoice, pay)
|| transmit (com att, fee, T | T <= m + 8d)
|| ( legal (att, com, fee, invoice, pay, m, min(m + 30d,end), end)

+ transmit (att, com, end, T | end <= T)))
in

legal ("Attorney","Company",10000,invoice,pay,0,30,360)

Writing the formal specification of the Legal Services Agreement (Figure 2) is
fairly straightforward, bar two points: Consider the validity period specified in
Section 3 of the contract. Taken literally, it would imply, that the attorney shall
render services in the month of December, but receive no fee in consideration since
January 2005 is outside the validity period. Surely, this is not the intention; in
fact, consideration will defeat most deadlines as is clearly the intent here and this
is avoided in the encoding of the contract (Figure 14). This weakness in the informal
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Fig. 15 Software Development Agreement

Section 1. The Developer shall develop software as described in Exhibit A (Re-
quirements Specification) according the schedule set forth in Exhibit B (Project
Schedule and Deliverables). Specifically, the Developer shall be responsible for
the timely completion of the deliverables identified in Exhibit B.

Section 2. The Client shall provide written approval upon the completion of each
deliverable identified in Exhibit B.

Section 3. In the event of any delay by the Client, all the Developer’s remaining
deadlines shall be extended by the greater of the two following: (i) five working
days, (ii) two times the delay induced by the Client. The Client’s deadlines shall
be unchanged.

Section 4. In consideration of services rendered the Client shall pay USD $100.000
due on 7/1.

Section 5. If the Client wishes to add to the order, or if upon written approval of a
deliverable, the Client wishes to make modifications to the deliverable, the Client
and the Developer shall enter into a Change Order. Upon mutual agreement the
Change Order shall be attached to this contract.

Section 6. The Developer shall retain all intellectual rights associated with the
software developed. The Client may not copy or transfer the software to any
third party without the explicit, written consent of the Developer.

Exhibit A. (omitted)
Exhibit B. Deadlines for deliverables and approval: (i) 1/1, 1/15; (ii) 3/1, 3/15,

(final deadline) 7/1, 7/15.

contract is revealed, which is a good thing, when encoding it formally.

The Agreement to Provide Legal Services fails to specify who decides if legal services
should be rendered. In the encoding it is simply assumed that the attorney is the
initiator and that all services rendered over a month can be modelled as one event.
Based on the hours of services rendered, the attorney has a choice to invoice extra
hours at the hourly rate. Furthermore, the attorney is assumed to give the notice
end to allow contract termination. This is introduced to make sure that the contract
is not nullable between every recursion.

Now consider the more elaborate Software Development Agreement in Figure 15.
When coding the contract, one notices that the contract fails to specify the ramifi-
cations of the client’s non-approval of a deliverable. One also sees that the contract
does not specify what to do if due to delay, some approval deadline comes before
the postponed delivery date. In the current code, this is taken to mean further
delay on the client’s part even if the client gave approval at the same time as the
deliverable was transmitted. It seems that contract coding is a healthy process
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Fig. 16 Specification of Software Development Agreement – note that we assume
(easily defined) abbreviations for max(x,y) and allow subtraction on the domain
Time.
letrec

deliverables (dev, client, payment, deliv1, deadline1, approv1,
deliv2, deadline2, approv2,
delivf, deadlinef, approvf) =

transmit(dev, client, deliv1, T1 | T1 <= deadline1)).
transmit(client, dev, "ok", T).
transmit(dev, client, deliv2, T2 |

T2 <= deadline2 + max(5d, (T - approv1) * 2)).
transmit(client, dev, "ok", T).
transmit(dev, client, delivf, Tf |

Tf <= deadlinef + max(5d, (T - approv2) * 2)).
transmit(client, dev, "ok", T).
transmit(dev, client, "done", T).
Success

software (dev, client, payment, paymentdeadline, ds) =
deliverables (dev, client, deliv1, deadline1, approv1,

deliv2, deadline2, approv2,
delivf, deadlinef, approvf) ||

transmit(client, dev, payment, T | T <= paymentdeadline)
in
software ("Me", "Client", 100000, 2004.7.1, d1, 2004.1.1, 2004.1.15,

d2, 2004.3.1, 2004.3.15, final, 2004.7.1, 2004.7.15)

in the sense that it will often unveil underspecification and errors in the natural
language contract being coded. The Change Order described in Section 5 of the
contract and the intellectual rights described in Section 6 are not coded due to
certain limitations in our language. We will postpone the discussion of this until
Section 6.

4.1 Example Reduction

We now demonstrate how the Legal Services Agreement behaves under our three
reduction strategies: deferred matching, eager matching, and eager matching with
explicit control. All three derivations assume that we invoke the contract as

legal (att, com, fee, invoice, pay, 0, 30, 60)
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i.e. we would like the contract to run for two months. Of course, the parameters
att, com, fee, invoice, and pay should be bound to values, but we leave them
as is for readability since none of them have an impact on the control flow of the
contract. This yields the contract body:

transmit (att, com, H, T | 0 < T and T <= 30).

( transmit (com att, fee, T | T <= 30 + 8d)

|| ( legal (att, com, fee, invoice, pay, 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

The sub-contract extra has been taken out to reduce the size of the reductions. To
facilitate comparison we will use the same basic event trace for all three reduction
strategies:

(att,com,h1,20)−→ Services rendered first month
(att,com,h2,37)−→ Services rendered second month

(com,att,fee,38)−→ Fee for first month
(com,att,fee,62)−→ Fee for second month
(att,com,end,64)−→ Attorney signals end-of-contract

The trace will be furnished with reduction controls and interspersed with τ when
mandated by the concrete semantics in question. Consider Figure 17 for a juxta-
position of the two eager matching strategies (with and without explicit control)
on the Legal Services Agreement and Figure 18 for a demonstration of the deferred
matching strategy.

5 Contract Analysis

The formal groundwork in order, we can begin to ask ourselves questions about
contracts such as: What is my first order of business? When is the next deadline?
How much of a particular resource will I gain from my portfolio and at what times?
What is the monetary value of my portfolio? Is the contract I just wrote “safe”
and “fair”? Will contract fulfillment require more than the x units I currently have
in stock?

The attempt to answer such questions is broadly referred to as contract analysis.
Some analyses, notably “safeness”, will primarily be of interest during contract
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Fig. 17 Eager matching without and with explicit control on the legal services
agreement

transmit (att, com, H, T | 0 < T and T <= 30).

( transmit (com, att, fee, T | T <= 30 + 8d)

|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Services rendered first month:
(att,com,h1,20)

−→
( transmit (com, att, fee, T | T <= 30 + 8d)

|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Take the first branch in + and unfold ’legal’:
τ−→

( transmit (com,att,fee,T | T <= 30 + 8d)

|| (transmit (att,com,H,T | 30<T and T<=60).

( transmit (com,att,fee,T | T<=60+8d)

|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att,com,end,T | 60<=T)))))

Services rendered second month:
(att,com,h2,37)

−→
The non-determinism is not constrained to viable op-
tions, but will allow any obviously wrong reduction to
go wrong at any point. Assuming the desired outcome:
( transmit (com,att,fee,T | T <= 30 + 8d)

|| ( transmit (com,att,fee,T | T <= 60 + 8d)

|| ( legal (...,60,min(60 + 30d,60), 60)

+ transmit (att,com,end,T | 60 <= T))))

The next event matches a transmit in the first itera-
tion and a transmit in the second iteration. The con-
tract could reduce properly or fail. We demonstrate
the latter. Fee for first month:

(com,att,fee,38)
−→

( transmit (com,att,fee,T | T <= 30 + 8d)

|| ( Success

|| ( legal (...,60,min(60 + 30d,60), 60)

+ transmit (att,com,end, T | 60 <= T))))

At time 39 the whole contract can terminate, because
the 30 + 8d condition becomes unsatisfiable. Assume
that this possibility is exploited. Fee for second month:

(com,att,fee,62)
−→

Now, there is a serious problem. The choice of match-
ing the first fee was unwise, and the limits of the eager
matching semantics shows. The contract can now only
fail.
( Failure

|| ( Success

|| ( legal (...,60,min(60 + 30d,60), 60)

+ transmit (att,com,end,T | 60 <= T))))
τ−→

Failure

transmit (att, com, H, T | 0 < T and T <= 30).

( transmit (com, att, fee, T | T <= 30 + 8d)

|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Services rendered first month:
(att,com,h1,20)

−→
( transmit (com, att, fee, T | T <= 30 + 8d)

|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

We now take the first branch in + and unfold ’legal’
τ−→

( transmit (com,att,fee,T | T <= 30 + 8d)

|| (transmit (att,com,H,T | 30<T and T<=60).

( transmit (com,att,fee,T | T <= 60+8d)

|| ( legal (...,60,min(60 + 30d,60), 60)

+ transmit (att,com,end,T | 60<=T)))))

Services rendered second month:
r(att,com,h2,37)

−→
We use explicit directives to point out the transmit
we wish to match. Probably, the runtime system al-
ready suggested the options available and we picked
one leaving the details to the system.
( transmit (com,att,fee,T | T <= 30 + 8d)

|| ( transmit (com,att,fee,T | T <= 60 + 8d)

|| ( legal (...,60,min(60 + 30d,60), 60)

+ transmit (att,com,end,T | 60 <= T))))

Fee for first month
l(com,att,fee,38)

−→
τ−→

This event matches two different transmits, but the
decision is taken “by” the directives:
( transmit (com, att, fee, T | T <= 60 + 8d)

|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Fee for second month:
l(com,att,fee,62)

−→
τ−→

( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T))

Attorney signals end-of-contract:
s(att,com,end,64)

−→
Success

development, whereas other analyses apply to running contracts. The residuation
property allows a contract analysis to be applied at any time (i.e. to any residual
contract), and we can thus continuously monitor the execution of the contracts in
our portfolio.
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Fig. 18 Deferred matching on the legal services agreement

transmit (att, com, H, T | 0 < T and T <= 30).

( transmit (com, att, fee, T | T <= 30 + 8d)

|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Services rendered first month:
(att,com,h1,20)

−→
( transmit (com, att, fee, T | T <= 30 + 8d)

|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Services rendered second month:
(att,com,h2,37)

−→
( Failure

|| ( legal (..., 30, min(30 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

+

( transmit (com, att, fee, T | T <= 30 + 8d)

|| ( ( transmit (com,att,fee,T | T<=60+8d)

|| ( legal (...,60,min(60 + 30d,60),60)

+ transmit(att,com,end,T | 60<=T)))

+ Failure))

Let us remove the failed parts, i.e.
C + Failure → C and C ‖ Failure → Failure:

τ−→
( transmit (com,att,fee,T | T <= 30 + 8d)

|| ( transmit (com,att,fee,T | T<=60+8d)

|| ( legal (...,60,min(60 + 30d,60),60)

+ transmit(att,com,end,T | 60<=T))))

Fee for first month:
(com,att,fee,38)

−→
( Success

|| ( transmit (com,att,fee,T | T <= 60 + 8d)

|| ( legal (...,60,min(60 + 30d,60),60)

+ transmit (att,com,end,T | 60 <= T))))

+

( transmit (com,att,fee,T | T <= 30 + 8d)

|| ( Success

|| ( legal (...,60,min(60 + 30d,60),60)

+ transmit (att,com,end,T | 60 <= T))))

+

( transmit (com,att,fee,T | T <= 30 + 8d)

|| ( transmit (com,att,fee,T | T <= 60 + 8d)

|| ( Failure

+ Failure)))

And some more housecleaning, also Success ‖ C → C:
τ−→

( transmit (com, att, fee, T | T <= 60 + 8d)

|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

+

( transmit (com, att, fee, T | T <= 30 + 8d)

|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

Two continuations are valid at time T ≤ 38. The first
has matched the first month’s fee with the first itera-
tion. The second represents matching the first fee with
the second iteration. At time 39 the second branch can
be rewritten to failure if our algorithm is able to de-
cide that the condition 30 − 8d becomes unsatisfiable.
But let us leave both branches for now and see what
happens. Fee for second month:

(com,att,fee,62)
−→

This time let us skip the step where all non-matching
branches get their own continuation, which is then re-
moved immediately afterwards. Assume that we only
attempt a match on the two transmits mentioning the
fee:
( Success

|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

+

( Failure

|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))
τ−→

( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T)))

At this time a good failure algorithm would detect that
the invocation of legal can be reduced to failure. Un-
folding ’legal’ gives predicates of the form 60 < T and
T ≤ 60 on all transmits, hence no event can match in
’legal’.
Attorney signals end-of-contract:

(att,com,end,64)
−→

Success

Technically, this is Success || extra || extra be-
cause we left out ’extra’ during reduction. Events can
still match the invoices (i.e. the attorney retains the
right to invoice any extra hours of service previously
rendered). The contract is terminable (nullable) at this
point.

Recall that our contract specification language is parameterized over the language
of predicates and arithmetic. There is a clear trade-off in play here: a sophisti-
cated language buys expressiveness, but renders most of the analyses undecid-
able. There is another source of difficulties. Variables may be bound to compo-
nents of an event that is unknown at the time of analysis. An expression like
transmit(a1, a2, R, T | true). offers little insight into the nature of R unless fur-
nished with a probability vector over all resources.
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Here we will circumvent these problems by making do with a restricted predicate
language and accepting that analyses may not give answers on all input (but will
give correct answers).

The predicate language is plugged in at two locations. In function application f(~a)
where all components of the vector ~a must be checked according to the rules of
the predicate language, and in transmit(a1, a2, r, t|P ) where P must have the type
Boolean. As previously we require that a1, a2, r, and t are either variables (bound or
unbound) or constants. If some components are bound variables or constants, they
must be equal to the corresponding components of an incoming event (a′1, a

′
2, r

′, t′)
for a match to occur.

Consider the syntax provided in figure 19. In addition to the types Agent, Resource,
and Time, the language has the fundamental types Int and Boolean. Take ρ to
range over {Int, Time}, take σ to range over ρ ∪ {Agent, Resource}, and assume
that constants can be uniquely typed (e.g. time constants are in ISO format, and
agent and resource constants are disjoint and known).

The language allows arithmetic on integers, simple propositional logic, and manip-
ulation of the two abstract types Resource and Time. Given a time (date) t we may
add an integral number of years, months or days. For example 2004.1.1 + 3d + 1y
yields 2005.1.4. Resources permit a projection on a named component (field) and
all fields are of type Int. E.g. to extract the total amount from an information
resource named invoice we write #(invoice, total, t) where t is some date 7 . The
fields of resources may change over time; hence the third parameter of type Time.

Observables can now be understood simply as fields of a ubiquitous resource named
obs. An Int may double for a Resource in which case the Int is understood to be
a currency amount.

For the denotational semantics of the predicate language we define the following
functions mapping syntactic expressions to mathematical objects:

7 When a resource is introduced into the system through a match, it must be dynam-
ically checked that it possesses the required fields. The set of required fields can be
statically determined by a routine type check annotating resources with field names à
la {date, total, paymentdeadline} Resource. To keep things simple we omit this type
extension here.
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Fig. 19 Example syntax for predicate language

∆(var) = σ

∆ ` var : σ

type(const) = σ

∆ ` const : σ

∆ ` e1 : Int ∆ ` e2 : Int op ∈ {+,−, ∗, /}
∆ ` e1 op e2 : Int

∆ ` t : Time ∆ ` e : Int f ∈ {y, m, d} op ∈ {+,−}
∆ ` t op e f : Time

∆ ` e : Time f ∈ {y, m, d}
∆ ` e#f : Int

∆ ` e : Int
∆ ` e : Resource

∆ ` r : Resource ∆ ` t : Time f ∈ fields(r)

∆ ` #(r, f, t) : Int
∆ ` b : Boolean

∆ ` not b : Boolean

∆ ` e1 : ρ ∆ ` e2 : ρ

∆ ` e1 < e2 : Boolean
∆ ` e1 : σ ∆ ` e2 : σ
∆ ` e1 = e2 : Boolean

∆ ` b1 : Boolean ∆ ` b2 : Boolean op ∈ {and, or}
∆ ` b1 op b2 : Boolean

E : Exp → ∇→ (Agent ∪ Resource ∪ Int ∪ Time)

B : Bexp → ∇→ {t, f}

where we assume the following mathematical environment:

• ∇ is the set of all possible bindings δ of variables to values.
• Exp is the set of all possible expressions of type Int, Time, Resource or Agent

in the language.
• Bexp is the set of all possible expressions of type Boolean in the language.
• Resource and Agent are the sets of resources and agents respectively.
• Int = Z
• Time = {. . . ,−2t,−1t, 0t, 1t, 2t, . . .} where operators + and − have the obvious

interpretations, and we have the map (·)t : Z → Time defined by (n)t = nt.
• Int ⊆ Resource
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• Agent, Resource, and Time are pairwise disjoint.
• (Agent∪Resource∪ Int∪Time) is equipped with an (non-total) order < that is

the union of the orders of the participating sets. Assume that Int and Time have
the usual orderings.

• ∧, ∨, and ¬ serve as logical operators with the usual meaning over the set {t, f}.
• If a and b are integers, a ÷ b gives the the largest integer c such that c · b ≤ a.

mod is the corresponding modulo function so that c · b + a mod b = a.
• ϕ : Resource × Field × Time → Int is a projection function on resources, and

Field is a set of static field identifiers.

A contract analysis is a map from a syntactic description of a contract and some
auxiliary information to a domain of our choice. The auxiliary information is often
an agent or a point in time that the analysis should be relative to or an estimate
of the probabilities associated with an underlying process. Ideally, a contract anal-
ysis can be performed compositionally. This section contains two simple analyses
with this property. Space considerations prevent a walkthrough of more involved
examples, but the basic idea should be clear. We will assume for simplicity that re-
cursively defined contracts are guarded. The analyses are presented using inference
systems defined by induction on syntax, emphasizing the declarative and compo-
sitional nature of the analyses.

5.1 Example: Failed Contracts

A contract may accept a sequence of one of more events that is not a prefix of
a performing trace. Thus the residual contract is failed and its denotation is the
empty set – the contract is in an inconsistent state. The inference rules provided
in Figure 21 sketch how one could go about detecting this. The focal point is
being able to decide if a predicate P can not hold true for any future values of its
parameters. In practice, this often amounts to a simple argument: A deadline has
been passed.

We have referred to the failed analysis numerous times in the example reductions. In
section 4 we saw that eager matching made a bad choice, which was not detected
until much later. The failure analysis seeks to alleviate such situations as early
as possible. Consider the scenario in Figure 22 for an example under the eager
matching regime. The failure of the contract is detected as soon as there is no
remedy, i.e. at T = 39.
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Fig. 20 Denotational semantics for predicate language

E [[const]] = λδ ∈ ∇.const

E [[var]] = λδ ∈ ∇.δ(var)

E [[e1 + e2]] = λδ ∈ ∇.E [[e1]]δ + E [[e2]]δ

E [[e1 − e2]] = λδ ∈ ∇.E [[e1]]δ − E [[e2]]δ

E [[e1 ∗ e2]] = λδ ∈ ∇.E [[e1]]δ · E [[e2]]δ

E [[e1/e2]] = λδ ∈ ∇.E [[e1]]δ ÷ E [[e2]]δ

E [[e#d]] = λδ ∈ ∇.E [[e]]δ mod 30

E [[e#m]] = λδ ∈ ∇.E [[e]]δ ÷ 30 mod 12

E [[e#y]] = λδ ∈ ∇.E [[e]]δ ÷ 360

E [[e + f d]] = λδ ∈ ∇.E [[e]]δ + (E [[f ]]δ)t

E [[e + f m]] = λδ ∈ ∇.E [[e]]δ + (E [[f ]]δ · 30)t

E [[e + f y]] = λδ ∈ ∇.E [[e]]δ + (E [[f ]]δ · 360)t

E [[e− f d]] = λδ ∈ ∇.E [[e]]δ − (E [[f ]]δ)t

E [[e− f m]] = λδ ∈ ∇.E [[e]]δ − (E [[f ]]δ · 30)t

E [[e− f y]] = λδ ∈ ∇.E [[e]]δ − (E [[f ]]δ · 360)t

E [[#(r, f, t)]] = λδ ∈ ∇.ϕ(E [[r]]δ, f, E [[t]]δ)

B[[e1 < e2]] = λδ ∈ ∇.

 t if E [[e1]]δ < E [[e2]]δ

f otherwise

B[[e1 = e2]] = λδ ∈ ∇.

 t if E [[e1]]δ = E [[e2]]δ

f otherwise

B[[b1and b2]] = λδ ∈ ∇.B[[b1]]δ ∧ B[[b2]]δ

B[[b1or b2]] = λδ ∈ ∇.B[[b1]]δ ∨ B[[b2]]δ

B[[not b]] = λδ ∈ ∇.¬B[[b]]δ
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Fig. 21 Failed contracts

∀δ′,∀t′ ≥ t : (δ ⊕ δ′ ⊕ T 7→ t′ |= ¬P )

D, δ, t ` transmit( ~XT | P ). c failed

D, δ, t ` c failed

D, δ, t ` transmit( ~XT | P ). c failed

D ` Failure failed
D, δ, t ` c failed D, δ, t ` c′ failed

D, δ, t ` c + c′ failed

D, δ, t ` c failed

D, δ, t ` c ‖ c′ failed

D, δ, t ` c′ failed

D, δ, t ` c ‖ c′ failed

D, δ, t ` c failed

D, δ, t ` c; c′ failed

D, δ, t ` c′ failed

D, δ, t ` c; c′ failed

D, δ, t ` c failed (f( ~X) = c) ∈ D

D, δ, t ` f(~a) failed

Fig. 22 Example: Failed legal services agreement under eager matching (non-
deterministic)

transmit (att,com,H,T | 0 < T and T<=30).

( transmit (com,att,fee,T | T <= 30+8d)

|| ( legal (...,30,min(30 + 30d,60),60)

+ transmit (att,com,end,T | 60<=T)))

(att, com, h1, 20),

(att, com, h2, 37),

(com, att, fee, 38)

−→

( transmit (com,att,fee,T | T<=30+8d)

|| ( Success

|| (legal(...,60,min(60 + 30d,60),60)

+ transmit(att,com,end,T|60<=T))))

We would rather not wait for the next event
(com,att,fee,62)

−→ before realizing that the situation is not working. As
soon as T = 39, transmit (com att, fee, T | T <= 30 + 8d) can transition to Failure. The relevant part of
the derivation looks like this:

D, d, 39 ` 39 ≤ 30 + 8d

D, d, 39 ` transmit (com att, fee, T | T <= 30 + 8d) failed

D, d, 39 `

( transmit (com att, fee, T | T <= 30 + 8d)

|| ( Success

|| ( legal (..., 60, min(60 + 30d,60), 60)

+ transmit (att, com, end, T | 60 <= T))))

failed

5.2 Example: Task List

Given a contract or a portfolio of contracts it is tremendously important for an
agent to know when and how to act. To this end we demonstrate how a very
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simple task list can be compiled.

Consider the definition given in Figure 23. The function gives returns a list of
outstanding commitments that can be carried out at time t. We only admit interval
conditions of the form a ≤ T and T ≤ b with T being the time variable in the
enclosing transmit, since in “real” contracts hardly anything else is used. It is
important to notice that the result of the analysis may be incomplete. A task is
only added if the agents agree (i.e. a = a1), but if a1 is not bound at the time t
of analysis, the task is simply skipped. A more elaborate dataflow analysis might
reveal that in fact a1 is always bound to a.

Also notice the case for application f(~a). We expand the body of the named con-
tract f given arguments a but only once (assuming f is guarded). This measure
ensures termination of the analysis, but reduces the function’s look-ahead horizon.
Hence, any task or point of interest more than one recursive unfolding away is not
detected. This is unlikely to have practical significance for two reasons: (1) recur-
sively defined contracts are guarded and so a transmit must be matched before a
new unfold can occur. This transmit therefore is presumably more relevant than
any other transmits further down the line; (2) it would be utterly unidiomatic
if some transmit t1 was required to be matched before another transmit t2, but
nevertheless had a later deadline than that of t2.

For an example of the task list analysis, we return to the Legal Services Agreement.
The task list works best with eager matching with explicit reduction control. Eager
matching alone is too careless, and deferred matching represents many states, which
are all assumed valid, but may confuse the user when he or she sees overlapping
tasks for every hypothetical state of the contract. Consider Figure 24 for an example
of how the task list evolves under reduction of the Legal Services Agreement.

The examples given above, in their simplicity, may be extended given knowledge
of the problem domain. In particular, knowledge of or forecasting about probable
event sequences may be used in a manner orthogonal to the coding of analyses by
appropriate function calls.

Analyses possible to implement in this way include:

• Resource flow forecasting (supply requirements).
• Terminability by agent, latest termination, earliest termination.
• Valuation, or simply put: What is the value to an agent of a given contract?

The analysis is fairly intricate and requires knowledge of financial models and
stochastic processes. Interested readers are referred to Peyton Jones and Eber
[JES00,JE03] who provide a very readable introduction targeted at computer
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Fig. 23 Task list analysis

D, δ, a, t ` Success : [] D, δ, a, t ` Failure : []

|= a 6= a1
~X = (a1, a2, R, T )

D, δ, a, t ` transmit( ~X | x ≤ T and T ≤ y). c : []

|= ¬(x ≤ t and t ≤ y)

D, δ, a, t ` transmit( ~X | x ≤ T and T ≤ y). c : []

|= a = a1
~X = (a1, a2, R, T ) |= x ≤ t and t ≤ y

D, δ, a, t ` transmit( ~X | x ≤ T and T ≤ y). c :

[transmit( ~X | x ≤ T and T ≤ y). c]

D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2
D, δ, a, t ` c1 + c2 : l1 @ l2

D ` c1 nullable D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2
D, δ, a, t ` c1; c2 : l1 @ l2

D 6` c1 nullable D, δ, a, t ` c1 : l1
D, δ, a, t ` c1; c2 : l1

D, δ, a, t ` c1 : l1 D, δ, a, t ` c2 : l2
D, δ, a, t ` c1 ‖ c2 : l1 @ l2

(f( ~X) = c) ∈ D D, δ, a, t ` c : l

D, δ, a, t ` f(~a) : l

scientists.
• General model checking for business rules: (a) static (b) dynamic/runtime (Timed

LTL checking), cf. [KPA04].
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Fig. 24 Task list for the Legal Services Agreements under eager matching with
explicit control

transmit (att,com,H,T | 0 < T and T <= 30).

( transmit (com,att,fee,T | T <= 30 + 8d)

|| ( legal (...,30,min(30 + 30d,60),60)

+ transmit (att,com,end,T | 60 <= T)))

Services rendered first month:
(att,com,h1,20)

−→
τ−→

T = 0 :
att: transmit(att,com,H,T | 0<T and T<=30)

( transmit (com,att,fee,T | T<=30+8d)

|| (transmit (att,com,H,T | 30<T and T<=60).

( transmit (com,att,fee,T | T<=60+8d)

|| ( legal (...,60,min(60 + 30d,60),60)

+ transmit(att,com,end,T | 60<=T)))))

Services rendered second month:
r(att,com,h2,37)

−→

T = 20 :
com: [transmit(com,att,fee,T | T<=30+8d)]

T = 31 :
att: transmit(att,com,H,T | 30<T and T<=60)

com: transmit(com,att,fee,T | T<=30+8d)

( transmit (com,att,fee,T | T<=30+8d)

|| ( transmit (com,att,fee,T | T<=60+8d)

|| ( legal (...,60,min(60 + 30d,60),60)

+ transmit(att,com,end,T | 60<=T))))

Fee for first month:
l(com,att,fee,38)

−→
τ−→

T = 37 :
com: transmit (com,att,fee,T | T<=30+8d)

com: transmit (com,att,fee,T | T<=60+8d)

If the system was unable to decide predicates, two
additional tasks would have been shown for att:

att: transmit (att,com,H,T | 60<T and T<=60)

att: transmit (att,com,end,T | 60<=T)

( transmit (com,att,fee,T | T <= 60 + 8d)

|| ( legal (...,60,min(60 + 30d,60),60)

+ transmit (att,com,end,T | 60 <= T)))

Fee for second month:
l(com,att,fee,62)

−→
τ−→

T = 38 :
com: transmit (com,att,fee,T | T<=60+8d)

T = 60 :
att: transmit (att,com,end,T | 60<=T)

com: transmit (com,att,fee,T | T<=60+8d)

( legal (...,60,min(60 + 30d,60),60)

+ transmit (att,com,end,T | 60 <= T))

Attorney signals end-of-contract:
s(att,com,end,64)

−→

T = 62 :
att: transmit (att, com, end, T | 60 <= T)

Success T ≥ 64 : No tasks!

6 Discussion and Future Work

Our definition of contracts focuses on contracts as classifiers of event traces into
performing and nonperforming ones. This is coarse, and many real-world issues are
left out—not for good, but for now.

The basic idea is to develop these notions within a general framework that may
require specifications of runtime environment and protocols for event transmission.
The inclusion of explicit operators in the language to mimic many standard steps in
the contract lifecycle—say checking a contract for potential problems with current
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law—would not facilitate easy contract coding without both static (“does this
contract conform to standard practice?”) and dynamic (“is this sequence of events
and their handling proper?”) checks appealing to some enclosing structures.

We decided to pursue compositionality—hierarchical specification—from the outset
as a central notion and thus follow a process algebra approach, basically to evaluate
how far that would take us in the given domain. This can be contrasted to a
network-oriented approach supported by suitable diagramming to appeal to visual
faculties, which appears to be the preferred modeling approach for workflow systems
(Petri nets) [vdAvH02] and in object-oriented analysis (UML diagramming). Note
that hierarchical specification is also needed in a network-oriented approach to
achieve modular description and reuse of specification components. Furthermore,
powerful specification mechanisms such as functional abstraction and (non-tail)
recursion have no simple visual representations.

The Software Development Agreement (Figure 15) provides a good setting to ob-
serve the limitations to our approach and the ramifications of the design choices
made.

The Change Order is not coded. It might be cleverly coded in the current language,
again using constraints on the events passed around, but a more natural way would
be using higher-order contracts, i.e. contracts taking contracts as arguments. Thus,
a Change Order would simply be the passing back and forth of a contract followed
by an instantiation upon agreement.

The transmission of rights can easily be coded, but the prohibition to transmit
a particular resource affects all other contracts. Currently, we have no construct
available to handle this situation.

Contracts often specify certain things that are not to be done (e.g. not copying the
software). Such restrictions should intersect all other outstanding contracts and
limit them appropriately. A higher-order language or predicates that could guard
all transmits of an entire subcontract might ameliorate this in a natural way.

A fuller range of language constructions that programmers are familiar with is
also desirable; in the present incarnation of the contract language, several standard
constructions have been left out in order to emphasize the core event model. In
practice, conditionals and various sorts of lambda abstractions would make the
language easier to use, though not strictly more expressive, as they can be encoded
through events, albeit in a non-intuitive way. A conditional that is not driven by
events (i.e. an if-then-else) seems to be needed for natural coding in many real-
world contracts. Also, a catch-throw mechanism for unexpected events would make
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contracts more robust.

Conversely, certain features of the language appear to be almost too strong for the
domain; the inclusion of full recursion means that contracts active for an unlimited
period of time, say leases, are easy to code, but make contract analysis significantly
harder. In practice, contracts running for “unlimited” time periods often have ex-
ternal constraints (usually local legislation) forcing the contract to be reassessed
by its parties, and possibly government representatives, from time to time. Hav-
ing only a restricted form of recursion that suffices for most practical applications
should simplify contract analysis.

The expressivity of the contract language and indeed the feasibility of non-trivial
contract analysis depends heavily on the predicate language used. Predicates re-
stricted to the form [a; b] are surely too limited, and further investigation into the
required expressiveness of the predicate language is desirable.

While the language is parametrized over the predicate language used, almost all
real-world applications will require some model of time and timed events to be
incorporatedvis-à-vis the examples using interval in Section 5 . The current event
model allows for encoding through the predicate language, but an extended set of
events, with companion semantics, would make for easier contract programming;
timer (or “trigger”) events appear to be ubiquitous when encoding contracts.

7 Related Work

The impetus for this work comes from two directions: the REA accounting model
pioneered by McCarthy [McC82] and Peyton Jones, Eber and Seward’s seminal
article on specification of financial contracts [JES00]. Furthermore, given that con-
tracts specify protocols as to how parties bound by them are to interact with each
other there are links to process and workflow models.

7.1 Composing Contracts

Peyton Jones, Eber and Seward [JES00] present a compositional language for
specifying financial contracts. It provides a decomposition of known standard con-
tracts such as zero coupon bonds, options, swaps, straddles, etc., into individual
payment commitments that are combined declaratively using a small set of con-
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tract combinators. All contracts are two-party contracts, and the parties are im-
plicit. The combinators (taken from [JE03], revised from [JES00]) correspond to
Success, · ‖ ·, · + ·, transmit(·) of our language CP ; it has no direct counterparts
to Failure, ·; · nor, most importantly, recursion or iteration. On the other hand, it
provides conditionals and predicates that are applicable to arbitrary contracts, not
just commitments as in CP , something we have found to be worthwhile also for
specifying commercial contracts. Furthermore, their language provides an until-
operator that allows a party to terminate a contract successfully at a particular
time, even if not all commitments have been satisfied. Using until for contract
specification seems difficult, however, since it may—legally—cut off contract exe-
cution before all reciprocal commitments have been satisfied, e.g., the requirement
to pay for a service that has been rendered.

Our contract language generalizes financial payment commitments to arbitrary
transfers of resources and information, provides explicit agents and thus provides
the possibility of specifying multi-party contracts.

We have provided a denotational semantics for CP and developed operational se-
mantics for contract monitoring from it, whereas Peyton Jones, Eber and Seward
focus on valuation, a sophisticated contract analysis based on stochastic analysis
for pricing contracts.

7.2 Resources/Events/Agents (REA)

McCarthy [McC82] pioneered REA, an accounting model that focuses on the basic
transaction patterns of the enterprise, the exchange of scarce goods and the trans-
formation of resources by production, and separates it from phenomena that can
be derived by aggregation or other means. Geerts and McCarthy [GM00] comple-
ment REA’s entity-relationship model of basic ex-post notions of events, in which
agents transmit scarce resources, with ex-ante notions: commitments and sets of
commitments making up contracts. 8 Contracts, however, are only modeled as sets
of commitments whose concrete terms and constraints are usually described in nat-
ural language and as such live outside the scope of the entity-relationship model.
Our work provides a formalization for contracts and their (performing) executions
and thus complements the REA’s data-centered notions with a well-defined process
perspective.

8 This is a highly simplified description of key parts of REA.
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7.3 Process Algebra and Logic

Disregarding the structure of events and their temporal properties, CP is basically
a process algebra. It corresponds to Algebra of Communicating Processes (ACP)
with deadlock (Failure), free merge (· ‖ ·) and recursion, but without encapsulation
[BW90]. Note that contracts are to be thought of as exclusively reactive processes,
however: they respond to externally generated events, but do not autonomously
generate them. This leads naturally to contracts classifying event traces, mak-
ing CSP [BHR84,Hoa85] and its trace-theoretic semantics a natural conceptual
framework for our view-independent approach to contract specification. This is in
contrast to CCS-like process calculi [Hen88,Mil89,Mil99], which take a rather op-
erational process-as-machine view; they treat communication as dual pairs of send
and receive messages and allow observation of branching decisions in processes.
Note that CP , as presented here, contains no synchronization between concurrently
executing subcontracts. A previous version of CP contained the contract conjunc-
tion operator c & c′, whose denotational semantics is

C[[c & c′]]D;δ = C[[c]]D;δ ∩ C[[c′]]D;δ.

This is the parallel composition operator of CSP with synchronization at each
step. A trace satisfies c & c′ if it satisfies both c and c′. This makes it possible to
specify a contract by providing a basic specification, c (sales order), and refining it
by conjoining it with an additional policy, c′ (no alcohol must be sold to minors),
that a correct contract execution must satisfy. Our language can be extended to
include contract conjunction. We have not included it here to keep the theoretical
treatment of CP simple. Furthermore, it is our impression that the above asymmetry
of c specifying the fundamental protocol for contract execution and c′ filtering
illegal executions may be better captured by formulating policies logically, e.g., in
Linear-Time Logic (LTL), possibly enforced by run-time verification [KPA03].

There are numerous timed variants of process algebras and temporal logics; see e.g.
Baeten and Middelburg [BM02] for timed process algebras. It should be noted that
our contract language is fundamentally deterministic to avoid misunderstanding
between contract partners: by design, nondeterministic implicit control decisions
as in CCS-based process calculi are avoided. Indeed the eager matching semantics
presented can be considered a process language with implicit control decisions (a
process may evolve nondeterministically and autonomously). Since this is consid-
ered undesirable in our context (though realistic as it reflects the matching am-
biguities common in bookkeeping), its events (actions in process terminology) are
beefed up with control (“routing”) information to control process/contract evolu-
tion deterministically.
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Note that, in contrast to conventional process calculi, we have included both se-
quential composition and parameterized recursion to support a separation of data
(the base language) and control (the contract language).

Also, our base language is not fixed, but a parameter of the contract language
so as to accommodate expressing temporal (and other) constraints modularly and
“naturally”. Indeed, the basic structure of events can be entirely encapsulated in
the base language, making the technical development of the contract language (the
“control part”) independent of REA or other data models for that matter.

Timed process calculi tend to build on rudimentary models of time. These appear
to be insufficient for expressing contract constraints naturally, but may turn out to
be viable as core languages. Clearly, studying timing more closely as well as other
connections to process calculi constitutes requisite future work.

Finally, most of the extant process algebras apparently do not consider the approach
of contract monitoring by residuation. In this paper, the need for considering (pre-
fixes of) event traces leads to the problem of allowing only contracts that ensure
that the arrival of any event leads to a well-defined residual contract. Calculi such
as CCS do not have a notion of event traces, and do not encounter the problem,
since the (structural) operational semantics turns out to be sound and complete
for the set of structural equivalences defining a “program” in CCS. The main dif-
ference seems to be the liberal recursion operator employed in our language which
admits mutual recursion, unlike CCS where the constructs of equal strength only
admit transitions that are syntactically guarded in the sense that if an operator has
a transition to a new term, the root of that term contains an operator of “lower”
strength (e.g. the “replication” operator is guarded by the “parallel” operator in
CCS).

7.4 Work flow and business process languages

In [SMTA95] an event algebra is developed which is used to monitor a discrete
event system. The terms of the algebra contain the equivalent of Success, Failure, · ‖
·, ·+ ·, ·; · while the atomic contract transmit(·). · is replaced by an enumerated set
of unique atomic constructs with no free variables. Iteration is stated to be done
by instantiating terms such that atomic terms are relabeled to ensure uniqueness
of all atomic terms. A trace semantics is given for terms as well as residuation
equations. The equations allow monitoring of terms by a syntactic method like in
CP . Guardedness (in the sense of CP) is guarenteed by excluding recursion from
the language. It is not entirely clear how iteration is included in the language as
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no formal description of it is given. The residuation equations given, essentially
implement the eager semantics of CP .

Another branch of research has focused on the specification and modelling of busi-
ness processes. In this vein, the Business Process Modelling Language (BPML) is an
XML-inspired specification language defined by a consortium of agents from indus-
try and reported in several white papers and technical reports [Ark02,vdADtHW02].
A “program” in the language is, essentially, an XML schema containing process
specifications, including temporal and conditional statements, as well as a restricted
iteration construct (“repeat”). The scope of entities that can reasonably be mod-
elled by BPML is conceptually larger than the one considered in this paper, since
arbitrary (internal or external) processes and commitments can be modelled – hence
also contractual obligations. However, while the language operates with an execu-
tion model loosely based on π-calculus [MPW92], a proper (and formal) semantics
for process execution, performance and monitoring is lacking. The semantics of
the framework is currently described only in terms of natural language, and any
kind of safe automated or formal analysis of execution of processes specified in the
language thus cannot be performed at present.
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A Full Proofs

Theorem 1 Let D = {fi[ ~Xi] = ci}m
i=1 and δ be given. We prove

C[[c]]γ;δ⊕δ′ = {s : δ′ `δ
D s : c}

where γ = D[[D]]δ.

“⊇”: Define δ′ |=δ
D s : c ⇐⇒ s ∈ C[[c]]γ;δ⊕δ′ . We prove by induction on the deriva-

tion of δ′ `δ
D s : c that δ′ |=δ

D s : c.

δ′ `δ
D 〈〉 : Success We need to show that δ′ |=δ

D 〈〉 : Success. This follows

immediately from C[[Success]]γ;δ⊕δ′ = {〈〉}.
~X 7→ ~v `δ

D s : c (f( ~X) = c) ∈ D, ~v = Q[[~a]]δ⊕δ′

δ′ `δ
D s : f(~a)

Assume ~X 7→ ~v |=δ
D s : c

(induction hypothesis) with ~v = Q[[~a]]δ⊕δ′ and (f( ~X) = c) ∈ D. We need to
show that δ′ |=δ

D s : f(~a).
By definition we have

C[[f(~a)]]γ;δ⊕δ′ = γ(f)(Q[[~a]]δ⊕δ′)

(by def. of ~v) = γ(f)(~v)

(by def. of γ) = C[[c]]γ;δ⊕ ~X 7→~v

and thus, since ~X 7→ ~v |=δ
D s : c by induction hypothesis, we can conclude that

δ′ |=δ
D s : f(~a).

δ ⊕ δ′′ |= P δ′′ `δ
D s : c (δ′′ = δ′ ⊕ { ~X 7→ ~v})

δ′ `δ
D transmit(~v) s : transmit( ~X|P ). c

Assume δ ⊕ δ′′ |= P

and δ′′ |=δ
D s : c where δ′′ = δ′ ⊕ { ~X 7→ ~v}. We need to show that δ′ |=δ

D

transmit(~v) s : transmit( ~X|P ). c.
Since δ ⊕ δ′′ |= P and δ′′ |=δ

D s : c it follows immediately from the definition

of C[[transmit( ~X | P ). c]]γ;δ⊕δ′ that δ′ |=δ
D transmit(~v) s : transmit( ~X|P ). c.

δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2 (s1, s2) ; s

δ′ `δ
D s : c1 ‖ c2

Assume δ′ |=δ
D s1 : c1, δ′ |=δ

D s2 :

c2 and (s1, s2) ; s. We need to show that δ′ |=δ
D s : c1 ‖ c2.

From the assumptions and the definition of C[[c1 ‖ c2]]
γ;δ⊕δ′ it follows imme-

diately that δ′ |=δ
D s : c1 ‖ c2.
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δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2

δ′ `δ
D s1s2 : c1; c2

Immediate from the definition of C[[c1; c2]]
γ;δ⊕δ′ .

δ′ `δ
D s : c1

δ′ `δ
D s : c1 + c2

Immediate from the definition of C[[c1 + c2]]
γ;δ⊕δ′ .

δ′ `δ
D s : c2

δ′ `δ
D s : c1 + c2

Immediate from the definition of C[[c1 + c2]]
γ;δ⊕δ′ .

“⊆”: We prove C[[c]]γ;δ⊕δ′ ⊆ {s | δ′ `δ
D s : c}.

Define γ′(fi) = λ~v.{s | ~Xi 7→~v `δ
D s : ci} for 1 ≤ i ≤ m. (Recall that δ is

fixed.)
Claim: C[[c]]γ

′;δ⊕δ′ = {s | δ′ `δ
D s : c} for all δ′.

Proof of claim:
The proof is by structural induction on c.

• Consider f(~a) for some (f( ~X) = c) ∈ D. Let ~v = Q[[~a]]δ⊕δ′ . We need to show
that C[[f(~a)]]γ

′;δ⊕δ′ = {s | δ′ `δ
D s : f(~a)}.

We have:

C[[f(~a)]]γ
′;δ⊕δ′ = γ′(f)(Q[[~a]]δ⊕δ′)

= γ′(f)(~v)

= {s | ~X 7→ ~v `δ
D s : c}

= {s | δ′ `δ
D s : f(~a)}

which concludes this case.
• Consider transmit( ~X | P ). c. We may assume C[[c]]γ

′;δ⊕δ′ = {s | δ′ `δ
D s : c}

for all δ′. We need to show that C[[transmit( ~X | P ). c]]γ
′;δ⊕δ′ = {s | δ′ `δ

D s :

transmit( ~X | P ). c}.
We have:

C[[transmit( ~X | P ). c]]γ
′;δ⊕δ′

= {transmit(~v) s | Q[[P ]]δ⊕δ′⊕ ~X 7→~v = true ∧ s ∈ C[[c]]γ
′;δ⊕δ′⊕ ~X 7→~v}

= {transmit(~v) s | δ ⊕ δ′ ⊕ ~X 7→ ~v |= P ∧ δ′ ⊕ δ′′ `δ
D s : c}

= {s′ | δ′ `δ
D s′ : transmit( ~X | P ). c}

which concludes this case.
• The remaining cases are straightforward.

From C[[c]]γ
′;δ⊕δ′ = {s | δ′ `δ

D s : c} for all δ′ follows immediately that γ′(f) =

λ~v.C[[c]]γ
′;δ⊕~X 7→~v for all (f( ~X) = c) ∈ D. Since γ = D[[D]]δ is the least function
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with this property, it follows that γ v γ′ and thus C[[c]]γ;δ⊕δ′ ⊆ C[[c]]γ
′;δ⊕δ′ = {s |

δ′ `δ
D s : c} and we are done.

Lemma 3 The proof proceeds by structural induction on c assuming (A) for our
base language:

Q[[∆ ` b[~v/ ~X] : τ ]]δ = Q[[∆ ` b : τ ]]δ⊕{~X 7→~v

.

We use figure 7 and abbreviate D[[D]]δ by γ where appropriate.

c ≡ Success To show: C[[Success]]γ;δ⊕ ~X 7→~v = C[[Success[~v/ ~X]]]γ;δ.

We have C[[Success]]γ;δ⊕ ~X 7→~v = {〈〉} = C[[Success[~v/ ~X]]]γ;δ.

c ≡ Failure This case proceeds exactly as the previous except that both sides

denote ∅.

c ≡ f(~b) To show: C[[f(~b)[~v/ ~X]]γ;δ = C[[f(~b)]]γ;δ⊕ ~X 7→~v.

