32 research outputs found

    Compact and Efficient Millimetre-Wave Circuits for Wideband Applications

    Get PDF
    Radio systems, along with the ever increasing processing power provided by computer technology, have altered many aspects of our society over the last century. Various gadgets and integrated electronics are found everywhere nowadays; many of these were science-fiction only a few decades ago. Most apparent is perhaps your ``smart phone'', possibly kept within arm's reach wherever you go, that provides various services, news updates, and social networking via wireless communications systems. The frameworks of the fifth generation wireless system is currently being developed worldwide. Inclusion of millimetre-wave technology promise high-speed piconets, wireless back-haul on pencil-beam links, and further functionality such as high-resolution radar imaging. This thesis addresses the challenge to provide signals at carrier frequencies in the millimetre-wave spectrum, and compact integrated transmitter front-ends of sub-wavelength dimensions. A radio frequency pulse generator, i.e. a ``wavelet genarator'', circuit is implemented using diodes and transistors in III--V compound semiconductor technology. This simple but energy-efficient front-end circuit can be controlled on the time-scale of picoseconds. Transmission of wireless data is thereby achieved at high symbol-rates and low power consumption per bit. A compact antenna is integrated with the transmitter circuit, without any intermediate transmission line. The result is a physically small, single-chip, transmitter front-end that can output high equivalent isotropically radiated power. This element radiation characteristic is wide-beam and suitable for array implementations

    Energy autonomous systems : future trends in devices, technology, and systems

    Get PDF
    The rapid evolution of electronic devices since the beginning of the nanoelectronics era has brought about exceptional computational power in an ever shrinking system footprint. This has enabled among others the wealth of nomadic battery powered wireless systems (smart phones, mp3 players, GPS, …) that society currently enjoys. Emerging integration technologies enabling even smaller volumes and the associated increased functional density may bring about a new revolution in systems targeting wearable healthcare, wellness, lifestyle and industrial monitoring applications

    ULTRAFAST OPTICAL RESPONSE AND TRANSPORT PROPERTIES OF STRONTIUM TITANATE-BASED COMPLEX OXIDE NANOSTRUCTURES

    Get PDF
    As the silicon-based semiconductor integrated circuits led by Moore's Law approaching their physical limits, the search for a new generation of nanoelectronic and nanophotonic devices is becoming a hot topic in this post-Moore era. The strontium titanate-based complex oxide heterostructure appears to be a promising alternative due to its diverse emergent properties. Being able to control the metal-insulator transition at the polar/nonpolar LaAlO3/SrTiO3 interface using conductive atomic force microscopy (c-AFM) lithography has made LaAlO3/SrTiO3, in particular, an attractive platform. Expanding the class of heterostructures which can be controlled at nanoscale dimensions is important for alternative oxide-based nanodevices. In this dissertation, the writing and erasing of nanostructures at the nonpolar/nonpolar oxide interface of CaZrO3/SrTiO3 using c-AFM lithography is investigated. Conducting nanostructures as narrow as 1.2 nm at room temperature is achieved. Low-temperature transport measurements based on these nanostructures provide insight into the electronic structure of the CaZrO3/SrTiO3 interface. Such extreme nanoscale control, with dimensions comparable to most single-walled carbon nanotubes, holds great promise for oxide-based nanoelectronic devices. Nanophotonic devices operating at terahertz frequencies, on the other hand, offer unique information for many applications. In this dissertation, broadband nanoscale terahertz generators based on c-AFM lithography defined LaAlO3/SrTiO3 nanojunctions are proved to be able to detect the plasmonic response of a single gold nanorod. By femtosecond pulse shaping using a home-built pulse shaper, over 100 THz bandwidth selective difference frequency generation at LaAlO3/SrTiO3 nanojunctions is also demonstrated, which has great potential in both studying fundamental light-matter interaction and realizing selective control of rotational or vibrational resonances in nanoparticles. With this unprecedented control of THz field, the two-dimensional (2D) material graphene and its coupling with the quasi-2D LaAlO3/SrTiO3 interface are also under investigation. The preliminary data shows evidence for graphene response up to 60 THz. These results help to fill the terahertz gap as well as offer new opportunities for oxide-based nanophotonic devices or even hybrid optoelectronic integrated circuits

    Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems

    Get PDF
    We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.Peer ReviewedPostprint (published version

