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As the silicon-based semiconductor integrated circuits led by Moore's Law approaching their 

physical limits, the search for a new generation of nanoelectronic and nanophotonic devices is 

becoming a hot topic in this post-Moore era. The strontium titanate-based complex oxide 

heterostructure appears to be a promising alternative due to its diverse emergent properties. Being 

able to control the metal-insulator transition at the polar/nonpolar LaAlO3/SrTiO3 interface using 

conductive atomic force microscopy (c-AFM) lithography has made LaAlO3/SrTiO3, in particular, 

an attractive platform. 

Expanding the class of heterostructures which can be controlled at nanoscale dimensions 

is important for alternative oxide-based nanodevices. In this dissertation, the writing and erasing 

of nanostructures at the nonpolar/nonpolar oxide interface of CaZrO3/SrTiO3 using c-AFM 

lithography is investigated. Conducting nanostructures as narrow as 1.2 nm at room temperature 

is achieved. Low-temperature transport measurements based on these nanostructures provide 

insight into the electronic structure of the CaZrO3/SrTiO3 interface. Such extreme nanoscale 

control, with dimensions comparable to most single-walled carbon nanotubes, holds great promise 

for oxide-based nanoelectronic devices. 

Nanophotonic devices operating at terahertz frequencies, on the other hand, offer unique 

information for many applications. In this dissertation, broadband nanoscale terahertz generators 

based on c-AFM lithography defined LaAlO3/SrTiO3 nanojunctions are proved to be able to detect 

the plasmonic response of a single gold nanorod. By femtosecond pulse shaping using a home-
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built pulse shaper, over 100 THz bandwidth selective difference frequency generation at 

LaAlO3/SrTiO3 nanojunctions is also demonstrated, which has great potential in both studying 

fundamental light-matter interaction and realizing selective control of rotational or vibrational 

resonances in nanoparticles. With this unprecedented control of THz field, the two-dimensional 

(2D) material graphene and its coupling with the quasi-2D LaAlO3/SrTiO3 interface are also under 

investigation. The preliminary data shows evidence for graphene response up to 60 THz. These 

results help to fill the terahertz gap as well as offer new opportunities for oxide-based nanophotonic 

devices or even hybrid optoelectronic integrated circuits. 
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1.0  INTRODUCTION 

The invention of silicon-based integrated circuits in the last century has led to one of the most 

important industrial revolutions in human history. As the integrated circuits getting smaller and 

more complex, the current device size is approaching its fundamental limit. Therefore, searching 

for the next generation material platform is a new driving force for condensed matter physics. One 

of the promising alternative material systems is the complex oxide heterostructure. The interplay 

between spin, charge and lattice degrees of freedom in complex oxides gives rise to diverse 

emergent phases. Additional confinements at the heterostructure interface further bring more 

exotic properties to the system. The rich physics in complex oxide heterostructures and the 

capability to control metal-insulator transition at the interface with nanometer-scale resolution 

make them ideal platforms both for studying fundamental correlated electron interactions and 

realizing nanoelectronic and nanophotonic devices with higher levels of integration and more 

functionalities. 

Motivated by these points, this dissertation studies the ultrafast optical response and 

transport properties of strontium titanate-based complex oxide nanostructures, which is arranged 

as the following: Chapter 1 reviews the material systems and the existing knowledge that are 

essential to the research in this dissertation. Chapter 2 covers the main instruments involved for 

experimental measurements. Chapter 3 focuses on creating and erasing nanostructures and use 

them to study the transport properties at the nonpolar/nonpolar CaZrO3/SrTiO3 interface. Chapters 
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4 through 6 present the efforts to probe the response of a single gold nanorod using LaAlO3/SrTiO3 

nanojunctions (Chapter 4), develop a coherent narrow-band terahertz source with a tunability of 

over 100 THz (Chapter 5), and study the ultrafast response of graphene and its coupling with the 

LaAlO3/SrTiO3 interface (Chapter 6). Chapter 7 gives a brief summary and discusses a few 

possible directions for future experiments. 

1.1 STRONTIUM TITANATE-BASED COMPLEX OXIDES 

1.1.1 SrTiO3 

Strontium titanate SrTiO3 (STO) is a complex oxide material that has a perovskite crystal structure 

(Figure 1a),[1] with strontium (Sr) atoms on the corners and titanium (Ti) on the center of the 

lattice. The oxygen (O) atoms are located on each face center of the Sr cube and form an octahedral 

cage. Bulk STO is a band insulator with an indirect bandgap of 3.25 eV and a direct bandgap of 

3.75 eV,[2] making the pristine crystal transparent and colorless. Because of its cubic structure, 

almost identical refractive index and more than four-fold higher dispersion compared to diamond, 

STO was once a widely used substitute gemstone. 

STO has a lattice constant of 3.905 Å at room temperature. At low temperatures (below 

105 K), the cubic structure undergoes an antiferrodistortive transition, where nearby oxygen 

octahedra rotate in opposite directions, leading to a tetragonal lattice structure (Figure 1b).[1] 

Domains with tetragonal orientations along x-, y- or z-axis can form within the bulk STO, resulting 

in ferroelastic domain boundaries. Recent studies have suggested that these naturally formed 

domain boundaries could potentially play an important role in the transport properties of STO[3] 
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and STO-based oxide heterostructures.[4, 5] Ferroelastic domains vary from sample to sample and 

are generally unrepeatable after thermal cycling even within the same sample.[6] 

STO is paraelectric at room temperature. When the temperature is further lowered to below 

38 K (Figure 1c), STO starts to approach a ferroelectric state but remains paraelectric even at very 

low temperatures due to quantum fluctuations.[7, 8] However, its proximity to the ferroelectric 

state, also known as incipient ferroelectric,[9] leads to a dramatic increase in dielectric permittivity 

from 300 at room temperature to over 20,000 at 4 K.[10, 11] Such large dielectric permittivity 

makes STO an ideal candidate for effective back-gating substrates. The ferroelectric state can be 

reached by changing experimental parameters in STO, such as electric field,[12] strain,[8] cation 

substitution[13] or defects[14]. 