We have:

C[[f(~b)[~v/ ~X]]γ;δ = C[[f(~b[~v/ ~X])]]γ;δ

= γ(f)(Q[[~b[~v/ ~X]]]δ

= γ(f)(Q[[~b]]δ⊕
~X 7→~v)(by (A))

= C[[f(~b)]]γ;δ⊕ ~X 7→~v

c ≡ transmit( ~X ′ | P ). c′ To show:

C[[transmit( ~X ′ | P ). c′[~v/ ~X]]]γ;δ = C[[transmit( ~X ′ | P ). c′]]γ;δ⊕ ~X 7→~v.

We allow α-conversion and may thus assume that ~X ′ is chosen such that
~X ∩ ~X ′ = ∅. We have:

C[[transmit( ~X ′ | P ). c′[~v/ ~X]]]γ;δ =

C[[transmit( ~X ′ | P [~v/ ~X]). c′[~v/ ~X]]]γ;δ =

{transmit(~v′) s | Q[[P [~v/ ~X]]]δ⊕
~X′ 7→~v′ = true ∧ s ∈ C[[c′[~v/ ~X]]]γ;δ⊕ ~X′ 7→~v′} =

{transmit(~v) s | Q[[P ]]δ⊕
~X′ 7→~v′⊕ ~X 7→~v = true ∧ s ∈ C[[c′]]γ;δ⊕ ~X′ 7→~v′⊕ ~X 7→~v =

{transmit(~v) s | Q[[P ]]δ⊕
~X 7→~v⊕ ~X′ 7→~v′ = true ∧ s ∈ C[[c′]]γ;δ⊕ ~X 7→~v⊕ ~X′ 7→~v′ =

C[[transmit( ~X ′ | P ). c′]]γ;δ⊕ ~X 7→~v
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c ≡ c1 + c2 To show: C[[c1 + c2[~v/ ~X]]]γ;δ = C[[c1 + c2]]
γ;δ⊕ ~X 7→~v. We have:

C[[c1 + c2[~v/ ~X]]]γ;δ = C[[c1[~v/ ~X] + c2[~v/ ~X]]]γ;δ

= C[[c1[~v/ ~X]]]γ;δ ∪ C[[c2[~v/ ~X]]]γ;δ

= C[[c1]]
γ;δ⊕ ~X 7→~v ∪ C[[c2]]

γ;δ⊕ ~X 7→~v

= C[[c1 + c2]]
γ;δ⊕ ~X 7→~v

c ≡ c1 ‖ c2 Similar to ·+ · case.

c ≡ c1; c2 Similar to ·+ · case.

2

Lemma 2 We verify that each equation in Figure 8 holds. Note that γ = D[[D]]δ

in the following.

C[[e\Failure]]γ;δ = C[[Failure]]γ;δ By definition of the residuation operator we have

C[[e\Failure]]γ;δ = e\∅ = ∅ = C[[Failure]]γ;δ.

C[[e\Success]]γ;δ = C[[Failure]]γ;δ By definition of the residuation operator we have

C[[e\Success]]γ;δ = e\{〈〉} = ∅ = C[[Failure]]γ;δ.

C[[e\f(~a)]]γ;δ = C[[e\c[~v/ ~X]]]γ;δ This follows from C[[f(~a)]]γ;δ = C[[c]]γ;δ⊕~X 7→v =

C[[c[~v/~X]]]γ;δ.

We assume (f( ~X) = c) ∈ D and ~v = Q[[~a]]δ.
We have C[[f(~a)]]γ;δ = C[[c]]γ;δ⊕~X 7→v by definition of γ and assumption for ~v. By

Lemma 3 this can be rewritten to C[[c[~v/ ~X]]]γ;δ, and we are done.

C[[transmit(~v)\(transmit( ~X | P ). c′)]]γ;δ There are two cases to consider:

• δ ⊕ { ~X 7→ ~v} |= P .

To show: C[[transmit(~v)\(transmit( ~X | P ). c′)]]γ;δ = C[[c′[~v/ ~X]]]γ;δ.
Again we unfold the left-hand side of the equation and the goal is then:

{s′ | ∃s ∈ C[[transmit( ~X | P ). c′]]γ;δ : transmit(~v)s′ = s} = C[[c′[~v/ ~X]]]γ;δ.

From the denotational semantics we see that

C[[transmit( ~X | P ). c′]]γ;δ = {transmit(~v) s′ | s′ ∈ C[[c′]]γ;δ⊕ ~X 7→~v.
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What we need to show is then that C[[c′]]γ;δ⊕ ~X 7→~v = C[[c′[~v/ ~X]]]γ;δ, which follows
immediately from Lemma 3.

• δ ⊕ { ~X 7→ ~a} 6 |=P .

To show: C[[transmit(~a)\(transmit( ~X | P ). c′)]]γ;δ = C[[Failure]]γ;δ.
We unfold the left-hand side of the equation using the denotational semantics

and the goal is now to show:

{s′ | ∃s ∈ C[[transmit( ~X | P ). c′]]γ;δ : transmit(~v)s′ = s} = ∅.

Since δ ⊕ { ~X 7→ ~a} 6 |=P we know that C[[transmit( ~X | P ). c′]]γ;δ = ∅, and we
are done.

C[[e\(c1 + c2)]]
γ;δ = C[[e\c1 + e\c2]]

γ;δ Unfolding the left-hand side gives {s′ | ∃s ∈

C[[c1 + c2]]
γ;δ : es′ = s}. The denotation of a choice contract is given by

C[[c1 + c2]]
γ;δ = C[[c1]]

γ;δ ∪ C[[c2]]
γ;δ.

Any s′ will thus be a trace of c1 or a trace of c2 with a prefix of e removed.
The denotation of the right-hand side is C[[e\c1]]

γ;δ ∪ C[[e\c2]]
γ;δ which unfolds to

{s′1 | ∃s ∈ C[[c1]]
γ;δ : es′1 = s} ∪ {s′2 | ∃s ∈ C[[c2]]

γ;δ : es′2 = s}. Thus any s′1 or s′2 is
a trace of c1 or c2 with the prefix e removed. We can now conclude that in any
case s′ = s′i for 0 < i ≤ 2 as required.

C[[e\(c1 ‖ c2)]]
γ;δ = C[[e\c1 ‖ c2 + c1 ‖ e\c2]]

γ;δ Rewriting the left-hand side of the

equation by definition of the residuation operator we arrive at the following
equation:

{s′ | ∃s ∈ C[[c1 ‖ c2]]
γ;δ : es′ = s} = C[[e\c1 ‖ c2 + c1 ‖ e\c2]]

γ;δ.

Using the definition of the denotational semantics to rewrite the right-hand side
we arrive at:

{s′ | ∃s ∈ C[[c1 ‖ c2]]
γ;δ : es′ = s} = C[[e\c1 ‖ c2]]

γ;δ ∪ C[[c1 ‖ e\c2]]
γ;δ.

From the denotational semantics, we note that the trace set of a parallel contract
is an interleaving of the events from both subcontracts:

{s′ | ∃s ∈ {s′′ | s1 ∈ C[[c1]]
γ;δ, s2 ∈ C[[c2]]

γ;δ : (s1, s2) ; s′′} : es′ = s} = . . .

If e is a prefix of s1 we have the trace set C[[e\c1 ‖ c2]]
γ;δ and if e is a prefix of s2

we have the traceset C[[c1 ‖ e\c2]]
γ;δ. Combining these two sets we conclude what

was required.
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C[[e\(c1; c2)]]
γ;δ =

 (e\c1; c2) + e\c2 if D, δ |= Success ⊆ c1

e\c1; c2 otherwise
• D, δ |= Success ⊆

c1.
We unfold the left-hand side and the goal becomes:

{s′ | ∃s ∈ {s1s2 | ∃s1 ∈ C[[c1]]
γ;δ, s2 ∈ C[[c2]]

γ;δ} : es′ = s} = C[[e\c1; c2 + e\c2]]
γ;δ.

Unfold the right-hand side

{s′ | ∃s ∈ {s1s2 | ∃s1 ∈ C[[c1]]
γ;δ, s2 ∈ C[[c2]]

γ;δ} : es′ = s}

=

{s′1s′2 | ∃s′1 ∈ C[[e\c1]]
γ;δ, s′2 ∈ C[[c2]]

γ;δ} ∪ C[[e\c2]]
γ;δ

· In case s1 = 〈〉, we get that es′ = C[[c2]]
γ;δ and C[[e\c1]]

γ;δ = ∅. Thus we
need to show that: {s′ | ∃s ∈ C[[c2]]

γ;δ : es′ = s} = C[[e\c2]]
γ;δ, which is

immediate from the definition of residuation.
· If s1 6= 〈〉 there is some s1 in which e occurs as the first event. Thus

s = es′1s
′
2, which means s′ = s′1s

′
2 as required. The added C[[e\c2]]

γ;δ are
accounted for by the previous case.

• D, δ |= Success 6 ⊆c1.
We unfold the left-hand side and the goal becomes:

{s′ | ∃s ∈ {s1s2 | ∃s1 ∈ C[[c1]]
γ;δ, s2 ∈ C[[c2]]

γ;δ} : es′ = s} = C[[e\c1; c2]]
γ;δ

Unfold the right-hand side

{s′ | ∃s ∈ {s1s2 | ∃s1 ∈ C[[c1]]
γ;δ, s2 ∈ C[[c2]]

γ;δ} : es′ = s}

=

{s′1s′2 | ∃s′1 ∈ C[[e\c1]]
γ;δ, s′2 ∈ C[[c2]]

γ;δ}

Since 〈〉 /∈ C[[c1]]
γ;δ, we know that e ∈ s1 from which we immediately see that

s2 = s′2; thus we just need to show that

{s′ | ∃s ∈ {s1 | ∃s1 ∈ C[[c1]]
γ;δ} : es′ = s} = {s′1 | ∃s′1 ∈ C[[e\c1]]

γ;δ}

. That is,
{s′ | ∃s ∈ C[[c1]]

γ;δ} : es′ = s} = C[[e\c1]]
γ;δ.

Which is exactly the definition of the residuation operator.
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Proposition 5 We show ∀D, δ, δ′, c : δ′ `δ
D 〈〉 : c ⇐⇒ D ` c nullable. From this

the proposition follows by Theorem 1.

“=⇒”: To show ∀D, δ, δ′, c : δ′ `δ
D 〈〉 : c =⇒ D ` c nullable we proceed by induc-

tion on derivations of δ′ `δ
D s : c.

δ′ `δ
D 〈〉 : Success We need to show that D ` Success nullable. This follows

immediately from the nullability axiom for Success.

~X 7→ ~v `δ
D s : c (f( ~X) = c) ∈ D, ~v = Q[[~a]]δ⊕δ′

δ′ `δ
D s : f(~a)

Assume D ` c nullable

(induction hypothesis). We need to show that D ` f(~a) nullable, which follows
from the nullability inference rule for f(~a).

δ ⊕ δ′′ |= P δ′′ `δ
D s : c (δ′′ = δ′ ⊕ { ~X 7→ ~v})

δ′ `δ
D transmit(~v) s : transmit( ~X|P ). c

We need to show D `

transmit( ~X|P ). c nullable if transmit(~v) s = 〈〉. This implication is vacuously
true since the assumption transmit(~v) s = 〈〉 is false.

δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2 (s1, s2) ; s

δ′ `δ
D s : c1 ‖ c2

Assume (〈〉, 〈〉) ; s; that is, s =

〈〉. Assume furthermore D ` c1 nullable and D ` c2 nullable. We need to show
that D ` c1 ‖ c2 nullable, which follows from the nullability inference rule for
c1 ‖ c2.

δ′ `δ
D s1 : c1 δ′ `δ

D s2 : c2

δ′ `δ
D s1s2 : c1; c2

Immediate from nullability inference rule for

c1; c2.

δ′ `δ
D s : c1

δ′ `δ
D s : c1 + c2

Immediate from first nullability inference rule for c1 +c2.

δ′ `δ
D s : c2

δ′ `δ
D s : c1 + c2

Immediate from second nullability inference rule for c1 +

c2.
“⇐=”: To show ∀D, c : D ` c nullable =⇒ ∀δ, δ′.δ′ `δ

D 〈〉 : c we proceed by
induction on derivations of D ` c nullable.

D ` c nullable (f( ~X) = c) ∈ D

D ` f(~a) nullable
Assume ∀δ, δ′.δ′ `δ

D 〈〉 : c (induction

hypothesis). We need to show ∀δ, δ′.δ′ `δ
D 〈〉 : f(~a). Let δ, δ′ be arbitrary
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environments for D and f(~a). From the induction hypothesis it follows that
~X 7→ ~v `δ

D 〈〉 : c where ~v = Q[[~a]]δ⊕δ′ . And, using the satisfaction inference rule
for contract application, we arrive at δ′ `δ

D 〈〉 : f(~a).

D ` c nullable
D ` c + c′ nullable

Immediate.

D ` c′ nullable
D ` c + c′ nullable

Immediate.

D ` Success nullable Let δ, δ′ be arbitrary environments. Using the satisfac-

tion rule for Success we obtain δ′ `δ
D 〈〉 : Success.

D ` c nullable D ` c′ nullable
D ` c ‖ c′ nullable

Immediate.

D ` c nullable D ` c′ nullable
D ` c; c′ nullable

Immediate.

Lemma 7 This is proved by straightforward structural induction on the definition
of contracts.

The only interesting cases are the cases of a contract application f(~a), where

(f( ~X) = c) ∈ D, and sequential composition.

In the first case, we can use the assumption of the Lemma that D ` c guarded,
which, by rule application, immediately implies that D ` f(~a) guarded.

In the second case, we have the induction hypotheses D ` c1 guarded and D `
c2 guarded. Now, either D ` c1 nullable or D 6` c1 nullable. In either case, we have
a rule for concluding that D ` c1; c2 guarded.

Theorem 8 (Sketch)

(1) We show D, δ `D c
e−→ c′ =⇒ D, δ |= e\c = c′ by induction on derivations of

D, δ `D c
e−→ c′. Each case follows immediately from Lemma 2. In the case of

sequential composition we also require Proposition 5.
(2) Note that, by Lemma 7, D ` c guarded if D is guarded. It is sufficient to show

D ` c guarded =⇒ ∀δ∀e∃c′.D, δ `D c
e−→ c′. The fact that c′ is guarded in

context D follows from Lemma 7, and it is a routine matter to extend the
proof cases with a check of uniqueness of c′.

We cannot prove D ` c guarded =⇒ ∀δ∀e∃c′.D, δ `D c
e−→ c′ by induction

on the definition of guaraded contracts, however, since the induction hypoth-
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esis is not strong enough in the case of contract application: We would require
that c[~v/ ~X] has a residual contract for arbitrary δ, e, but the induction hy-
pothesis only yields that that holds for c. Consequently, we strengthen the
lemma and prove D ` c guarded =⇒ ∀δ, e, ~X,~v∃c′.D, δ `D c[~v/ ~X]

e−→ c′.
All cases are straightforward except the second rule for sequential compo-

sition: To make the induction proof go through we require D 6` c[~/ ~X] nullable
the last deterministic reduction rule, but the case only carries the assumption

D 6` c nullable. Consequently, if we can show that D ` c[~/ ~X] nullable =⇒ D `
c nullable, we are done.

Claim: D ` c[~/ ~X] nullable =⇒ D ` c nullable.
Proof of claim: By structural induction on c. All cases are straightforward

except the rule for contract application. In that case we need to show D `
f(~a[~v/ ~X]) nullable =⇒ D ` f(~a) nullable. Assume D ` f(~a[~v/ ~X]) nullable.
By inspection of the rules for nullability we can see that this must have been
concluded from D ` c nullable where (f(~Y ) = c) ∈ D. By the same rule we
can infer, however, D ` f(~a) nullable, and we are done.

Theorem 9 We prove the two statements

(1) If D, δ `N c
e−→ c′ then D, δ |= c′ ⊆ e\c

(2) If D, δ `N c
τ−→ c′ then D, δ |= c′ ⊆ c

by induction on the height of the derivation of D, δ `N c
e−→ c′ and D, δ `N c

τ−→ c′,
respectively. We use definitions in Figures 7, 8 and 12. “Assume...” is used as short-
hand for “Assume a derivation with the conclusion...”. Finally, γ abbreviates D[[D]]δ

in the following.

Proving 1:

• Assume D, δ `N Success
e−→ Failure. To show C[[Failure]]γ;δ ⊆ C[[e\Success]]γ;δ =

C[[Failure]]γ;δ. Done.
• Assume D, δ `N Failure

e−→ Failure. To show C[[Failure]]γ;δ ⊆ C[[e\Failure]]γ;δ =
C[[Failure]]γ;δ. Done.

• Assume D, δ `N transmit( ~X | P ). c
transmit(~v)−→ c[~v/ ~X] and also δ ⊕ ~X 7→ ~v |= P

where ~v = Q[[~a]]δ. To show C[[c[~v/ ~X]]]γ;δ ⊆ C[[(transmit(~v)\transmit( ~X | P ). c)]]γ;δ =

C[[c[~v/ ~X]]]γ;δ. Done.

• Assume D, δ `N transmit( ~X | P ). c
transmit(~v)−→ Failure and also δ ⊕ ~X 7→ ~v 6 |=P

where ~v = Q[[~a]]δ. To show C[[Failure]]γ;δ ⊆ C[[(transmit(~v)\transmit( ~X | P ). c)]]γ;δ =
C[[Failure]]γ;δ. Done.
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• Assume D, δ `N c ‖ c′
e−→ d ‖ c′ and D, δ `N c

e−→ d. To show C[[d ‖ c′]]γ;δ ⊆
C[[e\(c ‖ c′)]]γ;δ = C[[e\c ‖ c′ + c ‖ e\c′]]γ;δ = C[[e\c ‖ c′]]γ;δ ∪ C[[c ‖ e\c′]]γ;δ. By the
IH, C[[d]]γ;δ ⊆ C[[e\c]]γ;δ so in particular C[[d ‖ c′]]γ;δ ⊆ C[[e\c ‖ c′]]γ;δ, which is
sufficient.

• Assume D, δ `N c ‖ c′
e−→ c ‖ d′ and D, δ `N c′

e−→ d′. Analogous to the above
case.

• Assume D, δ `N c; c′
e−→ d; c′ and also D, δ `N c

e−→ d. To show C[[d; c′]]γ;δ ⊆
C[[e\(c; c′)]]γ;δ. If D, δ |= Success ⊆ c then C[[e\(c; c′)]]γ;δ = C[[(e\c; c′) + e\c′]]γ;δ =
C[[e\c; c′]]γ;δ∪C[[e\c′]]γ;δ. By the IH, C[[d]]γ;δ ⊆ C[[e\c]]γ;δ so in particular C[[d; c′]]γ;δ ⊆
C[[e\c; c′]]γ;δ, which is sufficient.

• Assume D, δ `N c
τ−→ c′ and D, δ `N c′

e−→ c′′. By the IH, we have C[[c′]]γ;δ ⊆
C[[c]]γ;δ and C[[c′′]]γ;δ ⊆ C[[e\c′]]γ;δ. We need to show C[[c′′]]γ;δ ⊆ C[[e\c]]γ;δ. But this
follows from the IH and monotonicity of residuation: C[[c′′]]γ;δ ⊆ C[[e\c′]]γ;δ ⊆
C[[e\c]]γ;δ.

Proving 2:

• Assume D, δ `N f(~a)
τ−→ c[~V / ~X] where (f( ~X) = c) ∈ D and ~v = Q[[~a]]δ. To

show C[[c[~v/ ~X]]]γ;δ ⊆ C[[f(~a)]]γ;δ = γ(f)(~v), which holds by definition of γ and
Lemma 3.

• Assume D, δ `N c + c′
τ−→ c. To show C[[c]]γ;δ ⊆ C[[c + c′]]γ;δ = C[[c]]γ;δ ∪ C[[c′]]γ;δ.

Done.
• Assume D, δ `N c + c′

τ−→ c′. Analogous to the above case.
• Assume D, δ `N c ‖ c′

τ−→ d ‖ c′ and D, δ `N c
τ−→ d. To show C[[d ‖ c′]]γ;δ ⊆

C[[c ‖ c′]]γ;δ, which follows easily by the IH.
• Assume D, δ `N c ‖ c′

τ−→ c ‖ d′ and D, δ `N c′
τ−→ d′. To show C[[c ‖ d′]]γ;δ ⊆

C[[c ‖ c′]]γ;δ, which follows easily by the IH.
• Assume D, δ `N Success ‖ c

τ−→ c. To show C[[c]]γ;δ ⊆ C[[Success ‖ c]]γ;δ, holds
trivially.

• Assume D, δ `N c ‖ Success
τ−→ c. To show C[[c]]γ;δ ⊆ C[[c ‖ Success]]γ;δ, holds

trivially.
• Assume D, δ `N Success; c′

τ−→ c′. To show C[[c′]]γ;δ ⊆ C[[Success; c′]]γ;δ, holds
trivially.

• Assume D, δ `N c; c′
τ−→ d; c′ and D, δ `N c

τ−→ d. To show C[[d; c′]]γ;δ ⊆ C[[c; c′]]γ;δ,
which follows easily by the IH.

2

Theorem 10 The proof is by induction on the derivation of D, δ `D c
e−→ c′.

• D, δ `D Success
e−→ Failure. Clearly no τ -transitions can be taken in the non-
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deterministic reduction system. However, there is just one contract c1 such that
D, δ `N Success

e−→ c1 which is Failure. We must then show: D, δ |= Failure ⊆
Failure. By definition D, δ |= Failure = ∅, so we must show ∅ ⊆ ∅ which is
trivially true.

• D, δ `D Failure
e−→ Failure. Again no τ -transitions are possible. There is just

one contract c1 such that D, δ `N Failure
e−→ c1 namely Failure. We must show

D, δ |= Failure ⊆ Failure, which is true since ∅ ⊆ ∅.
• D, δ `D transmit( ~X|P ). c

transmit(~v)−→ c[~v/ ~X] where δ ⊕ ~X 7→ ~v |= P and ~v = Q[[~a]]δ.
In this case we can only do the reduction

D, δ `N transmit( ~X|P ). c
transmit(~v)−→ c[~v/ ~X].

Now we must show D, δ |= c[~v/ ~X] ⊆ c[~v/ ~X], which is obviously true.

• D, δ `D transmit( ~X|P ). c
transmit(~v)−→ Failure and δ ⊕ ~X 7→ ~v 6 |=P where ~v = Q[[~a]]δ.

No τ -transitions are possible and only one contract c1 exists such that

D, δ `D transmit( ~X|P ). c
transmit(~v)−→ c1,

so c1 = Failure. This means we must show D, δ |= c[~v/ ~X] ⊆ c[~v/ ~X] which clearly
holds.

• D, δ `D f(~a)
e−→ c′. This implies that (f( ~X) = c) ∈ D and D, δ `D c[~v/ ~X]

e−→ c′

with ~v = Q[[~a]]δ. By a derivation of D, δ `D c[~v/ ~X]
e−→ c′ we use the IH to get con-

tracts c1, . . . , cn such that D, δ `N c[~v/ ~X]
τ∗−→ c′′i

e−→ c′ and D, δ |= c′ ⊆ ∑n
i=1 ci.

However we need to show D, δ `N f(~a)
τ∗−→ c′′i

e−→ ci and c′ ⊆ ∑n
i=1 ci, the latter

of which follows directly from the IH. By the non-deterministic reduction rules,
f(~a) has just one reduction D, δ `N f(~a)

τ−→ c[~v/ ~X]. Thus we can extend all

reductions of D, δ `N c[~v/ ~X]
τ∗−→ c′′i

e−→ ci with one more τ -transition giving
reductions D, δ `N f(~a)

τ∗−→ c′′i
e−→ ci for all 0 < i ≤ n.

• D, δ `D c + c′
e−→ d + d′. This implies that D, δ `D c

e−→ d and D, δ `D c′
e−→ d′.

From the non-deterministic reduction rules we see that c+ c′ may be reduced by
a τ -transition into either c or c′. By the IH we then have contracts d0, . . . , dn and
d′0, . . . , d

′
m such that D, δ `N c

τ∗−→ d′′i
e−→ di for 0 < i ≤ n, D, δ |= d ⊆ ∑n

i=1 di

and D, δ `N c′
τ∗−→ d′′′j

e−→ d′j for 0 < j ≤ m, D, δ |= d ⊆ ∑m
j=1 dj. Thus we can

extend the non-deterministic reductions of c and c′ to get reductions of c + c
into contracts c0, . . . , cn+m. That is: there are contracts, ci such that D, δ `N

c + c′
τ∗−→ c′′i

e−→ ci with 0 < i ≤ m + n. As seen from the IH we know that
D, δ |= d ⊆ ∑n

i=1 di and D, δ |= d ⊆ ∑m
j=1 dj. Taking the union of these we get

D, δ |= d
⋃

d′ ⊆ ∑n
i=1 di +

∑m
j=1 dj. By definition this is D, δ |= d + d′ ⊆ ∑m+n

i=1 di

(given proper enumeration of contracts in di and dj which is the desired goal.
• D, δ `D c ‖ c′

e−→ d ‖ c′ + c ‖ d′. By a derivation D, δ `D c
e−→ d we use the IH
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to get contracts di such that c
τ∗−→ c′′i

e−→ di and D, δ |= d ⊆ ∑n
i=1 di. Then use

the left · ‖ ·-introduction rule to get contracts di ‖ c′ such that c ‖ c′
τ∗−→ c′′i ‖

c′
e−→ di ‖ c′ and D, δ |= d ‖ c′ ⊆ ∑n

i=1 di ‖ c′. By a derivation D, δ `D c′
e−→ d′

we now again use the IH to get contracts d′i such that c′
τ∗−→ c′′′i

e−→ d′i and
D, δ |= d′ ⊆ ∑m

i=1 d′i. Then use the right · ‖ ·-introduction rule to get contracts
c ‖ d′i such that c ‖ c′

τ∗−→ c ‖ c′′′i
e−→ c ‖ d′i and D, δ |= c ‖ d′ ⊆ ∑m

i=1 c ‖ d′i.
Taking all contracts di ‖ c′ and c ‖ d′i we need to show D, δ |= d ‖ c′ + c ‖ d′ ⊆∑n

i=1 di ‖ c +
∑m

i=1 c ‖ d′i which follows directly by the above.
• D, δ `D c; c′

e−→ d; c′ + d′ and D ` c nullable. There are two possible reductions
of c; c′ under the non-deterministic reduction rules. Either D, δ `N c

τ∗−→ Success
and so D, δ `N Success; c′

τ−→ c′ or D, δ `N c
τ∗−→ cp

e−→ dp where cp 6= Success
and then
D, δ `N c; c′

τ∗−→ cf
e−→ dp.

In the former case, by a derivation of D, δ `D c′
e−→ d we get by the IH that

there exist contracts d′i such that c′
τ∗−→ c′′

e−→ d′i and D, δ |= d′ ⊆ ∑n
i=1 d′i.

Taking cp = c′′ and dp = d.
In the latter case there is no sequence of τ -transitions that makes c = Success

so all contracts dq such that c; c′
τ∗−→ cq

e−→ dq must have the form di; c
′. By

a derivation D, δ `D c
e−→ d the IH gives that there are contracts di such that

c
τ∗−→ c′′′

e−→ di and D, δ |= d ⊆ ∑m
i=1 di. This implies

D, δ `N c; c′
τ∗−→ c′′′′

e−→ di; c
′

for 0 < i ≤ m and furthermore that D, δ |= d; c′ ⊆ ∑m
i=1 di; c

′.
We have thus shown that there are contracts ci such that

D, δ `N c; c′
τ∗−→ c′′

e−→ ci

and that ci is either d′i or di; c
′. We still need to show that D, δ |= d; c′ + d ⊆∑k

i=1 ci; that is: D, δ |= d; c′ + d ⊆ ∑m
i=1 di; c

′ +
∑n

i=1 d′i. This follows directly by
the already noted fact that by the IH D, δ |= d; c′ ⊆ ∑m

i=1 di; c
′ and D, δ |= d′ ⊆∑n

i=1 d′i
• D, δ `D c; c′

e−→ d; c′ and D 6` c nullable. To show: D, δ `N c; c′
τ∗−→ c′′i

e−→ ci and
D, δ |= d; c′ ⊆ ∑n

i=1 ci. By a derivation D, δ `D c
e−→ d the IH yields contracts

d0, . . . , dn for 0 < i ≤ n such that D, δ `N c
τ∗−→ c′′′i

e−→ di and D, δ |= d ⊆∑n
i=1 di. Since D 6` c nullable c 6= Success so no number of τ -reductions can

make c; c′ = c′. The form of all ci must then be di; c
′. The goal is then to show

D, δ |= d; c ⊆ di; c
′ which follows by D, δ |= d ⊆ ∑n

i=1 di.

2

Proposition 11 By induction on the derivation of D, δ `C c
τ−→ c′.
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(f( ~X) = c) ∈ D, ~v = Q[[~a]]δ

D, δ `C f(~a)
τ−→ c[~v/ ~X]

Here, we have

C[[f(~a)]]D[[D]]δ ;δ = D[[D]]δ(f)(Q[[~a]]δ) = C[[c[~a/ ~X]]]D[[D]]δ ;δ,

as desired.

D, δ `C c
τ−→ d

D, δ `C c + c′
τ−→ d + c′

In this case,

C[[d + c′]]D[[D]]δ ;δ = C[[d]]D[[D]]δ ;δ ∪ C[[c′]]D[[D]]δ ;δ = C[[c]]D[[D]]δ ;δ ∪ C[[c′]]D[[D]]δ ;δ,

where the last equality follows from the IH. But C[[c]]D[[D]]δ ;δ ∪ C[[c′]]D[[D]]δ ;δ =
C[[c + c′]]D[[D]]δ ;δ, concluding the proof of the case.

D, δ `C c′
τ−→ d′

D, δ `C c + c′
τ−→ c + d′

As the previous case.

D, δ `C c
τ−→ d

D, δ `C c ‖ c′
τ−→ d ‖ c′

We have that C[[d ‖ c′]]D[[D]]δ ;δ equals

{
s : s ∈ Tr | ∃s1 ∈ C[[d]]D[[D]]δ ;δs2 ∈ C[[c′]]D[[D]]δ ;δ. (s1, s2) ; s

}
By the IH, we gather that {t ∈ C[[d]]D[[D]]δ} equals {s′ ∈ C[[c]]D[[D]]δ}, whence

{s : s ∈ Tr | ∃s1 ∈ C[[d]]D[[D]]δ ;δs2 ∈ C[[c′]]D[[D]]δ ;δ. (s1, s2) ; s}

equals {
s : s ∈ Tr | ∃s1 ∈ C[[c]]D[[D]]δ ;δs2 ∈ C[[c′]]D[[D]]δ ;δ. (s1, s2) ; s

}
as desired.

D, δ `C c′
τ−→ d′

D, δ `C c ‖ c′
τ−→ c ‖ d′

As the previous case.

D, δ `C Success ‖ c
τ−→ c We have C[[Success]]D[[D]]δ ;δ = {〈〉}, and thus obtain

{s : s ∈ Tr | ∃s1 ∈ C[[Success]]D[[D]]δ ;δs2 ∈ C[[c′]]D[[D]]δ ;δ. (s1, s2) ; s} = {s′ : s′ ∈
C[[c′]]D[[D]]δ ;δ} = C[[c′]]D[[D]]δ ;δ, as desired.

D, δ `C c ‖ Success
τ−→ c As the previous case.
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D, δ `C c
τ−→ d

D, δ `C c; c′
τ−→ d; c′

We have C[[c; c′]]D[[D]]δ ;δ = {ss′ : s ∈ Tr , s′ ∈ Tr |

s ∈ C[[c]]D[[D]]δ ;δ ∧ s′ ∈ C[[c′]]D[[D]]δ ;δ}. But by the IH, we gather that C[[c]]D[[D]]δ ;δ =
C[[d]]D[[D]]δ ;δ, whence {ss′ : s ∈ Tr , s′ ∈ Tr | s ∈ C[[c]]D[[D]]δ ;δ ∧ s′ ∈ C[[c′]]D[[D]]δ ;δ} =
{ss′ : s ∈ Tr , s′ ∈ Tr | s ∈ C[[d]]D[[D]]δ ;δ ∧ s′ ∈ C[[c′]]D[[D]]δ ;δ}.

D, δ `C Success; c′
τ−→ c′ As the previous case, noting that C[[Success]]D[[D]]δ ;δ =

{〈〉}.

D, δ `C c
τ−→ c′

δ `C letrec D in c
τ−→ letrec D in c′

Here, C[[letrec D′ in c]]δ = C[[c]]D[[D]]δ ;δ

for some D′. By the IH, we have C[[c]]D[[D]]δ ;δ = D[[c′]]D[[D]]δ ;δ and hence
C[[letrec D in c]]δ = C[[letrec D in c′]]δ, as desired.

2

Proposition 12 “If”. To show: For all D, δ, c, c′: D, δ � c = Success if D, δ `C

c
τ∗−→ Success.

A trivial induction on the length of the τ -reduction sequences using Proposition 11
furnishes C[[c]]D[[D]]δ ;δ = C[[Success]]D[[D]]δ ;δ, and the result follows.

“Only if”: To show: For all D, δ, c, c′: D, δ � c = Success only if D, δ `C c
τ∗−→ Success.

Note that D, δ � c = Success implies D |= c nullable and, by Proposition 5,
D ` c nullable. Consequently, the result follows if we can prove D ` c nullable =⇒
(D, δ � c = Success =⇒ D, δ `C c

τ∗−→ Success).

Claim: The set of derivations of D ` c nullable is finite.

Proof of claim: Observe that all contracts c′ that can occur in a derivation of
D ` c nullable must occur in either D or c. Furthermore there no contract can
occur twice on any path in a derivation tree. Thus the depth of any derivation tree
of D ` c nullable is bounded by the sum of the sizes of D and c. Since, furthermore,
the outdegree of derivation trees is bounded by 2, we can conclude that the set of
derivation trees for D ` c nullable is finite.

Let us define the maximal derivation depth of a derivable judgement D ` c nullable
to be the maximal depth of any of the derivations of D ` c nullable. By the claim
above this is well-defined.
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We shall now prove by Noetherian (well-founded) induction on the maximal deriva-

tion depth of D ` c nullable that D, δ � c = Success implies D, δ `C c
τ∗−→ Success.

We do this by cases on the syntax of c.

• Success.
In this case, we have D, δ `C Success

τ0

−→ Success and we are done.
• c1 + c2.

Let D ` c1 + c2 nullable with maximal derivation depth n. Assume D, δ �
c1+c2 = Success. It follows that both D, δ � c1 = Success and D, δ � c1 = Success
and thus D |= c1 nullable and D |= c2 nullable. By Proposition 5 we thus
have that D ` c1 nullable and D ` c2 nullable. Since both D ` c1 nullable
and D ` c2 nullable yield a derivation of D ` c1 + c2 nullable it follows that
the maximal derivation depths of D ` c1 nullable and D ` c2 nullable are less
than n. Consequently we can apply the induction hypotheses to them and ob-

tain that D, δ `C c1
τ∗−→ Success and D, δ `C c2

τ∗−→ Success. By induction on
the combined length of the two reductions, it can now be shown that D, δ `C

c1 + c2
τ∗−→ Success + Success. Now, we can apply Rule

D, δ `C Success + Success
τ−→ Success

and we are done.
• c1 ‖ c2.

Let D ` c1 ‖ c2 nullable with maximal derivation depth n. Assume D, δ � c1 ‖
c2 = Success. It follows that both D, δ � c1 = Success and D, δ � c1 = Success.

D ` c1 ‖ c2 nullable can only be derived from D ` c1 nullable and D `
c2 nullable, each of which consequently has maximal derivation depth less than
n. We can thus apply the induction hypothesis to D ` c1 nullable and D `
c2 nullable, which yield that D, δ `C c1

τ∗−→ Success and D, δ `C c2
τ∗−→ Success.

By induction on the combined length of the two reductions it can now be shown

that D, δ `C c1 ‖ c2
τ∗−→ Success ‖ Success. Using one of the two rules for elim-

inating a parallel Success, we thus arrive at D, δ `C c1 ‖ c2
τ∗−→ Success and we

are done.
• c1; c2.

Similar to above.
• f(~a).

Let D ` f(~a) nullable with maximal derivation depth n where (f( ~X) = c) ∈ D.

Assume D, δ � f(~a) = Success. It follows that D, δ � c[~v/ ~X] = Success where
~v = Q[[~a]]δ. Since D ` f(~a) nullable can only be derived from D ` c nullable
it follows that the maximal derivation depth of D ` c nullable is less than n.
Furthermore, it can be shown that for each derivation of D ` c nullable there
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is a derivation of D ` c[~v/ ~X] nullable equal depth. Consequently the maximal

derivation depth of D ` c[~v/ ~X] nullable is also less than n, and we can apply

the induction hypothesis to obtain that D, δ `C c[~v/ ~X]
τ∗−→ Success. Prefixing

this reduction sequence with Rule D, δ `C f(~a)
τ∗−→ c[~v/ ~X] we arrive at D, δ `C

f(~a)
τ∗−→ Success and we are done.

• Other cases. In all other cases D ` c nullable is not derivable.

Lemma 13 We show the lemma by proving the stronger result that τ -reduction
is normalizing and confluent.

First we show that all guarded contracts are τ -normalizing, i.e., there exists a (τ -

normal form) c′ s.t. D, δ `C c
τ∗−→ c′ and for no c′′ D, δ `C c′

τ−→ c′′. Proof by
induction on the (minimal) height of the derivation of guardedness of c. Use Figure
10.

• Assume D ` Success guarded. Clearly, there is no rule such that Success reduces
via τ , so we must already have a τ -normal form.

• Assume D ` Failure guarded. Analogous to the case above.
• Assume D ` transmit( ~X | P ). c guarded. Analogous to the cases above.

• Assume
D ` c guarded (f( ~X) = c) ∈ D

D ` f(~a) guarded
. Since (f( ~X) = c) ∈ D we can build

a derivation of D, δ `C f(~a)
τ−→ c[~v/ ~X] where ~v = Q[[~a]]δ. It is left to show that

c[~v/ ~X] is τ -normalizing.
Claim: For any derivation of D ` c guarded there is a derivation of D `

c[~/ ~X] guarded of equal height.
Proof of claim: By induction on guardedness.

By the above claim it follows that the height of derivation of D ` c[~/ ~X] guarded
is the same as the height of D ` c guarded, which is less than the height of

D ` f(~a) guarded. Applying the induction hypothesis to D ` c[~/ ~X] guarded we

get that c[~/ ~X] is τ -normalizing and since D, δ `C f(~a)
τ−→ c[~/ ~X] also that f(~a)

is τ -normalizing.

• Assume
D ` c guarded D ` c′ guarded

D ` c + c′ guarded
. There are three cases to consider.

(1) Suppose
D, δ `C c

τ−→ d

D, δ `C c + c′
τ−→ d + c′

. By the IH we are done.

(2) Suppose
D, δ `C c′

τ−→ d′

D, δ `C c + c′
τ−→ c + d′

. Again by the IH we are done.

(3) Suppose D, δ `C Success + Success
τ−→ Success. But Success is already a τ

normal form so we are done.
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• Assume
D ` c guarded D ` c′ guarded

D ` c ‖ c′ guarded
. There are four cases to consider.

(1) Suppose
D, δ `C c

τ−→ d

D, δ `C c ‖ c′
τ−→ d ‖ c′

. By the IH on the two premisses of the

derivation of guardedness of c ‖ c′, we obtain what was required.

(2) Suppose
D, δ `C c′

τ−→ d′

D, δ `C c ‖ c′
τ−→ c ‖ d′

. Analogous to the case just shown.

(3) Suppose D, δ `C Success ‖ c
τ−→ c. By assumption D ` c guarded and by the

IH we are done.
(4) Suppose D, δ `C c ‖ Success

τ−→ c. By assumption, we have D ` c′ guarded
and by the IH we are done.

• Assume
D ` c guarded D ` c′ guarded

D ` c; c′ guarded
. There are two cases to consider.

(1) Suppose
D, δ `C c

τ−→ d

D, δ `C c; c′
τ−→ d; c′

. Easy, by the IH.

(2) Suppose D, δ `C Success; c′
τ−→ c′. Immediate by the IH.

Second, we prove confluence by showing that the diamond property holds for τ -
reduction, i.e. if D, δ `C c

τ−→ c′ and D, δ `C c
τ−→ c′′, then there exists a d with

D, δ `C c′
τ=

−→ d and D, δ `C c′′
τ=

−→ d. The proof is by induction on the derivation
of D, δ `C c

τ−→ c′.

•
(f( ~X) = c) ∈ D, ~v = Q[[~a]]δ

D, δ `C f(~a)
τ−→ c[~v/ ~X]

.

No other rules match any subterm of f(~a), and we must hence have c′ = c′′,
whence the result follows.

• D, δ `C c1
τ−→ d1

D, δ `C c1 + c2
τ−→ d1 + c2

.

If the τ -rewrite step D, δ `C c
τ−→ c′′ takes place inside c, we have c′′ = c′′1 +c2,

and the IH furnishes a d′1 such that D, δ `C c′′1
τ=

−→ d′1 and D, δ `C d1
τ=

−→ d′1. We

hence have D, δ `C c′
τ=

−→ d′1 + c2 and D, δ `C c′′
τ=

−→ d′1 + c2, as desired.

• D, δ `C c2
τ−→ d2

D, δ `C c1 + c2
τ−→ c1 + d2

.

As the previous case.
• D, δ `C Success + Success

τ−→ Success.
In this case, we must have c′ = c′′, and the result follows.

• D, δ `C c
τ−→ d

D, δ `C c ‖ c′
τ−→ d ‖ c′

.

Exactly as the case
D, δ `C c1

τ−→ d1

D, δ `C c1 + c2
τ−→ d1 + c2

.
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• D, δ `C c′
τ−→ d′

D, δ `C c ‖ c′
τ−→ c ‖ d′

. As the previous case.

• D, δ `C Success ‖ d
τ−→ d.

In this case, D, δ `C c
τ−→ c′′ must be an application of either of the rules

D, δ `C c ‖ Success
τ−→ c, or

D, δ `C d
τ−→ d′

D, δ `C c1 + d
τ−→ c1 + d′

. In the first case, we

have c′ = Success = c′′, and we are done. in the second case, we have c1 = Success,
and thus D, δ `C d

τ−→ d′ and D, δ `C c1 + d
τ−→ d′, as desired.

• D, δ `C c ‖ Success
τ−→ c.

Symmetric to the previous case.

• D, δ `C c1
τ−→ d1

D, δ `C c1; c2
τ−→ d1; c2

.

If the reduction step D, δ `C c
τ−→ c′′ takes place inside c1, then c′′ = d′′1; c2,

and the IH furnishes existence of a d′1 such that D, δ `C d1
τ=

−→ d′1 and D, δ `C

d1
τ=

−→ d′1. Then, d′1; c2 is a common τ -reduct of c′ and c′′, and the desired re-
sult follows. Otherwise, D, δ `C c

τ−→ c′′ is an application of the rule D, δ `C

Success; c′
τ−→ c′, which is impossible, since Success is a τ -normal form, i.e. it

cannot be the case that D, δ `C c1
τ−→ d1.

• D, δ `C Success; c′
τ−→ c′.

Symmetric to the previous case.

2

Theorem 14 “If”: By induction on the height of the derivation of D, δ `C c
~de−→ c′.

“Only if”: By induction on the height of the derivation of D, δ `N c
e−→ c′.

Proving “Only if”: (note that we only consider non-τ -derivations)

• Assume D, δ `N Success
e−→ Failure. From the reduction semantics of we see that

there is just one possible reduction D, δ `C Success
e−→ c′ giving c′ = Failure so

c′′ = Failure.
• Assume D, δ `N Failure

e−→ Failure. Analogous.

• Assume
δ ⊕ ~X 7→ ~v |= P,~v = Q[[~a]]δ

D, δ `N transmit( ~X | P ). c
transmit(~v)−→ c[~v/ ~X]

. Again we see that there

is a unique reduction of the transmit( ~X|P ). c-contract and we have,

δ ⊕ ~X 7→ ~v |= P,~v = Q[[~a]]δ

D, δ `C transmit( ~X | P ). c
transmit(~v)−→ c[~v/ ~X]
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by which we conclude c′′ = c[~v/ ~X].

• Assume
δ ⊕ ~X 7→ ~v |= P,~v = Q[[~a]]δ

D, δ `N transmit( ~X|P ). c
transmit(~v)−→ Failure

. Analogous.

• Assume
D, δ `N c

e−→ d

D, δ `N c ‖ c′
e−→ d ‖ c′

. By the IH we gather that D, δ `C c
~de−→ d.

We can extend ~d with l and build a unique derivation
D, δ `C c

~de−→ d

D, δ `C c ‖ c′
l~de−→ d ‖ c′

.

• Assume
D, δ `N c′

e−→ d′

D, δ `N c ‖ c′
e−→ c ‖ d′

. Analogously by extending ~d with r.

• Assume
D, δ `N c

e−→ d

D, δ `N c; c′
e−→ d; c′

. By the IH we have a derivation D, δ `C c
e−→ d.

Thus we can construct the unique derivation
D, δ `C c

e−→ d

D, δ `C c; c′
e−→ d; c′

.

Proving “If”:

• Assume D, δ `C Success
e−→ Failure. There is no ~d in this case, and we can

immediately build D, δ `N Success
e−→ Failure, also choosing no τ -transitions

for the first part.
• Assume D, δ `C Failure

e−→ Failure. Analogous.

• Assume
δ ⊕ ~X 7→ ~v |= P,~v = Q[[~a]]δ

D, δ `C transmit( ~X | P ). c
transmit(~v)−→ c[~v/ ~X]

. Take no ~d and choose no

τ -transitions. Then immediate.

• Assume
δ ⊕ ~X 7→ ~v 6 |=P,~v = Q[[~a]]δ

D, δ `C transmit( ~X|P ). c
transmit(~a)−→ Failure

. Analogous.

• Assume
D, δ `C c

~de−→ c′

D, δ `C c + d
f ~de−→ c′

. Must build a derivation of

D, δ `N c + d
τ∗−→ c′′

e−→ c′.

By IH: D, δ `N c
τ∗−→ c′′

e−→ c′. So we just need the first part. Clearly, we have
D, δ `N c + d

τ−→ c. Thus, by choosing c = c′′ and exactly one τ -transition, we
are done.

• Assume
D, δ `C d

~de−→ d′

D, δ `C c + d
s~de−→ d′

. Analogous.
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• Assume
D, δ `C c

~de−→ d

D, δ `C c ‖ c′
l~de−→ d ‖ c′

. By using the IH, taking c = c′′, and making

no τ -transitions in the first part, we are done.