    Dynamics of resonant tunneling diode optoelectronic oscillators

    Get PDF
    Tese de dout., Física, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2012The nonlinear dynamics of optoelectronic integrated circuit (OEIC) oscillators comprising semiconductor resonant tunneling diode (RTD) nanoelectronic quantum devices has been investigated. The RTD devices used in this study oscillate in the microwave band frequency due to the negative di erential conductance (NDC) of their nonlinear current voltage characteristics, which is preserved in the optoelectronic circuit. The aim was to study RTD circuits incorporating laser diodes and photo-detectors to obtain novel dynamical operation regimes in both electrical and optical domains taking advantage of RTD's NDC characteristic. Experimental implementation and characterization of RTD-OEICs was realized in parallel with the development of computational numerical models. The numerical models were based on ordinary and delay di erential equations consisting of a Li enard's RTD oscillator and laser diode single mode rate equations that allowed the analysis of the dynamics of RTD-OEICs. In this work, several regimes of operation are demonstrated, both experimentally and numerically, including generation of voltage controlled microwave oscillations and synchronization to optical and electrical external signals providing stable and low phase noise output signals, and generation of complex oscillations that are characteristic of high-dimensional chaos. Optoelectronic integrated circuits using RTD oscillators are interesting alternatives for more e cient synchronization, generation of stable and low phase noise microwave signals, electrical/optical conversion, and for new ways of optoelectronic chaos generation. This can lead to simpli cation of communication systems by boosting circuits speed while reducing the power and number of components. The applications of RTD-OEICs include operation as optoelectronic voltage controlled oscillators in clock recovery circuit systems, in wireless-photonics communication systems, or in secure communication systems using chaotic waveforms

    Miniaturized Transistors, Volume II

    Get PDF
    In this book, we aim to address the ever-advancing progress in microelectronic device scaling. Complementary Metal-Oxide-Semiconductor (CMOS) devices continue to endure miniaturization, irrespective of the seeming physical limitations, helped by advancing fabrication techniques. We observe that miniaturization does not always refer to the latest technology node for digital transistors. Rather, by applying novel materials and device geometries, a significant reduction in the size of microelectronic devices for a broad set of applications can be achieved. The achievements made in the scaling of devices for applications beyond digital logic (e.g., high power, optoelectronics, and sensors) are taking the forefront in microelectronic miniaturization. Furthermore, all these achievements are assisted by improvements in the simulation and modeling of the involved materials and device structures. In particular, process and device technology computer-aided design (TCAD) has become indispensable in the design cycle of novel devices and technologies. It is our sincere hope that the results provided in this Special Issue prove useful to scientists and engineers who find themselves at the forefront of this rapidly evolving and broadening field. Now, more than ever, it is essential to look for solutions to find the next disrupting technologies which will allow for transistor miniaturization well beyond silicon’s physical limits and the current state-of-the-art. This requires a broad attack, including studies of novel and innovative designs as well as emerging materials which are becoming more application-specific than ever before

    Semiconductor nanowires grown by molecular beam epitaxy for electronics applications

    Get PDF
    One-dimensional nanostructures such as semiconductor nanowires are very attractive for application in next generation electronics. This work presents an experimental study of InAs-based and ZnO-based nanowires grown by molecular beam epitaxy for electronics applications. InAs, InAsP and InAsSb nanowires were grown self-catalytically on silicon. Phosphorus incorporation was studied by means of HRTEM, XRD, EDX and PL. The phosphorus incorporation rate was shown to be 10 times smaller than that of arsenic. InAs and InAsP nanowires exhibit the wurtzite structure with a high density of stacking faults and phase boundaries. Conversely, InAsSb nanowires exhibit the zincblende structure with the density of stacking faults decreasing as the antimony content increases. Antimony incorporation and reduction of the stacking fault density improves the nanowire mobility. ZnO and ZnMgO nanowires and ZnO/ZnMgO core-shell nanowire heterostructures were grown by plasma-assisted molecular beam epitaxy on various substrates with gold particles as a growth catalyst. Nanowire growth was shown to occur only at temperatures between 700 and 850 C and Zn pressures between 1 and 3 10 7 Torr. A two-step growth procedure on silicon was implemented to increase the yield of nanowire growth. Mg incorporation was shown to be 4 times smaller than that of Zn. At Mg content higher than 20 %, MgZnO rocksalt phase segregation is observed in the as-grown samples. Core-shell nanowires were fabricated by growing the shell at a lower temperature of 500 C. ZnO nanowire field effect transistors were fabricated and optimised. High- and low-temperature transport measurements allowed determination of the bulk nanowire and contact properties. Nanowires grown on sapphire and silicon were compared. Nanowires grown on sapphire exhibit an extra donor that determines their low temperature conductivity and give a wider photoluminescence band-edge emission peak. A novel technique to measure the spectrum of deep traps in nanowire field effect transistors was implemented to study ZnO nanowires

    Ancient and historical systems

    Get PDF
    corecore