A density functional theory calculation of the band structure of cubic STO is shown in 

Figure 1d,[15] where the valence band is primarily derived from oxygen 2p orbitals and the 

conduction band is mainly from titanium 3d orbitals with a band minimum at the Γ point.[15, 16] 

The indirect bandgap corresponds to excitation from R to Γ point, while the direct bandgap comes 

from the Γ to Γ transition. The crystal field splits the 3d orbitals into t2g and eg orbitals. The t2g 

orbital further split into dxy, dyz and dxz orbitals, sharing the same energy at the Γ point.[15] 

Dimensional confinements, such as a quasi-2D interface, can lift this degeneracy in the t2g 

orbital.[17] And if additional confinements are introduced, for instance, in a quasi-1D nanowire, 

these orbitals can split into subbands.[18] Strain,[19] antiferrodistortive rotation[20] and spin-orbit 

coupling[21] further complicate the band structure, especially the t2g manifold.  

In 1964, Schooley et al. reported superconductivity below about 300 mK in reduced 

STO,[22] making STO the first oxide being observed to be superconductive. The upper critical 

magnetic field (BC) is measured to be around 0.2 T[22] and the critical temperature (TC) is shown 
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to share a similar dome-shape phase diagram as high-TC superconductors.[23] STO is also one of 

the most dilute superconductors, exhibiting superconductivity at a carrier density as low as 1017 

cm-3,[24] which makes it challenging to explain the emergence of superconductivity in STO with 

the conventional Bardeen-Cooper-Schrieffer (BCS) theory,[25, 26] as the small number of carriers 

suggests a small Fermi energy. It was proposed that a Bose-Einstein Condensation (BEC) 

superconductivity may exist in low carrier density Zr-doped STO.[27] This theory predicts that 

above TC, electrons are still bonded due to the strong electron-electron attraction even though they 

are no longer condensed into a superconducting phase.[27] However, even after 50 years of its 

discovery, the superconductivity in STO still remains largely elusive, demanding more thoroughly 

invitation into its nature and pairing mechanism. 

In addition to the rich transport phenomena, STO also exhibits unparalleled optical 

properties. Bulk STO is centrosymmetric, leading to a vanished second-order nonlinear 

susceptibility unless there is a break of the inversion symmetry (such as at the surface or an 

interface). However, the third-order nonlinear susceptibility in STO has been reported to be 

exceedingly large, probably the largest among many solid-state materials,[28] making STO a 

promising platform for realizing nonlinear optical applications. 

The closely matched lattice constant to most perovskite oxides grants STO an almost 

universal substrate for growing various complex oxide heterostructures. Emergent properties 

rising from the confinement at the oxide interfaces as well as the inherited rich and exotic physics 

from STO substrate have attracted intense research interest in the past few decades. 
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Figure 1 SrTiO3 (STO) crystal structure and properties. (a) STO perovskite crystal structure 

at room temperature. Ref. [1] (b) Below 105 K, nearby oxygen octahedra in STO rotate in opposite 

directions, leading to a cubic-to-tetragonal phase transition. Ref. [1] (c) STO starts a paraelectric-

to-ferroelectric transition as the temperature is lowered to 38 K, but remains paraelectric due to 

quantum fluctuations unless applying an in-plane strain. Ref. [8] (d) Density functional theory 

calculation of the band structure of cubic STO. Ref. [15] (e) The superconducting critical 

temperature TC as a function of the carrier density shows a characteristic dome-shape behavior that 

resembles high-TC superconductors. Ref. [23] 
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1.1.2 LaAlO3/SrTiO3 

One of the most celebrated STO-based complex oxide heterostructures is the LaAlO3/SrTiO3 

(LAO/STO) system. Lanthanum aluminate LaAlO3 is another perovskite oxide that has a lattice 

constant of 3.789 Å, closely matched to STO. LAO is also a band insulator with an indirect 

bandgap of 5.6 eV. But when LAO is grown on (001) TiO2-terminated STO by pulsed laser 

deposition (PLD), a metallic interface can emerge (Figure 2a).[29] As shown in Figure 2b, there 

is a critical thickness for the LAO layer, around four unit cells, above which the interface between 

LAO and STO becomes conducting.[30] This conducting region has been experimentally shown 

to be confined within around 10 nm extending into STO.[31, 32] It is noteworthy that both 

strain[33] and surface chemistry[34] can shift the critical thickness. Typical carrier density 

reported in this system is around 5×1013 cm-2 and the mobility is usually on the order of 10 

cm2/(Vs) at room temperature. High mobility exceeding 104 cm2/(Vs) has been reported at low 

temperatures for systems with reduced dimensionality.[35] (111) or (110) orientated LAO/STO 

can also exhibit a conducting interface, but with a different critical thickness of nine or seven unit 

cells, respectively.[36] On the other hand, SrO-terminated STO, though it is predicted to have a 

two-dimensional hole system at the LAO/STO interface, has been experimentally found 

insulating.[29] 

Since its discovery in 2004, the origin of the two-dimensional electron system (2DES) at 

the LAO/STO interface has been extensively debated. Among many possible explanations, the 

leading mechanism is the polar catastrophe model. Along the [001] direction, LAO can be viewed 

as alternating LaO+ and AlO2
- layers, thus polar, while STO is a series of charge neutral SrO and 

TiO2 layers, thus nonpolar. This polar discontinuity leads to a built-in electric field that increases 

with increasing LAO layer thickness, eventually leading to an electronic reconstruction, where 
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half an electron per unit cell is transferred to the interface, forming an n-type conducting 

2DES.[37] While this model has been quite successful at explaining the formation and critical 

thickness of the 2DES, it also poses several issues, for example, the inconsistency between the 

predicted carrier density (3.2×1014 cm-2) and the experimentally measured value. Other possible 

explanations, such as oxygen vacancies,[38] cation intermixing,[39] stoichiometry,[40] surface 

adsorbates[34] and strain,[41] have been proposed. There are also several attempts to explain the 

2DES with a hybrid mechanism involving more than one processes.[42] But until now, this 

fundamental question of the conductivity mechanism still remains an open question. 