• Assume
D, δ `C c′

~de−→ d′

D, δ `C c ‖ c′
r~de−→ c ‖ d′

. Analogous.

• Assume
D, δ `C c

e−→ d

D, δ `C c; c′
e−→ d; c′

. Analogous.

• Assume
D, δ `C c

e−→ c′

δ `C letrec D in c
e−→ letrec D in c′

. Analogous.

It is obvious that, if ~d exists in the above case, it is unique. Furthermore, for all c′′

such that D, δ `C c
~de−→ c′′ we have c′ = c′′. Again, it is obvious.

2
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SMAWL: A SMAll Workflow Language Based
on CCS

Christian Stefansen

Department of Computer Science, University of Copenhagen

Abstract

While most workflow products and researchers have used Petri nets as the under-
lying concurrency model, there has been a push towards algebraic methods (for
purposes of reasoning) and models that provide first class primitives for mobility
(i.e. channel passing, locality, and process passing). Today the de facto benchmark
for workflow models is a large number of workflow patterns (control-flow patterns,
dataflow patterns, interaction patterns, and resource patterns) compiled by van der
Aalst. We demonstrate that all control-flow patterns can be expressed in a process
calculus (Calculus of Communicating Systems, CCS) and subject the patterns to
a closer analysis. We then consider a taxonomy of workflow languages and discuss
some important languages with respect to this taxonomy. Last, we present a small
workflow language, SMAWL, that aims to accommodate all control-flow patterns
while maintaining a strict formal semantics through its direct connection to CCS.

(This is a merged version of material from a two technical reports and a conference
paper of 2005 [33–35].)

1 Introduction

In this chapter we will look a workflows and how to express them in a way that
is representable in a computer. First workflows are defined (Section 2), then we
consider the problems of having a loose or no workflow handling (Section 3). This
leads to the design criteria for a workflow model. We then take a small detour
and compare workflows with conventional programs to establish an understanding
of the differences (Section 5). Afterwards, a workflow model based on Calculus
of Communicating Systems is presented and evaluated with respect to the design
criteria (Section 6).
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The text is interspersed with comments on two of the most important process
languages available: YAWL (Yet Another Workflow Language) and WS-BPEL (Web
Services – Business Process Execution Language; henceforth simply BPEL). These
two languages alone cover a very broad spectrum of workflow issues. YAWL [37] is
an academically developed workflow language, which is probably more expressive
than any of the industry offerings, to which it has been compared. BPEL [36] is the
industry flagship standard for business process execution. There are many other
standards and products. For an overview see van der Aalst [41] and p. 172 [42].

1.1 Contributions

The main contributions of this chapter are:

(1) A CCS encoding of the 20 control flow patterns in Table 1
(2) An analysis of the 20 patterns, and a description and encoding of two new

patterns: (8a) N-out-of-M Merge and (16a) Deferred Multiple Choice
(3) A presentation of a speculative overlay operator and its use for certain work-

flow scenarios
(4) A short discussion of using CCS vs. π-calculus for workflow description lan-

guages.
(5) A further analysis of control patterns and directions for future research.

2 Definitions

Two important textbooks on workflow modeling venture to give definitions, and
these are quoted below to convey an intuition:

“A business process is a collection of interrelated work tasks, initiated in response
to an event, that achieves a specific result for the customer of the process.” —
Sharp and McDermott [32]

“A workflow comprises cases, resources, and triggers that relate to a partic-
ular process” and “[t]he definition of a process indicates which tasks must be
performed—and in what order—to successfully complete a case. In other words
all possible routes are mapped out. A process consists of tasks, conditions, and
subprocesses. By using AND-splits, AND-joins, OR-splits, and OR-joins, parallel
and alternative flows can be defined. Subprocesses also consist of tasks, condi-
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tions, and possible further subprocesses. The use of subprocesses can enable the
hierarchical structuring of complex processes.” — van der Aalst and van Hee [42]

Wikipedia [47] provides this definition:

“Workflow is the operational aspect of a work procedure: how tasks are struc-
tured, who performs them, what their relative order is, how they are synchro-
nized, how information flows to support the tasks and how tasks are being
tracked. As the dimension of time is considered in Workflow, Workflow con-
siders ’throughput’ as a distinct measure. Workflow problems can be modeled
and analyzed using Petri nets.”

Readers interested in a Petri net-based approach are referred to van der Aalst and
van Hee’s “Workflow Management” [40]. Sharp and McDermott give a treatise with
a focus on the business aspects of workflow modeling in “Workflow Modeling” [32],
which also ties in with managerial vogues such as TQM 1 and Kaizen.

3 Why Express Workflows Formally?

The simplest conceivable workflow system would simply consist of task list, where
tasks would be checked off when completed. To complete the workflow the user
would either draw on domain knowledge to figure out what tasks should precede
others or proceed by trial and error, suspending tasks until the necessary precondi-
tions were satisfied. This approach works in very simple scenarios such as personal
task lists but fails to scale to larger workflows with more agents:

• No aid in adhering to established practice. If an established best prac-
tice exists, the system has no way of helping the user follow this. Designing
and accounting for best practices is becoming increasingly important with the
introduction of legislative requirements such as the Sarbanes–Oxley Act.

• No simple/automatic way of deciding what to do next. The interde-
pendence between tasks is not represented and so the required task- and data-
dependency analysis must be brought to bear solely on the user’s domain knowl-
edge in an ad hoc fashion. This makes it more difficult to delegate and divide
labor—especially to new employees with limited training.

• No way to express new tasks created as result of other tasks’ outcomes,
repeating tasks or choice structure. Again, all this information must be
learned, maintained, and remembered by the users.

1 Total Quality Management
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• No simple/automatic way of deciding how to best delegate tasks at
hand. Delegation can be based on e.g. experience/skills, current workload, ex-
pected processing time, confidentiality, one handler pr. client, or even internal
auctioning.

• Training users is more costly. Very little or no domain knowledge is explicitly
represented so proper use relies heavily on correct user understanding of the entire
workflow.

• Changing business processes is costly and potentially resultless. In the
absence of a system providing guidance and support, users may revert to old
practices. Changing processes is costly, because the current processes must first
be mapped through interviews, and users must be taught the new processes
through practice and repetition rather than by system guidance.

Since some knowledge of the structural constraints of the tasks is needed in any
case to perform a number of routine analyses, it seems reasonable to suggest that
these constraints are captured explicitly in the workflow system. Some additional
benefits of an explicit representation of workflows are:

• Formal analysis. This foremost argument for domain-specific languages is this:
Programs in a DSL double as data that can be analyzed and transformed. This
means that a workflow written in a DSL for workflows immediately lends itself
to analyses, pertaining to e.g. reachability, forward/backward slicing, deadlock,
longest/shortest propagation delays, resources needed, scheduling/planning etc.
This analysis can be carried out statically on a program, but also on a running
program. Languages with reduction semantics—i.e. an execution semantics where
every atomic step in the execution can be represented as a program within that
language—are particularly convenient to analyze, because the state is represented
explicitly in the program expression.

• Redesign aid: longest propagation delay, dependency Formal analysis
is not only useful for timely business reporting, but also for redesign. Workflow
design tools can help identify long paths, resource-demanding sections etc. in the
design process. Thus workflow design tools become an aid for process redesign.

• Activity-based costing. In a workflow-driven system, costs are immediately
available pr. employee, pr. case, pr. client, pr. tasks type etc. And this is without
the extra work of assigning cost dimensions on job scheduling entries as seen in
some ERP systems.

• Design time or even runtime flexibility trade-off. No one desires an overly
rigid workflow system—and no one knows exactly at design time what will be
too rigid and what will not. Workflow systems can be normative (allowing the
users to skip and jump tasks and their leisure), prescriptive (forcing the user to
follow the workflow) or anything in between. The important observation is that
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this decision does not have to take place design time. Instead the system could
take a flexible stance allowing all violations when first deployed and gradually
imposing stronger rules when it has been established that it fits with practice.
The trace of events will provide statistics about the tasks skipped, by whom, how
often, etc. This will help diagnose if the workflow is ill-designed or the company
has problem adhering to its own best practice.

• (Long term) Support for outsourcing, commissioning, subcontracting.
Describing workflows in a language with an established semantics is the first
step towards being able to outsource workflows or parts of workflows. Naturally,
a workflow only documents the skeleton of the work that has to be done, and
the work descriptions for every work item must be filled out as well.

• First step towards mobile processes. Finding a formal representation of
workflows is the first step toward mobile business processes. This opens up an
interesting domain of business models for semi-automated process auctioning
over the Internet.

Having enumerated some of the potential gains, we should also note some of the
costs and issues involved:

• Work items are coupled with other systems and legacy systems. Sometimes data
stay within the systems, sometimes it follows the workflows. There is a significant
challenge in providing interfaces for all systems so that a workflow management
system gains access to the case data it needs. In these days of XML, a solution
seems to be within reach, though.

• Workflows can easily become too rigid. It is imperative that one begins with a
flexible systems and narrows it in only after significant experience.

• There is a potential gap between who designs the workflows and who uses the
workflows. Reducing this gap deserves significant attention.

Weighing the costs and benefits it appears that significant gains are possible with
formal representations of workflows.

Although as noted a completely unstructured task list is insufficient for the job, it is
useful ab initio to think of all workflows being unstructured. We then add structure
as needed afterwards. Going from simple workflows to structured workflows can be
done by design, by discovery or by a hybrid method. Structuring workflows by
design means having domain experts and users impose the constraints deemed
necessary a priori or at runtime. Structuring workflows by discovery is done by
process mining : Given an existing event log, one tries to discover invariants and
recast the invariants as workflow structure. This is often done using a genetic
algorithm that randomly generates a number of workflows, ranks them according
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to a fitness measure, and refines them iteratively [46].

For the remainder of this section we will concentrate on workflows structured by
design.

4 Design Criteria, Requirements, and Patterns

In designing a new language a range of considerations must be taken into account.
Ultimately, language design is about the convenience of program writing in the lan-
guage. This is its domain fit, availability of common idioms, precise error messages,
good tools, few possibilities to introduce errors, minimal number of artifacts etc.
Many design criteria can be read directly out of the goals outlined in the previous
section. Since we are designing a domain-specific language, formal analyzability
becomes particularly important—it is a major justification for domain-specific lan-
guages. This usually means that the language should be as simple as possible.
Compositionality is another desirable, albeit not strictly necessary, feature to facil-
itate automated analysis. A very intriguing new area of research is that of process
mining, i.e. recovering processes from event traces. The language should ideally
lend itself well to program rediscovery by genetic algorithms, but this property is
very hard to quantify. It does seem, however, to go hand in hand with the idea of
a language with few and simple constructs.

Apart from the general design principles, there are some concrete requirements to
address. The idea of patterns was popularized in Gamma et al.’s seminal book “De-
sign Patterns” [12]. This sparked a maelstrom of patterns in a variety of research
areas until some saturation was achieved. The idea was also applied to the work-
flow domain: in their seminal 2002–2004 work van der Aalst et al. introduced the
idea of control-flow patterns (née workflow patterns) [41,40,37]. The result was 20
control-flow patterns identified empirically in current workflows, workflow systems,
and workflow standards. Since then this body of work has been extended with
data patterns, resource patterns, and most recently service interaction patterns.
Moreover, the patterns have become the de facto standard for workflow systems
benchmarking. This means that as a bare minimum, one must take into account
the patterns, and for each of them attempt to cover it or deliver a reasonable expla-
nation for its omission. While seemingly straightforward, this process is impaired
somewhat by the current state of the patterns. The patterns lack a formal foun-
dation and are in many cases ambiguously described. Hence we are faced with the
challenge of interpreting the patterns as well.
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This section deals almost exclusively with control flow patterns. Incorporating data
patterns, resource patterns and service interaction patterns in our language is out-
side the scope of this work.

5 Workflows as Programs

It would seem that workflows could be expressed in a structured programming
language such as Java, and indeed many workflows are implicitly embedded in
existing programs. However, it is useful to examine the differences more closely.

Goto revisited Workflows often use arbitrary cycles, a pattern akin to goto in
structured programming. Goto is traditionally considered bad programming style
for two reasons: (1) it makes programs more difficult to understand and debug: if
the program may jump to the current location from any other location, very little
is known about the state at that point; (2) goto can be eliminated through the
combined use of while, if, and function calls.

These two objections are present, albeit less saliently so, for workflows as well.
Workflows are most often described using graphical tools meaning that a goto is
explicitly represented as an arc. Debugging is therefore made somewhat simpler
because one immediately can examine the origins of any incoming arcs. Workflow
systems should also support equivalents to whiles, ifs, and function calls making it
possibly to rewrite the workflow without use of goto. However, for graphical tools it
is not always desirable to factor out parts of the workflow in small functions because
this may obscure the overall structure of the workflow. This can be alleviated,
though, with a language that uses functions instead of goto and displays functions
inline or abstracts away from them at the designer’s discretion.

Concurrent execution The workflow designer strives to parallelize as much
as possible because this affords flexibility: it minimizes the longest path, permit-
ting a runtime trade-off between completion time and resource load at the dis-
cretion of workflow manager. It gives flexibility in scheduling because more tasks
and sub-workflows can be started without waiting. For the same reason it allows
better resource exploitation and less distribution constraints. On the downside,
the subtleties of concurrent programming, including deadlocks, livelocks and race
conditions, persist.
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Although it seems natural to require explicit concurrency constructs in the work-
flow model, this is not strictly necessary. An implicitly concurrent model simply
specifying sequential constraints such as

a before b,

all [a1, . . . , an] before b

or one of [a1, . . . , an] before b

could conceivably express the same. In conventional programming one often em-
ploys parallelism for performance reasons starting with a sequential program and
splitting it up. In workflow design one approach is to begin with a fully parallel
workflow and impose constraints only as they become necessary. These observa-
tions suggest a programming model where concurrency is the rule rather than the
exception.

Delegation Delegation is the allocation of tasks to agents. When many work-
flows are running, a number of tasks will be available for allocation and a number of
agents—human or not—will be ready to take on tasks according to their skill level,
workload, availability, speed etc. In the programming language analogy, workflows
are communicating multithreaded programs running inside a workflow engine that
can call out on several processors to complete the atomic tasks being solicited. Thus,
while not directly a part of workflow programming model, delegation affects the ar-
chitecture of a workflow system. The interplay is best seen in the difference between
explicit (or data-dependent) choices made by the workflow engine and implicit (or
deferred) choices made implicitly by soliciting both branches for allocation and
removing the non-chosen branch, once a task has been started in the other branch.
The delegation layer sits between the agents and the running workflows, and essen-
tially works as a scheduler. The solicitation part is the defining difference between
delegation and operating system scheduling on multi-processor systems: the tasks
may be delegated, solicited or even auctioned off to the processors (agent).

Cancellation Cancellation means aborting a selected number of threads and/or
activities and returning to a well-defined state. It has proven particularly tricky to
imitate in current workflow systems [40,37] large because they were based on Petri
nets, flow charts, etc. that do not have a natural notion of exceptions. Exceptions
in distributed systems in general entail serious considerations as multiple peers
attempt to agree on a common perception of the distributed state.
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There are some simplifying assumption to be made, however. First, it is relatively
straightforward to return all threads inside the workflow engine to a well-defined
state. What remains are the tasks in progress outside the workflow engine itself. In
a transactional setting these can be assumed to be willing to accept a cancellation
at any point with no further obligations. Unfortunately, this will rarely be the case.
Cancellation of an almost completed outside task could easily produce an aftermath
in the form of e.g. partial invoicing.

As we go from atomic tasks with a simple request/response interface toward tasks
with a more extensive interface, ACID 2 issues become apparent. Cancellation is
the pattern that shows this most clearly. Also, should we wish to depart from the
idea of a centralized workflow management server, we again face all the problems
of distributed transactions. Most likely, the solution is a hybrid. Internal workflows
can be canceled easily and outsourced parts will have a more elaborate cancellation
protocol.

Unconventional control flow patterns Some control flow patterns spawn a
number of threads, but only wait for one of a few of them to finish before continuing.
The remaining threads may be allowed to finish or they may be canceled.

Skip, redo, and undo tasks In workflows we can randomly decide to skip,
redo, or undo tasks. In conventional programs this is inconceivable, because the
the data output of that task would be missing. In a workflow system, we can adopt
a more lax attitude and simply prompt the user for it when the need arises. This
distinction vanishes, of course, when parts of the workflow are automated. More
generally, workflow users often desire to change an ongoing workflow, e.g. add or
remove a sequential constraints, add or remove extra tasks, etc. This level flexibility
further removes workflows from conventional programming. To allow everything
would mean anarchy; it is therefore a challenge to find ways of specifying the degree
of flexibility that the user is afforded in terms of runtime changes to a workflow.

Dataflow for only selected tasks Some dataflow patterns break with a vener-
able tradition, and propose that data flow be completely orthogonal to the control
flow, e.g. a task can decide to forward its output to another task—and only this

2 Atomicity (either all or no tasks are completed), consistency (data integrity constraints
hold before and after transaction), isolation (intermediate states are invisible to the out-
side world), and durability (a reported success is not reverted).
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other task—several steps down the line. So far no workflow languages have adopted
such a liberal data flow model, and the advantages relative to the increase in com-
plexity are not obvious. Certain security scenarios can be neatly expressed with
directed data flow, but these can also be solved with access control lists or a role
scheme.

6 Control Patterns

We now narrow the focus to consider only control flow patterns.

6.1 Why Consider a Process Calculus

In 2003-2004 there was an intense debate [50,43] 3 in the workflow community
about the relative merits of Petri nets [23] and π-Calculus [20] for workflow mod-
eling. Nonetheless, very little of this debate has been published or put in writing
elsewhere. During the discussions, van der Aalst presented seven challenges [43]
to model workflow in π-Calculus. This section (based on a previous paper [34,35])
responds to those challenges by showing how to code the 20 most commonplace
workflow patterns in CCS (a subset of π-Calculus), and describes two new work-
flow patterns that were identified in the process. The applicability of π-Calculus
to the workflow modeling domain is briefly discussed and a new overlay operator
is discussed with applications to workflow descriptions. The central challenge that
was posed is this:

[...] show how existing patterns can be modeled in terms of Pi calculus.

Whatever one’s beliefs, a concrete encoding of the 20 workflow patterns provides
a basis for a more informed debate and makes it easier for implementers to make
a choice of formal foundation. The choice of the π-Calculus here is more or less
arbitrary. A vast number of other calculi (e.g. the Join calculus) would be equally
interesting.

The π-calculus and its predecessor CCS (Calculus of Communicating Systems) [19]
have strong mathematical foundations and have been widely studied for years. This

3 Only two references may not support the claim of an “intense debate” very well. There
were many more papers, most of which were so speculative and agenda-driven that we
will not dignify them by reference.
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has lead to a plethora of deep theoretical results (see [30] for an overview) as well
as applications in programming languages (e.g. PICT [24]), protocol verification,
software model checking (e.g. Zing [3,49]), hardware design languages 4 , and several
other areas.

Workflow description languages, it would seem, have a lot in common with these ar-
eas. First, workflows can be thought of as parallel processes. Second, workflows often
defy the block structure found in conventional programming. Third, the prospect of
doing formal verification on workflows is very relevant and using a process calculus
makes algebraic reasoning and algebraic transformation immediately possible due
to the large body of research already present. Lastly, although they are somewhat
bare in their style, CCS and π-calculus enforce a very strong separation of process
and application logic that seems appropriate for workflow modeling.

On the other hand process calculi are highly theoretical constructs that require a
great deal of expert knowledge. Workflow description systems should be accessible
to anyone possessing a knowledge of the workflow domain being modeled, and so a
significant challenge lies in bridging this gap. In particular providing understand-
able graphical tools and user-friendly abstractions constitutes a pivotal challenge
if π-calculus-based systems are to succeed.

In the same vein a fair concern to raise is whether the level of formalism in π-
calculus is necessary considering how graphical systems today are already difficult
to understand both for users and programmers. First, using π-calculus does not pre-
clude a high-level graphical representation, and clearly more research into this area
is warranted. Second, a rigorous foundation remains necessary, because we strive
to understand systems before we implement them. A well-tested, well-understood
foundation will make implementation and subsequent adaptation easier and more
routine.

A major strength of the π-calculus is its ability to express passing of channels
between nodes and the ability to pass processes (in the higher-order π-calculus,
which can be translated down to regular π-calculus). This far, however, only few
examples exist that put this capability to use in the workflow domain. It may turn
out, though, that channel-passing (and possibly locality) will become highly rele-
vant when addressing service infrastructure and actual implementation of workflow
tasks. By choosing π-calculus we stand a better chance of finding a unified foun-
dation for business systems programming.

4 In a sense, a microprocessor is one huge workflow.
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In terms of practical workflow management π-calculus promises seamless integra-
tion between workflow systems and existing verification tools (model checking
[6,14], behavior types/conformance checking [26,18] etc.). For the end-user this
means access to verification tools that will make writing and adapting workflows
faster and less error-prone.

In our view it is important that future business systems are built not only to carry
out a specific task, but in a way that makes them amenable to automatic source
code manipulation and formal verification, and to attain this goal it is desirable
to have a small and rigorously defined core model. What we are seeking is not a
formalism to use as it is, but the formalism that will provide the most suitable
underpinning for future work.

For the purpose of workflow control patterns we can afford ourselves a limited
view of the concurrency models available. Many process calculi, including π, Join,
CCS, and Ambients whether synchronous or asynchronous retain simplicity by
assuming global consensus, i.e. the existence of a global mechanism ensuring that
only one process consumes a message sent on a channel with multiple listeners. It is
useful to start out with a centralized workflow management system and deal with
distribution issues separately later.

The following patterns may look a bit daunting when first presented, but one should
remember that they are not what the workflow user/programmer should see any
more than object calculus terms are what a Java programmer or UML user sees.

6.2 Modeling Control Flow in CCS

In this section we will use the CCS syntax defined by the following BNF:

P ::=0
∣∣∣∣ τ.P

∣∣∣∣ a?x.P

∣∣∣∣ a!x.P

∣∣∣∣ P + P

∣∣∣∣ (P | P )
∣∣∣∣ new a P

∣∣∣∣ a?∗x.P

0 is the empty process, τ is “some unobservable transition, a!x and a? try to send
and receive on channel a, + is choice, | runs processes in parallel, new a P protects
the channel a from communication outside P , and a?∗x.P spawns the process P
each time a message is received on a. The syntax allows unguarded choice but
guards all replicated processes with an input prefix (a?∗ ). For simplicity we often
write a?x instead of a?x.0, and we may omit the name x if it is irrelevant in
the context. Capital letters, usually P , Q, R, denote processes, and small letters,
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a, b, c, . . . denote activities. Internal messages are words in small letters, like ok and
go.

The invocation of an activity a can be encoded as a!.a? denoting a simple request/-
response mechanism 5 . More sophisticated protocols for monitoring activity pro-
gress can be added, but here the statuses started/finished will suffice. Often if a is
a workflow activity we will simply write a for a!.a?. This will make the workflow
activities easier to separate out from the internal message passing.

The non-determinism inherent in CCS should not be considered a problem; rather
it is a convenient and elegant method of abstracting from implementation details,
application logic or user input. The expression τ.P + τ.Q could be abstraction over
a data-dependent choice to be made by the system or the decision of a human
being.

It is important to notice that the workflow patterns coded here are abstract pat-
terns that do not make any assumptions about the data flow. This separation of
concerns, besides being an important design principle, allows a clear and focused
comparison without too much clutter. It also means that one can plug in one’s data-
flow language of choice at any later point. The analysis made here holds regardless
of the data-flow language chosen, not just for one specific data-flow language, and
so in effect the analysis is stronger and more general because of this abstraction 6 .

6.3 The Control Flow Patterns

In this section we consider each of the 20 workflow patterns in turn, discuss their
encoding in CCS, and present new patterns. To facilitate comparison the discussion
is structured according to the taxonomy given in [39] (see Table 1), and the pat-
tern descriptions are taken verbatim from [38] with minor clarifications in square
brackets.

In the following pattern encodings some internal message-passing is often used
for synchronization purposes. Such internal messages, like done, ok, start, and
go, should be concealed to outside expressions through use of the new operator.
Except for the first example, we tacitly assume their existence to avoid cluttering

5 The mechanism does not work if multiple instances of a are invoked simultaneously.
We ignore this for the moment.
6 Afterwards, a similar study could be made with regard to data-flow requirements, and
of course any realistic system should handle both control flow and data flow.

136



Table 1 The twenty workflow patterns [38] and two new ones
Basic Control Patterns

1 Sequence

2 Parallel Split

3 Synchronization

4 Exclusive Choice

5 Simple Merge

Advanced Branching and
Synchronization Patterns

6 Multiple Choice

7 Synchronizing Merge

8 Multiple Merge

8a N-out-of-M Merge (new)

9 Discriminator

9a N-out-of-M Join

Patterns Involving Multiple Instances

12 MI without synchronization

13 MI with a priori known design time knowledge

14 MI with a priori known runtime knowledge

15 MI with no a priori runtime knowledge

Structural Patterns

10 Arbitrary Cycles

11 Implicit Termination

Cancellation Patterns

19 Cancel Activity

20 Cancel Case

State-Based Patterns

16 Deferred Choice

16a Deferred Multiple Choice (new)

17 Interleaved Parallel Routing

18 Milestone

the expressions.

Pattern 1. Sequence – execute activities in sequence. The first encoding that
comes to mind is a.P , but unfortunately this does not do the job completely. It
is desirable to be able to put two arbitrary processes after each other like P.Q.
A simple solution is provided by Milner [19]: We require all processes to send on
an agreed-upon channel, say done!, when they are done and the encoding of the
sequence P.Q then becomes

new go ({go/done}P | go?.Q)

where {go/done}P is an alpha-conversion that is handled statically on source code
level. Henceforth we will use the simpler notation Pgo to signify that P signals on
channel go on completion and that all pre-existing free oks in P have been alpha
converted. If the channel is not relevant, it will be omitted. ut
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Pattern 2. Parallel Split – execute activities in parallel.

P1 | · · · | Pn

ut

Pattern 3. Synchronization – synchronize two parallel threads of execution.

P1,ok | · · · | Pn,ok | ok?. · · · .ok?︸ ︷︷ ︸
n

.R

ut

Pattern 4. Exclusive Choice – choose one execution path from many alterna-
tives.

τ.P1 + · · ·+ τ.Pn

The τ transition prefix on each branch allows a data-dependent decision or active
decision; that is, the system can decide upon a particular branch (and do away with
all other branches) without immediately activating the activities of that branch
(cf. (16) Deferred Choice). In future patterns involving choice the τ prefix will be
omitted unless needed. ut

Pattern 5. Simple Merge – merge two alternative execution paths.

(P1,ok + · · ·+ Pn,ok) | ok?∗.R

The pattern assumes (unnecessarily for our purpose) that none of the processes Pi

are ever run in parallel. This assumption is expressed here by the use of +. ut

Pattern 6. Multiple Choice – choose several execution paths from many alter-
natives. A simple encoding would be

(τ.P1 + τ.0) | · · · | (τ.Pn + τ.0)

but this (a) does not enforce a minimum number of activities to be executed and
(b) does not explicitly tell if the system is still waiting for a choice to be made or
already decided to take the 0 branch. Addressing (b) we get

(τ.P1 + lazy!) | · · · | (τ.Pn + lazy!)

where the system outside should then accept messages on channels ok and lazy ap-
propriately. Addressing (a) amounts to requiring some number of Pis to be started
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before the system is able to perform rendez-vous on lazy. To avoid cluttering up
the expression, we do not do this here. ut

Pattern 7. Synchronizing Merge – merge many execution paths. Synchronize
if many paths are taken. Simple merge if only one execution path is taken.

(P1,ok + ok!) | · · · | (Pn,ok + ok!) | ok?. · · · .ok?︸ ︷︷ ︸
n

.Q

All Pi perform an ok! when they are done so the synchronization mechanism guard-
ing Q should wait for exactly n such messages. ut

Pattern 8. Multiple Merge – merge many execution paths without synchronizing.

(P1,ok + lazy!) | · · · | (Pn,ok + lazy!) | ok?∗.Q | lazy?∗

Signals ok! and lazy! signify if an activity was executed or not. Notice that other
processes may connect to the merge by using the named entry-point ok. If this in
undesired in the context, a new ok can be added around the expression. Addition-
ally, any occurrences of ok in Q should be removed by alpha conversion. ut

Pattern 9. Discriminator – merge many execution paths without synchronizing.
Execute the subsequent activity only once.

(P1,ok + lazy!) | · · · | (Pn,ok + lazy!) | ok?.(Q | lazy?∗ | ok?∗)

Here the Multiple Choice pattern is used but other split patterns could be used too.
The first signal on ok initiates Q and all remaining signal are consumed. Contrary
to Petri nets, ignoring all future signals is not a problem because any loop around
this construct would simply instantiate a new process (with new channel names)
in each iteration. ut

Pattern 9a. N-out-of-M Join – merge many execution paths. Perform partial
synchronization and execute subsequent activity only once.

(P1,ok + lazy!) | · · · | (Pn,ok + lazy!) | ok?. . . . .ok?︸ ︷︷ ︸
n

.(Q | lazy?∗ | ok?∗)

For the purpose of this demonstration, the pattern is combined with Multiple Choice
pattern. Once n messages are received on ok, the process Q is activated and all
remaining messages, whether ok or lazy, are discarded. ut
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Pattern 10. Arbitrary Cycles – execute workflow graph w/out any structural
restriction on loops. Consider the following example from [38]:

a b c d e
Merge

Merge

XOR

XOR

Since activities b and c have multiple merge points that do not originate from the
same split block, it is necessary to promote them to named services (or “functions”)
by using the replication operator—a lot like what one would do in any structured
programming language. Here we name them gob and goc and the example becomes

a.gob! | gob?∗.b.goc! | (goc?∗.c.(gob! + d.(goc! + e))).

ut

Pattern 11. Implicit Termination – terminate if there is nothing to be done.

Implicit termination means detecting if all processes have come to a stable state and
there are no pending activities or messages. In other words if the residual workflow
process—disregarding subexpressions of the form a?∗.P—is structurally congruent
to 0. Subexpression of the form a?∗.P can be thought of as functions; they cannot
and should not be reduced. Any active invocations of such a function will manifest
themselves as some reduced form of the body P . (However, if a function listens
on a channel that cannot be reached by the active process expression, it may be
garbage collected by the runtime system, but this is separate from detecting implicit
termination.)

Explicit termination was modeled in the Sequence pattern where we adopted the
convention that all processes signal on a pre-determined channel on completion.
When the top-level expression wishes to send its signal, the process explicitly ter-
minates. ut

Pattern 12. MI without synchronization – generate many instances of one
activity without synchronizing them afterwards.

Ploop | loop?∗.(create!.loop! + R) | create?∗.Q
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After process P finishes an arbitrary number of instances of Q are spawned and
once no more Qs need to be started, R is executed. Execution of R does not wait
for the completion of any of the instances of Q. The choice inside the loop can be
an Exclusive Choice or a Deferred Choice. ut

Pattern 13. MI with a priori known design time knowledge – generate many
instances of one activity when the number of instances is known at the design time
(with synchronization).

create!. · · · .create!︸ ︷︷ ︸
n

. ok?. · · · .ok?︸ ︷︷ ︸
n

.Q | create?∗.Pok

This pattern creates exactly n instances of P and waits for all of them to complete
before passing control on to the process Q. ut

Pattern 14. MI with a priori known runtime knowledge – generate many
instances of one activity when a number of instances can be determined at some
point during the runtime (as in FOR loop but in parallel). First a counter is needed
to keep track of the number of instances that need to be synchronized. It can be
coded (a) directly in CCS through cunning use of the new operator (cf. sect. 7.5
of [19]), (b) by adding a notion of simple datatypes such as integers to CCS or
(c) by using channel-passing π-calculus style. For now we will just add a process
Counter and not bother with its implementation details; the important part being
that is it feasible in CCS. Counter has the ability to receive messages on channel
inc (increase) and to send message on channels dec (decrease) or zero (check if
zero) depending on its state:

Ploop | loop?∗.(create!.loop! + break!) | create?∗.inc!.Qok

| break?∗.(ok?.dec?.break! + zero?.R) | Counter

From P the process enters a loop where multiple instances of Q are created. Once
creation is done, the process iterates the break loop until a message on zero is
received, i.e. 0 instances remain. Notice that one can decide not to create any
instances at all. If one desires a minimum number of processes to be spawned,
the break! prefix should be guarded by unfolding the create loop an appropriate
number of times. ut

Pattern 15. MI with no a priori runtime knowledge – generate many in-
stances of one activity when a number of instances cannot be determined (as in
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WHILE loop but in parallel). This pattern is merely a simplified version of pattern
14. There is no longer a need to distinguish between the creation phase and the
synchronization phase. Hence it collapses to:

Ploop | loop?∗.(create!.loop! + ok?.dec?.loop! + zero?.R) | create?∗.inc!.Qok

| Counter

More advanced synchronization schemes can be plugged in at this place. Maybe only
som n instances need to finish, maybe the completion condition is some predicate
ρ over the data produced so far. In other words, the logic deciding this loop can be
pushed up to a data-aware layer or handled through more complex join conditions
in the process expression. ut

Pattern 16. Deferred Choice – execute one of the two alternatives threads. The
choice which thread is to be executed should be implicit.

P1 + · · ·+ Pn where each subprocess is guarded.

This is very similar to the Exclusive Choice. Here the choice is made exactly when
a (non-silent) transition of either of the Pis occurs, and hence we require all Pi to
be guarded. In the Exclusive Choice we might have τ.P + τ.Q to signify that an
abstract upper-layer would decide which branch to follow (i.e. what τ transition to
take). ut

Pattern 17. Interleaved Parallel Routing – execute two activities in random
order, but not in parallel.

new lock, unlock, locked, unlocked

(lock!.P1.unlock! | · · · | lock!.Pn.unlock!

| (unlocked? ∗ .lock?.locked! | locked? ∗ .unlock?.unlocked! | unlocked!))

This is generalized slightly from two to any finite number of interleavings. Each
process Pi acquires the lock on activation and releases it upon termination. ut

Pattern 18. Milestone – enable an activity until a milestone is reached. Assume
that process Q can only be enabled after P has finished and only before R is started.
This is done by the help of a small flag that can be changed using set! and clear!
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and tested using ison? and isoff ?:

Milestone(ison, isoff , set, clear) =

on?∗.(ison!.off ! + set?.on! + clear?.off !) |

off ?∗.(isoff !.off ! + set?.on! + clear?.off !) | off !

Now the milestone can be set up as

P.set!.clearR | ison?∗.Q | Milestone

where clearR denotes the modification of process R that signals on clear when it
starts its first activity or makes its first explicit choice. ut

Pattern 19. Cancel Activity – cancel (disable) an enabled activity. Suppose there
are activities a, b, and c being carried out in sequential order. Anytime during the
execution of activity b the process can be cancelled. We break up activity b into b!.b?
so it will be clear exactly when a cancellation can be accepted. Assume cancellation
is obtained by signaling on channel cancel:

a.b!.(b?.c + cancel?)

ut

Pattern 20. Cancel Case – cancel (disable) the process. The example of this
pattern given at [38] is an online travel reservation system. If the reservation for a
plane ticket fails, then all pending reservations for flights, hotel, car rental, etc. in
the itinerary must be cancelled immediately to avoid unnecessary work.

Intuitively, this corresponds to returning to some predefined state in the system
after relinquishing all resources and information bound in the current context.
In this respect the cancellation patterns look at lot like a program exceptions,
and indeed the cancellation pattern can be coded in CCS by using a source code
transformation.

Pattern 19 showed how to insert a cancellation point a one particular spot in a
process. We now insert cancellation points for all states in the process a.b.c to
obtain

a!.(a?.(b!.(b?.(c!.(c? + cancel?) + cancel?) + cancel?)

+cancel?) + cancel?) + cancel?
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ut

Clearly this becomes very tedious and strongly suggests that a more abstract lan-
guage would be useful.

6.3.1 More Split and Join Patterns

A central part of any workflow formalism is that of splitting the control flow into
several possible paths and later joining control flow from different places into fewer
paths. This is addressed by the Basic Control Patterns, the Advanced Branching
and Synchronization Patterns, and to a certain extent the Patterns Involving Mul-
tiple Instances, the Deferred Choice pattern, and the Interleaved Parallel Routing
pattern.

A structured view of these patterns proves beneficial. Consider Table 2 for an over-
view of Split, Synchronize, and Merge patterns. Split patterns split one path into
some m paths. The difference between the split patterns is whether they require
control flow to enter only one path (choice), some paths (multiple choice) or all
paths (parallel split).

The same trichotomy is useful when considering synchronization and merging. Syn-
chronization waits for a number of signals (one, some or all) and then launches one
continuation, whereas merge spawns a continuation for each received signal (at
most one, at most some number or for all).

Two new patterns emerge from this exercise: (16a) Deferred Multiple Choice and
(8a) N-out-of-M Merge. These are described and coded below.

More generally, one could give every join construct a predicate that dynamically
decided when to continue. If equipped with simple constructs for writing such
predicates, the language becomes much more expressive than the patterns here,
but for analysis purposes it is very important that the predicates remain within
the boundaries of Presburger arithmetic or some other (preferably simpler) first-
order theory in which all statements are decidable. This idea is examined in detail
below.

New Pattern 8a. N-out-of-M Merge – merge many execution paths without
synchronizing, but only execute subsequent activity the first n times. Remaining
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Table 2 Split, Synchronize, and Merge Patterns. l → n/m means “control flows
from l path(s) to n out of m possible paths”. n/m → l means “control flows from
n of m possible paths into l.

Split Synchronize Merge

All Parallel
Split

1 → m/m Synchro-
nization

m/m → 1 Multiple
Merge

m/m → m

One Exclusive
Choice

1 → 1/m - Simple
Merge

1/m → 1

Deferred
Choice

1 → 1/m Discrimi-
nator

1/m → 1 -

Some Multiple
Choice

1 → n/m Synch.
Merge

n/m → 1 Multiple
Merge

n/m → n

Deferred
Multiple
Choice

1 → n/m N-out-of-
M
Join

n/m → 1 N-out-of-
M
Merge

n/m → n

incoming branches are ignored.

(P1,ok + lazy!) | · · · | (Pn,ok + lazy!) | ok?.go! | · · · | ok?.go!︸ ︷︷ ︸
n

| go?∗.Q | lazy?∗

The pattern is similar to Multiple Merge except that it is only capable of receiving
n messages on ok and then it is done. ut

New Pattern 16a. Deferred Multiple Choice – execute several of the many
alternative threads. The choice of which threads are to be executed should be implicit.
The important question here is: how do we know when the users are done choosing
the threads? Two approaches are possible: (a) we fix an n number of threads to be
activated or (b) we set up a virtual activity that means “all desired threads have
been started, remove remaining choices”. Option (a) requires all subprocesses to
emit a signal on activation and consume n such signals before activating a lazy?∗
process to remove the remaining branches. Here we follow option (b):

(P1 + lazy!) | · · · | (Pn + lazy!) | donechoosing.lazy?∗

ut
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6.4 Simplifying the Patterns

Ideally, the control flow patterns should have a formal representation. Such a repre-
sentation should ensure that the patterns have a clear semantics, are atomic, have
a minimum encoding bias (i.e. with respect to any particular concurrency model),
have minimum overlap, and are as simple as possible. The current description for-
mat was clearly devised with a different set of goals in mind. Several overlapping
patterns were added for easy of benchmarking. E.g. the presence of four multi-
ple instance patterns instead of just one allows a finer benchmarking of systems
that do not support the most general pattern. Also, the patterns were developed
in response to the previous very limited research asserting that split, join, loop,
and sequence were sufficiently expressive for all workflows. Thus, an (industry)
accessible description format was needed.

Formal descriptions are important, however, as they facilitate further research: In
the current state of affairs no language can reasonably make the claim of support-
ing all patterns. Although we can make this statement plausible by meticulously
encoding every pattern in isolation as we have done, there is no theorem showing
that every conceivable combination of the patterns can also be expressed. Formal
descriptions also open the doors to verification, simulation, rigorous comparison,
compositional analysis, and algebraic reasoning. First and foremost, a formal de-
scription of the patterns is an important step towards designing a programming
language for workflows. Currently, the only formal description is the one implicit in
the implementation of the YAWL system [37] but this does not satisfy the minimum
coding bias criterion—neither do Petri net-inspired graphical illustrations. Before
considering a formal representation a brief analysis of the patterns is in place.

In their current state the patterns do not live up to the criteria sketched above.
A closer look at the patterns, reveals that they straddle graphical and algebraic
approaches, and that attaching a semantics is non-trivial. Some patterns do not
seem atomic. The “Multiple instances without a priori runtime knowledge” pat-
tern contains both iteration, splitting, and merging in one pattern. On the other
hand the “Synchronizing Merge” pattern has no well-defined semantics in isolation
simply because it is not known how many completion signals it should wait for.
Non-trivial overlap also exists: “Multiple Merge” could be expressed as “Sequence”
without explicit synchronization, and if instead “Sequence” is taken to imply tacit
synchronization then it would seem that a pattern for explicit synchronization was
no longer needed.

Let us return to the idea of workflows as initially completely unstructured. Tasks
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a1, . . . , anneed to be performed, and every workflow pattern is a different way of
imposing constraints (w.r.t. ordering, data-dependency, time, etc.) on the task list.
The question is how to express these constraints. Curbera et al. [7] identify two
major directions: the graph-oriented approaches and the algebraic approaches. Ex-
amples of the former include Petri net-based models (most significantly YAWL
[37]), Event-Driven Process Chains (EPCs) [31], and dependency graph models
(e.g. GNU make 7 ). Examples of the latter include—most prominently—models
based on π-Calculus and Join Calculus. According to Curbera et al. BPEL [36]—
arguably today’s most widespread standard—is a hybrid approach, which combines
ideas from WSFL (graph-based, loosely based on Petri nets) and XLang (algebraic,
loosely based on π-Calculus). This distinction may reveal the starting point of the
language designers and their preferred type of formal reasoning, but what is more
interesting are the restrictions on the language relative to the patterns. As we have
seen, all the control flow patterns can be encoded in a process calculus as they are.
Curbera et al., however, seem to suggest that the algebraic approach enforces a
strictly nested syntactical regime, e.g. where all splits and join match one-to-one
by design of the constructs. The algebraic approach does enforce a syntax tree, nat-
urally, but this does not imply any of the constraints suggested on the control flow
graph unless chosen to by design. A more rigorous taxonomy of workflow models
is needed.

Let us frame this discussion by considering some challenging examples. All these
examples can be given a strict semantics if disambiguating hints are provided by
the workflow designer, but not all models will be able to express them (i.e. without
heavy reliance on some mechanism for shared state). The goal, however, is a min-
imal burden on the workflow designer (hopefully yielding the corollary “minimal
opportunity to introduce bugs” 8 ).

6.4.1 Non-Matched Splits and Joins (No Block Structure)

As mentioned previously a major difference between workflows and the control flows
found in conventional programs is the widespread lack of block structure. Consider
the Petri net in Figure 1. The Petri net exhibits a pattern that is cumbersome to
express in workflow languages that only have block constructs. The core problem
is the pattern shown in Figure 2. On the other hand, graphical models such as
Petri nets or even GNU make have no problems expressing this. The example was
provided as a challenge to the π-calculus community during a 2004 surge in interest

7 http://www.gnu.org
8 In an abuse of Alfred North Whitehead’s famous quote we could say that the ultimate
goal of computer science is to eliminate to need for intelligent thought.
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Fig. 1 Van der Aalst’s Challenge 4 [43]
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Fig. 2 Non-nested control flow
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for process algebraic approaches to workflow modeling. XLang, for instance, claims
to be based on the π-calculus and indeed has constructs for sequence, choice, par-
allel flow, and iteration (sequence, switch/pick, all, and while, respectively).
It adopts an implicit synchronization scheme for the sequence operator similar to
the idea developed in our encoding of the Sequence pattern. XLang lacks internal
message primitives, however, and this makes the link between c and f impossible
to express 9 . The conclusion is: a language with block structure only, will not be
sufficient. There are several remedies available, of which internal message-passing
immediately springs to mind. First, though, let us consider another idea. We previ-
ously [35] conjectured the usefulness of an overlay operator inspired by the parallel
operator || found in Communicating Sequential Processes (CSP) [13]. The overlay
operator & is defined by the rules in Figure 3. The major difference between &
and || is the “no mention” rule (the first rule), which allows P to transition on α
if Q does not mention α. Thus the || operator can be obtained by removing the
first rule. The reduction semantics may seem convoluted, but it is worth noticing
the neat trace semantics: traces(P&Q) = {t : tαP ∈ traces(P )∧ tαQ ∈ traces(Q)},
where tαP denotes the projection of the trace t onto the ports of P 10 . The operator
is perhaps best explained by coding the example in Figure 1:

C4 ≡ a.(b.c.d|e.f.g).h & (c|e).f

9 The link between c and f could of course be simulated through use of shared data.
The statement of impossibility made here holds only in the absence of controlled access
to shared data. A formal (Petri net-based) proof of such an expressiveness result can be
found in Kiepuszewski’s Ph.D. dissertation, theorem 5.3.2, pp. 139-141 [16].
10 The trace semantics of || is given as traces(P ||Q) = traces(P ) ∩ traces(Q).
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Whenever C4 wants to transition on a channel that is mentioned in both operands
to the & operator, both operands have to agree to this. If a transition is only
mentioned in one of the operands, the & operator does not impose constraints on
that transition. Here if a, e was performed first, the left process would be ready to
do f but the right would not, since it would need c to complete first.

The operator is interesting, not only as a remedy for block-structured languages,
but also because it allows the overlaying of global business rules to all processes.
E.g. one might have a rule that says “delivery shall occur before invoicing”. This
rule would now simply be enforced on all workflows by overlaying them with the
rule workflow. Also, the workflow designers do not have to describe all business
rules repeatedly because the can simply overlay the global rules to their workflows.
Of course, this requires a strict nomenclature of tasks in order to work, and possibly
something more flexible than simple alphabetic matching would be needed.

BPEL has a different solution for the problem. As mentioned BPEL combines the
block constructs of XLang with the free graph ideas of WSFL. In addition to block
constructs, BPEL allows dependencies in the form of named links between nodes,
each of which should acknowledge participation in the link by including a source
or target tag containing the link identifier. In BPEL, challenge 4 would most likely
be solved by creating the link from c to f using its a source tag in c and a target
tag in f . Links are limited, however, as they may not extrude or intrude while loops,
they may not introduce cycles, and they are governed by several other syntactical
restrictions. BPEL therefore does not offer first-class support for arbitrary cycles.

Compared to BPEL’s notions of links through source and target, the & operator
offers separation of concerns: the source and target nodes do not explicitly express
the link because it is factored out. Whether non-local logical constraints in the
style of the & operator is a good or a bad idea, remains an open question pending
practical studies.

It should be stressed, that the operator remains speculative at this point and has
not been developed formally in a CCS setting. The operator can be built into the
reduction rules of a workflow system, or it can be translated down to regular CCS.
It is not important whether the introduction of & adds expressiveness 11 to CCS
itself, but an &-like construct can strictly improve expressiveness for more limited
high-level workflow languages.

11 In Felleisen’s definition of expressiveness [9].
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Fig. 3 Reduction Rules for the Overlaying Operator &

P
α−→ P ′ α /∈ ports(Q)

P&Q
α−→ P ′&Q

(+sym.) P
α−→ P ′ Q

α−→ Q′

P&Q
α−→ P ′&Q′

6.4.2 Multiple Merge and Multiple Instances

Another dividing concern is that of multiple instances. There are two sources of mul-
tiple instances: (1) using the Multiple Merge pattern to join paths from a previous
split pattern and (2) through the multiple instance patterns 12-15. Kiepuszewski
argues that using Multiple Merge is a convenient and natural way of expressing
multiple instances [16]. Whereas this may hold for graphical languages, it is not
necessarily desirable for algebraic languages. For instance it is far from obvious
that an idiom such as

merge(parsplit(A, B, C,D), E)

is really needed. Disallowing Multiple Merge and instead appending a function call
to each branch would not seem like an unreasonable burden, since there is a fixed
and typically low number of branches.

In case (2) where we explicitly spawn multiple instances, there is clear need. First,
because expressions such as split(P, P, P, P ) are tedious even if P only consists of a
function call; second, because there could easily be a high number of P s; and third,
because the final number of branches is not known design-time or even runtime
(cf. pattern 15: Multiple Instances With No A Priori Runtime Knowledge). With
the exception of the runtime generativity behavior (i.e. patterns 14 and 15), the
regular split/join patterns would seem able to capture multiple instance patterns
with some few alterations. We will explore this in more depth in section 6.4.4.

BPEL supports the multiple instance patterns only through scant workarounds [1],
and BPEL also does not support Multiple Merge.

On a different note, there is an overlap between Sequence, Multiple Merge and
synchronization. Consider the expressions

merge(parsplit(A, B, C,D), E)

sequence(parsplit(A, B, C,D), E)

synch(parsplit(A, B, C,D), E)

There are two interpretations: (1) All four threads A, B, C,D should spawn their
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Fig. 4 The Travel Agency: Synchronizing Merge in action
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Fig. 5 OR-join nightmare scenario (example from Figure 3, p. 12 [17])

∨

∨

∨

C

B

A

∧

∧

∧

own copy of E or (2) when all threads A, B, C,D are done, one instance of E should
run. However, these two interpretation are split across three control flow patterns,
and hence one is unnecessary. Either we assume that sequence in expression 1
implicitly joins the four threads (interpretation 2). In this case the synch pattern
is unneeded. Alternatively, we assume that sequence in expression 1 does not join
the four threads (interpretation 1). In this case the merge pattern is unnecessary.
The question is this: should synchronization be explicit or should merge be explicit?
Merge is by far the most dangerous construct to forget, thus strongly suggesting
that merge should not happen implicitly. The existence of such overlaps underlines
the need for a formal representation of the patterns.

6.4.3 Synchronizing Merge

As it turns out, a lot of the problems with the patterns can be framed neatly by
looking at the “Synchronizing Merge” pattern.

Synchronizing Merge is described as “merge many execution paths. Synchronize if
many paths are taken. Simple merge if only one execution path is taken.” Before
continuing consider Figure 4 (The Travel Agency) for a motivating example 12 .
Synchronizing Merge occurs far too often to be ignored, and indeed there is nothing
contrived about the the Travel Agency example. At runtime a user (data-dependent,

12 This example was initially suggested by Wil M.P. van der Aalst.
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explicit) choice is made as to whether flight, hotel, and/or car reservations are
needed. Once the reservations go through, the task Pay is activated, and, of course,
the join should only wait for the branches that were actually activated.

The problem is that Synchronizing Merge has non-local semantics; it cannot be
given a semantics without either

(1) integrating it with the preceding split patterns
(2) leaving the problem to the runtime system or
(3) establishing a method of propagating information about the paths actually

taken in prior splits to the Synchronizing Merge.

This well-known problem appears in the context of high-level Petri nets [39], Event-
Driven Process Chains [44,17,31,27], and BPEL [7]. The problem is more compli-
cated in the presence of loops because the semantics of a Synchronizing Merge can
be dependent on a split further down the line. The problem can be alleviated in
a variety of ways. Runtime checks, syntactic constraints, message-passing etc. may
work, but as we have seen, even a seemingly unobtrusive idea such as imposing a
block structure has a serious impact on the expressiveness.

Event-Driven Process Chains [31] are probably they least constrained model: EPCs
define the concepts of functions (called tasks is this report), information objects
(data), and events (events or signals) in a graphical language where functions and
events constitute the nodes. Functions and events can be connected using arcs;
an arc from an event to a function stipulates that the event be triggered before
the function is executed; an arc from a function to an event means the event is
fired upon completion of the function. In addition to the function and event nodes
there are logical connectives ∧, ∨, and XOR. With only a few restrictions, arcs can
connect events to connectives, connectives to events, functions to connectives, and
connectives to functions.

EPCs form the basis of SAP R/3’s workflow modules and the ARIS (Architektur
integrierter Informationssysteme) framework. EPCs have great modeling power,
thanks to the unconstrained graphical form (allowing arbitrary cycles) and the ∨-
connective, which expresses the idea of the Synchronizing Merge pattern. EPCs
were initially proposed in an informal fashion, and a long discussion about the
precise semantics of the ∨-connective ensued.

YAWL relies on the runtime system for the semantics of Synchronizing Merge: The
OR-join transition is allowed “if the number of consumed tokens cannot be increased
by postponing the occurrence of the OR-join” [45]. The formal definition can be
found in the same report p. 30. YAWL is designed to run on a centralized server
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that stores the entire workflow state and therefore can make judgments about the
OR-join. In a distributed setting, the workflow resides on different servers, and
deciding whether an OR-join is allowed or not may induce too much overhead
– the non-local semantics again becomes a problem. Consider Figure 5. Assume
that each horizontal thread of execution resides on a different server, and observe
the cyclic dependency. One semantics could be to solicit all three OR-joins for
execution. Once one join is taken, the others should no longer be possible, because
there is a way of eventually feeding both incoming arcs on them. The creates a
global consensus problem, that is unacceptable in distributed settings unless kept
at a strictly minimal level of occurrence.

BPEL also faced the Synchronizing Merge problem, but adopted another approach.
In BPEL information about non-chosen paths is propagated by dead path elimi-
nation (DPE). A join node initially has the value unevaluated assigned to each
incoming link. If at runtime it becomes clear that the link cannot be activated,
the value false is assigned to it. This is done by propagating false down through
a branch once it is clear that another alternative was chosen 13 . If a link can be
activated, eventually it will be or the link will become tagged as false. The join
condition is satisfied once all incoming links are evaluated to either true or false.
Essentially, this means that in BPEL Synchronizing Merge has been replaced by
a runtime facility. A signal is always received, and its boolean value decides the
semantics. Unfortunately, BPEL imposes heavy restrictions on the propagation of
(internal) signals and therefore it cannot be said to be as general as YAWL.

The Synchronizing Merge pattern is difficult to avoid without serious setbacks in ex-
pressiveness. At the same time, any system allowing it must employ some variation
of the three solutions suggested (add structure to workflow, propagate information
or decide runtime). As we have already argued, requiring block structure—even
locally—is unacceptably restrictive. Propagating information only works in limited
settings, and breaks down when cycles are present. This is clearly seen by the num-
ber of constraints on links in BPEL. A runtime rule such as the one defined for
YAWL seems to be the proper solution for single-server systems, but perhaps a less
restrictive propagation semantics could be designed for future versions of BPEL.
The last word about Synchronizing Merge is yet to be said.

13 Provided the flag suppressJoinFailure is set – otherwise an exception is raised ex-
plaining that the process has become stuck.
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6.4.4 Generalizing Split and Join Patterns

Synchronizing Merge is the only one of the split and join patterns that does not
have a strictly local semantics. This observation inspires two ideas with regard to
the remaining split and join patterns:

(1) Split and join patterns could be expressed more generally with a grammar for
what we could call “split and join conditions”.

(2) Multiple Instance patterns could be split up and merged into the general way
of expressing split and join conditions.

It should be noted though, that some of the advanced Multiple Instance patterns
(with a priori runtime knowledge and without a priori runtime knowledge) in some
cases require a Synchronizing Merge.

The split patterns (Exclusive Choice, Deferred Choice, Parallel Split, and Multiple
Choice) can be covered in a number of ways. E.g. it would be enough to simply
have a generic

split(min, max, [P1, . . . , Pn])

where min and max denoted the minimum and maximum number of branches that
needed to be started. Thus Choice would have (min, max) = (1, 1), Parallel Split
would have (min, max) = (n, n), and Multiple Choice would have (min, max) =
(1, n). The distinction between explicit and implicit (deferred) choice would be
in guarding the Pi with predicates. This pattern is far more general that any of
the patterns it tries to encompass. First it allows mixing guarded and unguarded
processes, i.e. mixing explicit and implicit choice. Second, (min, max) can take on
different values to signify limits branching limits. So far we have tacitly assumed
that every Pi would be run at most once, but this does not have to be the case. An
even more generic form could take this into account with a minimum and maximum
for each branch:

split(min, max, [(P1, min1, max1), . . . , (Pn, minn, maxn)])

Thus Multiple Instances can be expressed as split(1,∞, [(P, 1,∞)]), and a host of
other variations are possible (along with a wide range of new sources of errors).
Once again this covers significantly more territory than the patterns it was intended
to model.

When is the split completed? If min 6= max, the semantics need further specifica-
tion. Even more so if some Pi are predicate guarded and some are not. Every Pi can
invoke another Pj during its execution, but at some point the creation of threads
should be considered completed, even if the maximum has not been reached. In
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other words, if a split has spawned between min and max branches, it should so-
licit tasks for execution, until there is no longer any need. This need is decided by
the synchronization side. Let us therefore consider the synchronization patterns.
Here we can equivalently conjure up a syntax such as

synch(waitfor, P )

to denote that all active branches of P should be synchronized, but control should
be passed on, once waitfor branches have completed. Thus assuming P has n
branches, we can write

synch(n, P ) (Synchronization), synch(1, P ) (Discriminator), or synch(m, P ),

where 1 < m < n (M-out-of-N Join). Following the observation in section 6.4.2,
it is probably safer to require explicit merge rather than explicit synchronization.
Hence synch should become an implicit part of split and in addition there should
be a way of doing a merge.

What was just presented is a highly speculative design, and only one of many
possible designs. The min and max designations are merely a simplified predicate
language describing the allowable splits from a universe of options. An equally
workable solution, therefore, is to simply introduce a minimal predicate language,
very much like connective nodes of EPCs or the join conditions of BPEL. This
especially makes sense for joins, where we need to answer two questions: (1) when
can control be passed on, and (2) when should all remaining processes be canceled
and/or garbage collected. For splits we usually need to answer the question: when
it the split done spawning branches. As long as branches can be spawned, the join
side cannot do a Synchronizing Merge.

Where do we stop? This should not degenerate into a race for more patterns, in turn
demanding more expressiveness of an already overburdened set of constructs. The
language must be kept simple, and already at this point, the convenience of a sim-
ple reduction semantics seems far away. Conversely, the language needs to present
a few comprehensible constructs rather than an array of partially overlapping pat-
terns. Thus, the hunt for a simple language is certainly justified. Pinpointing the
exact design criteria for a workflow language is future work. The existing patterns
are justified by observation in real-life scenarios, and, as we have seen, there are
many ways of designing languages to express them all. What is not acceptable is
the current state of the patterns, where part of the generativity is camouflaged in
the Multiple Merge pattern and some is packaged in the protective padding of the
Multiple Instance patterns. YAWL for instance claims to support all patterns, but
YAWL would not be able to handle a Multiple Instance pattern with a Discrimi-
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nator join, since all the Multiple Instance patterns described currently, use either
Multiple Merge or Synchronization to join. Therefore the line of research to clean
up the patterns and furnish them with a formal semantics should continue. This
effort should be two-pronged, simplifying high-level descriptions on one side while
developing a suitable low-level calculus on the other side.

6.4.5 Other Patterns

The Arbitrary Loop pattern requires a non-block structure as well as repetition.
We can solve this using BPEL-style links. Alternatively, it would be enough to
allow functions (essentially merge points), synchronization, and forks without syn-
chronization. The idea of functions or sub-workflows seems oddly missing from the
patterns. The merge patterns buy us a lot in terms of code reuse, but it does make
the patterns seem heavily slanted towards graphical languages (read: Petri nets).

Explicit state in workflow systems is essential to differentiate between deferred
(implicit) and active (explicit) choice. Petri nets represent state as places, and the
π-calculus represents state as process expressions.

The cancellation patterns are the biggest joker. YAWL has an operator that clears
all tokens from a subnet, BPEL has exceptions, LOTOS [4] has the disrupt opera-
tor, and none of these have made a convincing argument, that they will work in a
distributed setting. Neither Petri nets nor π-calculus handle cancellation patterns
very nicely. Cancellation patterns are ubiquitous. Not just because of failure in dis-
tributed workflow, but because the Discriminator and the n/m-Merge/Synchronization
patterns conceivably invoke cancellation methods on the remaining threads to en-
sure graceful termination.

6.4.6 Towards a Workflow Description Language Based on CCS

The workflow patterns coded in the previous sections show that CCS is too low-
level to be used directly as a workflow language, and that certain patterns are
very cumbersome to write. The language needs high-level constructs and a more
pleasing syntax. The goals should be (a) to reduce the amount of user-specified
internal synchronization mechanisms and (b) to provide elegant constructs for the
20 (+2) workflow patterns. The language SMAWL, presented here and in previous
work [34,35], seeks to do exactly this while maintaining a strong link to CCS. The
example in Figure 6 based on [38] shows what a workflow specification might look
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Fig. 6 How to become a recording star (adapted from the Recording Star example
[38])

workflow Become a recording star =

chooseone {

⇒ call (Work your way up)

⇒ call (Try to get lucky)

};

Make record ;

doall {

⇒ chooseone {

⇒ Develop as an artist

⇒ Develop bad habits

}

⇒ Rehearse tour ;

Do tour

}

end

Choose one (1)

Call Try to get lucky Call Work your way up

Sync (1)

Make record

Do all (3)

Rehearse tour Choose one (5)

Sync (3)

Do tour

Develop bad habits Develop as artist

Sync (5)

like in SMAWL along with an automatically generated 14 graphical representation.

Having completed the analysis above, a natural idea is to design a language out of
small building blocks of based on some of the patterns. This way there would be,
e.g., a number of split combinators and a number of join combinators. However, as
mentioned in section 6.4.2 explicit synchronization every time a split block is left
is tedious and possibly dangerous; a more pleasing style is therefore to implicitly
synchronize after every split construct and have the programmer explicitly write
if a continuation should be spawned for each active thread (a merge). These and
numerous other considerations lead to the following syntax:

14 Using a Standard ML program to map the abstract syntax tree to a dot file, and
running dot.

157



Fig. 7 Recording Star example in YAWL (taken from [38])

W ::= workflow w = P end

D ::= fun f = P end D

∣∣∣∣ newlock (l, u) D∣∣∣∣ milestone(ison, isoff , set, clear) D

∣∣∣∣ ε

P ::= activity

∣∣∣∣ send(f)
∣∣∣∣ receive(f)

∣∣∣∣ call(f)
∣∣∣∣ P ; P

∣∣∣∣ lock(l, u){P}∣∣∣∣ choose any (wait for k){PP merge(n) P}
∣∣∣∣ choose one{PP}∣∣∣∣ cancel {P}

∣∣∣∣ do all (wait for k){PP merge(n) P}
∣∣∣∣ multi(n){P}

PP ::= ⇒ ρ P PP

∣∣∣∣ P PP

∣∣∣∣ ⇒ P

In the syntax ε denotes the empty string, f is a function name, w is the workflow
name, ρ is a data-dependent predicate 15 , k is a natural number and n is a natural

15 The format of predicates ρ is not of the essence here; such predicates will simply be
compiled to a τ prefix and the responsibility of deciding them will be delegated to a
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number or ∞. ρ is what allows data-dependent choices, all other choices default to
deferred choices.

A program consists of a pair (W, D), i.e. a named workflow and a list of func-
tion/milestone/newlock declarations. Arbitrary loops are encoded through named
functions. Milestones are defined separately and can be read/set by any process
knowing the correct channels. Parallel interleaving is handled through global locks.
This means that two processes that are not allowed to run at the same time, do
not have to be within the same logical block.

The construct choose any (wait for k){PP merge(n) P} provides multiple choi-
ce over the PP s, then merges each of the threads to P , and finally synchronizes all
threads. If the clause wait for k is given, the synchronization will be an N-out-
of-M Join. If the clause is not provided, synchronization will wait for all threads
to signal done. In the merge part of the clause a value of n = ∞ signifies all
threads PP should merge to P upon completion. A value of n 6= ∞ signifies that
only the first n threads to complete should give rise to an instantiation of P . If
merge(n)P is missing, n is taken to be 0 and P can be anything. The construct
do all implements parallel split with the same options of combining with merge
and synchronize patterns. The remaining constructs should be self-explanatory.

It may be helpful to expand our example. The example shown in Figure 8 is based
loosely on the Petri net example at [38] to make it easier to compare the Petri net
approach to a CCS approach.

Compiling the workflow description language is a relatively easy task since the
language is based directly on patterns that have already been described in CCS.
The main transformation T [[·]] (see figure 9) is a map W ∪D → Channel → CCS,
where Channel denotes the set of valid channel names. The following auxiliary
function are needed: mergeprefix is the map N∪{∞}×Channel×Channel → CCS
defined by:

mergeprefix(∞, ok, go) = ok?∗.go!

mergeprefix(n, ok, go) = ok?.go!. · · · .ok?.go!︸ ︷︷ ︸
n

.ok?∗

The function ν : {()} → Channel returns a fresh channel name that has not
previously been used.

data-aware layer. The idea of parameterizing over the predicate/expression language is
also found in BPEL, which can use XPath or another plugged-in language.
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Fig. 8 A Larger Example: How To Become a Recording Star

workflow Becomearecordingstar =

chooseone {

⇒ call (Workyourwayup)

⇒ call (Trytogetlucky)

};

Makerecord ;

doall {

⇒ chooseone {

⇒ Developasanartist

⇒ Developbadhabits

}

⇒ Rehearsetour ;

Dotour

}

end

fun Workyourwayup =

multi {Learntoplay};

chooseone {

⇒ Joinaband

⇒ Decidetogosolo

};

chooseany {

⇒ multi {Writesong}

⇒ multi {Performlive}

}

end

fun Trytogetlucky =

Doaudition;

chooseone {

⇒ Audition.failed

chooseone {

⇒ call (Trytogetlucky)

⇒ call (Workyourwayup)

}

⇒ Audition.passed

Doeverythingyouaretold

}

end

160



Fig. 9 The Transformation T [[·]] from SMAWL to CCS

T [[workflow w = P end]] = T [[P ]]

T [[fun f = P end D]] = λok.f?∗.T [[P ]]f | T [[D]]ok

T [[milestone(ison, isoff , set, clear) D]] =

λok.Milestone(ison, isoff , set, clear) | T [[D]]ok

T [[newlock(l, u)]] = λok.let unlocked ⇐ ν() in let locked ⇐ ν() in
unlocked? ∗ .l?.locked! | locked? ∗ .u?.unlocked! | unlocked!

T [[lock(l, u){P}]] = λok.let ok′ ⇐ ν() in l!.T [[P ]]ok′ | ok′?.u!.ok!

T [[activity]] = λok.activity!.activity?.ok!

T [[send f ]] = λok.f !.ok!

T [[receive f ]] = λok.f?.ok!

T [[P ; Q]] = λok.let ok′ ⇐ ν() in T [[P ]]ok′ | ok′?.T [[Q]]ok

T [[ρ P ]] = λok.τ.T [[P ]]ok

T [[choose one {⇒ P1 ⇒ · · · ⇒ Pn}]] = λok.T [[P1]]ok + · · ·+ T [[Pn]]ok

T [[choose any (wait for k) {⇒ P1 ⇒ · · · ⇒ Pn (merge l Q)}]] =

λok.let ok′ ⇐ ν() in let ok′′ ⇐ ν() in let ok′′′ ⇐ ν() in
(T [[P1]]ok

′ + lazy!) | · · · | (T [[Pn]]ok′ + lazy!) | lazy?∗
| mergeprefix(l, ok′, ok′′) | ok′′?∗.T [[Q]]ok′′′

| ok′′′?. · · · .ok′′′?︸ ︷︷ ︸
k

.(ok! | ok′′′?∗)

T [[do all (wait for k) {⇒ P1 ⇒ · · · ⇒ Pn (merge l Q)}]] =

λok.let ok′ ⇐ ν() in let ok′′ ⇐ ν() in let ok′′′ ⇐ ν() in
T [[P1]]ok

′ | · · · | T [[Pn]]ok′

| mergeprefix(l, ok′, ok′′) | ok′′?∗.T [[Q]]ok′′′

| ok′′′?. · · · .ok′′′?︸ ︷︷ ︸
k

.(ok! | ok′′′?∗)

T [[call f ]] = λok.f !.f?.ok!

T [[cancel {P}]] = λok.C[[T [[P ]]ok]]

T [[multi(n) {P}]] = λok.let create ⇐ ν() in let ok′ ⇐ ν() in
create!. · · · .create!︸ ︷︷ ︸

n

. ok′?. · · · .ok′?︸ ︷︷ ︸
n

.ok! | create?∗.T [[P ]]ok′

T [[multi(∞) {P}]] = λok.let inc ⇐ ν() in let dec ⇐ ν() in let zero ⇐ ν() in
let loop ⇐ ν() in let ok′ ⇐ ν() in let create ⇐ ν() in
loop! | loop?∗.(create!.loop! + zero?.ok! + ok′?.dec?.loop!)

| create?∗.inc!.T [[P ]]ok′ | Counter(inc, dec, zero)
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The transformation of the cancel construct makes use of the function C[[·]], which
inserts cancellation point at all possible states as discussed in the Cancel Case
pattern. Formally, the cancellation transformation C[[·]] on CCS expressions is ex-
pressed as:

C[[0]] =0
C[[α.P ]] = α.C[[P ]] + cancel?

C[[P + Q]] = C[[P ]] + C[[Q]] + cancel?

C[[P | Q]] = C[[P ]] | C[[Q]] + cancel?

C[[new a P ]] = new a C[[P ]] + cancel?

C[[a?∗x.P ]] = (a?∗x.C[[P ]]) + cancel?

where α denotes any prefix τ , a?x, or a!x.

Given a program (W, D), the CCS expression representing the program is obtained
as T [[W ]]abort | T [[D]]dontcare. Incidentally, the transformation also shows, that
new operators can statically be removed bar the cases where new is used inside
replicated processes such as the Counter processes.

6.4.7 Classification of Workflow Models

Given the control flow patterns on one side and a wide swath of potential models
on the other side, it behooves us to bring these together on a more formal footing.
At least one such attempt has been made:

“Specifically only two products Verve and Forte Conductor support Pattern 8
(Multimerge) and they have very similar support for the rest of the patterns. We
will classify them into the class of Standard Workflow Models with the main char-
acteristic being the ability to create multiple concurrent instances of one activity.
In contrast Staffware Changengine and iFlow do not have support for Pattern
8 (MultiMerge) otherwise they are very similar to Standard Workflows. We will
classify them as Safe Workflow Models. Both SAP R/3 Workflow and FileNet
Visual WorkFlow do not support Pattern 10 (Arbitrary Cycles) and through the
Test Harness we have learned that due to syntactical restrictions certain pro-
cesses cannot be modelled. We will consider these products to be members of a
class called Structured Workflow Models. Finally only one product MQ Series
Workflow supports Pattern 7 (Synchronizing Merge) and we will consider it a
member of a class which we will refer to as Synchronizing Workflow Models.” p.
96 [16]
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YAWL belongs to the Standard Workflow Models. It does allow Synchronizing
Merge, but the important observation is that the semantics of the merge is based on
global runtime reachability analysis, not on propagation of boolean synchronization
signals. The rationale for the name “Synchronizing Workflow Models” for models
supporting Synchronizing Merge is that they always synchronize on all inbound
links. E.g. BPEL waits until either a true or false signal has been received on all
links before continuing. In essence, the Synchronizing Merge problem has been
avoided by recasting it as pure Synchronization, hence the name Synchronizing
Workflow Models. Kiepuszewski proves the interesting result that Synchronizing
Workflow Models cannot deadlock! (This result also holds true for WS-BPEL [22]).
YAWL, by contrast, does not wait for a signal from all links; rather its runtime
reachability algorithm [21] determines whether a signal will ever arrive or not.

Kiepuszewski [16] argues that Standard Workflow Models should be preferred, be-
cause the convenience of generativity through Multiple Merge and arbitrary loops
supersedes the benefits of ease of synchronization. It is true within Kiepuszewski’s
framework that arbitrary loops are a serious problem for Synchronizing Workflow
Models. However, SMAWL, by virtue of its ties to CCS, offers the options to spawn
both synchronized (call) and non-synchronized (send) threads at any point as well
as ad hoc synchronization (receive)—while keeping a block structure convention,
where all sub-expressions deliver explicit termination signals. SMAWL has at least
the expressiveness of Standard Workflow Models, but at times it will be necessary
to split complex non-nested cycles into smaller functions/sub-workflows

6.5 Related Work

Dong and Shensheng presented their encoding of some of the patterns in an unpub-
lished paper in 2004 [8]. Their encodings differ a great deal from the ones presented
here, but more fundamentally they use the channel-passing facility of π-calculus,
whereas the encodings here do not and thus can be expressed in CCS. In our view
the language should be as simple as possible, and as we have demonstrated, the full
power of π-calculus is not needed. Also, staying within CCS makes the patterns
more amenable to use in the tools current available.

In a related paper Puhlmann and Weske demonstrate control flow encodings in
π-Calculus using an ECA (Event/Condition/Action) approach [25]. They, too, rou-
tinely invoke channel-passing without supplying a particular reason. The Cancel
Case pattern is avoided altogether, and the Synchronizing Merge semantics is left
to an unspecified runtime component that checks for reachability.
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6.6 Conclusions and Future Work

In this section we:

(1) Discussed the differences between workflows and conventional programs.
(2) Showed a CCS encoding of the 20 control patterns.
(3) Presented two new patterns (16a) Deferred Multiple Choice and (8a) N-out-

of-M Merge.
(4) Hypothesized the value of an overlaying operator.
(5) Analyzed the 20 control flow patterns.
(6) Sketched SMAWL, a set of high-level, CCS-based constructs covering all 20

patterns.

All these items aim to widen our understanding of workflow language design. A
workflow language should be have minimal encoding bias, be as simple as possible,
cover all 20 patterns (and more), lend itself to program analysis and transformation,
and have a clear semantics. If we wish to cover all 20 patterns and have a clearly
defined semantics, several issues need to be addressed:

• Split/join separation is necessary unless we enumerate all combinations in block
structures and introduce BPEL-style links or a similar free-graph technique.

• Separation should also go for Multiple Instance patterns.
• Synchronizing Merge remains a problematic but necessary pattern. It must be

given a formal semantics; and should preference should be given to a semantics
that will scale to distributed settings.

• All patterns should have a formal description. Overlaps should be reduced as
much as possible.

• Some patterns—e.g. Interleaving and Milestone—could be understood better if
perceived as data patterns.

• Simple predicates on splits and joins would could do a lot of the work needed
(cf. EPCs or BPEL XPath Join Conditions).

If in addition we desire a workflow language that is simple, unbiased, and amenable
to analysis, we must identify the shortcomings of current standards and models and
seek out ways alleviate those. To that end, we have established that:

• Only allowing block structure—e.g. XLang—in insufficient. It is provably less
expressive [16].

• BPEL circumvents this through links, but as a model lacks proper support for
multiple instances. BPEL also lacks a concisely described semantics and imposes
serious constraints on free-graph idioms (links cannot cross certain blocks etc.).
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• The π-Calculus and CCS can easily serve as foundation. Like Petri nets they have
serious shortcomings for cancellation patterns. In distributed workflow systems,
where a solicited task can be accepted a several different peers, the π-Calculus
and CCS suffer from the consensus problem—an arbiter is needed to decide who
actually gets the task. As long as there is only one centralized workflow server,
this is not a problem. The system may experience scalability issues because the
acceptance of one task causes the removal of other tasks, and this must happen
atomically. Also see section 7 for more on solicitation and allocation patterns,
also known as resource patterns.

• Petri nets are good de facto workflow modeling, but they lack flexible constructs
for generativity (cannot copy nets). Whereas one has to concede that Petri nets
work surprisingly well for free-form graphical structures, the introduction of ad-
vanced cancellation, exceptions, and distributed failure strongly suggests a less
graphical approach. Petri nets do not handle cancellation and exceptions well—
if at all—at this point [39], and complex cancellation/failure scenarios often do
not have a pleasant graphical representation. More importantly, the workflow
designer should not be limited because of graphical restrictions.

• A formal framework for expressiveness should be put in place. E.g. combining
bisimulation notions with Felleisen’s characterization of expressiveness[9] 16 . This
should lead to a partial order on the expressiveness of workflow models.

The CCS encoding of the control flow patterns and the subsequent pre-design of
SMAWL provided a response to van der Aalst’s challenges 4–7 to (4) model the
Petri net shown in figure 1, (6) model existing patterns, (5) provide new challenges,
and (7) suggest new patterns (especially using mobility).

We expressed all patterns and several variants, e.g. we can combine deferred and
non-deferred choices (it is not clear if this is possible using the current patterns).
It would be interesting to see if Petri nets can handle the overlaying operator
more elegantly than CCS. Also, a practical investigation into applicability of the
overlaying operator might be very fruitful. In remains open if the newly discovered
patterns occur often enough in practical settings to warrant their incorporation
with the rest. Real world examples to support them would be very valuable.

The challenges proposed π-calculus, but mobility was not needed. It is our opin-
ion that the foundation should be kept as simple as possible, and this research
has in fact shown that CCS is sufficient for the purposes of the current workflow

16 Quoting Felleisen [9]: . . . “more expressive” means that the translation of a program
with occurrences of one of the constructs ci to the smaller language requires a global
reorganization of the entire program.
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patterns 17 . The response to the challenge is necessarily this: the coding of the 20
patterns has provided no compelling reasons to use the channel-passing mecha-
nism of π-calculus. We see no need for the notion of mobility found in π-calculus
for workflow systems. Workflow systems abstract away from the actual channels
of delivery. Essentially, workflow systems deal with the flow of command/control
and not as much the channels for exchanging messages, if one desires to shift fo-
cus to the flow of data—and in particular which channels are used for this—then
maybe π-calculus is appropriate. It would seem that the π-calculus notion of mo-
bility would be convenient for modeling service infrastructure and implementation
of actual workflow tasks. For now this means that control flows are simpler and
therefore easier to analyze.

When debating expressiveness an easy, but vacuous point is Turing completeness.
Indeed, the π-Calculus is Turing complete, but in its raw form it is unsuited for
any non-trivial programming/modeling task. For domain-specific languages like the
ones debated here, it would seem more reasonable to consider criteria such as (a)
ontological fit (i.e. domain closeness, convenience of expressing common idioms), (b)
expressiveness, (c) amenability to formal analysis, (c) simplicity, and, for workflow
languages, (d) graphical representation.

It remains extremely important to provide an intuitive graphical user interface—
when possible—and easily understandable high-level abstractions for the user, and
this should be addressed in future work. SMAWL took the first speculative step
in the direction of a high-level control flow language, but SMAWL still lacks a
graphical user interface (auto-generation and editing) and a base language for data
manipulation. The most significant shortcoming of SMAWL it semantics. SMAWL
semantics are currently defined in terms of the map T [[·]], but we have no guar-
antee that this map is correct (correct with respect to what?) or that SMAWL
actually covers the patterns amply. The formal pattern description and expressive-
ness framework sought above will help accommodate this in the future.

SMAWL was designed with two goals in mind: covering all patterns and providing
high-level constructs. These goals were met, although as pointed out, eliminating
signal passing however nice was not possible. SMAWL being on syntactic sugar on
CCS retains the properties of CCS in terms of analysis. Some more information
is available because an analysis can draw on both the SMAWL program and the
derived CCS expressions.

17 Brief studies suggest that the Join calculus [11] is syntactically more convenient because
it emphasizes atomic joins. The problems with distribution remain, though.
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SMAWL misses a graphical representation, which could be an adapted version of
UML 2.0 Activity Diagrams. As demonstrated by Wohed et al. [48] UML 2.0 Activ-
ity Diagrams are able to express almost all workflow control patterns 18 . SMAWL
still needs a companion data language, it needs distribution, and possibly code
mobility and locality. It is highly likely, that SMAWL would fall short for purposes
of process mining, simply because the constructs are so chunky. This is an open
question.

It is noteworthy that we have been able to make do so far without the notions of
mobility or locality found in π-Calculus and Mobile Ambients [5] or Bigraphs[15],
respectively. Furthermore, as noted, we have been able to accept the artificial global
consensus inherent in the π-Calculus and CCS, simple because we worked with the
assumption of a centralized workflow engine. If we loosen this asumption, models
like Actors [2] or the recently proposed Transactors [10] may prove more fit.

7 Data, Resource, and Service Interaction Patterns

In the wake of the control flow patterns, data patterns [28] and resource patterns
[29] were proposed. Thus far 39 data patterns are documented, spanning the areas
of scope (visibility), data sharing (interaction), data passing (data transfer), and
interfacing with control flow (data-base routing). The data patterns contain few
controversial ideas, but they do seem slanted towards an imperative paradigm where
shared data can be updated. The paper [28] analyzes BPEL4WS and XPDL with
respect to the data patterns.

Resource patterns describe the mechanism of delegating enabled tasks in work-
flow to willing and able agents for execution. They include push and pull patterns,
round robin allocation, history-based allocation, clustered allocation, role-based
allocation, suspension/resumption, and several others. Resource patterns are im-
plemented as delegation layer between the workflow engine soliciting tasks and the
agents executing tasks. The most likely model is a state machine representing the
state of each task, but this imposes new requirements on the interface to tasks
(e.g. they must be able to receive suspend/resume/cancel messages). The setup

18 Workarounds using signal-passing are needed for Interleaved Parallel Routing and Mile-
stone. MI without a priori Runtime Knowledge is not supported and there are serious de-
ficiencies when it comes to the ever-illusive Synchronizing Merge. Activity Diagrams are
significantly weaker when it comes to data patterns where about half of the 40 patterns
are covered.
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has a certain similarity to auction mechanisms, and thus it would be interesting to
consider resource patterns from a game-theoretic perspective (offering tasks to the
highest bidder etc.).
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Abstract

Current Business Process Management Systems (BPMS) allow designers to spec-
ify processes in highly expressive languages supporting numerous control flow con-
structs, exceptions, complex predicates, etc., but process specifications are expressed
in terms of hard constraints, and this leads to an unfortunate trade-off: information
about preferred practices must either be abandoned or promoted to hard constraints.
If abandoned, the BPMS cannot guide its users; if promoted to hard constraints, it
becomes a hindrance when unanticipated deviations occur.

Soft constraints can make this trade-off less painful. Soft constraints specify what
rules can be violated and by how much. With soft constraints the BPMS knows
what deviations it can permit, and it can guide the user through the process. The
BPMS should allow designers to easily specify soft goals and allow its users to
immediately see the seriousness of their violations at runtime. We believe, this
provides a combination of guidance and flexibility not otherwise attainable.

Key words: business processes, workflow, constraint specification, soft goals,
business process flexibility, Pareto optimality, soft constraints, workflow flexibility

1 Introduction

The past five–ten years have witnessed significant changes in the way business pro-
cesses management systems (BPMS) are perceived, as well as the context in which
they take part. Whereas BPMS were previously thought of as support systems,

172



the interest in business processes is now focused on systems that actively execute
processes in collaboration with other processes, services, and humans.

The development that lead to BPMS taking the center stage was brought on by
management evangelists, who solicited the successful business process perspective
(Hammer & Champy, Davenport, Michael Porter). Later important legal changes
took place. Most notoriously, the Sarbanes-Oxley Act was signed into law and now
requires managers to oversee that companies directly document the processes that
produce any data used in external reporting under penalty of law.

At the same time, as the Internet grew in significance, so did the pressure to
make systems Internet-accessible and interoperable. The service-oriented archi-
tecture (SOA) became the enabling paradigm, and it was followed by numerous
standards designed to make a shift to the new paradigm possible. Previously, in-
tegrating business processes across several systems and business entities had been
cumbersome or just plain uneconomical, but as businesses gradually started the
move toward SOA, this became much easier to achieve. This development can also
be seen as an instance of a general move towards higher levels of abstraction. Suc-
cessive generations of programming models tend to enable increasingly abstract
entities to be represented directly; we have now reached the level where distributed
business processes can be represented explicitly.

In short, the business climate, the regulatory climate, and the prevailing IT ar-
chitecture have all become increasingly favorable to the process paradigm. This
development has allowed the BPMS to take on a new role: in a setting where the
individual steps of a business process are exposed as Internet services, the BPMS
can be an active orchestrator that executes the business processes by delegation,
rather than just serving as a passive support system deep inside an isolated part of
the organization.

The change from passive support system to active orchestrator places new demands
on the BPMS. In passive support systems the business process could be written
quite stringently as a program, and if the real-world process happened to deviate
from the system-prescribed one, this was not necessarily a problem. As long as the
users knew what they were doing, they could ignore the system and report dummy
task completions back to the system until the real-world process and the system-
prescribed process were in agreement again. Today, because the system orchestrates
the process, users will find it much more difficult to ignore or trick the system if the
real-world process deviates from the prescribed one. Because the BPMS is what
makes the process progress, the system process and the real-world process have to
agree to a much larger extent than before.
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If the processes are described and executed stringently, users will find them ex-
asperating to work with when the real-world process sees variations that were
not anticipated in the process design. A very typical pitfall is to only express the
best practice in the process design meaning that the users have to come up with
workarounds when best practice cannot be followed. On the other hand if the pro-
cess designer tries to forestall such rigidity by making the process very flexible,
there is usually no way of indicating to the users what the preferred practice is.
The result is then a system that provides no support to its users. Crudely put,
a good system should continuously give users an overview of what they may do,
what they should do, and what they must do – and let the process designers easily
describe these modalities in the process template.

1.1 An Example Process

Let us illustrate these points with an example. Figure 1 shows a simplified order
handling process in simplified Colored Petri Net notation. Several elements are
omitted such as data sources, data formats, timeouts, service connectors, and access
control. The process takes a received order from the sales department or from the
company’s website and facilitates shipping, invoicing, payment, and, if necessary,
credit approval. The process specifies a base policy that orders less than $1000 are
pre-approved, orders of more than $1000 are subject to credit checks, and orders
over $5000 require a manual credit check by a manager. If the customer is not
credit approved, advance payment is required.

Having $1000 and $5000 as delimiters for a base policy seems very reasonable, but
yet it raises the concern: will we always adhere strictly to this policy? Presumably
not. A customer order of $1001 should makes us think about bending the rule
slightly, and conversely, we may wish to do an additional manual credit check on a
$2000 order, if the customer is known or suspected to be a bad payer.

Hence this policy is clearly bendable. It is also clear that deviating from the policy
is less problematic in the case of a $1001 order than in the case of, say, a $9500
order. Therefore the user should be allowed to violate this policy and make an
informed decision, and in doing so, the system should somehow indicate how serious
a violation is being made. Introducing an extra path in the process – call it User
override – does not adequately address the issue, because it does not measure
the gravity of the violation; it merely records the fact that a violation has taken
place. Also the existence of such an extra path does explain to the user what is the
preferred path or what would be needed to justify an override.
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Fig. 1 Simplified order handling process
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To sum up, removing the credit policy will deprive the process specification of
useful guideline information, but making it a hard constraint will render the users
unable to make exceptions even in very reasonable cases. Something in between
is needed: we need a measure of the soft goal : what is our credit risk? Violating
the rule once will not seriously damage the company’s goal to minimize credit risk,
but if we constantly need to violate the credit policy, company performance on the
credit risk goal will reflect this, and management will be able to take appropriate
steps to rectify the situation.

Now consider the sequential constraint that Pack and ship can occur only when
Wait for inventory availability is complete. Should this constraint be flexible? Def-
initely not. The constraint is a hard constraint, because shipping a good that one
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does not have in one’s possession amounts to violating the laws of physics. Here
the BPMS must stand firm on its constraint. (For the sake of argument, ignore the
possibility of partial shipments. Our discussion will argue that generally there are
many unanticipated exceptions even to hard constraints and thus hard constraints
should be avoided to the largest extent possible.)

Last, consider the constraint that Pack and ship should be allocated round robin
(i.e. by rotation) to employees with the Inventory role. Here we are dealing with
a constraint that is much less significant than any of the others. It reflects a goal
that employees should get a feeling of fairness by carrying out their task in a
turn-based fashion, but it is also clear that this constraint must yield to more
important operational goals such as delivery time – at least temporarily. Again we
have a constraint that should not be elevated to law, but adds guiding information
to the process to help users reach soft goals. If we find ourselves breaking the
rule systematically, then there is an incongruence between the prescribed process
and the real-world process worth looking into. We may find that the inventory
department is overburdened, but we are much more likely to find this if the rule
is in the process description so that we can systematically record and diagnose
violations. If the system does not let users break that rule, they will likely break it
anyway, but in roundabout ways that are more difficult to monitor quantitatively
or even detect.

1.2 Contributions and outline

Our main contribution is to show how using soft constraints directly in the business
process descriptions can (a) capture intentional information about best practices,
(b) provide support to the user in extremely flexible BPMS, (c) help identify gaps
between actual and prescribed practice, and (d) make the trade-off between flexible
and rigidity significantly less salient. The paper presents:

(1) An analysis of the trade-off between flexibility and control from the user’s
perspective (Section 2). Specifically we argue that the user perspective leads
to fundamentally different requirements, and that users will improvise and
build ad hoc systems if sufficient flexibility is not provided.

(2) Issues related to getting flexibility in current systems (Section 3). Current sys-
tems provide a plethora of ways to specify flexible workflows, but an important
advantage of strict control seems to have been forgotten: that of guiding the
user. We argue that current systems cannot both be extremely flexible and
still provide sufficient guidance, because intentional information is too easily
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lost when systems become too flexible.
(3) The case for using soft constraints/goals as a remedy (Section 4). This section

explains how soft constraints/goals can alleviate the problem identified in Sec-
tion 3, by allowing system to be flexible, while capturing enough information
to guide the user through the process. While completely flexible systems will
let the user do anything, flexible systems with soft constraints will allow full
flexibility while supporting the user in making choices that contribute towards
organizational goals.

(4) How soft goals look from the user’s point of view (Section 5). This section
shows how soft goals can be used in a direct way as part of what the user sees
when interacting with the BPMS.

(5) How process designers specify soft goals (Section 6). Here it is explained how
to incorporate soft constraints as a direct part of the process specification.

(6) How soft goals can be incorporated into the BPMS by using multi-criteria
optimization (Section 7).

(7) How this affects the process design methodology (Section 8). This sections
contributes a tentative methodology for using soft constraints when designing,
deploying, and modifying business processes.

The paper closes with a brief overview of related work (Section 9) and directions
for future research (Section 10).

2 Background: the user perspective

Typically, business process modeling is initiated by management as an effort to opti-
mize business processes, as in the vision of business process reengineering (Hammer,
1990). The focus lies on documenting existing processes, describing to-be processes,
and finally, when the BPMS is running, to monitor and analyze actual processes for
the purpose of making them more effective. In this way, the feedback provided by
the BPM tool is used to manage and control the work practice of the organisation.

From a technological point of view, basic concerns with regard to BPMS are main-
tenance and migration, architectures and infrastructures, standards, exception han-
dling, programming models and notations. Typical problems are how to centralize
control of execution, how to make the BPMS interact with a number of different
systems (e.g. ERP systems, legacy systems, Internet services) and users, and how
to make runtime changes possible.

This article takes on a different perspective – that of the use context of the BPMS.
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The user perspective gives rise to different questions than if flexibility of BPMS is
seen from a managerial or technological point of view. Thus our point of departure
is the simple question: what is the purpose of a BPMS from the user’s perspective?
One partial answer is that business process modelling is about reducing the space
of choices for the user by identifying a valid and limited set of options for action.
The model provides a way to navigate the space of possible actions, indicating what
might be the next activity for the user to engage in.

When taking the perspective of the user a central challenge for the BPMS is how
to fulfil the conflicting requirements for flexibility in work practice and control of
the work practice (for a discussion of this problem, see e.g. Bernstein 2000).

One might be tempted to think that from the user’s point of view, unlimited
flexibility in the BPMS would be preferable. However, there are several reasons for
introducing restrictions into the system:

(1) Conventions of practice are captured explicitly in an artifact (they are docu-
mented)

(2) The right way of doing things does not have to be constructed, or re-negotiated,
every time

(3) Process models can serve as coordination mechanisms to share knowledge
about the state of the work (Schmidt & Simone, 1996)

(4) The system can support the user in not violating business rules (e.g. regarding
legal issues, regulations, policies)

On the other hand, if the system prevents its users from making local adjustments
of the normal flow when appropriate, it is too rigid.

A widely documented observation within the CSCW field is the gap between the
specified processes and the actual work practice:

(1) Users make (well justified) workarounds (see e.g. Kobayashi, 2005)
(2) They use the plans as maps for situated action, not as scripts for executing

their work (Suchman, 1987)

One explanation of the gaps between the anticipated and actual use of the system
is the general observation that IT systems are not always used the way the designer
intended (see e.g. Robinson, 1993).