When the LAO layer is slightly below the critical thickness, the interface is insulating but 

highly tunable. Figure 2d shows that the interface can undergo a metal-insulator phase transition 

at room temperature by applying ±100 V to the back of the STO substrate, and the conducting or 

insulating behavior persists even after the back gate voltage is removed.[30] Conductive atomic 

force microscopy (c-AFM) lithography can locally control the metal-insulator transition with 

nanometer-scale precision,[43] which will be discussed in details in Chapter 2.  

Besides the emergence of the conducting 2DES and tunable metal-insulator transition, a 

variety of remarkable phenomena like interfacial superconductivity,[44] low temperature[45] and 

room temperature magnetism,[46] Rashba spin-orbit coupling,[47] and even coexistence of 

superconductivity and magnetism[48] have also been observed in the rich LAO/STO system. 
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Figure 2 Two dimensional electron system (2DES) at the interface of LaAlO3/SrTiO3 

(LAO/STO). (a) Schematic drawing of the LAO/STO heterostructure. Ref. [29] (b) Sheet 

conductance as a function of the LAO layer thickness. The interface turns into metallic for LAO 

layers above four unit cells. Ref. [30] (c) The polar catastrophe model for TiO2-terminated STO. 

Half an electron per unit cell is transferred to the interface to compensate for the built-in electric 

filed from the polar discontinuity. Ref. [37] (d) Sheet resistance as a function of applied back gate 

voltage showing electric field tunable metal-insulator transition. Ref. [30] 
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1.1.3 CaZrO3/SrTiO3 

CaZrO3/SrTiO3 (CZO/STO) is a new member to the family of complex oxide heterostructures with 

a conducting interface. A 2DES was first experimentally realized by Chen et al. in 2015 (Figure 

3).[49] Unlike LAO, (001) calcium zirconate CaZrO3 is a nonpolar material. The observed 2DES 

was attributed to the compressive strain induced polarization.[49] Later, two theoretical 

calculations using first-principle analysis further confirmed the role of polarization 

discontinuity.[50, 51]  

Like LAO and STO, CZO is a band insulator with a bandgap around 4.1 eV. It has a lattice 

constant of 4.012 Å, leading to +2.67% lattice mismatch to the STO substrate. As a result, the CZO 

epitaxial thin film experiences a compressive biaxial strain, causing both Ca2+ and Zr4+ cations to 

displace towards the interface in the first few unit cells of CZO (Figure 3b).[49] The lattice 

distortion results in a polarization pointing towards the interface, providing the driving force to 

collect electrons from surface donors to form an n-type 2DES at the CZO/STO interface. A critical 

thickness of seven unit cells has also been observed in this system (Figure 3c), which can be 

elaborated by the band diagram in Figure 3d.[49] The strain induced polarization generates an 

electric field across the CZO film, which will bend the electronic bands. As the CZO layer 

thickness increases, a crossover of the surface donor states and the STO conduction band minimum 

is reached once the CZO layer is above the critical thickness. Electrons then transfer from donor 

states to the STO conduction band.[49] 
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Figure 3 2DES at the CaZrO3/SrTiO3 (CZO/STO) interface. (a) Schematic drawing of the 

CZO/STO heterostructure. (b) Polarization discontinuity model. The lattice constant mismatch 

between CZO and STO induces a lattice distortion near the interface, which produces a 

polarization pointing towards the interface, driving electrons from surface donors to form an n-

type 2DES at the interface. (c) The sheet carrier density as a function of the CZO layer thickness. 

A critical thickness of seven unit cells is shown. (d) Schematic band diagram when the CZO layer 

is above the critical thickness.  Ref. [49] 
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1.2 TRANSPORT PROPERTIES 

1.2.1 Superconductivity 

Superconductivity refers to a phenomenon of zero electrical resistance and magnetic flux exclusion 

in certain materials below a critical temperature. It was first discovered in mercury in 1911 and 

has since remained in the center of the research spotlight due to its unparalleled potential in electric 

power transmission, medicine, ground transportation, quantum computing, and so on. Though the 

extensive experimental and theoretical studies have led to numerous advances in this field, even 

rewarded more than a dozen Nobel prizes, the fundamental physics for superconductivity, 

especially high-temperature superconductivity, is still a mystery. 

The core of superconductivity is electron pairing. Conventional BCS theory is the first 

microscopic theory for superconductivity and was proposed by Bardeen, Cooper, and Schrieffer 

in 1957.[25] It describes the superconductivity by phonon-mediated weak attractive electron-

electron interactions, in which electrons form weakly bonded pairs, known as Cooper pairs. Below 

the critical temperature, those Cooper pairs condense into a coherent superconducting phase, 

where all pairs share the same wavefunction. A direct consequence is that the average Cooper pair 

size is much larger than the distance between electrons. Most traditional superconductors can be 

well accounted for using the BCS theory. However, it is believed that this theory itself cannot fully 

explain the phenomenon of high-TC superconductors. 