However, the kinds of (mis)uses mentioned above might also indicate design prob-
lems inherent to the BPMS. The question is whether the way BPMS are designed
today make them a support or a barrier to the actual work practice: are they
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flexible enough, or too rigid?

One source of too much rigidity is the conflict between a technological perspective
and a use perspective on the business processes. It is tempting for an IT expert to
see the user as just another resource that can be invoked to execute a task: human
and system activities are captured within the same model, and orchestrated by
the same centralized technology, the workflow engine. In a notation like e.g. WS-
BPEL (Thatte, 2003 ) no distinction is made between human and system activities
in the process. A different approach is taken in Windows Workflow Foundation
(Chapell, 2005), where human and system workflows are represented in two different
notations (sequential and state-based). The choice to have two separate notations
is based on the assumption that human and system workflows are fundamentally
different in nature, especially when it comes to their requirements for flexibility:
human work practices are much more likely to change, also in an ad hoc manner,
than system flows.

The question is then: if the workflow system is not assuming that the users act like
programs, executing their tasks in a procedural manner that corresponds to the
way the workflow was modeled, what would be the right way to design a flexible
system where the users would still benefit from the navigational support a BPMS
can provide?

3 The current state of BPMS

Before proceeding further it is appropriate to examine the current state of affairs.

A fair number of current systems provide flexibility facilities for their users: Can-
cellation allows processes or parts thereof to be cancelled, tasks and sub-processes
may be specified as skipable, users can choose to redo certain parts and of course
the user always can make a choice between the alternative paths specified by the
workflow designer.

In addition some systems provide policies (i.e. local or global rules) that govern
in detail what is permissible in terms of data dimensions such as employee, role,
location, project, customer type, etc. Such policies take into account the current
data in the process instance and behave accordingly.

However, the current systems are built on the basis of the same modelling paradigm,
namely that of binary classification of sequences of activities.
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The activity of modelling under this paradigm can be understood as classifying all
possible sequences of process-related events into allowable sequences and disallow-
able sequences.

Consider the following business process type 1 :

a → (b XOR c) → d

In essence, this business process type makes a classification. It classifies all possible
sequences of the activities a, b, c, and d into those that comply with the description
and those that do not comply. The sequences { <a,b,d>, <a,c,d> } comply; all
others do not.

The example demonstrates a key issue in current systems: there is only one classi-
fication. One cannot state e.g. that <a,b,d> preferable to <a,c,d> or that <c,d>
is acceptable, although not encouraged. The process designer is forced to make the
unpalatable decision of making all possible runs either acceptable or unacceptable.
Such a decision is often impossible to make correctly at design-time, and the result
is then processes that are too restrictive or too lenient. Hence a more refined type
of specification is needed, but merely inventing a clever specification in insufficient.
The change from binary classification to finer classification must permeate the en-
tire design/use methodology for business processes. See Section 8 for more on the
methodology.

It is useful to consider the distinction between binary and finer classification from
yet a perspective. When charting business processes, a business analyst is likely to
arrive at a semi-formal description that contains many different types of constraints
and goals. Goals and constraints come from a variety of sources (Regev and Weg-
mann, 2005) and therefore vary in significance. E.g. the analyst could have estab-
lished that for three activities a,b, and c the sequence <a,b,c> is the best practice,
<b,a,c> and <a,c> are acceptable, <b,c> can be done in exceptional cases, and
other sequences are logically inconsistent. In other words, the analyst has captured
intentional information about best practices along with physical constraints.

Yet today’s BPMS demands that the process designer discard all the intentional
information gathered by the analyst and specify the process as a control flow. If
the designer writes

(a OR b) → c

1 This description omits all other perspectives than the purely process-structural per-
spective, but it is sufficient for the following discussion.
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then the description has lost all intentional information and every part of the spec-
ification appears to be a physical constraint. Information about the best practice
is lost as well.

This situation is clearly undesirable. The knowledge gathered by the analyst is
lost because the system has no way of capturing it. The designer then specifies a
process that reveals nothing about the nature of its dependencies and constraints,
and finally the user (i.e. the knowledge worker) works with a system that forces one
particular view of the process and considers all violations equally unacceptable.

Could one imagine a completely free system that would only inform the user about
the process, but not force it? Let’s consider two extremes of flexibility. The dictato-
rial process specification is one which allows only the strictly complying sequences
and blocks the user from doing anything else. The anarchistic process specification
is one which allows all possible sequences of the three activities a, b, and c. Such a
specification provides maximum flexibility, but it must be based on the assumption
that users know what they are doing (see e.g. Bider, 2005). Since it is not specified
what sequences are preferable to others, the users will not get any support from
the anarchistic specification.

To summarize, a dictatorial specification (rigid):

(1) Allows only what is narrowly prescribed by the process designer.
(2) Represents only anticipated sequences.
(3) Cannot accommodate deviations and exceptional cases unless they have been

meticulously accounted for in the process description. If they have not, users
are forced to invent workarounds, and valuable historic information is then
not captured in the system. If deviations happen often, users will tend to sys-
tematize these in auxiliary, ad hoc systems. This leads to data fragmentation
and lack of belief in the system.

(4) Does not represent how business is actually done, only how it should be done
according to a process designer’s incomplete view of the world.

An anarchistic specification (flexible):

(1) Allows every possible combination and repetition of known tasks.
(2) Does not represent or endorse any particular sequences.
(3) Provides no support to the user (cannot suggest what tasks to do in what

order to reach the goal).

Neither of these extreme approaches is ideal seen from the user’s perspective. In the
dictatorial specification the user is supported in anticipated sequences, but denied
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any deviation. In the anarchistic specification the user is allowed any deviation,
but supported in none. In both of the specifications and in any trade-off in between
there is no ranking of different sequences. There is no way of saying what sequences
are preferred, discouraged, etc. We can design rigid and flexible processes, but they
remain simple binary classifications. Some sequences are acceptable, some are not.
The dictatorial specification allows fewer, the flexible specification allows more, but
they cannot be ranked according to preference. This is the limitation of the binary
classification that most of today’s BPMS employ.

What would be nice would be a combination: to be able to specify what sequences
were preferred anticipated, but not have to make that specification a hard con-
straint. Some parts of the specification would be violable, others not. What is
needed is a way of specifying this, without just allowing everything to happen
indiscriminately.

Our solution is therefore to capture finer classifications of processes explicitly, or
put differently, try to make the intentional information gathered by analysts explicit
in the process specification. This way the user can be supported while we retain
the distinction between strict and soft rules. The following section discusses one
way of achieving this.

4 Modeling soft goals

As mentioned in the beginning of Section 3 BPMS provide powerful capabilities
for specifying permissible and non-permissible courses of action, but this remains
a binary classification – either a policy is satisfied or not. In the current systems
there has been a strong focus on extending expressiveness so that we can accurately
specify hard constraints, but overlooking the equally important question of soft
goals. Soft constraints are constraints that should be used as guidelines, but they
can be violated in exceptional situations or if the user has a good reason. Soft
goals (Yu and Mylopoulos, 1994; Soffer, 2005) are business objectives that are not
directly linked to business output or performance. Soft constraints are operational
guidelines promoting good performance on soft goals. Whereas hard constraints are
usually very stable over the evolution of a process, soft constraints change more
often.

As explained in Section 3, when users and designers are forced to work with sys-
tems that focus unilaterally on hard constraints, they face two equally displeasing
alternatives: (1) Important soft constraints are inadvertently promoted to hard
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constraints because designers add them as policies. The result is a system that is
too rigid and inspires hacks that circumvent the constraints by going outside the
system. (2) Soft constraints are left out of the system altogether, meaning that
important organizational goals are disconnected from, arguably, the organization’s
most important process tool.

If we accept the premise that BPMS need to account for soft constraints and/or
soft goals in addition to hard constraints, the pressing question is this: how is this
presented to the direct users of BPMS? We believe that making soft goals and soft
constraints visible for the end users is a key issue.

The challenge when modelling both hard and soft constraints is to get the right bal-
ance between the two. BPMS must offer enough rigidity to satisfy hard constraints,
whether they are business requirements, nonnegotiable logical constraints, data
constraints, or externally imposed constraints, such as legislation (Soffer, 2005). At
the same time, users must be afforded the maximal flexibility possible, but con-
tinually be informed about the impact of their choices on various organizational
goals.

As mentioned above, it is not enough to simply add soft goal support to the BPMS.
A change of methodology is required to ensure that soft goals are used through the
entire process lifecycle – by analysts, designers, reengineers, users, and process
miners. Our main focus here is the user perspective, and secondarily the designer’s
perspective; a more comprehensive methodology will be addressed in future work.
For previous work on methodologies incorporating soft goals cf. (Yu and Mylopou-
los, 1994; Regev and Wegmann, 2005). In the following we examine soft goals from
the perspective of the user and the designer.

5 How users interact with soft goals

In our example process in Figure 1 users will be presented to the activities as they
become enabled, e.g. when a sales person is done entering an order received by
telephone, the Prepare and send invoice activity becomes available to employees
with the Accounting role, and the Classify order and customer activity becomes
available to the sales person who entered the order.

In the following let us focus on two soft goals: minimizing order processing time and
minimizing credit risk. Also assume that an automatic credit check takes up to five
hours and a manual credit check takes two days. We can measure credit risk as zero
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when no policy violations take place and as the number of dollars in excess of the
limit, when violations do take place. If a sales person, pre-approves a $1400 order,
he has traded a processing time improvement of five hours with an added credit risk
of $400. (The exact definition of such soft goals can be debated, and certainly more
research on best practices in this field is required. We postpone this discussion to
future work and accept the sketched goals for the purpose of illustrating a point.)
The user interface must make this trade-off clear before the user finalizes his choice.
The user, in other words, should be supported in navigating the decision space.

In general when the user is presented with a choice, the impact of each possibility
should be explained in terms of soft goals. Some options are much less reasonable
than others and naturally the user interface prioritize. For instance, performing a
manual credit check on a $500 order adds nothing to the credit risk goal (perhaps
a bit unreasonably) and delays the order by two days. This can be determined by
a BPMS and supported in the user interface. This idea can be brought to bear on
the notion of dominant choices introduced in Section 6 and 7.

As an alternative to optimizing and presenting solution pertaining to several goals,
we can combine all soft goals into a weighted sum. While this simplifies the presen-
tation – choice can simply be sorted based on one number – it has the drawback of
maintaining a static priority between the goals. The weighting can be adjusted over
time based on decision analysis, but despite its simplicity, we consider a weighed
sum a supplement rather than a substitute for presenting the impact for each soft
goal separately.

6 How designers specify soft goals

Soft goals have a large variation in scope: some goals pertain only to one particular
activity (the round robin allocation guideline in our example being an case in point),
others pertain to part of a process (credit risk), and some may be influenced by
many running processes of different types (e.g. processing time). This indicates that
soft goals may be independent of any particular process, but could also part of one.
Hence a BPMS must allow goals both a system-level and at process-level.

Conceptually we can think of the change of approach in the following way: earlier,
the designer would specify a process where every part of the specification was
strictly non-violable; now, the designer will specify a process consisting of both a
violable part and a non-violable part. The non-violable part will be much smaller
than before, and the violable parts of the specification will be annotated with
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information about their impact on the soft goals identified by the process analyst.
(We refer the reader to (Yu and Mylopoulos, 1994) for a method for representing
the impact of activities on soft goals.)

Abstractly, we can think of a business process specification as simply a set of
constraints and rules. Where previously every constraint or rule was strict, every
constraint or rule is now either strict or soft. In the latter case it will annotated with
enough information to automatically calculate its impact on soft goals at runtime.

It should be made clear that when we speak of a business process comprising
constraints and rules, this includes everything in a process specification: control
flow, dataflow, user allocation rules, exceptions, compensation, timeouts, etc. We
should note that in most processes there will still be strict rules. E.g. data flows
that feed input to computer activities would typically be non-violable, because the
computer activity would otherwise fail and leave the process in an undefined state.
We advocate to only use strict rules when they are categorically mandated as is
the case with the data flow here. Other constraints can be expressed in terms of
soft goals and result in a much more pleasing system to work with for all parties
involved.

Let us examine several ways of specifying the violable parts (soft constraints) of
the process.

(1) Goals can be specified directly as a function on the trace (i.e. history) of the
process. E.g. credit risk would be specified globally as the sum of all violations:

zRisk =∑
traces max ([Credit check = no] · (total – autoLimit), 0) +∑
traces max ([Credit check = auto] · (total – manLimit), 0)

While such a direct expression of the goal will be appealing to optimization adher-
ents, its merits as a tool for process designers are debatable.

(2) A more natural, albeit indirect, approach is to annotate the activities in question
locally with a measure of the gravity of a violation, e.g.:

Total < $1000 otherwise: zRisk += Total – $1000

which states that for the particular path Total should be less than $1000, otherwise
the soft goal zRisk is compromised by the Total - $1000. In essence, rules that can
be violated carry a price tag for a violation on them. The BPMS still needs to
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consider a decision horizon beyond just the current task, though, because more
serious ramifications of the decision could be waiting further down the line.

Our example process has two soft goals, zRisk and zTime. With the augmented
process specification as outlined above, the BPMS is able to calculate for each
proposed step the immediate impact on the soft goals.

The specification methods outlined above are just two ways of specifying soft goals.
Given the both local and global nature of soft goals, it is prudent to allow specifica-
tion of goals on both levels. Some subgoals could be computed locally and then be
composed to form the main goal globally. This approach retains some modularity
and allows the code to be associated to its most closely related level of abstraction.

7 Soft goals as an optimization model

The field of operations management/optimization has been used widely in par-
ticularly complex resource allocation scenarios. Given the setup described here,
optimization can be used automatically to aid users in their decision-making in a
business process based on the process data and the soft goals and hard constraints
captured in the process specification. Whereas formulating and solving optimiza-
tion problems are typically fairly complex endeavours that do not apply directly
to the soft goals, it is useful to understand the workings of the BPMS in terms of
an optimization problem.

Our example has soft goals zRisk and zTime. In the simplest setup the BPMS would
limit its horizon to only one step in the process. Hence for each enabled task, it
would compute its impact on the soft goals, if it were to be executed. This is a
straight-forward computation, whose result can be shown to the user to support
decision-making.

This approach will often be insufficient because a locally attractive decision may
lead down a path that adversely affects the soft goals. Hence a longer look-ahead is
necessary, and this can be accomplished with an optimization problem formulation.
It should be pointed out that the formulation will be seen neither by designers nor
users; it merely defines how the BPMS finds optimal ways to progress so it can
support the user by suggesting these. The BPMS builds the formulation based on
the soft goal information provided by the designer.

Given a set of soft goals z 1, z 2, ..., z n, the optimization problem can be rendered
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schematically as:

minimize z 1, z 2, ..., z n

subject to 〈 hard constraints in process 〉

where the decision variables describe the space of choices theoretically available to
the user, and the hard constraints are derived directly from the process specifica-
tion.

A concrete example will convey the intuition more clearly: consider the subset of
our general order handling process shown in Figure 2. The decision variable has
been made explicit in Figure 2 as Check, and it can take on one of the values {no,
auto, manual}. As before, there are two soft goals to minimize, namely credit risk
and processing time defined as:

credit risk =

[Credit check = no] · max(total – autoLimit,0) +

[Credit check = auto] · max(total – manLimit,0)

proc.time =

[Credit check = auto] · 5 hours +

[Credit check = manual] · 2 days

where [condition] evaluates to 1 when true and 0 when false. The problem thus
becomes

minimize credit risk, proc.time

subject to Classify before Log

Classify before Check

Classify before Manual check

Appr. = 1 ∨ Pay before Pack

(etc.)

where Act1 before Act2 is a shorthand for introducing time variables start and done
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for the start and completion times of the activities, and demanding that Act1.done
< Act2.start.

Again it should be pointed out that neither the user nor the designer will see this
problem formulation. This is merely a conceptual way of describing the internal
working of the BPMS necessary to support soft goals.

The optimization problem has several solutions, and in general there will be many
more solutions than what can be easily presented to the user. To overcome this
the system should present only Pareto optimal solutions (dominant solutions), i.e.
solutions where no soft goal can be improved without adversely affecting another
soft goal. Assuming we receive an order of $1400 in our example, at least three
solutions are possible:

(1) Check = no => credit risk = $400, proc.time = 0
(2) Check = auto => credit risk = $0, proc.time = 5 h
(3) Check = manual => credit risk = $0, proc.time = 2 d

Choice 3 is dominated by choice 2 (but not by choice 1!), and choice 1 and choice
2 are Pareto optimal and do not dominate each other. Hence choices 1 and 2 will
be the first ones to be suggested to the user.

The system would also find a number of solution variations pertaining to the choice
of what employee carries out the Pack and ship activity, but that decision variable
is neutral to the decision at hand.

Note that by solving the optimization problem, we get a complete plan for action
– not just for the current decision, but for the entire process. While this may
prove unnecessary or too computationally intensive in practice, this is a convenient
feature to be able to invoke occasionally.

Every time a step is taken, the optimization problem is rewritten to reflect the
new state of the process. The optimization problem formulation should be derived
automatically from the workflow specification and the soft goals, so the user or the
designer will never see anything like the minimization problem above.

7.1 Discussion

The ability to specify soft goals enables the BPMS to support the user in navi-
gating the process. However, the optimization formulation relies on more than just
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Fig. 2 The credit approval part of the process
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soft goal specifications; it relies on accurate probability estimates of future event
sequences. Hence, the conceptual model where an optimization problem formula-
tion is extracted from the process specification is appropriate, but it is important
to note that the size of its look-ahead depends sharply on the quality of event se-
quence probability distributions available. In routine cases these can be extracted
from a process log, but most often compromise is necessary in the form of a reduced
look-ahead in the optimization step.

8 Towards a new process design methodology

The intent of this paper is to introduce soft goals as a feature n BPMS, but the
intent is also to engender a revision of the method by which business processes are
designed. This paper cannot fit a comprehensive revised process design methodol-
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ogy, but an outline is in order – what remains is deferred to future work.

Rigid constraints are the most common source of workarounds in BPMS, and lack
of support is the most common source of confusion. Soft goals promise to alleviate
these shortcomings, but they must be used gratuitously – also in situations where
one would be inclined to use a hard constraint.

As mentioned soft goals will only be successful when they are pervasive in the pro-
cess life cycle – not just in the BPMS. The normal process life cycle is to (1) analyze
the business (2) design/adapt the process, (3) use it, (4) look for improvements,
(5) repeat.

The analyst should aim to describe and classify the dependencies between soft goals
and activity, e.g. in the style of (Yu and Mylopoulos, 1994). The designer can then
incorporate these into the process specification, and a BPMS that understands such
a process specification can now provide better user guidance. In other words: the
intentional business information must be retained throughout the lifecycle of the
process specification.

In the evolution of the process, we strongly recommend to start out with the most
liberal process specification possible: this means (a) prefer soft goals to hard con-
straints and (b) prefer parallelism to sequence. A similar idea to (b) has been
mentioned by Bider (Bider, 2005). We have not left out the hard constraints alto-
gether, instead we have recast them as soft goals; that is, we say “our goal is to
violate the constraints as rarely and as insignificantly as possible” instead of “this
constraint can never be violated”. Whereas hard constraints are likely to lead to
frustration, soft constraints allow us to capture intentional information in a non-
obstructive way. A process specification stands a better chance of success if the
designer errs on the side of flexibility rather than control. To add constraints to
a flexible process one simply needs a documented reason. To remove constraints
from a rigid process one must identify workarounds and diagnose them, and one
can never be sure to have found them all. Situations that require new workarounds
may occur at inconvenient times in the future. Removing an unnecessary constraint
can take time causing delays to the process instances in question

This is not to say that identifying soft goals is trivial. There may be widely disparate
opinions among the stakeholders of a process, they may express goals imprecisely,
or there may simply be too many goals to realistically capture. While this is very
likely to be the case, it may in fact increase the usefulness of a system that is able
to capture soft goals: it forces users to reflect upon and discuss soft goals, and –
if applied optimally – enables the discussion of soft goals to happen continuously.
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Upon explicitly representing soft goals in the system, users may find that the goals
have become more narrow in their scope that the original formulation (to give an
extreme example the expressed soft goal “ensure worker comfort” becomes the very
narrow soft goal “schedule job A by round robin when possible” in the system).
This demonstrates that soft goals – exactly like the processes they are part of –
should evolve continuously and with help of their users. More research is needed
to identify best methodological practices in this area.

9 Related research

The topic of offering more flexibility in BPMS has recently been treated exten-
sively (Schmidt, 2005; Bider, 2005; Soffer, 2005; Borch and Stefansen, 2006). Soffer
introduced a taxonomy between hard and soft constraints, and applied these la-
bels to general categories of constraints such as environmental constraints, sharing
dependency constraints, goal reachability constraints etc. (Soffer, 2005)

In a recent paper Regev, Bider, and Wegmann presented an approach to flexibility
using invariants (Regev, Bider, Wegmann, 2007). Conceptually a process run is
seen as a trajectory through a state space and time, and process specification then
becomes a matter of limiting the trajectory while finding allowable movement in
space-time that brings the process closer to the preset goals. In terms of that view
of the world, out work here can be seen as systematically ranking sets of states and
trajectories as preferred, neutral, discouraged, etc. for each soft goal.

In other words, the work presented in this paper should be seen as an augmentation
of existing systems, that is independent of – but compatible with – the view of the
world presented in (Regev, Bider, Wegmann, 2007). The languages used in the
BPMS can largely be left in place, and flexibility is gained through extra soft goal
annotations.

A different approach to flexibility is that of Sadiq, Orlowska and Sadiq who allow
pockets of flexibility inside typical strict workflows (Sadiq, Orlowska, Sadiq, 2004;
Sadiq, Sadiq, Orlowska, 2001). A pocket of flexibility allows the users to build
part of the workflow ad hoc inside the pocket, which is connected to the rest of
the workflow as if it were an activity or a subworkflow. What goes inside such a
“build” area is governed by a simple constraint language. While the motivations
driving this work are virtually identical to the ones listed here, the outcomes are
remarkably different. Sadiq, Orlowska and Sadiq propose to make the workflow
regionally amenable to construction at runtime. Again, we would argue that while
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this certainly does provide more flexibility, it does not address the fundamental
problem that not all sequences are equally good; a ranking (e.g. preferred, neutral,
discouraged) expressed as a soft constraint is needed for each soft goal.

It is common to distinguish between changes to a process template (type-level) and
changes to a running process (instance-level) (Regev et al., 2005). This paper is
chiefly concerned with the type-level. We have not proposed a faster way to change
process templates, nor have we proposed a method for changing running processes;
we proposed adding soft goals and soft constraints to the process specification lan-
guage, so that we will need to change both templates and instances less frequently
and converge faster to a useful, but flexible, process description.

Very recently a similar approach was proposed leveraging an optimization engine
for solving allocation issues on-the-fly (Hamadi and Quimper, 2006). The approach
presented here however is more comprehensive in that it is ubiquitous in the process
and its description and not constrained to allocation.

Last, it is important to point out the large body of work on soft systems. The
application of soft constraints and soft goals in BPMS can be seen as an instance
of the general Soft Systems Methodology (SSM), a comprehensive methodology
dealing with situations where people have diverging – or even contradicting – views
on problem definitions and goals. For more on SSM, see e.g. (Checkland and Scholes,
1990).

10 Conclusion and future work

Current systems and theories allow designers to specify binary classifications of
processes. We have argued that this is insufficient, and that it inevitably leads to
rigid (dictatorial) processes or support-less (anarchistic) processes. We have also
argued that the flexibility given to the user by other approaches, while useful, lacks
the explicit representation of how any future course of action affects the set of soft
goals. Clever specifications can only partially remedy this, because the classification
remains binary given the current technology.

Soft goals seek to alleviate these problems. They allow designers to specify goals
instead of rigid constraints, and allow users to immediately see the gravity of their
violations. We believe that this allows systems to be very flexible while retaining
the support found in systems with an emphasis on control.
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To deliver on these promises, soft goals must be made explicit and be understood
by the BPMS. We have outlined how this is done, and proposed the necessary
changes to the design methodology employed by process designers.

Processes evolve in response to ideas and to changes in the world. It presupposed
here that process designers will write goals themselves based on managerial targets.
In the future this is more likely to be a symbiosis between managerial targets and
inspiration fed back to the designers via process mining. To keep the goals up to
date the process logs should be constantly mined for violations, new constraints
etc. so that they can be incorporated into the process repository.

We have postponed a treatment of data-dependencies. Data-dependencies to a large
extent (but not entirely) are hard constraints, but they can be used to derive se-
quential constraints. If a system derives such dependencies itself, the designer has
one design burden less, and any changes in the data will immediately be reflected in
the appropriate constraints and nowhere else. On the other hand data-dependencies
also enforce sequential constraint and any flexibility afforded to the user, must en-
sure that data-dependencies cannot be violated. Formalizing this remains a chal-
lenge for future work.

On a more general note it remains to be investigated how dependency-driven and
state-based processes interact with the ideas presented in the paper.
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Abstract

Today’s business process orchestration languages such as WS-BPEL and BPML
have high-level constructs for specifying flow of control and data, but facilities for
allocating tasks to humans are largely missing. This paper presents SoftAlloc, a
work allocation language with soft constraints, and explains the requirements and
trade-offs that led to its design, in particular, what soft constraints are, and how
they enable business process definitions to capture allocation rules, best practices,
and organizational goals without rendering the business processes too strict.

SoftAlloc combines with virtually any business process language and any con-
ceivable legacy system, while guaranteeing polynomial performance. We present the
design, the formal definition, and an evaluation of SoftAlloc.

1 Introduction

Computer-orchestrated business processes are increasingly playing a direct role in
how companies organize work and now commonly involve both human resources
and computer resources. A widely accepted architecture is to have a business pro-
cess orchestration engine that orchestrates the process by calling upon human re-
sources and computing resources to perform the actual tasks. Tasks can often be
handled by many different resources. This is particularly often the case for human
tasks. Therefore the process orchestration engine must decide in negotiation with
the human resources who of the eligible resources ultimately carries out the task.
Assigning a task to a resource is referred to as allocation.
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Fig. 1 Order process (Petri net-style notation; || is a shorthand for parallel split)

> $5000?

Receive pre-
payment

Receive order

Pack and ship

Receive paymentInvoice

Approve credit OK?

||yes no

no

yes

Allocating tasks to humans is inherently more complex than allocating to computer
resources: in addition to having multiple, changing attributes that decide what they
can, may or should do, humans have personal preferences and they may choose to
override the allocation rules at runtime, e.g. because they possess domain knowl-
edge that is not captured in the system or because they make conscious, reflected
violations to speed up processing in cases where the process description focuses too
narrowly on compliance.

Consider the example workflow given in Figure 1. In this workflow we might wish
to say that the task Receive payment should be carried out by someone with the
role Finance. We can imagine specifying this by attaching a rule to the task saying:

role = "Finance"

We can then compose small building blocks of rules into larger rules. Now imagine
that we want Receive payment to be carried out by the user who did Invoice to
retain familiarity. We would then add

role = "Finance"
and user = whoDid ("Invoice")

as a rule to Receive payment.

But something is awry here. While we would certainly prefer the task Receive
payment to be done by the same person who did the invoicing, this is only a
preference—certainly not a strict rule that should be allowed to stand in the way
of timely workflow completion if the designated person happens to be busy or
temporarily absent. We have just committed one of the most common mistakes in
workflow specification: we have promoted a soft goal to a strict rule and thereby
created an inflexible system!
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Alternatively, we might have removed the rule and only have said role = "Finance",
but that would have left out useful intentional information about our best practice.
So just specifying the minimal number of constraints is not attractive either.

This example illustrates that allocation constraints can represent a wide spectrum
of specifications: some rules are best kept strict (e.g. Expense approval must be
done by a Manager) while other rules are simply guidelines (e.g. Replenish printer
cartridges should be allocated on a rotation basis (round robin)). The latter alloca-
tion strategy represents an organizational soft goal, which might have been “rotate
tedious tasks between qualified workers to achieve a sense of fairness and variation
and keep workers happy”. This is undeniably a laudable goal, but if the company
is experiencing peak load, this goal must temporarily yield to more mission-critical
business goals (e.g. response time vis-à-vis our customers). Therefore, it cannot be
written as a hard constraint, but leaving it out entirely renders the system unable
to suggest the preferred person.

Going back to our example what we probably mean could be written as

role = "Finance"
prefer [10] user = whoDid ("Invoice")

which states that we require a finance person to handle the activity under all
circumstances, but we prefer the person who did the invoicing in that process.
The number 10 represents a score to indicate how strong a preference this is. This
becomes more interesting, when more preferences are in play. Consider the following
rule for allocating the Credit approval step in the workflow:

role = "Manager" or role = "Finance"
prefer [10] role = "Manager"

[-queueSize()]

The rule states that either Manager or Finance should handle the Credit approval
task. A manager is preferred, but the number of items in the manager’s queue is
deducted from the preference level; i.e. someone with a short queue is preferred.
Indeed, if all managers have more than 10 items in their work queues, someone from
Finance will be preferred in the interest of time. This shows how soft constraints in
conjunction with hard constraints can be used to express soft goals and performance
heuristics in allocation.

Such soft constraints can be expressed and combined on many levels. We can imag-
ine that the company has a general policy to prefer the shortest queue and seek to
distribute activities by rotation (round robin):
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prefer [-queueSize()]
[rndRobin(1,10)]

This combines with a process-level policy to strongly prefer a user at the same
location as the process:

prefer [15] user.location = proc.location

If we consider Receive payment with the same rule as before, there are now three
combined rules in effect:

role = "Finance"
prefer [10] user = whoDid ("Invoice")

prefer [-queueSize()]
[rndRobin(1,10)]

prefer [15] user.location = proc.location

We can now try to run the allocation on Receive payment with the combination
of the three levels of rules active. Suppose we have already compiled the necessary
information about each user (where rndRobin is a number [1..10] indicating how
long time it has been since that user did Receive payment):

User role location queue rndRobin

Ashok Finance India 3 9

Diego Support Germany 7 5

John Finance US 29 2

Julia Finance Germany 12 3

Uno Finance Germany 9 8

Assuming that proc.location = "Germany" and whoDid("Invoice") = "Julia" the
work allocation language will produce the following suggestion sorted by score:
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User Score Reasons

Julia 16 [15] proc.location
[10] whoDid (”Invoice”)
[3] rndRobin [-12] queueSize

Uno 14 [15] proc.location
[8] rndRobin [-9] queueSize()

Ashok 6 [9] rndRobin [-3] queueSize()

John -27 [2] rndRobin [-29] queueSize()

Notice, that Diego does not appear in the table as he does not satisfy the hard
constraint on role. Julia will be able to see the contents of the score table when
she receives the activity in her queue. This enables her to make an informed choice
if for some reason she decides to re-allocate the task. In other words, soft constraints
allow users to see the intensional information that has a bearing on the allocation,
while they can retain their possibility to re-allocate based on any extra runtime
knowledge they may have. By showing its reasoning the language supports the
users in making an informed decision.

1.1 Contributions

This paper defines a declarative work allocation language, SoftAlloc, that (a)
supports soft constraints, (b) plugs into any business process language in an aspect-
like manner, (c) can be used with a wide range of platforms/legacy systems, (d)
allows rules on many organizational levels to be combined, and (e) runs fast enough
to allocate and re-allocate at runtime. Let us examine the reasons and implications:

Supports hard constraints and soft constraints The introduction and use of
soft constraints in a work allocation language alleviates serious issues with work-
flows that are either too rigid or too lenient (see Stefansen and Borch [1] for a
detailed discussion).

Plugs into any business process language A work allocation language defi-
nition that is orthogonal to the business process language, meaning that it can
combine with any of the popular languages currently being used. The language
takes on an aspect-like flavor in the sense that it is possible to disable the allo-
cation aspect and still run the business process (which then would simply allow
anybody to carry out any task). Similarly, an approximate allocation can be done
without being hosted in a process language (e.g. for development and testing).
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Plugs into any platform/legacy system Carries the same advantages.
Permits composition of rules in several scopes Rules can be attached to ac-

tivities, to scopes, to entire workflows, to people and to the entire system as
policies. The compositional design of the language ensures that it is meaningful
and well-defined to compose rules on several different levels.

Runs in P -time (provided that the user-defined functions do so.) The allocation
can always be solved in polynomial time, making it feasible to rerun the allocation
as often as needed during execution, but it is yet able to express a wide range of
heuristics to improve workflow performance and human resource utilization.

The language has been implemented, tested, and evaluated in Infosys’ PEAS plat-
form, and it is slated for inclusion in the PEAS platform with a GUI that is being
developed. We would like to stress early that the paper does not contribute an
interface to be used directly by business process analysts, designers or users. For
that purpose the syntax is too low-level, and it therefore remains future work to
design a user interface for the language. Also, in our allocation example from the
introduction, the user, Julia, should see the reasons for the allocation in human
language and not as snippets of code. This part is also future work.

2 Background and requirements

This project was done in collaboration with Infosys Technologies Ltd., India. In-
fosys uses WS-BPEL [2] and BPML, and typical applications include sales support,
banking and business process outsourcing (BPO) projects.

While dedicated systems and professional workflow systems have support for allo-
cation [3], popular process languages, including WS-BPEL [2] and BPML, do not.
Since such languages are now taking over the role of dedicated workflow products
to achieve a broad SOA integration, there is an increasing need for allocation fa-
cilities. Some products and initiatives address this (e.g. BPEL 4 People [4]), but
they remain in an embryonic stage.

When humans are involved in workflows, deviations occur. Today, where a process
engine orchestrates the process rather than merely guides it, deviations cannot be
ignored. Instead the process engine must be built with flexibility in mind. This is
particularly pertinent when we consider allocation. As mentioned in the introduc-
tion current process engines cannot support this flexibility in a satisfactory way,
because even the most well-designed workflow will be too lenient in some cases and
still too strict in other cases. It has previously been argued [1] that workflow sys-
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tems (BPM engines) should be able to capture intentional information (e.g., about
soft goals) so that the engine can guide its users and provide advice while still
allowing (and thus enabling the monitoring of) some violations of best practice.
The work presented here is based on those observations, but we are by no means
at the road’s end: allocation is only one small part of a workflow description where
the idea of soft constraints could be leveraged.

In short, there is a need to augment existing business process languages with al-
location support. There is also a need that those allocation rules support soft
constraints so as to be able to guide the users whilst avoiding over-specification
that leads to rigid systems.

2.1 Expressiveness requirements

To map out the allocation constraints that the language must be able to express we
(1) compiled a large selection of actual business processes, and (2) cross-checked
the requirements with the existing research on resource allocation patterns [3,5,6].
The most important scenarios were:

Allocate to creator The entire process is allocated to the resource who instan-
tiated it.

Multiple roles An activity is allocated to several roles. A resource having at least
one of the roles mentioned is required.

Soft constraints The ability to specify that some rules are violable, while others
are not. The former are referred to as soft constraints, and they carry an integer
score. This score is used to give a preference between the resources that satisfy
the hard constraints.

Multiple resources An activity is allocated to several resources, all of whom
need to collaborate on the activity.

Scalar properties For some attributes there are several levels, e.g., 1 (Novice), 2
(Medium), 3 (Expert). In such cases it must be possible to specify (a) a minimum
skill level for some needed skill (e.g. Java level 2) or (b) a soft preference for
assigning the task to the resource with the highest skill level.

Overflowing When the queues of some people become too long, an overflow group
can be used for allocation. This amounts to soft constraints based on queue
length/expected average waiting time.

Minimize makespan This is just one of many goals one can try to optimize.
The soft constraints we have focused on here intentionally cannot perform full
optimization because performance has been prioritized—instead we can express
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Fig. 2 The architectural context of work allocation

local greedy heuristics that in practice perform quite well.

One may justifiedly wonder how runtime negotiation is handled, i.e. the situation
where activities are not given directly to a user, but allocated through some protocol
of offer/accept to a group of users. Or activities are escalated and re-allocated. Or
activities are allocated to a queue associated with many users rather than to one
particular user. These issues are certainly as important as the work allocation
rules we have discussed, but since they are established protocols that rarely, if
ever, change, they are better handled as an integral part of the BPM engine itself.
The architecture is such that the BPM engine handles all runtime requests and
then queries the allocation engine for a suggestion when allocation/re-allocation is
needed due to some change in the state of the system (see Figure 2).

Also notice that the process engine, not the language, decides how queues are
handled, e.g. if resources can autonomously override task priorities, skip jobs in
the queue, etc. If we wish to assign activities to a queue shared by many users,
this is handled by inserting that queue’s name in the list of potential users that is
given to the allocation engine. The allocation engine will then obliviously consider
the queue as if it were a user.

To do its job the allocation language needs to draw in information about user prop-
erties, queue sizes, workload, history, etc. For this, general external function calls
are the best solution. While the names may be uniform, their implementation will
depend on the concrete deployment. History is a good example of this. Building
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in an entire history reporting language would make the allocation language sig-
nificantly more complex. Also, it would not add much value because a preferable
reporting language (e.g., SQL) is usually already available.

Patterns In addition to the allocation scenarios above, a large number of “re-
source patterns” have been proposed [3]. Since we handle runtime negotiation in the
process engine, only a few of these patterns apply: user data patterns (Direct alloca-
tion, Role-based allocation, Capability-based allocation, Organizational allocation),
history-based patterns (Separation of duties, Retain familiar, History-based alloca-
tion), scope patterns (Case handling), and runtime information patterns (Deferred
allocation).

Time of allocation When an activity can be started we say that it is enabled.
E.g., in the process expression a; (b||c); d (a, then b and c in any order, then
d) the activity a is the only enabled activity. After a has been completed, both b

and c are enabled. Allocation can happen at three conceptually different times:

(1) Early allocation happens before the task is enabled and helps the system
predict/guess bottlenecks early and avoid them through different allocation.
The system may even speculatively allocate beyond branches (even if outcome
of the branch is not yet known), which of course works best in conjunction
with the ability to re-allocate.

(2) Allocation on enablement allocates an activity exactly when it becomes en-
abled. This is simple to model, to implement, and to understand for humans
interacting with the system.

(3) Late allocation allocates as late as possible, i.e. if all suitable resources still
have items in the queue, the process execution engine might as well postpone
allocation until someone’s queue is (almost) empty, and only then allocate the
activity. Late allocation can be problematic for human workers in terms of
planning because they only see a partial list of the tasks that potentially need
their attention.

The language designed here can support all three modes or a combination thereof,
because the allocation rules can simply be re-evaluated to obtain a new allocation
when desired by the allocation engine. In other words this is orthogonal to the
language design.
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2.2 Contextual requirements

Some important requirements can be derived immediately from the business context
and the architectural context:

• The language must work in tandem with any process model (e.g. WS-BPEL,
BPMN, EPCs, Petri net-based models) that the BPMS uses.

• Because the environment (user database, log formats, legacy interfaces) is differ-
ent in every organization, the functions that read these must be externalizable.

• Oftentimes organizations have soft goals on many different levels. To allocate
an activity, we may have to examine general policies, department soft goals,
process best practices, scope rules, and the allocation rules of the activity. This
means that the work allocation language should allow several levels of rules to
combine easily and seamlessly, so that, e.g., general policies can be changed
without mandating a change to all subordinate processes.

• It is essential that the allocation engine can recompute a new suggestion immedi-
ately when changes occur. This precludes NP -hard computation so the language
must be able to express only polynomial-time performance heuristics. For this
reason we do not allow freely interdependent allocation rules; an allocation rule
for a task can only depend on the allocation of other tasks that are guaranteed
to have completed (no cyclic allocation dependencies). For the same reason time
scheduling (i.e. specifying that an activity must be done at a particular time) is
not possible, though scheduling constraints can be introduced in a limited way
as external functions.

3 Language definition

This section describes the syntax, type system, and semantics of SoftAlloc. We
assume that the workflow is specified using WS-BPEL, BPML or some comparable
business process notation. The only assumption we make is that a workflow contains
a finite set of tasks, each of which is uniquely named.

Syntax The syntax of the allocation language SoftAlloc is given in Figure 3.
A rule has a pick prefix that specifies the number of users needed to perform
the task, and two clauses. The where clause specifies a hard constraint, which is
a set of users from which allocations can be made to this task, and the prefer

clause specifies a list, where each element is a pair of a score and a soft constraint.

205



Fig. 3 Work allocation language core grammar (top), implementation-specific op-
erators and functions (middle), and implementation-specific rewrites (bottom)

rule ::= (pick const)? clauses

clauses ::= (where exp)?

(prefer pair* )?

exp ::= exp op exp | unary-op exp | value |

function (exp, ..., exp) |

user | task | process

pair ::= [ exp ] exp

op ::= + | - | * | / | < | > | = | <> |

and | or

unary-op ::= + | - | not

function ::= procStr | userStr |

queueSize | rndRobin |

whoDid | ...

process.id −→ procStr(process,"id")

user.id −→ userStr(user,"id")

role −→ userStr(user,"role")

exp <> exp −→ not exp = exp

whoDid(id) −→ whoDid(process,id)

queueSize() −→ queueSize(user)

rndRobin(id,id’) −→ rndRobin(user,id,id’)
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Implicitly, they define a scoring function to order the set of users given by the
where clause. The only allowed variables are in the language are user and task

and process. The language is parameterized over the set of operators, functions,
and types; in Section 3.1 we explain this in more detail. This means that a large
number of extensions to the language can be made without re-working the core se-
mantics. Thus, the properties described here are valid for any valid set of operators,
functions, and types that one might wish to use, as we describe later.

The pick prefix can be omitted. The clauses where, and prefer can also be omitted.
In such case the default values are respectively: pick 1, where true, prefer (empty
list). Additionally, if none of the keywords pick, where or prefer are present, the
given expression is assumed to be the where clause, i.e. exp without any top-level
keywords means pick 1 where exp with no prefer clause.

For completeness Figure 3 also shows an example of implementation-specific op-
erators and functions and syntactic rewrites (for syntactic sugar). This example
extension corresponds to the functions we have used in the examples throughout
the paper. In Section 3.2 we explain how this example extension is defined. Inter-
ested readers are encouraged to consult the technical report [7] for more details on
how the example extension interacts with the core language.

Type system An allocation rule is well-typed if and only if after syntactic
rewrites it has a derivation in the type system given in Figure 4. The language has
only static types, and types are inferred (no explicit type declarations).

Types are given by τ ::= int | string | bool | β, where β represents any additional
types that are given given as parameters as part of an implementation-specific
extension of the language.

Extending and instantiating the language In addition to the types β, any
parameters to instantiate the language come with (1) a domain V of values, which
contains the set U of users, the set T of tasks, and the set P of process instance
identifiers, (2) a domain F of function and operator symbols, (3) a function Θ :
V → τ that maps values to types, and (4) a function Ω : F ⇀ τ ∗ ⇀ τ that maps
functions and input types to output types. Intuitively, the type system requires
hard constraints and soft constraints to be of type bool, and scores to be of type
int.
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Fig. 4 Type system

Θ(value) = τ

value : τ user : string

task : string process : string

exp1 : τ1 exp2 : τ2 Ω(op, [τ1, τ2]) = τ
exp1 op exp2 : τ

exp1 : τ1 Ω(op, [τ1]) = τ
op exp1 : τ

exp1 : τ1, . . . , expn : τn τ = Ω(function, [τ1, . . . , τn])
function(exp1, . . . , expn) : τ

exp : bool pexp1 : int, . . . , pexpm : int
n : int cexp1 : bool, . . . , cexpm : bool

pick n where exp prefer [pexp1] cexp1 · · · [pexpm] cexpm

3.1 Denotational semantics

When the process execution engine calls upon the work allocation engine to allocate
a user to a task, it sends the allocation rules that apply to that task along with a set
of users, the name of the task to be allocated, and the current process instance id.
In response the work allocation engine sends back a subset of those users as well as
their scores (and leaves it up to the BPM engine to handle runtime negotiations).
In other words the allocation rules implicitly map a set of users, a task, and a
process instance id to a set of potential users to whom the task can be allocated.
This set of users is specified by the hard constraints. Within the set, the users are
ordered by a scoring, which is decided by the soft constraints (the prefer clause).

This is reflected by the denotational semantics, which maps a clause and a triple of
a set of users, a task, and a process instance id, to a function from users to integer
values (denoted by V|int). The semantic functions have the following signatures:

Γ[[·]] : clauses → (2U × T × P) → U ⇀ V|int

∆[[·]] : exp → (U × T × P) ⇀ V
Π[[·]] :pair* → (U × T × P) ⇀ V|int
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Fig. 5 Denotational semantics

Γ[[where exp prefer [pexp1] cexp1 · · · [pexpm] cexpm]](U, t, p) =

{(u, s) | u ∈ U ∧ ∆[[exp]](u, t, p) = true

∧ Π[[[pexp1] cexp1 · · · [pexpm] cexpm]](u, t, p) = s}

Π[[[pexp1] cexp1 · · · [pexpm] cexpm]] =

λ(u, t, p) . cond(∆[[cexp1]](u, t, p), ∆[[pexp1]](u, t, p), 0) + · · ·

+ cond(∆[[cexpm]](u, t, p), ∆[[pexpm]](u, t, p), 0)

∆[[value]] = λ(u, t, p) . value

∆[[user]] = λ(u, t, p) . u

∆[[task]] = λ(u, t, p) . t

∆[[process]] = λ(u, t, p) . p

∆[[exp1 op exp2]] = λ(u, t, p) . eval(op,

∆[[exp1]](u, t, p), ∆[[exp2]](u, t, p))

∆[[op exp]] = λ(u, t, p) . eval(op, ∆[[exp]](u, t, p))

∆[[func(exp1, . . . , expn)]] = λ(u, t, p) . eval(func,

∆[[exp1]](u, t, p), . . . , ∆[[expn]](u, t, p))

The definitions of these denotations are shown in Figure 5. The definitions use two
auxiliary functions, eval and cond. The function eval is used to evaluate external
functions that are defined in the parameters given to instantiate the language.
Formally, eval : F ⇀ V∗ → V maps a function or operator symbol, and a list of
values to a return value. In an instantiation of the language, every defined function
is required to be a total map from a list of values of appropriate argument types
to a value of the appropriate return type. The function cond : (V × V × V) → V
returns its second argument if the first argument is true, and its third argument
otherwise.
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Given a well-typed rule r = pick n c, with a user database U , a current task t,
and a process instance id p, the denotation Γ[[c]](U, t, p) yields a partial map from
users to their scores. Using this partial map, the allocation engine chooses n users
for the task t in process instance p heuristically based on their scores (and other
criteria, such as availability of the users).

Definition 1 (Well-typed evaluation) We say that the functions Ω and eval
are consistent if and only if for all function symbols f and values [v1 : τ1, . . . , vn : τn]

Ω(f, [τ1, . . . , τn]) = τ ⇒ eval(f, [v1, . . . , vn]) = (v : τ)

We also say that eval is well-typed with respect to Ω.

Theorem 2 (Progress and preservation) The denotational function is defined
on all well-typed rules. More formally, let U , T , P, V, F , Ω, Θ, and eval be given
such that Ω and eval are consistent. Let r = pick n c be a well-typed rule. Then Γ[[c]]
is well-defined, and furthermore ∀ U ⊆ U , u ∈ U, t ∈ T , p ∈ P : Γ[[c]](U, t, p)(u) =
s ⇒ s : int.

Corollary 3 The denotation Γ[[c]](U, t, p) yields a (partial) function U ⇀ V|int.
Thus, every user has a unique score or no score.

Proof. Follows from the definition of Γ[[·]] and the fact that ∆[[·]] and Π[[·]] are
functions. �

Last, we consider how composition of rules is defined:

Definition 4 (Composition of rules) Given two rules where exp prefer pairs
and where exp ′ prefer pairs ′ their composition is defined as follows:

Γ[[where exp prefer pairs]](U, t, p)

⊕Γ[[where exp′ prefer pairs′]](U, t, p) =

{(u, s) | u ∈ U ∧∆[[exp]](u, t, p) = true

∧∆[[exp′]](u, t, p) = true

∧Π[[pairs pairs ′]](u, t , p) = s}

For almost any concrete instantiation of the language with a sane and operator,
this definition will be equivalent to

Γ[[where exp and exp ′ prefer pairs pairs ′]](U , t , p).
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3.2 Concrete prototype language

As promised we now return to the instantiations and extensions to the core language
that are necessary to express the examples throughout the paper. Specifically, these
are the ones shown in the middle and bottom parts of Figure 3. We now consider
these extensions in more detail.

Recall, that the necessary parts for extension are (1) additional types β (if any), (2)
function/operator names/symbols F , types Ω, and semantics eval, (3) syntactic
rewrites for the parser (if any), and (4) operator fixity (infix, prefix, postfix) and
precedence for the parser. The necessary parts for instantiation are then (5) the
domain of values V and (6) the domain of users U , tasks T , and process instance
identifiers P . This may seem somewhat daunting at first, but most of the domains
needed for instantiation are likely to always be defined as standard types such as
string or int. Furthermore, the functions typically turn out to be simple call-out
wrappers equipped with a type check function.

Additional types Oftentimes we wish to write a query that checks for mem-
bership of a set. E.g., if a user has many different roles, we may wish to stipulate
that the role developer is a member of that set of roles. To this end we introduce
sets of the three primitive types. The complete type grammar becomes:

τ ::= int | string | bool | β

β ::= set of int | set of string | set of bool

We identify the set of users U with strings, T with strings, and P with ints. The
set of values V thus becomes the union over these and their powersets; Θ is the
obvious map from values to types. (Notice, though, that it is not possible to write
set literals in the language, although sets exist as (intermediate) values.)

Syntactic rewrites Figure 3 shows the rewrites that were introduced to sugar
the language. Consider the example rule role = "Finance" from Section 1. It is
syntactically rewritten as userStr(user,"role") = "Finance", where userStr is
a binary function that maps pairs of strings to sets of strings, and is well de-
fined for all users. As another example, the rule role = "Finance" and user =

whoDid("Invoice") is interpreted as

userStr(user,"role") = "Finance" and user = whoDid(process,"Invoice")
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where userStr is a binary function as before, and whoDid is a binary function that
takes an int and a string, and returns a string 1 .

The functions are all outside the core grammar; we consider these next.

Function/operator symbols Referring again to Figure 3 the concrete language
contains the infix operators or, and, =, <, >, <=, >=, +, -, *, / (integer division),
% (modulo), and the unary prefix operators +, -, not. These all have the usual
meanings and precedence. (Modulo is defined as in Java.) Given the functions
listed, we have

F = { or, and, not, =, <, >, <=, >=, +, -, *, /, %,

procStr, userStr, queueSize, rndRobin,

whoDid}.

The type map Ω is shown in Figure 6.

Notice that = is overloaded for comparison between all three primitive types as well
as for set membership test (but not for set to set comparison!)

Semantics of operators/functions: eval In the prototype the functions are
handled by external dispatch to methods written outside the language (concretely,
in Java) 2 . The semantics of all operators is completely routine as they map to
the same operators in Java. One exception is =, which will mean either ∈, = or 3
depending on the type of its arguments. Notice how the type system permits this
kind of overloading.

The function userStr can be given either "location" or "role" as its second ar-
gument and then returns the set of current locations/roles for the user given as
the first argument (or the empty set in case the user does not exist or some other

1 Many of the rewrites simply provide shorthands to allow the omission of typical ar-
guments like user, task, and process. In the Infosys prototype these were provided by
convention to all external function calls to avoid having a large number of trivial syntactic
rewrites.
2 In the Infosys implementation the binary and unary operators have all been added to
the language core because (1) they will generally be needed in any specialization and (2)
the language performs better.
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Fig. 6 The function type map Ω for the concrete example language

or 7→ {[bool, bool] 7→ bool}

and 7→ {[bool, bool] 7→ bool}

not 7→ {[bool] 7→ bool}

= 7→ {[int, int] 7→ bool,

[set of int, int] 7→ bool,

[int, set of int] 7→ bool,

[string, string] 7→ bool,

[set of string, string] 7→ bool,

[string, set of string] 7→ bool,

[bool, bool] 7→ bool,

[set of bool, bool] 7→ bool,

[bool, set of bool] 7→ bool}

procStr 7→ {[int, string] 7→ set of string}

userStr 7→ {[string, string]

7→ set of string}

queueSize 7→ {[string] 7→ int}

rndRobin 7→ {[string, int, int] 7→ int}

whoDid 7→ {[int, string] 7→ string}

< 7→ {[int, int] 7→ bool}

> 7→ {[int, int] 7→ bool}

<= 7→ {[int, int] 7→ bool}

>= 7→ {[int, int] 7→ bool}

+ 7→ {[int, int] 7→ int}

- 7→ {[int, int] 7→ int}

* 7→ {[int, int] 7→ int}

/ 7→ {[int, int] 7→ int}

% 7→ {[int, int] 7→ int}

string was given as the second argument. Analogously for procStr. The remaining
functions perform as described in the examples in Section 1.

3.3 Miscellaneous issues

Process engine context When the process engine calls upon the allocation
engine, it passes on a context consisting of a set of users, a task, and a process
instance id (and, of course, the rule expressions). Thus far we have written out the
context as (U, t, p). Since many of our external functions need part of this context
they are subject to syntactic rewrites that add parts of the context as arguments. A
solution that would be simpler and more robust to future changes would be for the
process engine to pass the entire relevant context along as one parameter (e.g. a
map) and have the allocation engine pass the entire context on to all external
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functions. Incidentally, the number of external function calls could be reduced by
giving a function the set of users U rather than each user u one at a time.

Allocation as an optimization problem It is enlightening to consider work
allocation as an optimization problem. In fact, work allocation (also knows as
rostering or scheduling) is one of the most common problems addressed by integer
programming techniques in practice.

Our allocation problem—through deliberate language design to ensure this—can
be solved in polynomial time (i.e. the function Γ[[·]] evaluates in polynomial time),
provided that evaluating exp can be done in polynomial time. The naive, brute force
algorithm simply evaluates each of the users: first it checks if they satisfy the hard
constraint, and if they do, how many points they get from the soft constraints.
It then leaves it to the process execution engine to pick—presumably—the top
n satisfying users. The correctness of this algorithm is due to the monotonicity:
the computation of each user’s score is independent of who else is considered for
allocation.

Assume we wish to evaluate the following rule in the context of task t in process p:

pick n where exp

prefer [pexp1] cexp1 · · · [pexpm] cexpm

Given a user database U with users {u1, ..., u|U |} and the appropriate definitions of
the functions called in the expressions, an allocation is a vector a1, ..., a|U | ∈ {0, 1}|U |

where aj = 1 iff the task is allocated to user uj. We then seek to

maximize
∑

j∈[1..|U |]

(
aj ·

∑
i∈[1..m][cexpi(uj, t, p)] · pexpi(uj, t, p)

)
subject to ∀j ∈ [1..|U |] : aj = 1 =⇒ exp(uj, t, p)

and
∑

j∈[1..|U |] aj = n.

When we write [cexpi(uj, t, p)] in the objective function [·] is the indicator function
which maps to 1 when its argument evaluates to true and to 0 otherwise. The
objective function can therefore be read as “for all users, if the task is allocated to
them, add to the sum of total points, the points they receive for each preference that
is true for them”. Strictly speaking, we should have enclosed exp, cexp, and pexp
in the evaluation function ∆[[·]], but this has been omitted to keep the formulation
free of clutter.
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4 Implementation in PEAS

The work allocation language has been implemented and tested with the PEAS
platform, Infosys’ proprietary platform for BPM that includes business process
modeling, deployment, execution, and monitoring. The design of the system is
shown in Figure 7. Notice that this architecture is slightly simplified relative to the
language outlined in Section 3.1; specifically, it supports only allocation rules on
task-level, but not on a scope, process or as a policy. Therefore the keyword task

loses its use and as a result the constructor on the class LateAllocation takes only
the allocation rule expression (as an InputStream, userdata, and external dispatch
functions (but not the name of the task to which a resource must be allocated)).
For historic reasons the process instance id is not passed through the interface,
but available in the context. Notice the class Type which corresponds to the type
production β in the semantics. The classes UserScoreMap and UserValueMap are
used to return the map of user names to (score, reasons) pairs that the process
engine use to decide ultimately, which user is suggested for the task.

5 Evaluation

The prototype has been tested and evaluated, and it is slated for inclusion in
Infosys’ BPM platform, PEAS, with a GUI that is being developed. Several pro-
totype workflows have been tested with the allocation language, including a CRM
(Customer Relations Management) workflow, a sales process, an approval/review
process, and a bank transaction process. To prove tangible business benefits based
on more than just anecdotal evidence, an empirical study is necessary; this remains
future work.

To evaluate the domain fit we applied two methods: (1) a patterns-based analy-
sis and (2) qualitative discussions sessions with industry experts, who confirmed
that the language fits well with the needs for human-intentisive workflows (e.g.,
insurance claims, call centers).

A patterns-based analysis in the style of Russell et al. [3] yields a first approximation
of the domain fit of an allocation language. The analysis proceeds by evaluating if
the language supports, partially supports or does not support each of the patterns
in a suite of 43 patterns collected from industry and research. Table 1 shows a
patterns-based evaluation of our work allocation language juxtaposed with the
outcome of related patterns-based analyses. Note that only the 11 patterns that
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Fig. 7 Class diagram including lexer and parser generator files

LateAllocation(InputStream in, 
UserData us, ExternalDispatch ext)
int getUsersToPick()
Map<String,Score> getUserScores()

InputStream in
UserData us
ExternalDispatch ext

LateAllocation

evaluate (String function, Object... args)
Type returnType (String function)
Type[] types (String function)
Set<String> allUsers ()

UserData
<<interface>>

evaluate (String function, Object... args)
Type returnType (String function)
Type[] types (String function)

ExternalDispatch
<<interface>>

Score ()
Score (Score sc, int delta, String reason)
int total ()
ArrayList<Reason> reasons ()

int total
ArrayList<Reason> reasons

Score

Reason (int points, String reason)
int points ()
String reason ()

Reason

Str, Int, Bool, 
StrSet, IntSet, 
BoolSet

Type
<<enum>>

Object val (String user)
Type type ()

UserValueMap
<<interface>>

Score score (String user)
String toString ()

UserScoreMap
<<interface>>

*1

1

1

1

1

SimpleFunctions PEASFunctions SimpleUserData PEASUserData

LateAllocation.g

LateAllocation
Parser

<<generated>>

LateAllocation
Lexer

<<generated>>

LateAllocation
TreeWalker

<<generated>>

1

1

1

1

1

1

*

1 *
1

specify who is ultimately allowed to perform a task are included (cf. our discussion
in Section 2.1) plus 3 new patterns. As mentioned earlier the language did not set
out to specify runtime negotiation rules because these are more elegantly handled
by the process engine. To be deemed to have a good domain fit and satisfy the
requirements, SoftAlloc must fully support (+) or partially support (+/-) most
of the desired patterns, and it must support soft constraints.

The patterns-based analysis suggests that SoftAlloc does indeed have a good

216



Table 1 A patterns-based comparison. Our evaluation is in the columns and rows
in italics ; the rest of the table is the result of related research by others [3,8,9,10]. +
indicates full support, x/- indicates partial support (e.g. through coding a bit), and
- indicates no support. B4P/WS-HT is short for BPEL 4 People/WS-HumanTask.

Research Open src. Commercial

Pattern S
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er

C
O

S
A

iP
la

n
et

Direct allocation + + + + - + + + + + +

Role-based + + + - + + + + + + +

Separat. of duties +/- + + - - - - + + +/- +

Case handling +/- - - - - - - - + - -

Retain familar +/- + + + - - - + + + +

Capability-based + - + - - - - - + + +

History-based +/- +/- + - - - - - - +/- +

Organizational + +/- + - - - +/- - + + +

Round robin +/- - + - - - - - - +/- +/-

Random + - + - - - - - - + +/-

Shortest queue +/- +/- + - - - - - - + +/-

Mult. resources + ? ? ? ? ? ? ? ? ? ?

Soft constraints + ? ? ? ? ? ? ? ? ? ?

Combine patterns + ? ? ? ? ? ? ? ? ? ?

domain fit. In fact, SoftAlloc supports or partially supports the entire set of
patterns inside the scope of the work. In many of the other products +/- means
that the pattern requires coding/workarounds every time it is used; in SoftAlloc
+/- means that an interface to the existing systems of the company has to be coded
once to get full support.

Some limitations apply to this methodology: whereas our language fares quite well
in the comparison, the patterns-based analysis itself inadequately captures the
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expressive power of our language. The last three rows (Multiple resources, Soft
constraints, and Combine patterns) illustrate this. E.g., soft constraints are not a
single pattern, but an idea that could easily be expanded to comprise an entire
suite of patterns in its own right. The patterns-based analysis falls short here
because the inventors of the analysis did not anticipate soft constraints. This clearly
shows the limitation of approaches with some finite set of patterns chosen without
any particular guiding principle other that what is available in current products.
Similarly, the patterns-based analysis does not mention if patterns can be combined
and if so with what constraints. If two systems both allow, say, role-based allocation
and organizational allocation, but only one of the systems permits the designer to
combine these two patterns in one allocation rule, a patterns-based analysis will not
reveal this critical difference of expressiveness. This clearly demonstrates that while
patterns may be useful as a checklist to avoid forgetting important functionality,
they should never be applied blindly or used as the only measure of expressiveness.
In conclusion a patterns-based evaluation is somewhat unsuitable.

6 Related work

In the introduction we stated that we aim for a work allocation language that
“(a) supports soft constraints, (b) plugs into any business process language in an
aspect-like manner, (c) can be used with a wide range of platforms/legacy systems,
(d) allows rules on many organizational levels to be combined, and (e) runs fast
enough to allocate and re-allocate at runtime”. In examining the related work it is
useful to keep these key features in mind:

Allocation does have some similarities with the scheduling done in a multipro-
cessor system, but in the case of work allocation the processors (i.e. the human
resources) are rarely homogeneous. In this way the problem area seems closer re-
lated to Grid scheduling, and indeed some interesting ideas have cropped up in the
Grid scheduling field (makespan reduction [11], algorithms/heuristics [12]). How-
ever, these either do not support soft constraints (a) or require full opmization
(e).

We have already discussed the work on resource patterns by Russell et al. [3]. Senkul
and Toruslu [6] have suggested a simple allocation language, which in their proposal
is translated into the constraint language Oz and solved by a constraint solver.
The approach solves the entire workflow (or the entire set of running workflows)
in one go, and it is therefore not clear how the approach would accommodate
runtime flexibility whilst being scalable—in other words it does not have feature
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(e). Another approach uses defeasible logic [13], and BPEL 4 People has attempted
to make WS-BPEL better suited for human-intensive workflows [4], but these do
not address soft constraints (a) and composition (d).

There exists a variety of business rule languages (e.g. OMG’s SVBR[14]) and thus
it would seem obvious to take one of these as a starting point as it naturally plugs
in many contexts (b,c) and composes well (d). As we examined these languages we
found that there was no direct facility for soft constraints (a). It could be mimicked
in some cases, but at the cost of significant extra complexity.

Ways of solving NP -hard scheduling problems have been studied for decades in
operations research, where the survey by Ernst is a good place to start [15]. Al-
though such approaches have superior expressiveness in modeling soft constraints
(a), they are markedly more complicated to use, even for programmers, and they
cannot generally guarantee optimal solutions in P -time (e).

Interdisciplinary papers have proposed auction/game theory-based [16] and AI -
based [17] approaches to work allocation. These algorithms behave as dynamic
systems and thus usually adapt very well to shifts in the supply and demand of
tasks. However, they do not consider soft constraints directly (a).

7 Conclusion and future work

The patterns-based analysis shows that SoftAlloc can express all patterns for
which it was designed and all examples that were deemed necessary. Industry expert
interviews further supported the conclusion that SoftAlloc has a good fit to
human-intensive workflows. The use of soft constraints has proven very beneficial,
and as intended the language integrates with any system we have seen so far.
The language was not built for direct use by business process designers/analysts.
Instead a GUI (both for users and allocation rule designers) is being developed in
the production setting where the language is to be used. The GUI coupled with
the textual form presented in this paper will allow both programmers and domain
specialists to use the language in their preferred way and support conflict detection.

Another improvement would be to devise ways of avoiding the fixed numerical pref-
erence levels. This is particularly relevant when several levels of rules are combined.

Based on the discussion of resource patterns it would be interesting to develop
better measures of expressiveness to benchmark languages.
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More benefits are yet to be reaped: by capturing work allocation rules directly,
performance simulation can be used to identify bottlenecks, estimate capacity re-
quirements, and suggest what resources to add. This is an important improvement
over previous systems, where the lack of integration made performance analysis a
non-routine job requiring specialized skills. In systems where work allocation rules
are captured in a general-purpose language, workflow performance simulation is
often infeasible.

Another promising idea is to leverage runtime statistics to improve the allocation
optimization. Runtime statistics could include average completion time probability
of task type per agent, inferred probability of delay, etc. All these statistics will
result in more soft constraints that the scheduler can use in conjunction with the
user-specified ones.
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CAiSE, Vol. 5074 of Lecture Notes in Computer Science, Springer, 2008, pp. 94–108.

[10] P. Wohed, B. Andersson, A. H. ter Hofstede, N. R. W. M. van der Aalst, Patterns-
based evaluation of open source BPM systems: The cases of jBPM, OpenWFE, and
Enhydra Shark, Tech. Rep. BPM-07-12, Eindhoven University of Technology (2007).
URL http:
//is.tm.tue.nl/staff/wvdaalst/BPMcenter/reports/2007/BPM-07-12.pdf

[11] J. Blythe, S. Jain, E. Deelman, Y. Gil, K. Vahi, A. Mandal, K. Kennedy, Task
scheduling strategies for workflow-based applications in grids, in: CCGRID ’05, IEEE
Computer Society, 2005, pp. 759–767.
URL http://ieeexplore.ieee.org/iel5/10428/33122/01558639.pdf?tp=
\&isnumber=\&arnumber=1558639

[12] S. Zhang, Y. Wu, N. Gu, Adaptive grid workflow scheduling algorithm, in: Grid and
Cooperative Computing Workshops, Vol. LNCS 3252, 2004, pp. 140–147.
URL http://www.springerlink.com/content/fkaqt7lhmu9amnhx/

[13] G. Governatori, A. Rotolo, S. Sadiq, A model of dynamic resource allocation in
workflow systems, in: ADC ’04, Australian Computer Society, Inc., 2004, pp. 197–
206.
URL http://portal.acm.org/citation.cfm?id=1012316

[14] OMG, Semantics of business vocabulary and business rules (SBVR), Tech. rep.,
Object Management Group, second SBVR Interim Specification, http://www.omg.
org/docs/dtc/06-08-05.pdf (Sep. 2006).
URL http://www.omg.org/docs/dtc/06-08-05.pdf

221



[15] A. T. Ernst, H. Jiang, M. Krishnamoorthy, D. Sier, Staff scheduling and rostering:
A review of applications, methods and models, Eur. J. Op. Res. 153.
URL http://www.sciencedirect.com/science/article/B6VCT-48BKYWR-4/2/
4b065270117e5421bb1299161a78803d

[16] E. Koutsoupias, Selfish task allocation, Bulletin of EATCS 81 (2003) 79–88.
URL http://cgi.di.uoa.gr/∼elias/publications/paper-kou03.pdf

[17] S. Abdallah, V. Lesser, Learning the task allocation game, in: AAMAS ’06, ACM
Press, New York, 2006, pp. 850–857.
URL http://dis.cs.umass.edu/∼shario/papers/aamas06.pdf

222



Reactors: A Data-Oriented
Synchronous/Asynchronous Programming

Model for Distributed Applications

John Field a,∗, Maria-Cristina Marinescu a, Christian Stefansen b

aIBM Research, T.J.Watson Research Center, 19 Skyline Drive, Hawthorne, NY
10532

bDIKU, University of Copenhagen, Universitetsparken 1, København Ø, Denmark

Abstract

Our aim is to define the kernel of a simple and uniform programming model—the
reactor model—which can serve as a foundation for building and evolving internet-
scale programs. Such programs are characterized by collections of loosely-coupled
distributed components that are assembled on the fly to produce a composite appli-
cation. A reactor consists of two principal components: mutable state, in the form of
a fixed collection of relations, and code, in the form of a fixed collection of rules in
the style of Datalog. A reactor’s code is executed in response to an external stimulus,
which takes the form of an attempted update to the reactor’s state. As in classical
process calculi, the reactor model accommodates collections of distributed, concur-
rently executing processes. However, unlike classical process calculi, our observable
behaviors are sequences of states, rather than sequences of messages. Similarly, the
interface to a reactor is simply its state, rather than a collection of message chan-
nels, ports, or methods. One novel feature of our model is the ability to compose
behaviors both synchronously and asynchronously. Also, our use of Datalog-style
rules allows aspect-like composition of separately-specified functional concerns in a
natural way.
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1 Introduction

In modern web applications, the traditional boundaries between browser-side pre-
sentation logic, server-side “business” logic, and logic for persistent data access and
query are rapidly blurring. This is particularly true for so-called web mash-ups,
which bring a variety of data sources and presentation components together in
a browser, often using asynchronous (“AJAX”) logic. Such applications must cur-
rently be programmed using an agglomeration of data access languages, server-side
programming models, and client-side scripting models; as a consequence, programs
have to be entirely rewritten or significantly updated to be shifted between tiers.
The large variety of languages involved also means that components do not compose
well without painful amounts of scaffolding. Our ultimate goal is thus to design
a uniform programming language for web applications, other human-driven dis-
tributed applications, and distributed business processes or web services which can
express application logic and user interaction using the same basic programming
constructs. Ideally, such a language should also simplify composition, evolution,
and maintenance of distributed applications. In this paper, we define a kernel pro-
gramming model which is intended to address these issues and serve as a foundation
for future work on programming languages for Internet applications.

The reactor model is a synthesis and extension of key ideas from three linguistic
foundations: synchronous languages [1–3], Datalog [4], and the actor model [5].
From Datalog, we get an expressive, declarative, and readily composable language
for data query. From synchronous languages, we get a well-defined notion of "event"
and atomic event handling. From actors, we get a simple model for dynamic creation
of processes and asynchronous process interaction.

A reactor consists of two principal components: mutable state, in the form of a fixed
collection of relations, and code, in the form of a fixed collection of rules in the
style of Datalog [4]. A reactor’s code is executed in response to an external stimu-
lus, which takes the form of an attempted update to the reactor’s pre-reaction state
(pre-state). When a stimulus occurs, the reactor’s rules are applied concurrently
and atomically in a reaction to yield a response state, which becomes the initial
state for the next reaction. In addition to determining the response state, evalu-
ation of rules in a reaction may spawn new reactors, or generate new stimuli for
the currently executing reactor or for other reactors. Importantly, newly-generated
stimuli are processed asynchronously, in later reactions. However, we provide a
simple mechanism to allow collections of reactors to react together as a unit when
appropriate, thus providing a form of distributed atomic transaction.
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As in classical process calculi, e.g., pi [6], the reactor model accommodates col-
lections of distributed, concurrently executing processes. However, unlike classical
process calculi, our observable behaviors are sequences of states, rather than se-
quences of messages. Similarly, the interface to a reactor is simply its state (“REST”
style [7]), rather than a collection of message channels, ports, or methods. We ac-
commodate information hiding by preventing certain relations in a reactor’s state
from being externally accessible, and by allowing the public relations to serve as
abstractions of more detailed private state (as in database views). A significant
advantage of using data as the interface to a component, and Datalog as a basis
for defining program logic, is that the combination is highly “declarative”: it allows
separately-specified state updates (written as rules) to be composed with minimal
concern for control- and data-dependence or evaluation order.

Contributions. We believe that the reactor model is unique in combining the
following attributes harmoniously in a single language: (1) data, rather than ports
or channels as the interface to a component; (2) synchronous and asynchronous
interaction in the same model, with the ability to generate processes dynamically;
(3) expressive data query and transformation constructs; (4) the ability to specify
constraints/assertions as a natural part of the core language; (5) distributed atomic
transactions; and (6) declarative, compositional specification of functionality in an
“aspect-like” manner. We believe that Internet components can be developed more
productively and composed more readily when these attributes are provided in a
single programming model.

This paper is an updated and extended version of [8]. This version fills in many
semantic details absent from the earlier version, corrects errors, and adds additional
examples.

2 Reactor basics

A reactor consists of a collection of relations and rules, which together constitute
a reactive, atomic, stateful unit of distribution. The full reactor syntax is given in
Fig. 1.

Consider the declaration for OrderEntryA in Fig. 2. OrderEntryA defines a class
of reactors that are intended to log orders—say, for an on-line catalog application.
Reactor instances are created dynamically, using a mechanism we will describe in
Section 3.2.
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reactor ::= def reactor-type-name = { {decl .}* }

decl ::= ( relation-decl | rule-decl ) .

relation-decl ::= [public | public write | public read] [ephemeral] rel-name : ( {type ,}* )

rule-decl ::= head-clause <- body

body ::= {body-clause ,}+

head-clause ::= [var-name.]rel-name[ˆ] ( {(_ | var-name | new) ,}* )

| not [var-name.]rel-name[ˆ] ( {(_ | var-name) ,}* )

body-clause ::= [not] [var-name.][ˆ|-]rel-name ( {(_ | var-name) ,}* ) | basic-predicate

basic-predicate ::= exp (< | > | <> | =) exp

type ::= int | string | ref reactor-type-name

exp ::= var-name | atom-name | numeric-literal | string-literal

| exp (+ | - | * | / | %) exp | self

Fig. 1. Reactor syntax.

def OrderEntryA = {
// (id, itemid, qty)
public orders: (int, int, int).
// (id, itemid, qty)
log: (int, int, int).

log(id, itemid, qty) <-
orders(id, itemid, qty).

}

def OrderEntryA’ = {
// ... same as OrderEntryA ...

not log(id, itemid, qty) <-
not orders(id, itemid, qty).

}

def OrderEntryB = {
// ... same as OrderEntryA ...

// orderIsNew is true if order has
// not previously been logged
ephemeral orderIsNew: ().
orderIsNew() <-

orders(id, itemid, qty),
not -log(id, itemid, qty)

}

def OrderEntryC = {
// .. same as OrderEntryB ...

// delete any new order whose id is the
// same as a previously logged id,
// but which is not a duplicate
not orders(id, itemid, qty) <-

^orders(id, itemid, qty),
not -log(id, itemid, qty),
-log(id, _, _).

}

Fig. 2. Order entry: variations.

The state of a reactor is embodied in a fixed collection of persistent relations. Re-
lations are sets of (τ1, ..., τn) tuples, where each τi is one of the types int, string,
or ref reactor-type-name. The primitive types have the usual meanings. Reactor
references, of the form ref reactor-type-name, are described in Section 3.2. Rela-
tions are empty when a reactor is instantiated. In addition to persistent relations,
whose values persist between reactions, a reactor can declare ephemeral relations.
These relations are written and read in the same manner as persistent relations,
but they are re-initialized as empty with every reaction.
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The state of OrderEntryA consists of two persistent relations, orders and log,
each of which is a collection of 3-tuples of integer values. Relation orders has
access annotation public, which means that the contents of orders may be read
or updated by any client. By “update”, we simply mean that tuples may be added to
or deleted from orders; no other form of update is possible. Relation log, lacking
any access annotation, is private, the default, and may thus only be read or updated
by the reactor that contains log.

A reaction begins when a reactor receives an update bundle from an external source.
An update bundle is a partial map from the set of relations of the recipient to pairs
of sets (∆+, ∆−), where ∆+ and ∆− are sets of tuples to be added and deleted,
respectively, from the target relation. For any update bundle (∆+, ∆−), we require
that ∆+∩∆− = ∅ and ∆+∪∆− 6= ∅. In the examples that follow, an update bundle
will typically contain an update to a single relation, usually adding or deleting only
a single tuple. However, an update bundle can in general update any of the public
relations of a reactor, and add and delete arbitrary number of tuples at a time.

The state of a reactor before an update bundle is received is called its pre-state. A
reaction begins when the contents of an update bundle is applied atomically to the
pre-state of a reactor, yielding its stimulus state. The stimulus state of a reaction is
(conceptually) a copy of each relation of the reactor with the corresponding updates
from the update bundle applied. So, for example, in the case of OrderEntryA, if
relation orders contained the single tuple (0, 1234, 3) prior to a reaction, and a
reaction is initiated by applying an update bundle with ∆+ = {(1, 5667, 2)} and
∆− = ∅, then the stimulus value of orders at the beginning of the reaction will
be the relation {(0, 1234, 3), (1, 5667, 2)}. We will refer to the “value of relation r
in the stimulus state” and “the stimulus value of r” interchangeably.

If a reactor contains no rules, the state of its relations at the end of a reaction—
its response state—is the same as the stimulus state, and the reaction stores the
stimulus values back to the corresponding persistent relations. Hence in its simplest
form, a reaction is simply a state update. However, most reactors will have one or
more rules which compute a response state distinct from the reactor’s stimulus
state (Section 2.1).

Rule evaluation can also define sets of additions and deletions to/from the future
state of either local relations or—via reactor references—relations of other reactors.
These sets form the update bundles—one bundle per reactor instance referenced
in a reaction—that initiate subsequent reactions in the same or other reactors.
Update bundles thus play a role similar to messages in message-passing models of
asynchronous computation.
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From the point of view of an external observer, a reaction occurs atomically, that
is, no intermediate states of the evaluation process are externally observable, and
no additional update bundles may be applied to a reactor until the current reaction
is complete.

Fig. 3 illustrates the life cycle of a typical collection of reactors, both from the point
of view of an external observer (the top half of the figure) and internally (the bottom
half of the figure schematically depicts reactor M during reaction i). The pre-state
of reactor M during reaction i is labeled -Si, its stimulus state is labeled ^Si, its
future state is labeled S^i, and its response state is labeled Si. The terms pre-
state, stimulus state, response state, and future state are meaningful only relative
to a particular reaction, because one reaction’s response state becomes the next
reaction’s pre-state, and references to a reactor’s future state are used (along with
the pre-state) to define the stimulus state for a subsequent reaction. The only “true”
state, which persists between reactions, is the response state. An external observer
therefore sees only a sequence of response states (more specifically, the response
values of public relations). Each rule of a reactor can refer programmatically to
relation values in all four states: it can read the pre-state of a relation (schematically
depicted as -r in Fig. 3), the stimulus state (^r), and the response state (r); it can
write the response state and the future state (r^).

2.1 Rule valuation

Reactor rules are written in the style of Datalog [4,9]; their syntax is given in Fig. 1.
The single rule of OrderEntryA can be read as “ensure that log contains whatever
tuples are in orders”. The right-hand side, or body of a reactor rule consists of
one or more body clauses. In OrderEntryA, there is only one body clause, a match
predicate of the form orders(id, itemid, qty). A match predicate is a pattern
which binds instances of elements of tuples in the relation named by the pattern
(here, orders) to variables (here, id, itemid, and qty). As usual, we use ‘_’ to
represent a unique, anonymous variable. Evaluation of the rule causes the body
clause to be matched to each tuple of orders and binds variables to corresponding
tuple elements. Since the head clause on the left side of the rule contains the
same variables as the body clause, it ensures that log will contain every tuple in
orders. Each clause in a rule may be regarded as a predicate in the logical sense,
hence a logical reading of OrderEntryA’s rule would be “for all id, itemid, qty, if
orders(id, itemid, qty) then log(id, itemid, qty).”

In general, a rule-decl can be read “for every combination of tuples that satisfy
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body, ensure that the head-clause is satisfied” (by adding or deleting tuples to
the relation in head-clause). The semantics of Datalog rule evaluation ensures
that no change is made to any relation unless necessary to satisfy a rule, and—for
our chosen semantics—that rule evaluation yields a unique fixpoint result in which
all rules are satisfied. Although our rule evaluation semantics is consistent with
standard Datalog semantics, we have made several significant extensions, including
head negation, reference creation, and the ability to refer to remote reactor relations
via reactor references.

Returning to reactor OrderEntryA, let us consider the case where the pre-state
values of orders and log are, respectively, {(0, 1234, 3)} and{(0, 1234, 3)}, and
an update bundle has ∆+ = {(1, 5667, 2)} and ∆− = ∅. Then the stimulus value
of orders will be equal to {(0, 1234, 3), (1, 5667, 2)}. No rule affects the value of
orders, so the response value of orders will be the same as the stimulus value. In
the case of log, rule evaluation yields the response state {(0, 1234, 3), (1, 5667, 2)},
i.e., the least change to log consistent with the rule.

Now, starting with the result of the previous OrderEntryA reaction described above,
consider the effect of applying another update bundle such that ∆+ = ∅ and ∆− =
{(0, 1234, 3)}. This reaction will begin by deleting (0, 1234, 3) from orders, yield-
ing the stimulus state orders = {(1, 5667, 2)}, log = {(0, 1234, 3), (1, 5667, 2)}.
Evaluating the rule after the deletion has no net effect on log (since the only
remaining tuple in orders is already in log), hence we get the response state
orders = {(0, 1234, 3)} and log = {(0, 1234, 3), (1, 5667, 2)}. We thus see that the
effect of this rule is to ensure that log contains every orderid ever seen in orders.
If we wanted to ensure that log is maintained as an exact copy of the current value
of orders (which would mean that it is no longer a log at all), we could add the ad-
ditional negative rule depicted in definition OrderEntryA’ in Fig. 2. The negative
rule of OrderEntryA’ has the effect of ensuring that if an orderid is not present
in orders, it will also be absent from log; i.e., it encodes tuple deletion. While
negation is commonly allowed in body clauses for most Datalog dialects, negation
on the head of a rule is much less common (though not unheard of, see, e.g., [10]).

Reactor definitions OrderEntryB and OrderEntryC of Fig. 2 add additional rules
that refine the behavior of OrderEntryA, using references to both pre-state and
stimulus values of relations. OrderEntryB defines an ephemeral nullary relation
orderIsNew, which functions as a boolean variable, initially false. The new rule in
OrderEntryB sets orderIsNew to true (i.e., adds a nullary tuple) if orders contains
a value not found in log prior to the reaction (i.e., in log’s pre-state value). The
definition of OrderEntryC further refines OrderEntryB by causing any new order
whose orderid is a duplicate of a previously logged orderid to be deleted. The new

229



A
P

P
LY

Si^^Si

SiRules-Si

inbk

add

removeinbox

…-r…
…^r…
…r…
…r^…

reaction done

next
reaction

Si-1M

P

N

Mi-1 Mi Mi+1

inbn

network …

add

Mi

dispatch
bundle

Si Si+1

Fig. 3. Reaction schematic.

def OrderEntryD = {
// (itemid, qty)
public ephemeral write req: (int, int).
// (key, itemid, qty)
public log: (ref Nonce, int, int)
// pending orders keyed to log entries
public pending: (ref Nonce).
// new key for this reaction
ephemeral newKey: (ref Nonce).

newKey(new) <- . // 1
log(k, item, qty) <- // 2

req(itemid, qty), newKey(k).
pending(k) <- newKey(k). // 3

}

def Nonce = {}

Fig. 4. Service-style order entry.

rule in OrderEntryC must distinguish the stimulus value of orders, i.e., ^orders
from its response value, i.e., orders, since the rule defines the response value to be
something different from the stimulus value in the case where a duplicate order id
is present.

It is important to note that the result of rule evaluation is oblivious to the or-
der in which rules are declared. We believe this feature makes it easier to update
the functionality of a reactor in an “aspect-like” fashion [11] by changing the rule
set without concern for control- or data-dependencies. We see this feature demon-
strated in the progression of examples depicted in Fig. 2, where rules can be mixed
and matched liberally to yield updated functionality.

Consider now the very different formulation of an order entry reactor depicted in
Fig. 4, OrderEntryD. In reactor type OrderEntryA, the set of all orders active in
the system is publicly readable and writable by external clients. In the alterna-
tive OrderEntryD formulation above, the ephemeral relation req functions as a
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request “channel” or “port”: incoming collections of order entries in an update bun-
dle are processed and cleared (deleted) immediately after the reaction, since req
is ephemeral. Relation req has a public write access annotation, hence it is not
externally readable.

Proponents of the “representational state transfer” (“REST”) style of component
interaction [7] embodied by OrderEntry argue that it makes evolution of web ap-
plications easier by exposing state directly, rather than encapsulating it through
access channels/ports/methods in a “service-oriented” style [12]. A notable feature
of the reactor model is that both styles are easily accommodated.

The rules of OrderEntryD are straightforward, except for rule (1), which creates
a new key. The expression new generates a new and unique instance of a nonce,
a trivial reactor whose only function is to serve as a generator of globally-unique
values. It is convenient to use such values as keys. While Nonces contain no rules,
in general, when a reactor is instantiated in a reaction, its rules are evaluated
along with the rules of the parent reactor, as we shall see in Section 3.3. Rule (1)
is an unconditional rule, and is an instance of the shorthand notation depicted
in Fig. 6(b). It is important to note that rule (1) only generates one instance of a
Nonce per reaction; a rule head clause containing new is satisfied once unique values
have been generated for each instance of new per vector of rule variables that are
instantiated by the rule.

2.2 Initialization, constants, and reaction failure

Consider the following rules:

r(x) <- s(x).

not r(x) <- s(x).

These rules are inherently contradictory, since they require that x be both present
and absent from relation r. In such cases, a conflict results. Because rules are
conditionally evaluated, conflicts cannot in general be detected statically and must
be detected during rule evaluation. If such a conflict occurs, the reaction fails : the
reactor rolls back to its pre-state and no update bundles are dispatched.

Consider the reactor definition Cell depicted in Fig. 5. Each instance of a Cell is
intended to hold exactly one value. Instances of Cell contain two relations: a public
unary relation val containing the publicly-accessible value of the cell, and a private
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def Cell = {
public val:(int).
live:().

// initializations
live() <- . // 1
val(0) <- not -live(). // 2

// singleton constraint: if not
// satisfied, reaction fails; reactor
// rolls back
not live() <-

val(x), val(y), x <> y. // 3
}

Fig. 5. Cell.

nullary (i.e., boolean) relation live. Recall that a reactor’s relations are initially
empty when the reactor is instantiated. Rules (1) and (2) together define an idiom
which will allow us to initialize relations to non-empty values. First, consider rule
(1). Rule (1) defines live to be a constant, since its response value evaluates to
non-empty (i.e., “true”) at the end of every reaction. Because of rule (1), -live in
rule (2) is nonempty only during the first reaction in which the Cell is instantiated.
Hence val will be initialized to 0 only once, in the reaction in which Cell is created.
Thereafter, -live will be non-null, and the initialization will not recur, allowing
val to be freely updated to arbitrary values.

Finally, consider rule (3) of Cell. The three clauses in its body collectively check to
see whether val contains more than one value, i.e., whether it is a singleton. If not,
the rule requires that its head clause (left-hand side) be satisfied, i.e., that live be
set to empty (false). However, any such attempt is inconsistent with the assertion in
rule (1) that live is non-empty (true), hence any attempt to update Cell without
maintaining the singleton invariant will result in a conflict and reaction failure.
We thus see that the reactor model allows “assertions” and “integrity constraints”
in the style of databases to be expressed in precisely the same form as rules that
express state updates. When some assertion fails, the reaction rolls back. Fig. 6(d)
depicts a notational convention that will allow us to use live to define rules that
represent assertions.

Clients of instances of reactor type Cell are required to ensure that they maintain
its singleton constraint, e.g., by deleting the current value of the cell before adding
a different value. However, if we wished, we could augment the declaration of Cell
to make it easier for clients that wish to update its value to avoid having to delete
the previous value by adding the following rule:

not val(x) <- -val(x), ^val(x’), x <> x’.

This rule is interesting because it refers to all three reactor states we have discussed
thus far: pre-state, stimulus state, and response state. The body of the rule checks to
see whether the stimulus value of val contains an item different from the pre-state.
If so, the offending pre-state item is deleted from the response value of val. Note,
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Notation Translation Comments

a r1(exp0) <- . . . ri(expi) . . . . r1(x0) <- . . . ri(xi) . . . ,

x0 = exp0, . . . ,

xi = expi.

Expressions expi are instances
of nonterminal exp in Fig. 1;
the xi are fresh variables.

b head <- . head <- 0 = 0.

c r(x1, . . . xn) := body. r(x1, . . . xn) <- body.

not r(x1’, . . . xn’) <- body,

-r(x1’, . . . xn’), x1’ <> x1.

. . .

not r(x1’, . . . xn’) <- body,

-r(x1’, . . . xn’), xn’ <> xn.

d FAIL <- . . . . not live() <- . . . . Assumes the following defini-
tions exist:

live: ().

live() <- .

e body0:{

head1 <- body1.

· · ·

headn <- bodyn.

}

head1 <- body1, body0.

· · ·

headn <- bodyn, body0.

f INIT not -live() Assumes same definitions as
(d).

g head1, · · · , headn <- body. head1 <- body.

· · ·

headn <- body.

Fig. 6. Notational conventions.

however, that it is still possible for the singleton constraint to fail if a client attempts
to insert more than one distinct value in a single update bundle. Fig. 6(c) depicts
a notational convention we will use in the sequel whenever we wish to “assign”
values to singleton relations such as val. The example in Fig. 5 illustrates how the
declarative nature of reactor rules makes it straightforward to “progressively refine”
existing functionality by adding new features in a non-intrusive way.

3 Reactor composition

In the following sections we explain how reactors interact asynchronously and syn-
chronously; we refer to this as reactor composition.
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def Fibonacci = {
// complete series thus far: each
// elt. has form (index, value)
public read series: (int, int).
// must be true for reactor to run
public write run: ().
// holds indices in the sequence
// less than the maximum
ephemeral notLargest: (int).

INIT: {
series(1,0), series(2,1) <- .
run() <- .

}

// indices in series less than max
notLargest(n) <- series(n, _), // 1

series(n’, _), n’ > n.

// compute next series value
series^(n+1, x1+x2) <-

not notLargest(n), series(n-1, x1),
series(n, x2). // 2

// halts if run set to false
FAIL <- not -run(), not ^run(). // 3

}

Fig. 7. Self-Reacting Fibonacci

3.1 Asynchronous reactor composition

Up to this point, we have not explained how update bundles are generated, only
how reactors react when an update bundle is applied. In this section, we show
how updates are generated, and explain how this is intimately connected to asyn-
chronous interaction.

Consider the reactor definition Fibonacci in Fig. 7, which computes successive
values of a Fibonacci series. The relation series contains pairs whose first element
is the ordinal position of the sequence value, and whose second element is the corre-
sponding value of the sequence. The value of series is initialized using notational
conventions (e) and (f) of Fig. 6. To compute the next element of the series, we need
to first identify the last two elements of the series computed thus far. Universal
quantification is required to determine the maximum element of a series; however,
the body of a Datalog rule can only existential properties directly. To query uni-
versal properties, we typically require auxiliary relations. In Fibonacci, we use the
ephemeral relation notLargest to contain all the indices of elements of series
which are less than the maximum index. The body clause not notLargest(n) in
rule (2) has the effect of binding n to the largest ordinal index currently contained
in the series.

The relation in the head of rule (2) computing the next value of the Fibonacci
sequence has the form series^. A relation name of this form refers to the future
state of the relation. The future state effectively defines the contents of an update
bundle which is processed in a subsequent reaction, after the current reaction
ends. Hence the head of rule (2) defines an update bundle containing a single
pair encoding the next value of the series; this pair will be inserted into series
at the beginning of the next reaction. One can thus think of the future value of
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a relation as defining an asynchronous update or dispatching a “message”. As a
result, successive values of the series are separately visible to external observers as
they are added to the list.

Rule (3), which uses the notation defined in Fig. 6(d), causes the reaction to fail
and roll back if both the pre-state and the stimulus values of run are false. By
using this encoding, run serves as a sort of switch which can be used to turn the
self-reaction process on and off. Instances of Fibonacci can react to two distinct
classes of update bundles: “internally” generated update bundles containing only
new values of the series, and client-generated update bundles which only affect
the value of run. A client cannot update series since series is not public. The
Fibonacci reactor does not produce update bundles affecting the value of run,
since it has no rules referring to the future value of run.

In general, distinct reactors operate concurrently and independently. Given this
fact, it is possible for an update bundle to be generated by a client attempting
to update the value of run while a previous reaction by the same instance is in
progress. Since reactions take place atomically, we must enqueue pending client
updates until the current reaction is complete. To this end, every reactor has an
associated inbox containing a multiset of pending update bundles. When a reaction
is complete, the reactor checks for a new update bundle in the inbox. If it exists,
the reactor removes it and uses it to initiate a reaction. If no update bundle is
present, the reactor performs no further computation until a new update arrives.
Fig. 3 illustrates this process. We make no assumptions about the order in which
inbox items are processed, except that they must be processed fairly.

While Fibonacci is designed such that update bundles can only update one rela-
tion at a time, update bundles can in general contain updates to more than one
relation. Consider, e.g., a client that wishes to update ordered trees (e.g., XML
trees) maintained on a server. Ordered trees can be maintained using two relations
on nodes: a parent-child relation, and a next sibling relation. In this case, it is
natural for an update to affect both relations.