The BEC theory, on the other hand, describes the superconductivity with tightly bonded 

electron pairs. The strong attractive interaction leads to a small pair size. Strongly paired electrons 

form superconductivity when the temperature is lowered below the BEC transition temperature. 

In 1969, Eagles et al. proposed that electrons can remain paired above TC in Zr-doped STO.[27] 
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Evidence favoring the unconventional BEC regime has recently been reported in LAO/STO 

nanowires, where electron pairing without superconductivity was observed.[52] 

Understanding the underlying physics for superconductivity, especially high-TC 

superconductivity, is central to realizing room temperature superconductors. The extremely low 

carrier density at which STO exhibits superconductivity and the similarity of its phase diagram to 

the high-TC superconductors, together with new opportunities stemming from additional 

confinement in STO-based heterostructures, imply that the STO-based complex oxide may serve 

as a promising platform for uncovering this century-long mystery. 

1.2.2 Ballistic transport 

When talking about transport properties, there are three relevant length scales: the elastic scattering 

length 𝑙𝑒, the inelastic scattering length 𝑙𝑖𝑛, and the phase coherence length 𝑙𝜑.[53] The elastic 

scattering length, or equivalently, the elastic mean free path, is the average distance an electron 

can travel ballistically between successive elastic collisions. These collisions happen due to the 

irregularities in the conductor, such as impurities or dislocations. Elastic collisions only change 

the electron travelling direction, but keep its kinetic energy conserved. They also don’t randomize 

the electron phase, instead, the phase is only shifted by a well-defined and repeatable value. If a 

device has a length scale shorter than the elastic scattering length, its electron transport properties 

are considered ballistic, otherwise, they are diffusive. As can be expected, the electrical mobility 

µ directly relates to the elastic scattering length by 

 𝜇 =
𝑒𝑙𝑒

𝑚∗𝑣𝐹
 (1.1) 

where e is the electron charge, m* is the effective mass and 𝑣𝐹 is the Fermi velocity of the electron. 
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Conversely, inelastic scattering length, or inelastic mean free path, refers to the average 

distance between subsequent inelastic collisions, such as electron-phonon scattering or electron-

electron scattering. Energy transfers occur during inelastic collisions, and electron phase is 

randomized. 

Phase coherence length is a measure of the distance electrons can travel coherently before 

the phase information is lost. It is worth mentioning that, 𝑙𝜑 and 𝑙𝑖𝑛 are not always the same. An 

electron may lose its phase without transferring energy in certain scatterings, for example, spin-

flip scattering. If the device length scale is smaller than the phase coherence length, then electrons 

are expected to behave quantum mechanically. 

The ballistic regime is essential for studying the nature of electron-electron interactions 

and phenomena related to wave properties of electrons. Ballistic transport is usually observed in 

1D or quasi-1D systems, such as metal nanowires, carbon nanotubes or point contacts, leading to 

quantized conductance in the unit of e2/h, where e is the electron charge and h is Planck’s 

constant.[54] However, the extreme sensitivity to even a minimum amount of disorders in these 

narrow structures[55] poses enormous challenges to extend the ballistic regime to micrometer 

scales or beyond. One way to overcome this limit has been proposed to involve attractive electron-

electron interactions.[56]  

1.3 ULTRAFAST OPTICS 

Ultrafast optical process deals with phenomena that occur on picosecond or femtosecond time 

scale, revealing information related to the ultrafast dynamics in a material or system that would 

otherwise be inaccessible. Ultrafast optical experiments rely on short optical pulses generated by 
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ultrafast lasers. The spectral and temporal profiles of the ultrafast pulse are thus essential to a 

specific ultrafast optical process. 

1.3.1 Ultrafast laser 

The word “LASER” is actually an acronym for “Light Amplification by Stimulated Emission of 

Radiation”. Ever since its first realization in 1960,[57] laser has been an irreplaceable building 

block of numerous research and industrial applications due to its high power and unique coherence 

nature. In general, there are two types of lasers based on their energy temporal distribution, namely 

the continuous-wave (CW) laser and the pulsed laser. The pulsed laser generates a train of short 

pulses mostly through mode-locking, in which a fixed phase relationship is introduced between 

longitudinal modes supported by the laser cavity. 

A laser cavity works as a resonator that allows an infinite set of resonance frequencies in 

steps of 𝑐/2𝐿, where c is the speed of light and L is the optical length of the cavity. The supported 

resonance frequencies are often referred to as longitudinal modes. In practice, the frequency range 

over which a laser can actually oscillate is determined by the gain bandwidth of the gain material 

as well as the total loss in the cavity (Figure 4a). Among diverse available gain materials, titanium-

doped sapphire (Ti: Sapphire) crystal provides a broad gain bandwidth from 650 nm to 1100 nm, 

making Ti: Sapphire crystal the most widely used gain medium for ultrafast solid-state lasers.  

In general, the phase relationship between the oscillating modes are random and the laser 

output fluctuates with time. In order to generate a well-defined train of pulses, the relative phase 

between all the modes need to be locked, and that is how the term “mode-lock” comes in. There 

are two ways to generate mode-locking, either active or passive. Active mode-locking introduces 

a periodic modulation of the cavity loss through an acousto-optic modulator or electro-optical 
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modulator.[58] The modulation is synchronized with the cavity roundtrip period so that the 

longitudinal modes lock their phases to the modulation. The physical picture is equivalent to all 

the energy concentrated to a single pulse that traveling back and forth inside the laser cavity. Pulses 

produced using active mode-locking are usually on the order of picoseconds. 

Passive mode-locking, on the other hand, utilizes the nonlinear process to modulate the 

cavity loss. Before the development of Ti: Sapphire ultrafast laser, adding a saturable absorber was 

the most common implementation for realizing passive mode-locking.[59] The combined action 

of the saturable absorber and the gain medium leads to more losses for lower intensity wings, while 

keep amplifying the high-intensity peak of the pulse until a self-consistent pulse shape is reached. 