3.2 Reactor references and multi-reactor asynchrony

Up to this point, our examples have only considered a single reactor type. Con-
sider now the definitions for reactors Sample, Sensor, and Nonce depicted in
Fig. 8. Reactor types Sample and Sensor encode a “classical” asynchronous re-
quest/response interaction. To enable two reactor instances to communicate, we
use reactor references such as those stored in relation rSensor. Rule (1) of Sam-
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def Sample = {
// assumed to be initialized by client
public rSensor: (ref Sensor).
// samples collected thus far; nonces
// distinguish sample instances
public log: (ref Nonce, int).
// pulse: set to collect sample
public write ephemeral pulse: ().
// holds sensor response
public write ephemeral response: (int).

// request sample when pulse set
s.req^(self) <- pulse(), rSensor(s). // 1

// process response: add sample to log
log(new, r) <- response(r). // 2

}

def Sensor = {
// set when sample is to be collected;
// value is ref.to sample reactor
public write ephemeral req: (ref Sample).
// current sensor value
public val:(int).

// send resp. when client sets req
r.response^(v) <- val(v), req(r).

// sensor value is a singleton
FAIL <- val(x), val(y), x <> y.

}

def Nonce = {}

Fig. 8. Asynchronous query/response.

ple has the effect of dispatching an asynchronous request for the sensor value
(maintained by a Sensor reactor) whenever a client of Sample updates pulse. The
expression s.req^(self) in Rule (1) contains an indirect reference to (the future
value of) relation rSensor: after the reactor reference stored in relation rSensor is
bound to variable s, we refer to relation req of the sensor instance indirectly using
the expression s.req^. Since we refer to the future value of s.req, an asynchronous
update bundle is dispatched to the Sensor instance. The update bundle contains
a self-reference to the requesting Sample instance, which is generated by the self
construct.

A Sensor instance responds to a request (in the form of an update to relation req)
by dispatching the current value of the sensor back to the corresponding Sample
instance. It does so by setting the Sample’s response relation via the reactor
reference sent by the requester. The response is asynchronous, since r.response^
refers to a future value. The requester processes the response from the Sensor
instance by updating its log relation with the value of the response.

There are two ways of introducing references to reactors. The keyword self eval-
uates to a reference to the enclosing reactor. An expression of the form new in a
head clause creates a new instance of the appropriate reactor type. The appropriate
reactor type is inferred; e.g., if a relation a is declared as a: (int, ref Acct, ref
Acct) then new instances created by the head clause a(5, new, fromAcct) will
have the type Acct. Instantiation expressions may only appear in non-negated head
clauses. Rule (2) of Sample creates instances of the trivial reactor Nonce. Sample
uses nonces to distinguish multiple instances of the same sensor value.

In order to instantiate and connect Sample and Sensor instances together, another
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def Acct = {
public balance: (int).

// balance is a singleton
FAIL <- balance(x), balance(y), x <> y.

// negative balances not allowed
FAIL <- balance(x), x < 0.

}

def Minibank = {
// (transfer amount, to account,
// from account)
public write ephemeral transferReq:

(int, ref Acct, ref Acct).

to.balance(x+amt) :=
transferReq(amt, to, _),
to.-balance(x).

from.balance(y-amt) :=
transferReq(amt, _, from),
from.-balance(y).

}

Fig. 9. Classic Transaction.

reactor must contain rules of the form

theSampler(new Sample) <- .

s.rSensor(new Sensor) <- theSampler(s).

A request-response cycle between Sample and Sensor instances requires three dis-
tinct reactions: the reaction in which a Sample client sets pulse (which dispatches
the request to the sensor), the reaction in which the sensor responds to the request,
and the reaction in which the requester updates the value of log.

3.3 Synchronous reactor composition

While the asynchronous form of process composition depicted in Fig. 8 is simi-
lar to that used in many process calculi and message-based distributed program-
ming models, Fig. 9 depicts an example of synchronous reactor composition that
is somewhat more unusual. In this example, a MiniBank reactor receives requests
to transfer money between two Acct reactors. Such requests are encoded by up-
dates to the ephemeral transferReq relation. As with the example in Fig. 8, we
use references to wire the reactors together. However, unlike the previous exam-
ple, the remote references in Fig. 9 refer to response values of relations, not future
values. This means that a reaction initiated at a MiniBank reactor will extrude to
include both of the Acct reactors (bound to variables to and from, respectively).
This results in a composite, synchronous, atomic reaction involving three reactor
instances. Scope extrusion is an inherently dynamic process, similar to a distributed
transaction—see Section 9 for details. MiniBank uses the notation of Fig. 6(c) to
define “assignments” to the singleton balance relations.
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Note that the rules in Acct encode constraints on the allowable values of balance.
In a composite reaction, a conflict (which is here manifested by a constraint fail-
ure) in any of the involved reactors causes the composite reaction to fail. When
a composite reaction fails, all of the reactors revert to their pre-reaction states. A
composite reaction is always initiated at a single reactor instance at which some
asynchronously-generated update bundle is processed—in the case of the example
in Fig. 9, reactor instance MiniBank.

Reactors involved in a composite reaction may separately define future values for
relations of the same reactor instance. In such cases, a single update bundle, com-
bining the composite future value updates for all of the involved reactors, is dis-
patched at the end of the composite reaction to each target reactor. In this sense,
from the point of view of an external observer, a composite reaction has the same
atomicity properties as a reaction involving a single reactor.

The example in Fig. 10 shows how multiple user interface components can be in-
stantiated dynamically based on the current contents of an associated database.
This mimics the process of building dynamic, data-driven user interface compo-
nents. The basic idea of DataDisplay is that a button and an output field are
generated for each item in a database. ButtonWidget and OutputWidget are user
interface components representing the button and output field generated for each
item in relation db. ButtonWidget’s buttonListener relation contains a reference
(in general, there could be more than one) to the “parent” DataDisplay reactor;
rule (1) has the effect of notifying the parent whenever the button is pushed.

Rule (9) synchronizes the value of the output field to the value of the quantity
currently maintained in the database. Rule (10) “wires” together corresponding
button and database items such that when a button is pressed, the corresponding
data item is decremented.

Ephemeral relations currDbItems and oldDbItems along with rules (4) and (5)
compute the set of itemids present before and after the reaction. Using this in-
formation, rules (6) and (7) together create new widgets whenever a new item is
added to db, while rule (8) deletes a widget whose corresponding item has been
deleted from the database.

Note that the auxiliary ephemeral relations currDbItems and oldDbItems are not
just included for clarity, they are necessary to correctly compute the set of old and
new items. Consider, for example, a rule of the form

. . . <- db(i, _, _), not -db(i, _, _)

One might initially expect i to be bound only to newly-added items in the database.
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def ButtonWidget = {
// button label
public label: (string).
// set to true when button is pressed
public write ephemeral pressed: ().
// reference to DataDisplay, which will
// be notified when button is pressed
public write buttonListener:

(ref DataDisplay).

// notifies DataDisplay when button
// is pressed, passing a self-reference
// to indicate which button was pressed
rD.buttonPressed(self) <-

buttonListener(rD), pressed(). // 1
}

def OutputWidget = {
// label (constant)
public label: (string).
// current value to be displayed
public val: (string).

}

def DataDisplay = {
// (itemid, quantity)
public db: (int, int).
// set when button(s) pressed
public ephemeral write buttonPressed:

(ref ButtonWidget).
// (itemid, button widget)
bWidgets: (int, ref ButtonWidget).
// (itemid, output widget)
oWidgets: (int, ref OutputWidget).

// initialize widget labels
rO.label("Inventory: ") <-

oWidgets(_, rO). // 2
rB.label("Click to decr") <-

bWidgets(_, rB). // 3

// itemids of db entries in prestate
ephemeral oldDbItems: (int)
oldDbItems(i) <- -db(i, _). // 4

// itemids of db entries in curr. state
ephemeral currDbItems: (int).
currDbItems(i) <- db(i, _). // 5

// create widgets when new item
// added to db
currDbItems(i), not oldDbItems(i): {

bWidgets(i, new) <- . // 6
oWidgets(i, new) <- . // 7

// add self to notification list
// for button widget
rB.buttonListener(self) <-

bWidgets(i, rB). // 8
}

// delete widgets when corresp. item
// deleted from db
not currDbItems(i), oldDbItems(i): {

not oWidgets(i, _) <- . // 9
not bWidgets(i, _) <- . // 10

}

// output widget values track qty.
// of corresponding db item
rO.val(toString(q)) :=

oWidgets(i, rO), db(i, q). // 11

// button decrements qty. of
// corresponding db item
db(i, q-1), not db(i, q) <-

-db(i, q), bWidgets(i, rB),
buttonPressed(rB). // 12

}

Fig. 10. Data-Driven UI.

However, i will actually be bound to every itemid in the database, since for any
itemid i in the database, there always exists some widgets b and o such that 〈i, b, o〉
is not in the pre-state of db. In other words, as written, the second body clause will
always succeed, regardless of the value of i. This phenomenon can occur whenever
unbound variables (such as the wildcards used above) are used in a negative body
clause.

The rules which wire the database, the output field, and the button together consti-
tute a dependency loop which would be tricky to manage if written in a traditional
language. However, the normal Datalog evaluation process evaluates such recursive
loops without difficulty.
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4 Reactor semantics overview

In the next several sections, we formalize the operational semantics of the reactor
model. The first two sections contain preliminaries: in Section 5, we review standard
concepts from the semantics of Datalog with negation. In Section 6, we define basic
notation for reactor concepts we will use in the rest of the paper.

The reactor model takes the point of view that each reactor instance maintains a
set of relations which the instance “owns and manages” autonomously. However, as
we have observed, a reactor can synchronously read or write the state of a differ-
ent, remote reactor via reactor references. To facilitate formalizing the semantics
of synchronous reactor interaction, Section 7 contains a sequence of source trans-
formations which will serve to define a single “virtual address space” of relations.
The transformed relations have the property that they may in principle contain
tuples from different reactor instances of the same type. However, as we will see in
Section 9, our operational semantics properly models the fact that each reactor in-
dependently manages only the persistent state defined by its own relation instances.
To model synchronous multi-reactor reactions, the operational semantics temporar-
ily copies the state of remote reactors into the state of the reactor instance which
initiated the reaction. The augmentation transformation defined in Section 7.3 al-
lows the initiating reactor to manage both its own state and temporarily-copied
state of remote reactors in a uniform way.

Section 8 defines additional source transformations on the program resulting from
the transformation of Section 7. These additional transformations eliminate head
negation by defining auxiliary relations which encode addition and deletion infor-
mation separately.

The transformations of Sections 7 and 8 rewrite a reactor program T consisting
of multiple reactor definitions into a single “normal” (i.e., with body negation)
Datalog program that captures the synchronous execution semantics of all of the
reactor definitions in T . This approach might seem to imply that every reactor in
a distributed system needs to contain the code of all other reactors in the system.
In practice, however, a reactor need only be aware of the rules of reactors which
are accessible via reference types that are elements of relations declared in T , i.e.,
peer reactors with which it has already agreed to interact 1

In Section 9, we complete the definition of the semantic model for reactors using a
labeled transition system. This transition system carries out the following functions:

1 It is possible to further weaken this “mutual knowledge” requirement, see Section 13.
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• It orchestrates the creation and processing of update bundles, messages that take
the form of state updates. Once paired with its recipient reactor, an update
bundle can initiate a reaction; dually, reactors may generate update bundles (by
defining future values of remote relations); the transition semantics takes care of
delivering these bundles to their destination
• It models multiple concurrent, autonomous reactions and asynchronous interac-

tions among such reactions.
• It orchestrates copying of relation values from remote reactors to the initiating

reactor. The initiating reactor evaluates all the local and remote rules needed to
define the state resulting from the synchronous reaction, and the state transition
system ensures that the results of the synchronous reaction are copied back to
remote reactors as necessary.
• It defines an optimistic locking protocol which ensures that the results of a syn-

chronous composite reaction are computed atomically from the point of view of
any external observer, and which allows multiple concurrent reactions to access
a common reactor instance, provided that the results of the reactions do not
conflict.
• It handles state rollback in the event that a reaction yields a conflict : an incon-

sistent state in a predicate is asserted to be both true and false (alternatively, in
which a tuple is both inserted and deleted into the same relation).

In Section 10, we show that the notions of stratification and safety defined for
normal Datalog programs extend in a straightforward way to reactor programs.

5 Datalog background

In this section, we review basic concepts from logic programming and Datalog [13].
We will occasionally deviate from standard definitions when appropriate for our
context.

5.1 Basic definitions

A term is either a constant, a variable, or a built-in function applied to constants
or variables. An atom consists of an n-ary predicate symbol and a list of arguments
such that each argument is a term. We will consider both user-defined predicates
(which we will also refer to as relations) and built-in predicates, such as equality,
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inequality, and arithmetic comparison. We allow function symbols only in argu-
ments to built-in predicates. A literal is an atom or a negated atom. A clause is
a finite list of literals. A ground clause is a clause which contains neither variables
nor function symbols. A unit clause is a clause containing only one literal. A fact
is a positive ground unit clause.

A Herbrand interpretation (or just “interpretation”) is a set of facts. A Herbrand
model is a Herbrand interpretation that satisfies every formula belonging to a given
set of closed formulas (a given set of facts and rules). A positive Datalog program
contains rules with only positive atoms. For such programs, there exists a least
Herbrand model such that any other Herbrand model is a superset of this model.
A normal Datalog program is a Datalog program in which negation may appear
in body clauses, but not in the head. For normal programs, the existence of a least
Herbrand model is no longer guaranteed.

5.2 Stratification semantics for normal programs

To ensure that a least Herbrand model exists without unduly affecting expressive-
ness, we will restrict the set of normal Datalog programs we consider to those that
are stratified [14–16]. The main idea behind stratification is to partition the pro-
gram such that for any relation, we fully compute its contents before applying the
negation operator. For example, a program consisting of the following rules is not
stratified because it contains recursion through negation:

q(x) <- p(x,y), not q(y).

p(1,2) <- .

Given a Datalog program P , its dependency graph D is a directed graph 〈N, A〉
with N the set of all user-defined predicate symbols in P and a ∈ A an edge from
p to q if p and q are user-defined predicate symbols in the body and head clauses
of a rule r, respectively. An arc between user-defined predicate symbols p and q is
marked if the body clause that has p as predicate symbol is negative. P is stratified
if there exists no cycle in D containing a marked arc.

The stratum of a node in the dependency graph is the maximum number of negative
arcs on a path leading to that node. Intuitively, the stratum of a computed relation
r is the maximum number of negations that can be applied in evaluating r.

When a Datalog program is stratified, we can designate a single Herbrand model as
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its semantics by evaluating all the rules of a stratum in the minimal model of the
preceding stratum to obtain another minimal model. This unique minimal model
is called the perfect model.

5.3 Computing a solution

Given a set of rules R, the immediate consequence operator ΓR for normal Datalog
programs is a mapping on sets of ground atoms and is defined for a Herbrand
interpretation I as follows: ΓR(I) = {A|A ∈ I or there exists a rule A← L1 ∧ ... ∧
Ln ∈ [[R]] such that Li ∈ I for all positive literals Li and Lj /∈ I for all negative
literals Lj ≡ ¬L}, where [[R]] denotes the set of all ground instances of a set of
rules R. Γ∗

R(I) is the limit of the sequence of sets J0, J1, . . . such that J0 = I and
Jk = ΓR(Jk−1) for k > 0. For the purpose of this paper we will apply ΓR on one
rule at a time.

We can partition a stratifiable program P into a collection of sets of rules P =
Po, . . . , Pn such that each Pj consists of the rules of P whose head relation is in
stratum j. Let Io be an initial Herbrand interpretation. For 0 < j ≤ n, the sequence
of instances Ij is defined as follows:

Ij = Ij−1 ∪ Γ∗
Pj−1

(Ij−1)

The final instance In provides the semantics of P under a stratification Po, . . . , Pn.

The standard rule evaluation strategy for a stratified program P

(1) computes a stratification of P

(2) partitions P into P0, ..., Pn such that each Pj consists of the rules of P whose
head belongs to stratum j

(3) given an initial instance I0, computes the instances Ij for 0 < j ≤ n as above,
yielding solution In

Since we require that the full state of a reactor be computed during each reaction,
we compute the interpretation of its Datalog program exhaustively (bottom-up), in
contrast to some evaluation strategies that compute queries on-demand (top-down)
as required by a particular query.
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5.4 Additional semantic restrictions

A Datalog program is domain independent if the solution depends only on the
initial set of facts and not on the universal set of all facts. A program is weakly
finite [9] if applying the immediate consequence operator a finite number of times
on a finite set of facts yields a finite set of results; i.e., infinite results can only
be obtained via infinite recursion. Both domain independence and weak finiteness
are desirable properties for Datalog programs intended to represent computations.
Since these properties are in general undecidable, we will adopt a conservative
syntactic characterization called safety [9] which guarantees domain independence
and weak finiteness.

A Datalog rule is safe if all of its variables are limited. A variable is limited if:

(1) it occurs as an argument to a non-negated user-defined predicate in the body
(2) it occurs as one of the arguments to the built-in equality predicate and all of

the other variables that occur in the same clause are limited

A program is safe if all of its rules are safe. Consider a few examples:

answer(x) <- mynumber(x), not zero(x). // 1

P(x) <- Q(y), R(z), x = y * z. // 2

P(x) <- Q(y), R(z), y = x * z. // 3

Rule (1) is safe, but removing mynumber(x) renders it unsafe because x then is not
limited. Rule (2) is safe because x is the only non-limited argument to the equality
predicate, hence its value is uniquely determined by y and z. By contrast, rule (3)
is not safe, since both arguments contain non-limited variables and the value of x
is not uniquely determined by y and z.

5.5 Datalog evaluation

The evaluator is defined as a relation ↪→ on pairs of evaluation states. An evaluation
state is a pair 〈I, i〉 where

• I is a set of literals defining an interpretation.
• i is the index of the current stratum under evaluation
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Pi ∈ P R ∈ Pi I ′ = ΓR(I) I ′ 6= I

P `
〈
I, i

〉
↪→

〈
I ′, i

〉

i < numstrata(P) ∀R, (R ∈ Pi s.t. Pi ∈ P) ⇒ I = ΓR(I)

P `
〈
I, i

〉
↪→

〈
I, i + 1

〉

Fig. 11. Small-step operational semantics for eval

Figure 11 shows two small-step semantic rules which capture the behavior of the
evaluator. The first rule specifies a single step in which the immediate consequence
operator ΓR is applied to the current Herbrand interpretation I to obtain the next
interpretation I ′ for a given rule R. R is a non-deterministically chosen rule from
the stratum under current evaluation Pi ∈ P . If applying ΓR modifies the state by
inferring new facts, then the ↪→ relation transitions to the next state corresponding
to I ′. If, on the other hand, there exists no rule that can be evaluated which modifies
the current state, then the evaluation of the current stratum ends and is marked
appropriately by incrementing the stratum index. The evaluation stops when the
last stratum has been fully evaluated.

6 Basic reactor formalities

In this section, we will define some basic reactor notation that will be used in the
rest of the paper.

A reactor program T is a collection T1, T2, . . . , Tn of reactor type definitions, each
defined using the reactor grammar of Fig. 1, with the proviso that a rule-decl
may contain at most one instance of the new keyword in its head-clause.

Each type definition T has the form

def reactor-type-name = · · ·

hence we will frequently use reactor-type-name to denote the corresponding type
definition.

Each reactor type T defines a collection of ephemeral relations ephemeral(T ), de-
clared using the syntactic form relation-decl of Fig. 1 and the ephemeral key-
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word; similarly, it defines a collection of persistent relations persistent(T ), declared
using the same syntactic form without the ephemeral keyword. The access at-
tributes public, public read, and public write may be used in the declaration
to allow (possibly restricted) access to a relation by other reactors; otherwise, the
relation is private, and not accessible to remote reactors. To simplify exposition,
we will assume in the sequel that all reactor names for a program T are globally
unique. The set of persistent relations declared in T are given by persistent(T ); the
set of ephemeral relations declared in T are given by ephemeral(T ).

A local literal is a literal of the form

[not] ref( . . . )

where ref has the form t, -t, ^t, or t^, for some relation t.

A remote r-literal is a literal of the form

[not] r.ref( . . . )

where ref is as above and r is a variable bound to a reactor reference. If r is a
reference to a reactor of type S, then the relation referred to in ref (say p) must be
a public relation, i.e., declared using the public access attribute in the definition
of S. Furthermore, if the remote r-reference occurs in a head-clause, then p must
be declared using either the public or public write attributes; if the reference
occurs in a body-clause, then p must be declared using either the public or
public read attributes.

A reactor reference of the form r denotes the response value of relation r; -r
denotes the prestate value of r; r^ denotes the future value of r, and ^r denotes
the stimulus value of r.

7 Semantics of reactor references

In this section, we show how we can “compile away” reactor constructs which ma-
nipulate reactor references by translating such constructs into ordinary Datalog.
This translation process serves to define the semantics of reference-manipulating
constructs.

The first phase of the reference translation process (Sections 7.1 and 7.2) formal-
izes when remote reactors are read and written by another reactor via a reactor
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reference. The formalization works by introducing two auxiliary relations for every
reactor of type T : active_T and touched_T, and transforming the rules of the orig-
inal program to use these new relations appropriately. Intuitively, touched_T will
become true for reactor instance t of type T whenever a remote reactor accesses
relations of t. Similarly, active_T will become true for reactor t whenever a remote
reactor writes a relation of t. The relations touched_T and active_T will be ex-
amined by the concurrent transition semantics of Section 9 to determine when and
how to access the state of remote reactors. Importantly, the relation active_T is
also used to ensure that only the rules of reactors which have been written to are
evaluated in the current reaction.

The second phase of the reference translation process (Section 7.3) encodes the se-
mantics of synchronous reactions, in which multiple reactor instances which refer to
one another via references are evaluated atomically. This augmentation translation
adds an extra column to every relation r of reactor type T . This column contains
reactor references (of type T ) which encode the reactor instance which "owns" the
tuples of r.

The final phase of the reference translation process (Section 7.4) formalizes the
semantics of reactor instantiation and initialization, i.e., the new construct.

7.1 Formalizing remote reactor writes and reaction scope: the active transforma-
tion

The first step of the reference translation process makes reaction scope explicit
by adding to all reactor definitions a relation called active_T, where T is the
reactor’s type. The active_T relation defines the semantics of “scope extrusion”,
the process by which multiple reactors react together synchronously. Only those
reactor instances for which active_T is true are included in the scope of the current
reaction. The basic idea is to set active_T to true for reactor instance t whenever
a relation of t is written, and to guard all rules with a test of active_T in such a
way as to ensure that a rule is only executed for reactor instances that are part of
the current reaction scope.

In every reactor in the program the transformation adds the declaration

public ephemeral active_T : ().

We assume without loss of generality that there is no pre-existing relation called
active_T.
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Next, we non-recursively transform each rule such that

[not] r.a(e) [^] <-body. becomes [not] r.a(e) [^] <- body, active_T ().

r.active_U() [^] <- body, active_T ().

[not] a(e) [^] <-body. becomes [not] a(e) [^] <- body, active_T ().

where T is the type name of the reactor containing the rules that are being trans-
formed, and U is the type name of the reactor r.

Since all rules are now guarded by an active_T relation, the active_T relation
of the reactor instance that initiated the reaction (i.e. received an update bundle)
must be set to true. We therefore require that an update bundle write the active_T
relation of the receiving reactor, but conveniently the transformation already han-
dles this.

Example 1 Let us consider how an example program is transformed. The follow-
ing example models a simple publisher/subscriber mechanism, but for simplicity
the mechanism handling subscription and unsubscription have been left out. Here
is what the program looks like before (left) and after (right) the transformation:

def Pub = {
public data : (int).
subscriber : (ref Sub).

s.copy(x) <- data(x), subscriber(s).

}

def Sub = {
copy : (int).
intStore : (int).

intStore(x) <- copy(x).
}

def Pub = {
public data : (int).
subscriber : (ref Sub).
public ephemeral active_Pub : ().
s.copy(x) <- data(x), subscriber(s),

active_Pub().
s.active_Sub() <- data(x), subscriber(s),

active_Pub().
}

def Sub = {
public copy : (int)
intStore : (int)
public ephemeral active_Sub : ().
intStore(x) <- copy(x), active_Sub().

}

Example 2 Intuitively, the semantics of the active_T relations is intended to ex-
pose the control flow implicit in the scope extrusion process via an explicit data de-
pendency. The example in the left column at first glance seems benevolent enough.
Intuitively, however, we should not accept it, because q is not fully computed be-
fore it is tested for non-membership, but this test is necessary to extrude the scope
to the reactor of type R2 whose rule adds tuples to q. The right column shows
the transformed example after adding the two active_T relations. The example is
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now non-stratifiable due to the relation active_R2 for the reactor of type R2. This
relation effectively acts as a “summary node”—a relation which guards all rules and
is written when the scope extrudes. A negative cycle is created between q, s, and
active_R2. This negative cycle makes concrete our intuition that the example in
the left column should not be an acceptable program.

// The rules are stratifiable, but the
// program should intuitively be rejected

def R1 = {
r : (int, int, ref R2).
public q : (int).
s : (int).

s(x) <- not q(x).
z.t(y, x) <- s(x), r(x, y, z).

}

def R2 = {
p : (int, int, ref R1).
public t : (int, int).

y.q(x) <- p(z, x, y).
}

// After introducing the active relation
// the hidden negative cycle is exposed

def R1 = {
r : (int, int, ref R2).
public q : (int).
s : (int).
public active_R1 : ().

s(x) <- not q(x), active_R1().
z.t(y, x) <- s(x), r(x, y, z),

active_R1().
z.active_R2() <- s(x), r(x, y, z),

active_R1().
}

def R2 = {
p : (int, int, ref R1).
public t : (int, int).
public active_R2 : ().

y.q(x) <- p(z, x, y), active_R2().
y.active_R1() <- p(z, x, y), active_R2().

}

7.2 Formalizing remote reactor reads: the touched transformation.

In this section, we define the touched_T relation, which records those remote reac-
tor instances of type T which could be accessed in the current reaction (this set can
be an overapproximation of the set of reactor instances which are going to be read
or written in the current reaction). For each reactor of type T , we add a declaration
of the form

public ephemeral touched_T : ().

Let rule R be a rule of the form:

head <- clause1,..., clausen.

containing one or more remote literals r.
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For each clausei which binds r we add the following additional rules to T ’s decla-
ration:

r.touched_Tj() <- clausei.

where Tj is the reactor type name of r respectively.

This construction ensures that the touched_Tj relation of reactor instance r be-
comes true whenever a relation of r is read or written by another reactor.

7.3 Flattening inter-reactor references: the augmentation transformation

The augmentation transformation in this section readies reactors for synchronous
reaction by allowing them to be treated together as single “virtual” reactor. The
augmentation transformation is applied after the active_T, touched_T, and in-
stantiation (new) transformations, which are each applied independently to source
rules.

The program is given as a set of reactor declarations, named R1, ..., Rk. We assume
without loss of generality that relation names are globally unique, i.e. any relation
name is declared at most once.

In each reactor declaration R rewrite each rule

[not] r.h(e) [^] <- r1. [^|-] b1(x1), ..., rn. [^|-] bn(xn),

[^|-] c1(y1), ..., [^|-] cm(ym),

predicates.

as
[not] h(r, e) [ˆ] <- [^|-] b1(r1,x1), ..., [^|-] bn(rn,xn),

[^|-] c1(s,y1), ..., [^|-] cm(s,ym),

predicates[s\self].

and rewrite

[not] h(e) [^] <- r1. [^|-] b1(x1), ..., rn. [^|-] bn(xn),

[^|-] c1(y1), ..., [^|-] cm(ym),

predicates.
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as

[not] h(s, e) [^] <- [^|-] b1(r1,x1), ..., [^|-] bn(rn,xn),

[^|-] c1(s,y1), ..., [^|-] cm(s,ym),

predicates[s\self].

where s is a fresh identifier, and [x\y] means “put x instead of y in the preceding
expression”.

The transformation does two things: it replaces all references to self with a fresh
identifier, s, and it augments the relations by adding reactor references as the first
column of every relation. Notice that the transformation also alters the active_T
relations added by the previous transformation. The occurrence of active_T() in
the body of each rule gets replaced by active_T(s); and r.active_T() in the
head gets replaced by active_T(r).

Example 3 Consider the example from last section. We now take the program
with the active relation already added, and pass it through the augmentation trans-
formation. Here is the program before (left) and after (right):

def Pub = {
public data : (int).
subscriber : (ref Sub).
public ephemeral active_Pub : ().
s.copy(x) <- data(x), subscriber(s),

active_Pub().
s.active_Sub() <- data(x), subscriber(s),

active_Pub().
}

def Sub = {
public copy : (int)
intStore : (int)
public ephemeral active_Sub : ().
intStore(x) <- copy(x), active_Sub().

}

// Rules from Publisher

copy(s,x) <- data(id1,x),subscriber(id1,s),
active_Pub(id1).

active_Sub(s) <-
data(id2,x),subscriber(id2,s),
active_Sub(id2).

// Rules from Subscriber

intStore(id3,x) <-
copy(id3,x),active_Sub(id3).

7.4 Formalizing reactor creation: the instantiation transformation

The new construct is used to instantiate new reactors. To model this behavior, we
must generate fresh reactor references appropriately for each rule containing new
(recall that new can occur at most once in any rule head). But what behavior is
“appropriate”?
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Consider the following examples. We would like the rule

r(new) <- .

to produce exactly one new reactor per reaction. The rule

r(x, new) <- t(x)

should generate a distinct reactor for every value of x, in every reaction. A program
containing the rules

s(x, new) <- t(x). // 1

s(x, new) <- t(x). // 2

should produce the same result as a program containing a single instance of the
rule; moreover, replacing rule (2) above with the rule s(x, new) <- q(x) should
also yield the same result when the contents of t and q are identical.

In general, we want a rule of the form

r(x1,i, new, xi+1,n) <-body.

to generate a fresh reference value for every tuple of values 〈x1,i,xi+1,n〉 which
satisfy the rule, in every reaction.

We make the intuition above precise by transforming rules containing new to stan-
dard Datalog, augmented with functors (term constructors).

In every reactor of type T in the program, the transformation adds the declaration

public ephemeral reactions_T : (int).

The idea is that reactions_T relations maintain a count of the number of reactions
that the containing reactor has undergone since being instantiated. This count will
be used to ensure that distinct reference values are appropriately generated for
each reaction.

After applying the augmentation transformation of Section 7.3, each rule in a re-
actor of type T containing an instance of new will have the form

r(s, x1,i, new, xi+1,n) <- body, active_T(s).

Let us assume that relation r has a declaration of the form

. . . r: (T1,i, ref S, Ti+1,n).
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where T1,i and Ti+1,n are vectors of types.

We transform the rule above into the following three rules:

r(s, x1,i, s’, xi+1,n) <- body, reactions_T(s, j), active_T(s)

s’ = new_r_i <s, j, xi,1, xi+1,n>. // 1

active_S(s’) <- body, reactions_T(s, j), active_T(s)

s’ = new_r_i <s, j, xi,1, xi+1,n>. // 2

reactions_S(s’, k) <- body, reactions_T(s, j), active_T(s)

s’ = new_r_i <s, j, xi,1, xi+1,n>, k = 0. // 3

Here, new_r_i < . . . > is a functor (data constructor) defined for each relation r
in which new appears in position i in the head of some rule. The first argument
(s) of the functor encodes a reference to the reactor’s “parent” (i.e., the reactor
generating the new reference); the second argument (j) is the current reaction
count, and the remaining arguments contain the values to which the other variables
in the original rule are bound. Embedding the parent reference in the encoding of
a newly-generated (child) reference value ensures that the each reference value is
globally unique. In addition to “installing” the newly-generated reference in its
containing relation (rule 1 above), we must also “activate” the reactor rules for the
type corresponding to the reference (rule 2), and initialize the reaction count for
the newly-generated reactor to 0 (rule 3)

Finally, for every reactor of type T , we add the following two rules

reactions_T(s, j’) <- -reactions_T(s, j), active_T(s), j’ = j+1. // 4

reactions_T(s, j) <- -reactions_T(s, j), active_T(s). // 5

Rules 4 and 5 together increment the reaction count for a reactor of type T on
every reaction.

It is straightforward to define a total order on generated reactor references (e.g.,
based on a total ordering for relation names). This property will be used in the
operational semantics defined in Section 9.
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8 Eliminating head negation

We handle negation in head clauses by transforming reactor rules to normal Datalog
rules. First, we treat each of the four states of a given relation as distinct relations
from the point of standard Datalog semantics. The goal of reactor rule evaluation
is to determine a unique, minimal solution for the response and future values of
local and remote relations. Let ri represent the response or future value of a local
relation we wish to compute. If the reactor has just been created all the relations
are empty by default; ephemeral relations are always initially empty. Let ^r∆+

i and
^r∆−

i be the addition and the deletion sets of the update bundle applied to the
reactor. We will use r (x) to denote the relation r applied to a tuple of arguments
(x). The basic idea for determining the solution to ri is to:

(1) introduce a pair of auxiliary relations (r∆+

i ,r∆−
i ) which contains the sets of

tuples that will be added to and deleted from ri;
(2) eliminate negation in head clauses by transforming the program to a normal

Datalog program containing references to r∆+

i and r∆−
i ;

The resulting program is the input to the evaluator presented in Section 5.5. Fig. 12
shows how our rewriting technique transforms a program with negation in the head
clauses to a program without them. The rules apply recursively. Let us define r∆+

i ,
r∆−

i , r^∆+

i and r^∆−
i the sets of additions and deletions to the response and future

states of the persistent and ephemeral relations.

Rewrite: ri (x) <- body. as: r∆+

i (x) <- body. (I)

Rewrite: not ri (x) <- body. as: r∆−
i (x) <- ^ri (x), body. (II)

Rewrite: head <- ri (x), body. as: head <- ^ri (x), not r∆−
i (x), body.

head <- r∆+

i (x), body. (III)

Rewrite:head <- not ri (x), body. as: head <- not ^ri (x), not r∆+

i (x), body.

head <- r∆−
i (x), body. (IV)

Rewrite: r^i (x) <- body. as: r^∆+

i (x) <- body. (V)

Rewrite: not r^i (x) <- body. as: r^∆−
i (x) <- body. (VI)

Fig. 12. Rewrite rules defining the semantics of reactor rule evaluation in terms of normal
Datalog.

Rewrite rule (I) computes the set of tuples to be added to ri as the set of tuples
that the body clauses resolve to. Rule (II) computes the deletion set very similarly;
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the only difference is adding a body clause which makes sure that a tuple gets
deleted from a relation only if it was already there in the stimulus state. The extra
clause ensures that this rewriting rule does not introduce domain dependence—
see Section 10.1 for details. Our rewriting approach does not update relations in
place during a reaction; accounting for the addition and the deletion sets in the
rules must be therefore done explicitly by modifying the rules. As a result, rewrite
rule (III) restricts the matching for the tuples in ri to the ones that are not in
the deletion set; it also adds another rule which matches tuples in the addition
set. Conversely, rule (IV) allows matching on tuples in the deletion set, as well as
restricting matching to tuples not in the addition set. Rules (V) and (VI) do not
apply for ephemeral relations because they do not have a future state.

Let us consider the order entry example in Fig. 2. After applying the head negation
transformation the rule in the reactor of type OrderEntryA’ will result in the
following set of rules:

log∆+
(id, itemid, qty) <- orders(id, itemid, qty).

log∆−
(id, itemid, qty) <- ^log(id, itemid, qty),

not ^orders(id, itemid, qty),

not orders∆+
(id, itemid, qty).

log∆−
(id, itemid, qty) <- ^log(id, itemid, qty),

orders∆−
(id, itemid, qty).

Note that the tuple (id, itemid, qty) will be deleted from log if it is in the
prestate and either is in the deletion set of orders or it is neither in the prestate,
nor in the addition set of orders.

9 Semantics of reactor interaction

In this section, we define the operational semantics of distributed reactor interac-
tion, using the rules depicted in Fig. 13. These rules effectively define a “scheduler”
that initiates concurrent reactions and orchestrates the interchange of data among
reactor instances. The transition relation of the operational semantics defines a
computation on worlds. A world has the form

P , N ` q1, . . . , qk, sk+1, . . . , sn
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The components of a world are defined as follows:

• The program P is an ordered collection of subprograms P1, . . . , Pm derived from
a given reactor program T by first transforming T using the transformations
described in Sections 7 and 8, then stratifying the resulting collection of Datalog
rules into subprograms P1, . . . , Pm, as described in Section 5.2.
• The network N is a multiset of update bundles, each of which has the form

(βi, Iβi
), where β is a reactor reference, and I is a Herbrand interpretation con-

taining only facts of the form r^∆+
(β,x) or r^∆−

(β,x), representing future ad-
ditions or deletions, respectively, to reactor β
• A set of initiating reactors sk+1, . . . , sn. An initiating reactor is a reactor at which

an uncompleted reaction has been initiated. Each sj takes the form 〈bαj
, Iαj

, lj〉,
where bαj

is an update bundle, Iαj
is an interpretation (over all of the relations

defined by the transformation of T ), and lj is an integer defining the current
stratum of P being executed by the reactor.
• A set of quiescent reactors q1, . . . , qk. A quiescent reactor is a reactor that is not

an initiation site for an active reaction. Each qi takes the form (αi, Iαi
), where

α is a reactor reference and Iαi
is an interpretation containing only facts of the

form -r(α,x). We thus see the persistent state of a reactor is encoded by terms
over pre-state values of relations.

Each reactor in a world occurs exactly once in the world state, either as a quiescent
reactor or as an initiating reactor.

In the world representation described above, we view a relation as a set of facts,
i.e., a ground Herbrand interpretation, rather than as a named collection of tu-
ples. While the two views of state are semantically equivalent, the "soup of atoms”
Herbrand representation accommodates state manipulation involving multiple re-
lations more readily than a state representation using sets of maps from names to
tuples.

The rules of Fig. 13 require a number of auxiliary functions, primarily to manage
operations on the Herbrand interpretations representing reactor states. The formal
definitions of these functions are given in Fig. 14, here we provide more intuitive
definitions.

]: Multiset union
↪→: The Datalog evaluation relation as defined in Section 5.5. Note that the trans-

lations of Sections 7 and 8 have the property that when a remote reactor is
written, the reactor’s reference is added to a relation of the form active_T∆+

;
when it is read, the reference is added to a relation of the form touched_T∆+

.

256



start
b = (β, I∆) i = 0 I ′ = init(I0, I

∆)

P, N ] {b} ` (β, I0)
start−→ P, N `

〈
b, I ′, i

〉

eval
P `

〈
I, i

〉
↪→

〈
I ′, i′

〉
touched_T∆+

(α) ∈ I ′ =⇒ touched_T∆+
(α) ∈ I

P, N `
〈
b, I, i

〉
,

eval−→ P, N `
〈
b, I ′, i′

〉
read

P `
〈
I, i

〉
↪→

〈
I ′, i′

〉
touched_T∆+

(α′′) ∈ I ′ \ I I ′′′ = I ′ ∪ init(I ′′
0 , ∅)

P, N `
〈
b, I, i

〉
, (α′′, I ′′

0 ) read−→ P, N `
〈
b, I ′′′, i′

〉
, (α′′, I ′′)

conflict
conflict(I) {(α′′, I ′′)} = revert({α′′}, I ′) b = (α, I∆)

P, N `
〈
b, I, i

〉 conflict−→ P, N ` (α′′, I ′′)

prepare

i = numstrata(P)

¬conflict(I) L = {αi | active_T∆+
(αi) ∈ I} \ β b = (β, I∆)

P, N `
〈
b, I, i

〉 prepare to lock−→ P, N `
〈
b, I, i

〉
{},L

acquire
uptodate((αi, Ii), I) ∀αj , i < j ≤ n =⇒ αi < αj

P, N `
〈
b, I, i

〉
{α1,...,αi−1},{αi,αi+1,...,αn}, (αi, Ii)

acquire lock−→

P, N `
〈
b, I, i

〉
{α1,...,αi},{αi+1,...,αn}

retry

¬uptodate((αi, Ii), I)
{(α′, I ′), (α1, I1), ..., (αi−1, Ii−1)} = revert({α′, α1, ..., αi−1}, I) b = (α′, I∆)

P, N `
〈
b, I, i

〉
{α1,...,αi−1},{αi,αi+1,...,αn}, (αi, Ii)

snapshot stale/retry−→

P, N ] {b} ` (α′, I ′), (α1, I1), ..., (αi−1, Ii−1), (αi, Ii)

commit
{(α1, I1)..., (αn, In)} = persist(I) {b1, ..., bm} = bundles(I)

P, N `
〈
b, I, i

〉
{α1,...,αn},{}

commit−→ P, N ] {b1, ..., bm} ` (α1, I1), ..., (αn, In)

context
P, N ` ql+1, ..., qk, 〈·〉m+1, ..., 〈·〉n

<any>−→ N ′ ` q′l+1, ..., q
′
k′ , 〈·〉′m+1, ..., 〈·〉′n′

P, N ` q1, ..., ql, ql+1, ..., qk, 〈·〉1, ..., 〈·〉m, 〈·〉m+1, ..., 〈·〉n
<any>−→

N ′ ` q1, ...ql, q
′
l+1, ..., q

′
k′ , 〈·〉1, ..., 〈·〉m, 〈·〉′m+1, ..., 〈·〉′n′

Fig. 13. High-level operational semantics
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init(I0, I
∆): Given an an interpretation I0 representing the persistent state of a

quiescent relation and an interpretation I∆ representing the contents of an up-
date bundle, yields an initial interpretation I ′ suitable for evaluation. I ′ contains
I0, as well as stimulus values for relations generated by applying I∆ to I0.

conflict(I): Given an interpretation I, determines whether I contains a conflict,
i.e., whether the encoding of response or future state in I contains both a fact
and its negation.

revert(S, I): Given a set of reactor references S and an interpretation I representing
the current state of the reaction, yields a collection of quiescent reactors of the
form (α, Iα) such that α ∈ S, and Iα contains only the prestate values of α’s
relations. In other words, this operation “rolls back” the state of the reactors in
S to their pre-reaction values.

persist(I): Given an interpretation I representing the current state of the reaction,
yields a collection of quiescent reactors of the form (αi, Iαi

), whose prestate values
are computed from response values of the corresponding relations in I. The
response values are in turn computed from relations of the form r∆+ and r∆− and
the stimulus values of the corresponding relations. The references αi correspond
to the active (written) reactors in the current reaction. This operation has the
effect of updating the persistent state of reactors involved in the reaction with
the new state resulting from the reaction.

bundles(I): Given an interpretation I representing the current state of the reaction,
yields a collection of update bundles corresponding to the future state values of
relations computed in I.

uptodate(q, I): Given the contents of a quiescent reactor q and an interpretation I
representing the current state of the reaction, determines whether the response
values of relations of q in I are identical to the prestate values of the corre-
sponding relations in q, i.e., that the state “snapshot” created when q’s state was
incorporated into the current reaction has not been invalidated by updates to q
made by other reactions.

Let us now look at the intuition behind each of the rules in the semantics. It may
be useful to read the following descriptions in parallel with the inference rules given
in Fig. 13.

start A reactor takes an update bundle addressed to it off the network and applies
the update bundle to obtain the stimulus state used for the reaction. It also sets
the index of the current stratum that is to be evaluated to zero, the bottom
stratum.

eval This corresponds to a single step of the evaluator, where no further inter-
vention by the scheduler is required.
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read If, on inspection of the evaluator state, the scheduler observes that at least
one new reactor reference was added to a relation of the form touched_T∆+

,
then for each new reactor reference in touched_T∆+

, the scheduler creates a
“snapshot” of its state and copies it into the state of the reaction.

conflict If the reaction state contains a conflict, the reaction rolls back. The
update bundle that initiated the reaction is not re-queued on the network.

prepare If all strata have been fully evaluated (the evaluation has reached a
fixpoint) and no conflict was detected during evaluation, then the scheduler pre-
pares to lock all reactor instances that are active in the current reaction (except
for the initiating reactor, which is effectively already locked). The set of locks to
be acquired is represented by the set L.

acquire If the state of a reactor instance that is to be locked has not changed
since its snapshot was taken, we lock the reactor instance by removing it from
the externally-visible world (its state is preserved in the reaction state I). Since
reactor references are totally ordered (see Section 7.4), we acquire locks in order
of reference value to avoid deadlocks.

retry Conversely, if the state of a reactor instance that is to be locked has
changed since its snapshot was taken, then the reaction rolls back and the up-
date bundle that initiated the reaction is re-queued on the network; the reaction
can thus be re-initiated in the future. This rule effectively encodes a form of
optimistic transaction.

commit If all reactor instances involved in a reaction were successfully locked,
we generate the persistent values of the written relations, release them for future
reactions, and add update bundles to the network. This rule also has the effect
of “materializing” newly-instantiated reactors created during the reaction.

any This rule states that any combination of reactors that can react in isolation
can react in any context containing them.

10 Translation properties

This section presents results which show that the program transformation which
eliminates negation in head clauses preserves two important properties we care
about: safety and stratification. Recall that the rewriting transformation assumes
no remote references to other reactor instances are present. We then define what
it means for a program before applying the augmentation transformation to be D-
stratified. Lastly we informally show that the augmentation transformation yields
stratifiable augmented programs.
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active(I) , {s | active_T∆+

(α) ∈ I for some type T}

I ↓ α , {r(α,x) | r(α,x) ∈ I, where r is an arbitrary relation name}

init(I0, I
∆) , I0 ∪ { ^r(x) | (-r(x) ∈ I0 and r^∆−

(x) /∈ I∆)

or (r^∆+
(x) ∈ I∆) }

conflict(I) , there exists x such that

(r∆+
(x), r∆−

(x) ∈ I)

or (r^∆+
(x), r^∆−

(x) ∈ I)

revert(S, I) , { (α, Iα) | α ∈ S, I ′ = I ↓ α,

Iα = {-r(x) | -r(x) ∈ I ′}

}

persist(I) , { (α, I ′′) | α ∈ active(I),

I ′ = I ↓ α,

I ′′ = { -r(x) | r ∈ persistent(T ),

( (^r(x) ∈ I ′ and r∆−
(x) /∈ I ′)

or (r∆+
(x) ∈ I ′) ) }

}

bundles(I) , { (α, I∆) | I ′ = I ↓ α,

I∆ = {r^∆+
(x) | r^∆+

(x) ∈ I ′}

∪ {r^∆−
(x) | r^∆−

(x) ∈ I ′}

}

uptodate((α, Iα), I) , (-r(x) ∈ Iα) ⇐⇒ (-r(x) ∈ (I ↓ α))

Fig. 14. Auxiliary functions used in the operational semantics.260



10.1 Removing head negation

Given a Datalog program P with possible negative head clauses, the rule/relation
dependency graph G is a directed graph 〈N, R, A〉 with N the set of all predicate
symbols in P , R the set of all rules in P , and a ∈ A either one of the following:

• An edge from n ∈ N to r ∈ R if n is a predicate symbol in the body of rule r.
An edge between n ∈ N and r ∈ R is marked if the body clause that has n as
predicate symbol is negative.
• An edge from r ∈ R to n ∈ N if n is a predicate symbol in the head of rule r.