For Ti: Sapphire ultrafast laser, no additional saturable absorber is required. The mode-

locking is achieved through the Kerr lensing effect in Ti: Sapphire crystals.[60] The Ti: Sapphire 

crystal has a nonlinear refractive index 𝑛 = 𝑛1 + 𝑛2𝐼, where I is the intensity of light, n1 and n2 

are the linear and nonlinear refractive index, respectively. Higher intensity thus experiences a 

higher refractive index. The laser beam has a Gaussian transverse distribution, as shown in Figure 

4b. The Ti: Sapphire crystal acts as an effective lens, providing self-focusing as the beam goes 

through the crystal. The higher intensity portion are subject to less losses due to the smaller size. 

After travelling back and forth several times, the pulse will research an equilibrium state. Sub-

picosecond pulses can be achieved through this process. Further shortening of the pulse is limited 

by the dispersion inside the cavity. To generate sub-10 fs ultrashort pulses, intracavity group 

velocity dispersion (GVD) needs to be carefully compensated. Prism pairs and chirped mirrors are 

often used for precise control of the intracavity GVD.[61] In Chapter 5, a state-of-art sub-7 fs Ti: 

Sapphire oscillator (Spectra-Physics Rainbow 2 UHP) is used. 
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Figure 4 Ultrafast laser. (a) Longitudinal modes supported by a laser cavity (upper) and actually 

oscillating modes determined by the gain bandwidth of the gain medium as well as the total loss 

in the cavity (bottom). (b) Kerr lensing effect. The center portion in a Gaussian beam with higher 

light intensity experiences a self-focusing effect due to the nonlinear refractive index in a Kerr 

medium. 
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1.3.2 Pulse characterization 

It is important to characterize the properties of an ultrafast pulse before taking measurements to 

establish the experimental condition. The extreme time scale of ultrafast pulses is way beyond the 

response time and dynamic range of most optoelectronic devices, especially when it comes to sub-

10 fs pulses, thus all-optical methods are introduced, where a replica of the pulse is used to measure 

itself. 

1.3.2.1 Coarse estimation of the pulse duration 

Field autocorrelation 

The field autocorrelation is defined as 

 ∫ 𝐸(𝑡)𝐸∗(𝑡 − 𝜏)
∞

−∞

𝑑𝑡 (1.2) 

where E(t) is the electric field of light and 𝜏 is the time delay between the two fields. An example 

schematic diagram for measuring field autocorrelation is shown in Figure 5a. The incoming 

ultrafast pulses are split into two beams, with pulses in one beam delayed with respect to the other 

by time 𝜏. Then the two beams are combined and the total field intensity is detected by a linear 

photodetector. 

If we assume the input pulse is Gaussian 

 𝐸𝑖𝑛(𝑡) = 𝐸0𝑒
−(𝑡 𝑡𝑝⁄ )

2

𝑒𝑖𝜔𝑐𝑡 (1.3) 

where tp is the pulse width, E0 is the amplitude and 𝜔c is the central angular frequency of the pulse 

wave. Then the total field reaches the linear photodetector is 
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 𝐸(𝑡) =
𝐸𝑖𝑛(𝑡) + 𝐸𝑖𝑛(𝑡 − 𝜏)

2
 (1.4) 

The linear photodetector measures the intensity I(𝜏) of this field, and since the response 

time of a photodetector is much longer than the pulse duration, an integral of t from -∞ to ∞ is 

needed: 

 

𝐼(𝜏) = ∫ 𝐸(𝑡)𝐸∗(𝑡)
∞

−∞

𝑑𝑡

=
1

4
(∫ (𝐸𝑖𝑛(𝑡)𝐸𝑖𝑛

∗ (𝑡) + 𝐸𝑖𝑛(𝑡 − 𝜏)𝐸𝑖𝑛
∗ (𝑡 − 𝜏))

∞

−∞

𝑑𝑡

+ 2∫ 𝐸𝑖𝑛(𝑡)𝐸𝑖𝑛
∗ (𝑡 − 𝜏)

∞

−∞

𝑑𝑡) 

(1.5) 

In which the first term is simply the total intensity of each beam, and the second term is the field 

autocorrelation defined above. After substituting Eq. 1.3 into Eq. 1.5 and simplifying the result, 

the measured intensity reads 

 𝐼(𝜏) = √
𝜋

2

𝐸0
2

8
𝑡𝑝 (1 + 𝑒

−𝜏2

2𝑡𝑝
2⁄
cos(𝜔𝑐𝜏)) (1.6) 

A normalized plot of Eq. 1.6 is shown in Figure 5b, with tp = 10 fs. Note the ratio 

 
𝐼(∞)

𝐼(0)
=

1

2
 (1.7) 

The Fourier transform of field autocorrelation is exactly the pulse spectrum, so field 

autocorrelation provides information only relates to the spectral amplitude, without any phase 

information. However, the field autocorrelation is sensitive to chirp. If a pulse is chirped, its field 

autocorrelation is narrower than the unchirped counterpart. 
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Figure 5 Field autocorrelation. (a) Schematic diagram for a field autocorrelation setup. (b) 

Normalized field autocorrelation signal as a function of time delay between the two beams. 

 

Intensity autocorrelation 

The intensity autocorrelation is defined as 

 ∫ 𝐼(𝑡)𝐼(𝑡 − 𝜏)
∞

−∞

𝑑𝑡 (1.8) 

which can be achieved by adding a nonlinear crystal (e.g. second-harmonic crystal), and using a 

non-collinear optical setup as shown in Figure 6a. In this case, one beam is again delayed by 𝜏 

compared to the other beam before both of them are focused onto the second-harmonic crystal. 

The generated frequency doubled signal is then detected by a linear photodetector. The non-

collinear configuration assures that only the nonlinear signal is detected without interference from 

the fundamental pulses, which is also often referred to as the “background-free” scheme. 

The generated second-order nonlinear field is proportional to 

 𝐸2(𝑡, 𝜏)~𝑃 = 𝜀0𝜒
(2)𝐸(𝑡)𝐸(𝑡 − 𝜏) (1.9) 
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So the measured intensity of  𝐸2(𝑡, 𝜏) by the linear photodetector as a function of time 

delay 𝜏 leads to 

 

𝐼(𝜏) = ∫ 𝐸2(𝑡, 𝜏)𝐸2
∗(𝑡, 𝜏)

∞

−∞

𝑑𝑡 ~∫ 𝐸(𝑡)𝐸(𝑡 − 𝜏)𝐸∗(𝑡)𝐸∗(𝑡 − 𝜏)𝑑𝑡
∞

−∞

 

                          = ∫ 𝐼(𝑡)𝐼(𝑡 − 𝜏)
∞

−∞

𝑑𝑡 

(1.10) 

Again, using the Gaussian input pulse as an example, the intensity autocorrelation gives 

 𝐼(𝜏)~
√𝜋𝐸0

4

8
𝑡𝑝𝑒

−(
𝜏
𝑡𝑝

)
2

 (1.11) 

A normalized plot of the intensity autocorrelation with tp = 10 fs is shown in Figure 6b.  

 

 

 

Figure 6 Intensity autocorrelation. (a) Schematic diagram for a non-collinear intensity 

autocorrelation setup. (b) Normalized intensity autocorrelation signal as a function of time delay 

between the two beams. 

  



 21 

The intensity autocorrelation is often used as a measure of the pulse duration. Its full width 

at half-maximum (FWHM) has a certain ratio to the pulse width depending on the pulse shape, as 

examples are shown in Table 1 for two most common pulse profiles. Though the intensity 

autocorrelation is widely used as a coarse estimation for the pulse duration, it is not sensitive to 

chirp and has no information regarding the pulse phase. It also tends to underestimate the pulse 

width if the pulse stability is poor.  

 

Table 1 Pulse parameters for different pulse shape profiles

Shape Gaussian Hyperbolic Secant 

Electric field 𝑒−(𝑡 𝑡𝑝⁄ )
2

 𝑠𝑒𝑐ℎ(𝑡 𝑡𝑝⁄ ) 

Intensity Profile S(t) 𝑒−2(𝑡 𝑡𝑝⁄ )
2

 𝑠𝑒𝑐ℎ2(𝑡 𝑡𝑝⁄ ) 

FWHM for S(t): Δt 1.177𝑡𝑝 1.763𝑡𝑝 

Intensity Autocorrelation I(𝜏) 𝑒−(𝜏 𝑡𝑝⁄ )
2

 

3
𝜏
𝑡𝑝

(cosh (
𝜏
𝑡𝑝

) − sinh (
𝜏
𝑡𝑝

))

sinh (
𝜏
𝑡𝑝

)
3  

FWHM for I(𝜏): Δ𝜏 1.665𝑡𝑝 2.720𝑡𝑝 

Spectral Profile S(𝜔) 𝑒−(𝜔𝑡𝑝)
2

2⁄  𝑠𝑒𝑐ℎ2(𝜋𝜔𝑡𝑝 2⁄ ) 

FWHM for S(𝜔): Δ𝜔 2.355 𝑡𝑝⁄  1.122 𝑡𝑝⁄  

Δ𝜔Δt 2.772 1.978 

 

Other methods to measure the intensity autocorrelation involve a collinear geometry but 

with orthogonal input polarizations, or averaging over an interferometric autocorrelation signal, 

which will be discussed in detail below. 
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Interferometric autocorrelation 

In general, there are two ways to measure the interferometric autocorrelation in a collinear 

geometry, either with a nonlinear crystal in front of a linear detector or directly use a nonlinear 

(e.g. two-photon absorption, optical rectification, et al.) detector. A schematic setup of the first 

configuration is shown in Figure 7a. 

The total field reaching the nonlinear crystal can again be expressed as Eq. 1.4, and the 

second-order nonlinear process in the crystal gives 

 𝐸2(𝑡, 𝜏)~𝑃 = 𝜀0𝜒
(2)𝐸(𝑡)𝐸(𝑡) (1.12) 

The detected interferometric autocorrelation intensity at the linear detector then leads to 

 

𝐼(𝜏) = ∫ 𝐸2(𝑡, 𝜏)𝐸2
∗(𝑡, 𝜏)

∞

−∞

𝑑𝑡                                                                                          

=
1

16
∫ (𝐸(𝑡) + 𝐸(𝑡 − 𝜏))

2
(𝐸(𝑡) + 𝐸(𝑡 − 𝜏))

2∗
∞

−∞

𝑑𝑡                             

      ~
√𝜋𝐸0

4

256
𝑡𝑝 (1 + 2𝑒

−𝜏2

𝑡𝑝
2⁄
+ 4𝑒

−3𝜏2

4𝑡𝑝
2⁄
cos(𝜔𝑐𝜏) + 𝑒

−𝜏2

𝑡𝑝
2⁄
cos(2𝜔𝑐𝜏)) 

(1.13) 

Figure 7 shows the normalized interferometric autocorrelation intensity for a Gaussian 

pulse with tp = 10 fs. Note the ratio 

 
𝐼(∞)

𝐼(0)
=

1

8
 (1.14) 

The interferometric autocorrelation is the only autocorrelation signal that contains phase 

information. And like the field autocorrelation, it is also sensitive to chirp, leading to an 

underestimation of the pulse width if chirp exists in the pulse. Though the interferometric 

autocorrelation can provide some information about the phase, extracting full spectrum and phase 

from only the interferometric autocorrelation is difficult, as completely different pulses sometimes 

can give very similar interferometric autocorrelation results. 
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A cross-check between the measured pulse spectral width and temporal width can help to 

gain some confidence in the autocorrelation derived pulse duration. The measured FWHM of the 

laser spectrum, Δ𝜔 is related to the measured pulse width Δt  through Fourier transform. If no 

distortion or system error is present, the product of Δ𝜔 and Δt  should be very close to the shape-

dependent value listed in Table 1. Any large deviation from this value alarms unaccounted 

problems. 