An edge between r ∈ R and n ∈ N is marked if the head clause that has n as
predicate symbol is negative.

Definition 4 A program is head-negation-stratified if there exists no cycle in the
corresponding rule/relation dependency graph G containing a marked edge. 2

Theorem 5 If a program with negation in head clauses is head-negation-stratified
then the program obtained via the transformation in Fig. 12 is stratified.

Proof Starting from a dependency graph with no negative cycles, the only way to
get a negative cycle is by adding edges—from either extra body clauses or new rules
altogether. Adding a negatively marked edge between two nodes already reachable
from each other can create a negative loop, but adding a positive edge can also have
the same effect if the existing path contains a negatively marked edge. Given that
the original dependency graph has no negative cycles, a negative cycle can only
be created through the newly created relations, r∆+

i and r∆−
i . For a cycle to be

created it is necessary that it exist a rule that reads, and another one that writes,
a newly created relation.

• Rewrite rules (V) and (VI) write the future states r^∆+

i and r^∆−
i , but the future

state cannot be read, and therefore they cannot create a loop.
• Rewrite rule (I) writes r∆+

i and rewrite rules (III) and (IV) read it.
Rules (I) and (IV) can create a negative loop only if there also exists another rule
body← head; the loop would then contain r∆+

i , body, and head. But in this case
the original program would not be head-negation-stratifiable as it would have a
negative loop between head, body, and ri. Therefore rules (I) and (IV) cannot
create a negative loop.
Rules (I) and (III) can create a negative loop only if there also exists a rule of the
form not ri ← head; the loop would then contain r∆−

i and head. But in this case
the original program would not be head-negation-stratifiable as it would have a
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negative loop between ri and head. Therefore rules (I) and (III) cannot create a
negative loop.
• Rewrite rule (II) writes r∆−

i , and rewrite rules (III) and (IV) read it.
Rules (II) and (IV) can create a negative loop only if there also exists another
rule ri ← head; the loop would then contain r∆+

i and head. But in this case
the original program would not be head-negation-stratifiable as it would have a
negative loop between ri and head. Therefore rules (II) and (IV) cannot create
a negative loop.
Rules (II) and (III) can create a negative loop only if there also exists a rule of
the form not ri ← head; the loop would then contain r∆−

i and head. But in this
case the original program would not be head-negation-stratifiable as it would
have a negative loop between ri and head. Therefore rules (II) and (III) cannot
create a negative loop.

2

Definition 6 A rule is head-negation-safe if all of its variables are head-negation-
limited. A variable is head-negation-limited if it occurs as:

• an argument to a non-negated user-defined predicate in the body
• an argument to a negated user-defined predicate in the body and it is used only

in negated head user-defined predicates involving response states
• one of the arguments to the built-in equality predicate and all of the other vari-

ables that occur in the same clause are limited

A program is head-negation-safe if all of its rules are head-negation-safe. 2

Intuitively, the reason for allowing variables occurring in some negated body clause
B to appear in the negated head clause H is that the rule has to remove every
value occurring in H which is not in B. It does not need to compute the set of all
values not occurring in B—which may not be finite.

Theorem 7 If a program with negation in head clauses is head-negation-safe then
the program obtained via the transformation in Fig. 12 is safe.

Proof We will show that this property holds for each program rule r that is rewrit-
ten.

Rewrite rule (I):

• If r’s body has no negative clause then the transformation trivially preserves
safety.
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• Otherwise the rule does not apply.

Rewrite rule (II):

• If r’s body has no negative clause: the transformation trivially preserves safety.
• If r’s body contains at least one negated clause and the variables occurring in this

clause are used only in the negated head clause: the rewrite rule transforms the
negated head clause into a positive head clause which can use variables occurring
only in the original negated body clause. Nevertheless, the rewrite rule also adds
a corresponding positive body clause which now bounds the variables used by
the head clause. This renders the transformed r rule safe.

Rewrite rule (III):

• If r’s body has no negative clause, the concern is that the variable occurring in
the newly added negative clause may not be bounded in a positive body clause
but used in the head clause; this is obviously false by construction.
• If r’s body contains at least one negated clause and the variables occurring in this

clause are used only in the negated head clause, the rewrite rule leaves body and
head unmodified and therefore cannot affect the result of the transformation.

Rewrite rule (IV):

• If r’s body has no negative clause, the concern is that head is using variables
occurring solely in the negated body clause. This property would then hold for
the transformed r, which thus would not be safe. Rewrite rule (II) applies now,
and will result in a safe rule.
• If r’s body contains at least one negated clause and the variables occurring in

this clause are used only in the negated head clause, the rewrite rule preserves
safety up to rule (II).

Rewrite rule (V): The argument is the same as for rewrite rule (I).

Rewrite rule (VI):

• If r’s body has no negative clause: the transformation trivially preserves safety.
• Otherwise the rule does not apply.

2
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10.2 Augmentation and stratification

Given an initial reactor type C, and given the types of all reactors, we define the
extended rule/relation stratification graph G on the program before augmentation
as a directed graph 〈N, R, A〉 obtained by applying the following steps repeatedly
until the reaction scope has been fully extruded—i.e. no new reactor types can
possibly be added to the reaction scope. Let S = {C}.

• Let Ccrt iterate over the set of newly added reactor types in S.
• For every rule r in Ccrt which writes a remote relation p in Ci of a type that

already exists in S, treat p as a local relation.
• For every rule in Ccrt which reads and writes only local relations, build the

rule/relation graph as explained in Section 10.1.
• For every rule r in Ccrt which writes a remote relation p in Ci of a type that does

not already exist in S:
· Add a node to N for each predicate symbol in Ci, and a node to R for each

rule in Ci.
· For each rule r′ in the current extended stratification graph which read relations

in Ci, update A to contain an edge from n ∈ N corresponding to the relation
being read to r′ ∈ R if n is a predicate symbol in the body of rule r′. The edge
between n ∈ N and r′ ∈ R is marked if the body clause that has n as predicate
symbol is negative.
· For rule r build the rule/relation graph as explained in Section 10.1.
· S = S ∪ Ci.
• For every rule r in Ccrt which instantiates a new reactor of type Cj that does

not already exist in S, S = S ∪ Cj.

Definition 8 A set of reactor types is D-stratified if there exists no cycle in the
corresponding extended stratification graph G containing a marked edge. 2

Note that we are interested in a program to be stratified after the active_T relation
has been added, for reasons explained in Section 7.1.

Theorem 9 If a set of reactor types is D-stratified then the program obtained via
augmentaion is head-negation-stratified.

The augmentation transformation creates a global relation for all corresponding re-
lations p in reactors of the same type. But before augmentation all relations p in re-
actors of identical type that the rules may refer to were represented by a single node
via the graph construction above. Therefore no edges are either created, nor deleted,
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by the transformation, and the marks on the edges remain unchanged. Practically
the augmentation transformation creates a monolithic dependence graph which is
isomorphic to the extended stratification graph constructed above. It follows that
stratification of the graph is unaffected by the augmentation transformation.

11 Extended Examples

In this section, we complete the exposition of the reactor model with a collection
of extended examples. These example show how a number of common distributed
programming patterns can be concisely encoded in the reactor model. All of the
examples in this section make extensive use of the notational abbreviations defined
in Fig. 6.

Example 10 (AJAX-style web form) Figures 15, 16, and 17 depict code for a
simple AJAX (asynchronous Javascript and XML) web application, due to Bercik
[17]. In this style of application, individual elements on a web page can be up-
dated via asynchronous server requests. In contrast to traditional “page at a time”
web applications, this approach minimizes the amount of data that needs to be
exchanged between browser and server, which can in turn yield more responsive
user interfaces and a reduced load on the server.

Figures 15, 16, and 17 represent browser code, server code, and database code,
respectively, for a web form containing fields in which a user can enter a US zip
(postal) code, a city name, and a US state name. When the user enters a zip code,
a background server request (XMLHttpRequest) is dispatched, which ultimately has
the effect of looking up the zip code in a database and returning the city and state
to which the zip code corresponds back to the browser. The returned values are
then used to complete the city and state fields on the web form (the user can
overwrite the server-generated field values if desired).

Despite the conceptual simplicity of the web form example, a large amount of code
in multiple programming languages is required to build a robust AJAX application.
In this case, the browser code (Fig. 15 is written in a combination of HTML and
Javascript; the server code (Fig. 16) is written in PHP; SQL queries and data
definitions are used to access the database (Figures 16 and 17); and XML is used to
transmit data from the server back to the browser (Figures 16 and 15). Specialized
Javascript libraries are also needed to dispatch the server request and process the
XML response. The result is code that is complex and fragile, even for a very simple
application.
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By contrast, consider the reactor definitions in Figures 18 and 19. While the reac-
tor model is a foundational model, not a full-blown programming language, it is
expressive enough to accurately model all of the essential operations present in the
example. Here, reactors are used to model “widgets” representing single form fields
(InputWidgets), the contents of of the page containing the main web form (Ajax-
Page), server side code (Server) and the zip code database (ZipDB). In addition,
we also model the behavior of a rudimentary web browser (Browser). From this
example, we see that reactors can compactly and uniformly model the synchronous
interaction between the web page code and the browser, the asynchronous inter-
action between the browser and the server, the synchronous interaction between
the server and the database, and the requisite logic used to connect these compo-
nents together. Contrast the “three-tier” style of this example with the example in
Fig. 10, which encapsulates its “business logic” in a single reactor.

Example 11 (Three-tier web application) Fig. 20 depicts another web appli-
cation which mimics the structure of a conventional three-tier application for cata-
log ordering. In a manner similar to the previous example, page content in browser
is modeled by the OrderPage reactor type, which is instantiated with various prim-
itive widget reactors—OutputWidget and ButtonWidget from Fig. 10 (in the case
of ButtonWidget, the type of its buttonListener relation must be changed from
(ref DataDisplay) to (ref OrderPage) to account for its new “parent” type)
and a new FormWidget—depending on the type of page being displayed. Instances
of OrderPage perform local (i.e., “browser-side”) computation which performs basic
form validation.

One limitation of our current model is that all reactor references must be strongly
typed, hence the need to update the declaration of ButtonWidget to refer to a
different “parent” reactor type, which makes it difficult to model a browser reactor
that can render arbitrary pages represented as reactors. In the future, we will
consider more flexible type system which would allow a completely generic browser,
oblivious to the type of the page, to be defined.

Example 12 (Small workflow system) Consider a workflow system (shown in
Fig. 21) where employees handle incoming cases (say, problem reports) and attempt
to resolve them. Regardless if a case is resolved or not, it is eventually archived
to signify that no more work should be carried out on that case. Of course, it
can be important to know the entire history of unresolved cases whether they are
archived or not. To this end, the system outlined in Fig. 21 declares the relations
inbox, unresolved, and archive. Cases received from the outside world through
the inbox are initially duplicated to unresolved and eventually put in archive
although they may continue to exist in unresolved.

266



<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
<title>ZIP Code to City and State using XmlHttpRequest</title>
<script language="javascript" type="text/javascript">
var url = "getCityState.php?param="; // The server-side script
function handleHttpResponse() {

if (http.readyState == 4) {
if (http.responseText.indexOf(’invalid’) == -1) {

// Use the XML DOM to unpack the city and state data
var xmlDocument = http.responseXML;
var city = xmlDocument.getElementsByTagName(’city’).item(0).firstChild.data;
var state = xmlDocument.getElementsByTagName(’state’).item(0).firstChild.data;
document.getElementById(’city’).value = city;
document.getElementById(’state’).value = state;
isWorking = false;

}
}

}
var isWorking = false;
function updateCityState() {

if (!isWorking && http) {
var zipValue = document.getElementById("zip").value;
http.open("GET", url + escape(zipValue), true);
http.onreadystatechange = handleHttpResponse;
isWorking = true;
http.send(null);

}
}
function getHTTPObject() {

var xmlhttp;

if (!xmlhttp && typeof XMLHttpRequest != ’undefined’) {
try {

xmlhttp = new XMLHttpRequest();
xmlhttp.overrideMimeType("text/xml");

} catch (e) {
xmlhttp = false;

}
}
return xmlhttp;

}
var http = getHTTPObject();
</script>
</head>
<body>
<form action="post">

<p>
ZIP code:
<input type="text" size="5" name="zip" id="zip" onblur="updateCityState();" />
</p>
City:
<input type="text" name="city" id="city" />
State:
<input type="text" size="2" name="state" id="state" />

</form>
</body>
</html>

Fig. 15. AJAX address lookup form: HTML and JavaScript client code.
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<?php
/**
* Connects to the database.
*/

function db_connect() {
$database_name = ’mysql’;
$database_username = ’root’;
$database_password = ’’;
$result = mysql_pconnect(’localhost’,$database_username, $database_password);
if (!$result) return false;
if (!mysql_select_db($database_name)) return false;
return $result;

}
$conn = db_connect(); // Connect to database
if ($conn) {

$zipcode = $_GET[’param’]; // The parameter passed to us
$query = "select * from zipcodes where zipcode = ’$zipcode’";
$result = mysql_query($query,$conn);
$count = mysql_num_rows($result);
if ($count > 0) {

$city = mysql_result($result,0,’city’);
$state = mysql_result($result,0,’state’);

}
}
if (isset($city) && isset($state)) {

// $return_value = $city . "," . $state;
$return_value =

’<?xml version="1.0" standalone="yes"?><zip><city>’.
$city.’</city><state>’.$state.’</state></zip>’;

}
else {

$return_value = "invalid".",".$_GET[’param’]; // Include Zip for debugging purposes
}
header(’Content-Type: text/xml’);
echo $return_value; // This will become the response value for the XMLHttpRequest object
?>

Fig. 16. AJAX address lookup form: PHP server code.

CREATE TABLE ‘zipcodes‘ (
‘zipcode‘ mediumint(9) NOT NULL default ’0’,
‘city‘ tinytext NOT NULL,
‘state‘ char(2) NOT NULL default ’’,
‘areacode‘ smallint(6) NOT NULL default ’0’,
PRIMARY KEY (‘zipcode‘),
UNIQUE KEY ‘zipcode_2‘ (‘zipcode‘),
KEY ‘zipcode‘ (‘zipcode‘)

) TYPE=MyISAM;

Fig. 17. AJAX address loookup form: database code.

Incoming cases are allocated to employees who each has a work queue. Employ-
ees interact with the system through a GUI where they can mark cases resolved,
archived or deallocated. These GUI events are handled through the public relation
GUIevent.
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def InputWidget = { // Reactor representing single input field in web form

public size: (int). // fixed field width, if specified
public label: (string). // field label
public val: (string). // value entered in field
public blurListener:

(ref Client). // listener(s) for blur event (change of focus)
}

def AjaxPage = { // Reactor representing composite web page for address lookup

public rServer: (ref Server). // ref. to server; initialized when page is created
public rBrowser: (ref Browser). // ref. to browser; initialized when page

// received by browser

title: (string). // page title
rZip: (ref InputWidget). // widgets for zip, city, state
rCity: (ref InputWidget).
rState: (ref InputWidget).

public ephemeral write // positive response from server to lookup request
zipFound: (string, string).

public ephemeral write // negative response from server to lookup request
zipNotFound: (string).

waiting: (). // flag set when zip lookup request in progress

onBlur(_), not -waiting(): { // when notified of blur event for zip widget and not
s.getZip^(self,zs) <- // awaiting a prev. response, request city/state

z.val(zs), rZip(z), // corresponding to zip
rServer(s).

waiting() <- . // set flag while awaiting response
}

zipFound(cs,ss): { // success case: copy city/state values returned
c.val(cs) <- rCity(c). // to corresponding widgets and reset waiting
s.val(ss) <- rState(s). // flag
not waitingForZip() <- .

}

not waitingForZip() <- // failure case (no city/state pair found): just
zipNotFound(_). // reset waiting flag

INIT: { // initialize new child widgets when parent page
rZip(new) <- . // is created
rZip(z) : {

z.label("ZIP Code:") <- .
z.size(5) <- .
z.blurListener(self) <- . // this reactor listens for blur events on zip widget

}
rCity(new) <- .
c.label("City:") <- rCity(c).
rState(new) <- .
rState(s): { s.label("State:") <- . s.size(2) <- . }
title("ZIP Code to City and State using the Reactor Model")

}
}

def Browser = { // Reactor representing web browser

currPage: (ref AjaxPage). // current page in browser
public ephemeral write // response from getPage request

showPage: (ref AjaxPage).

currPage(p) := showPage(p). // response from server to page request updates
p.rBrowser(self) <- // current browser page and sets browser ref.

showPage(p). // in page to the browser
}

Fig. 18. Reactor-based address lookup form: “client”-related definitions.

269



def Server = { // Reactor representing web server

public rDB: (ref ZipDB). // ref. to zip database (assumed initialized elsewhere)
public ephemeral write // corresponds to HTTP GET of main page

getPage: (ref Browser).
public ephemeral write // correponds to HTTP GET for zip lookup

getZip: (ref Browser).

ephemeral newPage: // temporary to hold newly-created main page
(ref AjaxPage).

getPage(b): { // respond to getPage request
newPage(new) <- . // instantiate new page
newPage(p): { // initialize server ref. in new page; return

p.rServer(self) <- . // page to browser
b.showPage^(p) <- .

}
}

ephemeral lookupRes: // temporary to hold result of zip lookup in DB
(string, string).

getZip(b,zs): { // respond to getZip request
lookupRes(cs,ss) <- d.addr(zs,cs,ss), rDB(d).
b.zipFound^(cs,ss) <- lookupRes(cs,ss).
b.zipNotFound^(zs) <- not lookupRes(_,_).

}
}

def ZipDB = { // Reactor representing zip code / address database

public addr: (string, string, string, string). // zip, city, state, area code

FAIL <- addr(z,c1,_,_), addr(z,c2,_,_), c1 <> c2. // rules which together assert that
FAIL <- addr(z,_,s1,_), addr(z,_,s2,_), s1 <> s2. // zip is primary key
FAIL <- addr(z,_,_,a1), addr(z,_,_,a2), a1 <> a2.

}

Fig. 19. Reactor-based address lookup form: “server”-related definitions.

In the normal workflow employees can navigate freely between the various states,
as long as two rules are satisfied: (1) every case that has not been archived must
be allocated, and (2) any resolved item should be archived (although it will stay in
the work queue for post-review until the employee explicitly deallocates it). These
two rules are encoded by the lines marked (1) and (2) in the example. The two
rules demonstrate a desirable coding style, where the constraints are separate from
the GUI handling and any other rules that may modify the relations; this improves
compositionality with future rules.

Example 13 (Aspect-like modeling of logging and access control) The re-
actor code in Figures 22 and 23 is based on an example due to Hankin et al. [18].
Fig. 22 depicts a simple application in which a RequestMgr reactor responds to re-
quests by telephone company customers for billing information (via the ephemeral
relation getBill). The billing information is derived by combining information
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def DB = { // Reactor representing a trivial database (list of items in inventory)

public inv: (int).
}

def Server = { // Reactor representing web server

rDB : (ref DB). // reference to the database
public ephemeral write getPage : (ref Browser). // new page request
public ephemeral write postForm : (ref Browser, int). // form submission request

ephemeral newPage : (ref OrderPage). // temp to hold new page
newPage(new) <- . // generate pg. on every reaction;
c.rServer(self) <- newPage(p). // each has link to server

getPage(br), newPage(p): { // getPage creates three
p.outWidget(new), // primitive widgets for the
p.formWidget(new), // page
p.buttonWidget(new) <- .

o.label("Available: "), o.val(toString(q)) // init widget data; in particular
<- c.outWidget(o), rDB(d), d.inv(q). // copy current inv. from db

f.label("Quantity to order: "), f.val("1") <- p.formWidget(f).
b.label("Submit"), b.buttonListener(p) <- p.buttonWidget(b).
br.showPage^(p) <- . // submit page to browser

}

ephemeral reqOK : ().
postForm(br, qr), newPage(p): { // postForm checks whether

p.outWidget(new) <- . // requested qty. is avail.;
reqOK() <- qr >= q, rDB(d), d.-inv(q). // returns appropriate responses
o.label("Success!") <- reqOK(), p.outWidget(o).
d.inv(q-qr) := reqOK(), rDB(d), d.-inv(q).
o.label("Sorry!") <- not reqOK(), p.outWidget(o).
br.showPage^(p) <- . // submit page to browser

}
}

def Browser = { // Reactor representing web browser

currPage: (ref OrderPage). // current page in browser
public ephemeral write // response from getPage request

showPage: (ref OrderPage).

currPage(p) := showPage(p). // response from server to page
p.rBrowser(self) <- // request updates curr. browser

showPage(p). // page and sets browser ref.
// in page

}

def OrderPage = { // Reactor representing composite page for order submission
public rServer : (ref Server). // ref to server
public rBrowser : (ref Browser). // ref to browser
outWidget : (ref OutputWidget). // widgets on page; the form and
formWidget : (ref InputWidget). // button widgets are empty (not
buttonWidget : (ref ButtonWidget). // used) on a response page
public ephemeral write onButton

: (ref ButtonWidget). // set when button pressed

ephemeral validateOK : () // perform local validation
validateOK() <- buttonWidget(b), onButton(b), formWidget(f), f.val(qty),

outWidget(o), o.val(inv), toInt(qty) <= toInt(inv).
rServer.postForm^(br, toInt(qty)) // validation OK: submit to server

<- validateOK(), rBrowser(br), formWidget(f), f.val(qty).
f.val("1") <- not validateOK(). // validation fails: just reset

// qty. to 1; do not submit
}

Fig. 20. Mini three-tier web application.
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def WorkflowSystem = {
// Workflow system for case handling

public ephemeral inbox : (string) // (case)
public ephemeral GUIevent : (string, string, // (case, employee,

string) // {"Resolve","Archive","Dealloc"})

employee : (string) // (employee)
workQueue : (string, string) // (case, employee)
archive : (string) // (case)
unresolved : (string) // (case)

// Normal workflow

unresolved^(case) <- inbox (case) // Put in unresolved
workQueue^ (case,p) <- not archive (case), unresolved (case), // (1) Allocate

employee (p)
archive^ (case) <- workQueue (case,p), not unresolved (case) // (2) Archive resolved

// GUI events

not unresolved (case) <- GUIevent (case, _, "Resolve") // Case resolved
archive (case) <- GUIevent (case, _, "Archive") // Archive case
not workQueue (case,p) <- GUIevent (case, p, "Dealloc") // Remove from queue
}

Fig. 21. Example from a workflow system for case handling

in two databases: WP, a database of “white pages” listings, and BillDB, a billing
database.

In Fig. 23, we augment the definition of RequestMgr in Fig. 22 with additional
rules which add logging and access control functionality. The last two rules of the
example encode assertions representing alternative access control policies. These
rules have the effect of rolling back reactions which violate the policies. Hankin et
al. [18] implement the basic billing functionality of Fig. 22 in the KLAIM process
calculus [19], then add access control facilities using aspect-like [11] extensions to
the core calculus. The aspect extensions can modify the behavior of the underlying
application by inserting or removing expressions of the original program (in this
case, by inserting code around database accesses which validates access control
policies).

As with aspect-like approaches, the reactor model allows many “additive” behav-
iors, such as the new functionality of Fig. 23, to be incorporated into an exist-
ing program as additional rules, without requiring that existing code be modified.
On the other hand, aspect languages typically provide meta-constructs to define
“pointcuts” at which new behavior is introduced via syntactic pattern-matching;
the reactor model provides no analogous functionality. Existing functionality in a

272



def Cust = { // Reactor representing a customer

... // customer name, address, etc.
public ephemeral write // response to request for billling info.

bill: (int).
}

def WP = { // Reactor representing "white pages" database

public dir: (ref User, string). // customer, phone number
}

def BillDB = { // Reactor representing billing information

public billing: // phone number, cost of call, customer
(string, int, ref User).

}

def RequestMgr = { // Reactor managing requests to phone-related databases

rWP: (ref WP). // refs. to white pages and billing
rDB: (ref BillDB). // databases; assumed initialized elsewhere

auth: (ref Cust, ref BillDB). // authorization matrix: auth(c, d) means
// that customer c is authorized to
// access database d

public ephemeral write getBill: // getBill(r, c): requester r requests
(ref Cust, ref Cust). // billing data for customer c

r.bill^(a) <-
getBill(r, c), y.dir(c, n), d.billing(n, a, c), rWP(y), rDB(d).

}

Fig. 22. Telephone records management system.

reactor program can generally be altered or removed only by editing rules in place.
By contrast, [18] allow “advice” to be defined which has the effect of conditionally
eliminating existing behaviors. Nevertheless, we believe that the rule-based style of
the reactor model usually allows conceptually independent behaviors to be speci-
fied as distinct collections of rules, which in turn means that the scope of required
edits is minimized when application requirements change.

Example 14 (Refactoring from synchronous to asynchronous interaction)
The examples in Figures 24 and 25 both implement the functionality of the exam-
ple in Fig. 8, which we considered earlier. Reactor SyncSample below is an en-
tirely synchronous variant of the sensor sampling reactor Sample of Fig. 8. Reactor
AsyncSample of Fig. 25 is rather more interesting. Like Sample, it is asynchronous.
However, AsyncSample does not require that either the sensor or the sampling
reactor handle asynchronous requests and responses. Instead, we use an auxiliary
“agent” reactor, SampleAgent, which first reacts synchronously with SyncSensor,
then (in a separate reaction) reacts synchronously with AsyncSample. Using such
auxiliary agents, we can refactor synchronous reactor interaction to asynchronous
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def RequestMgr = { // Reactor managing requests to phone-related databases

rWP: (ref WP).
rDB: (ref BillDB).
auth: (ref Cust, ref BillDB).

public ephemeral write getBill: (ref Cust, ref Cust).
r.bill^(a) <-

getBill(r, c), y.dir(c, n), d.billing(n, a, c), rWP(y), rDB(d).

log: (ref Cust, ref Cust) // log accesses
log(r, c) <- getBill(r, c).

FAIL <- getBill(r, c), // ...and/or disallow unauthorized access
not auth(r, d), rDB(d).

FAIL <- getBill(r, c), r <> c, // ...or use a more sophisticated policy: requester
not auth(r, d), rDB(d). // is allowed to request information about

// self; otherwise, must be explicitly authorized
}

Fig. 23. Telephone records management system augmented with logging/authorization
functionality.

def SyncSensor = {
public val: (int)

}

def SampleData = {
// data collected to date; nonce used to
// distinguish multiple measurements of same

value
public log: (ref Nonce, int).

}

def SyncSample = {
public rSensor: (ref SyncSensor).
public rSampleData: (ref SampleData).
public write ephemeral pulse: ().

// add current value of sensor to log
c.log(new, v) <-

pulse(), rSensor(s),
rSampleData(c), s.val(v).

}

Fig. 24. Fully synchronous sensor sampling.

interaction with minimal change to the original reactor code.

Example 15 (Business process for order fulfillment) The example in Fig. 26
depicts a simple business process example modeling order fulfillment. In this ex-
ample, a Gateway reactor processes requests to fulfill a certain quantity of items
(in this example, only one type of item is considered, for simplicity). The Gateway
maintains an ordered list of references to Warehouse reactors which are capable
of fulfilling the order. When a request is received, a new Processor reactor is
spawned specifically to fulfill the (single) request. The Processor reactor asyn-
chronously queries each warehouse on the list to determine if it can fulfill the order
itself; if not, the remainder of the order is passed on to the next warehouse on
the list for fulfillment, and so on. If all of the requested items can be supplied,
an asynchronous response is sent to the requester, indicating success. Otherwise,
a failure response, containing the number of items unfulfilled, is dispatched. The
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def AsyncSample = {
public rSensor: (ref SyncSensor).
public rSampleData: (ref SampleData).
public write ephemeral pulse: ().
ephemeral newAgt:(ref SampleAgent).

// delegates functionality to reactor
// of type SampleAgent
pulse(): {

newAgt(new) <- .
a.rSensor(s), a.rSampleData(c) <-

rSensor(s), rSampleData(c).
}

}

def SampleAgent = {
// implements state machine that first
// gets sample, then writes to log
public rSensor: (ref SyncSensor).
public rSampleData: (ref SampleData).
ephemeral readSample: ().
ephemeral writeLog: (int).

// sends an async update to itself
// when created
getSample^() <- not -live().

// reads sensor, sends async update
// to self with the value read
writeLog^(v) <-

getSample(), rSensor(s), s.val(v).

// finally, writes the sensor value to log
c.log(new, v) <-

writeLog(v), rSampleData(c).
}

Fig. 25. Fully asynchronous sensor sampling.

FIRST and EMPTY expressions are syntactic for rules and auxiliary relations which
compute the first element of a list, and test a list for emptiness, respectively.

This example in Fig. 26 illustrates how auxiliary reactors can be instantiated that
carry out independent “task threads”, in a manner similar to process replication in
standard process calculi. The example also illustrates how the data manipulation
components of the language (here, e.g., the machinery used to manage lists of ware-
houses) interact naturally with process creation and inter-process communication.

Example 16 (Views defined by rules: shopping cart management) The ex-
ample in Fig. 27 models shopping cart management for a catalog order application.
Reactor type CartManager is intended to manage a shopping cart for a single user
interaction (“session”). Each CartManager instance contains a “public” view of pri-
vate cart data maintained on behalf of all users by reactor DB. Relation currCart
contains the public contents of a single user cart, and allCarts maintains the pri-
vate contents of all shopping carts currently managed in the system, along with
auxiliary information about users and shipping information for each cart. The client
interacts with the public cart (currCart) by reading and writing its contents di-
rectly. The rules of CartManager synchronize the public contents of currCart with
private internal data; hence currCart functions as a view, in the database sense,
of the private DB data. Note that the shipping information is maintained by DB,
rather than CartManager instances. The CartManager rules are concerned only
with synchronizing the public and private cart data. As before, EMPTY is syntactic
sugar for auxiliary rules/relations which test a relation for emptiness. SUM is sugar
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def Gateway = {
// requests are pairs of the form
// (requester, quantity requested)
public ephemeral request:

(ref Requester, int).

// ordered list of warehouse refs which may
// be used to fulfill requests;
// lists are sets of tuples of the form
// { <l1, l2>,<l2, l3>,...<ln, ln> }
public whs:

(ref Warehouse, ref Warehouse).

// auxiliary reactor spawned to
// process each request
ephemeral processor: (ref Processor).

// spawn reactor for request
processor(new) <- request(_,_).

// initialize persistent relations
// of request processor
p.whs(w1, w2),
p.requester(r),
p.remaining(q) <-

whs(w1, w2), request(r, q).
}

def Processor = {
// requester
public requester: (ref Requester).
// quantity of items left to fulfill
public remaining: (int).
// warehouses ramining to be queried
public whs: (ref Warehouse, ref Warehouse).
// quantity of items last warehouse
// queried is willing to supply
public ephemeral write willSupply: (int).

// the following rules apply both when the
// processor is initialized and after a
// warehouse query returns
remaining(q): {

// quantity left to fulfill is nonzero:
// query first warehouse on list
w.request^(q) <-

q > 0, FIRST[whs(_,_)](w).
// qty. left to fullfill zero:
// respond positively
r.complete^() <- q = 0.
// no warehouses left, qty. remaining
// nonzero, respond with unfullfilled amt.
r.incomplete^(q) <-

q > 0, EMPTY[whs(_,_)].
}

willSupply(qw): {
// decrement quantity supplied from
// amount remaining to fulfill
// (qty. to be supplied is assumed less
// than or equal to qty. requested)
remaining(q - qw) := -remaining(q).
// remove first warehouse from list
// when response received
not whs(w1, w2) <- -whs(w1, w2),

FIRST[-whs(_,_)](w1).
}

}

Fig. 26. Order fulfillment workflow.

for rules/relations which compute the sum of the quantity values for each item in
a cart.

The cart synchronization rules must account for various edge conditions: e.g., when
there is a pre-existing private cart that can be used to populate the public cart,
and when there is no pre-existing cart at all. This is quite straightforward to do
by composing rules that separately handle each edge case, but would likely require
much more thought and care if written in a non-declarative style. Similarly, the
rule-based computation allows the distinct “concerns” of cart synchronization and
shipping logic to be specified and managed independently, in an aspect-like manner.
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def CartManager = {
// singleton relation containing current userid
public userid: (string).
// public "view" of cart for clients
public currCart: (int, int)
// reference to persistent data
rDB: (ref DB).

userid(u), rDB(db), db.userCarts(u, n): {
// when cart manager first created,
// initialize currCart with allCarts
// entry for user, if any exists
currCart(i, q) <-

INIT, -db.allCarts(n, i, q).

// if no cart exists, create one
ephemeral preExistingCart: (string).
preExistingCart(u) <- -db.userCarts(u, _).
db.userCarts(u, new) <-

EMPTY[preExistingCart(u)].

// all currCart entries must
// also be in allCarts
db.allCarts(n, i, q) <-

currCart(i, q), db.allCarts
// if qty. changed, remove old qty.
not db.allCarts(n, i, q) <-

currCart(i, q’),
-db.allCarts(n, i, q), q <> q’.

// item not in currCart:
// delete from allCarts
not db.allCarts(n, i, _) <-

not currCart(i, _).
}

}

def DB = {
// maps userids to cartids
userCarts: (string, ref Nonce).
// maps cartids to items, qty
allCarts: (ref Nonce, int, int).
// carts with standard shipping
standardShipping: (ref Nonce).
// carts with free shipping
freeShipping: (ref Nonce).

// std. shipping if qty. < 10, free o.w.
standardShipping(n) <-

SUM[n, q, allCarts(n, _, q)](n,s),
s <= 10.

freeShipping(n) <-
SUM[n, q, allCarts(n, _, q)](n,s),
s > 10.

}

Fig. 27. Shopping cart management.

12 Related work

Fundamentally, reactors are “reactive systems” [20], combining and extending fea-
tures from several, largely unrelated areas of research: synchronous languages, Dat-
alog [4], and the actor model [5].

Esterel [1], Lustre [2], Signal [3], and Argos [21] are prominent synchronous lan-
guages. In synchronous languages, the term causality refers to dependencies, and
all have restrictions on cyclic dependencies. Esterel only admits a program if all sig-
nals can be inferred to be either present or absent (as opposed to unknown); this is
referred to as constructiveness. Esterel adopts a strict interleaving semantics, i.e. it
assumes that reactions cannot overlap temporally. In Esterel signals are broadcast
instantaneously so that all receptors of the signal will see it in the same instant
and the signal will only exist in that reaction. The reactor model, on the other
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hand, supports both synchronous and asynchronous broadcasts (readers can react
when a relation is changed) as well as synchronous and asynchronous point-to-point
communication (by writing directly into a public relation of the receiver).

Lustre and Signal also limit cyclic dependencies, but add sampling in the form
of the construct x = Exp when BExp meaning that Exp should be evaluated only
when BExp is true. This facility provides a sophisticated way of reading values from
preceding reactions other than the immediately previous one. In the reactor model,
such predicates can be expressed directly as x(Exp) <- BExp where x should be a
singleton relation. Argos is based on State Charts and hierarchical automata and
distinguishes itself from other synchronous languages by being graphical.

Generally speaking, the group of synchronous languages does not allow cycles in
the data flow graph – only pre-state to response-state connections are permitted
when referring to the same variable. In the reactor model, stratification provides
a more refined classification that widely allows recursion while ruling out cases
where the fixed point could be ambiguous (of course, programs may still loop
infinitely). Reactors provide several features not found in synchronous languages,
namely asynchrony, generativity, and distributed transactions. We are not familiar
with any other language that combines these features.

Active databases [22] commonly express triggers of the form Event–Condition–
Action (ECA), where the action is carried out if on receipt of a matching event the
condition holds true. This can be expressed as action <- event, condition in
the reactor model. The reactor model eliminates the distinction between conditions
and events, and adds support for distribution, process generation, and synchronous
composition.

Transaction Datalog [23] introduces transactions and database updates to Data-
log. In Transaction Datalog, inserts and deletes are special atoms in rule bodies,
and backward derivation rather than forward derivation is used. To achieve con-
currency in transactions a concurrent conjunction operator, |, is added. In the
reactor model, all rules execute concurrently within the same reaction (subject to
stratification) by default, and thus sequentiality, rather than concurrency, must be
programmed explicitly when needed. We feel this increases the opportunity for ag-
gressive parallelization. Another piece of work on Datalog with updates is DatalogU
[24], which follow a similar approach to Transaction Datalog, but without trans-
actions. DatalogU proposes a semantics in which deletions are performed before
insertions so that newly inserted facts cannot be deleted immediately. The reactor
model augments the features found in these Datalog variants with a framework for
distribution, communication, and generativity (the ability to create new reactors),
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and allows deletion to happen concurrently with the rest of the computation.

In [25] an approach to deletion is presented which focuses only on modifying the
extensional database. The semantics of rules with updates in the head is given by
re-writing them into equivalent update-free rules that are XY-stratified—a special
subcase of locally stratified programs. These programs can express all programs un-
der inflationary fixpoint semantics. Deletions (and additions) in this approach oc-
cur as additional commands, separate from the program, which request the removal
(or addition) of extensional facts. In this context, a deletion request is handled by
simply not copying a fact to the database.

U-Datalog [26] has an non-immediate update semantics, in which updates are col-
lected and applied in parallel to the database when the query evaluation is com-
pleted. This approach lacks what we think of a nice property that when a reaction
quiesces all the rules have been re-satisfied.

In [27], rules which update the database by retracting tuples are regarded as in-
tegrity constraints, and programs with rules containing retractions are translated
into normal programs. Consistency is restored by making one of the positive literals
in the rule body false. This can be updates to the database, database initial facts,
or the facts inferred from the rules. The semantic is nondeterministic.

In [28] procedural and declarative update languages are proposed which all have
saturation semantics—a form of inflationary semantics. This means that facts can
be added to the database, but never deleted. [29] defines Datalog-A, an extension
of Datalog with updates; this approach promotes explicitly procedural constructs
and uses a Dynamic Logic to specify their semantics.

The constructive semantics of LDL [30] for Datalog programs with updates is top-
down. The declarative semantics of LDL programs imposes an update dependency
restriction on programs. If p is the head predicate symbol of a rule s.t. the definition
of p contains an update predicate (addition or deletion) p has the update dependency
property. A set of rules is legal if every head predicate symbol that has the update
dependency property is defined by a single rule. In the case in which the order of
applying the updates is relevant, the program is rejected or the user can specify
procedurally the order of execution.

KLAIM [31] is a process calculus type of programming language based on Linda. It
has asynchronous communication based on creating tuples which will be received
by any number of processes. There is a shared data space, though multiple located
tuple spaces can exist at a time. The language is procedural in the sense that it
expreses implementation as opposed to specifications, and operations are ordered.
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Orc [32] is an orchestration language for distributed computation. The composition
operators for services are parallel composition, sequencing, and selective pruning.
The model does not have any computational power; it relies on services to provide
this capability. The basic semantics is asynchronous, but it also provides a par-
ticular flavor of synchronous semantics which ensures that all internal events are
processed as soon as possible, before any external response can be processed.

TCC [33] presents a declarative approach that starts from an asynchronous compu-
tational model (CCP) and ensures a timed computationl model in which computa-
tion is deterministic and time is bounded. The language supports hierarchical and
modular construction of applications via parallel composition and pre-emption. To
express time-out TCC introduces the notion of negative information. The absence
of some positive information is interpreted as negative information solely at a point
where the computation has quiesced, and can only trigger more activity in the next
computation interval.

Aspect-oriented programming [11] addresses the separation and composition of or-
thogonal, but interacting, concerns of a program. Reactors do not have the features
usually identified with aspects (point-cuts, advice, etc.), but instead provide one
general mechanism for composition of rules in a non-intrusive and well-defined
manner.

Other approaches to Internet application programming include Flapjax [34] (an
event-stream and message library built on top of JavaScript), and Links [35] (a
code generation approach, where the code for several tiers is generated from one
source).

What differentiates us from the existing approaches beyond the technical details
is a uniform programming model which synthesizes concepts from several domains
without the usual complexity associated with this process. The semantic and syn-
tactic machinery for capturing all these features in a single programming model
mostly consists in minimal extensions to the standard Datalog semantics.

13 Future work

While this paper has not focused on implementation, there are two broad areas
that are amenable to optimization: query incrementalization, and efficient imple-
mentation of synchronous composite reactions through low-overhead concurrency
control. The former has already been studied in the Datalog community (e.g., [36]),
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and we intend to adapt those results appropriately to our setting. In the case of
synchronous reactions, recent results on efficient implementation of software trans-
actions (e.g., [37]) are likely to be relevant.

Other issues we plan to investigate include: (1) contract/interface type systems; (2)
various abstraction facilities, such as reactor and rule parametricity and high-order
rules, that read, write, and deploy other rules; (3) more sophisticated access control
mechanisms; (4) function symbols (functors); (5) reactor garbage collection; (6) a
truly distributed implementation; (7) support for long-running (rather than atomic)
transactions.

Our semantic account of the reactor model has treated a collection of reactor types
as defining an augmented program, whose evaluation is orchestrated by the rules
defined in Section 9. However, it is neither necessary nor desirable in a practical
system to require that the set of all reactor types be translated into a single pro-
gram. It it only necessary that each reactor be aware of the other reactors that
it interacts with within a given reaction. A truly distributed implementation will
build the stratification graph and evaluate the rules incrementally. The following
issues would need to be addressed in a practical distributed implementation of the
reactor model. Given an initiating reactor which selects an update bundle off the
network, we would like it to be the case that:

• The initiating reactor is responsible for defining the scope of the reaction by
including all, and only, the reactor types reachable from it via writing a remote
relation, or instantiating a new reactor type. The augmentation transformation
only applies to the set of reactor types in the reaction scope. Likewise, the trans-
formation which removes head-clause negation applies to the set of augmented
reactor types in the reaction scope instead of the augmented program reflecting
the set of all reactor types. We must extend the definition of head-negation-
stratified and stratified programs to account for sets of reactor types rather than
just augmented programs.
• The initiating reactor is responsible for the evaluation of all, and only, the rules

in the reaction scope. This distributed evaluator evaluates rules in the same
order as the evaluator presented in Section 5.5. Also, no rule in the distributed
evaluator is executed until all instances of tuples for the rule’s relation instances
have been “loaded” into the evaluator’s relations.
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Appendix B

Dansk sammenfatning

Denne afhandling er en samling af seks bearbejdede videnskabelige artikler relateret til to forskn-
ingsområder:
(I) En deklarativ programmeringsramme for virksomhedssystemer (ERP-systemer):

• POETS: Process-Oriented Event-driven Transaction Systems. Denne artikel beskriver en
ontologisk analyse af et lille segment af virksomhedsdomænet, nemlig bogholderiet og deb-
itorsystemet. Resultatet er en begivenhedsorienteret tilgang til at designe virksomhedssys-
temer (ERP-systemer) samt en skitse af arkitektur på abstrakt niveau.

• Compositional Specification of Commercial Contracts. Denne artikel beskriver designet,
de forskellige semantikker og brugen af et domænespecifikt sprog (DSL) til at modellere
kommercielle kontrakter.

• SMAWL: A SMAll Workflow Language Based on CCS. Denne artikel viser hvordan mønstre
for arbejdsgange (workflows) kan kodes i CCS og designer herefter et makrosprog, SMAWL,
til arbejdsgange baseret på disse mønstre. SMAWLs semantik defineres via oversættelse til
CCS.

• Using Soft Constraints to Guide Users in Flexible Business Process Management Systems.
Denne artikel viser hvordan et processprogs manglende mulighed for at udtrykke bløde con-
traints—constraints som kan overtrædes lejlighedsvist, men som nøje overvåges—medfører
et tab at intensionel information i procesbeskrivelserne. Dette gør det videre vanskeligt for
et procesudførelsessystem at hjælpe sine brugere med at overholde etableret praksis. Ar-
tiklen beskriver herefter hvordan bløde constraints kan anvendes til indfange foretrukken
praksis eksplicit i procesbeskrivelserne.

• A Work Allocation Language with Soft Constraints. Baseret på ideen om bløde constraints
forklarer denne artikel designet, semantikken og brugen af et sprog til at allokere arbe-
jde i forretningsprocesser. Sproget lader procesdesignerne udtrykke både hårde og bløde
constraints.

(II) Reactors-programmingsmodellen:

• Reactors: A Data-Oriented Synchronous/Asynchronous Programming Model for Distributed
Applications. Artiklen motiverer, forklarer og definerer en distribueret, datadreven pro-
grammeringsmodel. I modellen er en reaktor en distributionsenhed med tilstand. En
reaktor specificerer konstruktive, deklarative constraints på sine data og andre reaktorers
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data i samme stil som i sproget Datalog . Et forsøg på at opdatere en reaktors data starter
en reaktion i løbet af hvilken andre reaktorer muligvis inddrages. Reaktionen slutter når
alle constraints i de inddragne reaktorer er opfyldt, eller når det har vist sig umuligt at
opnå dette (konflikt)
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We die containing a richness of lovers and tribes, tastes we have swallowed,
bodies we have plunged into and swum up as if rivers of wisdom, characters
we have climbed into as trees, fears we have hidden in as if caves. I wish for
all this to be marked on my body when I am dead. I believe in such
cartography – to be marked by nature, not just label ourselves on a map like
the names of rich men and women on buildings. We are communal histories,
communal books. We are not owned or monogamous in our taste or
experience. All I desired was to walk upon such an earth that had no maps.

—Michael Ondaatje, The English Patient

In my end is my beginning.

—T.S. Eliot, East Coker