Autocorrelations can generate a coarse estimation of the pulse duration, and in some cases 

with limited phase information, provided that the pulse shape is known or assumed. More 

sophisticated methods need to be employed to acquire a complete characterization of the pulse 

amplitude and phase, especially when the pulse width is below 10 fs.  

 

 

 

Figure 7 Interferometric autocorrelation. (a) Schematic diagram for an interferometric 

autocorrelation setup. (b) Normalized interferometric autocorrelation signal as a function of time 

delay between the two beams. 
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1.3.2.2 Complete characterization of the pulse amplitude and phase 

A pulse can be fully described by its amplitude and phase. With the ultrafast pulse playing an 

increasingly important role in both fundamental research and daily application, new methods for 

a complete characterization of few-cycle pulses are constantly being developed and perfected. 

Below we will discuss several most successful and widely used schemes. 

Frequency-Resolved Optical Gating (FROG) 

The frequency-resolved optical gating (FROG) was first introduced in 1993.[62] Numerous 

variations have since been developed for different applications, such as GRENOUILLE and 

XFROG, but the main idea relies on introducing an ultrafast gate function through the nonlinear 

process to measure the pulse. A simplified schematic drawing of the FROG measurement is 

illustrated in Figure 8. The unknown pulses are split into a gate pulse and a probe pulse, with the 

gate pulse delayed by certain time 𝜏. Unlike the aforementioned autocorrelation techniques, where 

only the intensity of the nonlinear process is measured, the resulting nonlinear correlation is 

spectrally resolved using a spectrometer at different time delay 𝜏. As a result, the FROG trace is 

plotted in a two-dimensional intensity graph as a function of both frequency 𝜔 and delay 𝜏. The 

amplitude and phase of the input pulse can then be retrieved from the FROG trace using an iterative 

reconstruction algorithm.[62] 

For example, if a frequency doubling crystal is used for the nonlinear process, which is 

also called “SHG FROG”, then the linear detector (e.g. a CCD array) maps the FROG trace as 

 𝐼𝐹𝑅𝑂𝐺(𝜔, 𝜏) = |∫ 𝐸(𝑡)𝐸(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞

|

2

 (1.15) 

where E(t) is the field of the probe pulse, E(t-𝜏) is the field of the gate pulse, and 𝑒−𝑖𝜔𝑡 comes 

from taking Fourier transform to convert the time-domain signal to the frequency-domain. 
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In a FROG measurement, a large amount of data points is taken, usually much more than 

the required number to extract the complex electric field. This greatly reduces the necessity for 

each data point to be strictly accurate, thus FROG is a noise-insensitive measurement. 

 

 

 

Figure 8 Schematic drawing for the frequency-resolved optical gating (FROG). 

  



 26 

Spectral Phase Interferometry for Direct Electric-Field Reconstruction 

(SPIDER) 

The spectral phase interferometry for direct electric-field reconstruction (SPIDER) was developed 

in 1998[63]. Unlike FROG, SPIDER measures the pulse amplitude and phase in a non-iterative 

way. The main idea can be summarized as spectral shearing interferometry. As shown in Figure 9, 

one replica of the unknown pulse is stretched and chirped, and another beam contains two identical 

replicas of the original pulse with one pulse delayed by 𝜏 compared to the other one. Sum-

frequency mixing between the two beams in the nonlinear crystal results in two upconverted 

pulses, and their interference is spectrally resolved by a spectrometer. This process is equivalent 

to say that the two sum-frequency pulses are spectrally shifted by an amount Δ𝜔, and the intensity 

of the interference pattern can be expressed as 

 
𝐼𝑆𝑃𝐼𝐷𝐸𝑅(𝜔, 𝜏) = |𝐸(𝜔) + 𝐸(𝜔 − Δ𝜔)𝑒𝑖𝜔𝜏|

2

= 𝐼(𝜔) + 𝐼(𝜔 − Δ𝜔) + 2|𝐸(𝜔)||𝐸(𝜔 − Δ𝜔)| cos(Δϕ) 

(1.16) 

where 

 Δϕ = 𝜙(𝜔) − 𝜙(𝜔 − Δ𝜔) − 𝜔𝜏 (1.17) 

The spectral phase 𝜙(𝜔) and amplitude 𝐸(𝜔) of the unknown upconverted pulse can then 

be unambiguously calculated from the SPIDER signal.[63] If the time delay 𝜏 is sufficiently large 

(much larger than the original pulse duration) and the original pulse is transform-limited, then the 

interference pattern should follow a cosine profile with a period of 2𝜋/𝜏 in the frequency-domain. 

Any dispersion will lead to a deviation from this period. 
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Figure 9 Schematic drawing for spectral phase interferometry for direct electric field 

reconstruction (SPIDER). 

 

Multiphoton Intrapulse Interference Phase Scan (MIIPS) 

Another recently developed technique using a series of well-defined reference phases to measure 

and even manipulate the ultrafast pulse is called multiphoton intrapulse interference phase scan 

(MIIPS).[64] In contrast to the previous ones, this is a single beam method that does not involve 

interferometry. Since its first introduction, MIIPS has demonstrated prominent accuracy and 

versatility, being quite fruitful in fields like selective microscopic chemical probing,[65] 

multiphoton microscopy[66] and functional imaging.[67] 

A simplified schematic drawing of a basic MIIPS setup is shown in Figure 10a, where the 

spectral phase of the ultrafast pulse is controlled by a pulse shaper and the resulting second 

harmonic generation (SHG) spectrum is monitored by a spectrometer as a feedback signal to 

compress the distorted pulse. To explain the detailed working principle of MIIPS, a closer look at 

the spectral phase effect on SHG is helpful. 
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As shown in Figure 10b, the SHG signal at a frequency of 2𝜔 can come from two photons 

at 𝜔 in the fundamental pulse, or one photon with a frequency of 𝜔-𝜉 and one photon at 𝜔+𝜉. So 

the total intensity of SHG can be expressed as 

 𝑆(2)(2𝜔) ∝ |∫𝐸(𝜔 + 𝜉)𝑒𝑖𝜑(𝜔+𝜉)𝐸(𝜔 − 𝜉)𝑒𝑖𝜑(𝜔−𝜉)𝑑𝜉|
2

 (1.18) 

For a transform-limited pulse, different frequencies in the pulse share the same phase 

 𝜑(𝜔 + 𝜉) + 𝜑(𝜔 − 𝜉) ≡ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (1.19) 

resulting in a maximized SHG intensity as oscillating terms in the integral is minimized in this 

case. The Taylor expansion of Eq. 1.19 gives 

 𝜑(𝜔 + 𝜉) + 𝜑(𝜔 − 𝜉) = 2𝜑(𝜔) + 𝜑′′(𝜔)𝜉2 + ⋯ (1.20) 

which means a transform-limited pulse, or equivalently, a maximized SHG spectrum, requires the 

second-order phase distortion 𝜑′′(𝜔) to vanish.  

In order to measure the spectral phase 𝜑(𝜔) of an unknown pulse, MIIPS introduces a 

well-known reference spectral phase function −𝑓(𝜔, 𝛿), where 𝛿 is the parameter that can be 

controlled. The total phase 𝜙(𝜔) now reads 

 𝜙(𝜔) = 𝜑(𝜔) − 𝑓(𝜔, 𝛿) (1.21) 

An SHG spectrum is measured at each 𝛿, leading to a two-dimensional intensity map as a 

function of both 𝜔 and 𝛿. As discussed above, the maximal SHG appears at 𝜙′′(𝜔) = 0, which 

means 

 𝜙′′(𝜔) = 𝜑′′(𝜔) − 𝑓′′(𝜔, 𝛿) = 0 (1.22) 

And since 𝑓(𝜔, 𝛿) is a known, the unknown 𝜑(𝜔) can now be easily retrieved by taking a 

double integral of the 𝑓′′(𝜔, 𝛿) value along the maximal MIIPS trace with respect to frequency. 

This retrieved 𝜑(𝜔) value is then compensated by the pulse shaper before starting another 𝛿 scan 

to measure any remaining phase distortion. After several iterations, the distorted pulse 
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should be compressed back to its transform-limited width. The spectral phase of the unknown 

pulse thus comes from the accumulated 𝜑(𝜔) from all the iterations before reaching the transform-

limited pulse, and the amplitude can simply be derived from the SHG spectrum. 

In principle, 𝑓(𝜔, 𝛿) can take any arbitrary function. In practice, the most commonly used 

form is a sinusoidal function 

 𝑓(𝜔, 𝛿) = 𝛼 𝑠𝑖𝑛(𝛾𝜔 − 𝛿) (1.23) 

which leads to 

 𝑓′′(𝜔, 𝛿) = −𝛼𝛾2 𝑠𝑖𝑛(𝛾𝜔 − 𝛿) (1.24) 

𝛼 is a fixed parameter (e.g. 1.5𝜋) and 𝛾 is the expected transform-limited pulse width, in units of 

fs. In this case, when the pulse is fully compensated, its remaining second-order phase distortion 

should vanish, leading to 

 𝜙′′(𝜔) = 𝑓′′(𝜔, 𝛿) = −𝛼𝛾2 𝑠𝑖𝑛(𝛾𝜔 − 𝛿) = 0 (1.25) 

 𝛾𝜔 − 𝛿 = 𝑛𝜋 (1.26) 

So the final MIIPS trace will follow parallel lines with a slope of 1/𝛾 and separated by 𝜋. 
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Figure 10 Multiphoton intrapulse interference phase scan (MIIPS). (a) A simplified schematic 

drawing for the MIIPS setup. A well-defined reference phase function is applied to the unknown 

pulse through a programmable pulse shaper and the resulting second harmonic spectrum is used 

as a feedback signal to measure and compensate for the ultrafast pulse at the same time. (b) 

Frequency pairs that contribute to a second harmonic generation at 2𝜔. 
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1.3.3 Pulse compensation 

When a transform-limited ultrafast pulse leaves the laser cavity and travels through several optical 

components, such as lenses, windows, or even just air, its spectral phase gets distorted due to the 

frequency dependent refractive index. Such distortions largely affect the pulse duration, peak 

intensity, and other pulse properties, which can be detrimental for many experiments or 

applications. And worse, shorter pulses suffer more from the same amount of distortion than longer 

pulses, making pulse compensation a must especially when working with sub-10 fs pulses. 

The GVD introduced by optical elements is usually positive for visible to near-infrared 

wavelengths, which means longer wavelengths arrive earlier than shorter wavelengths in an 

ultrafast pulse. To compensate for this distortion, a negative GVD needs to be introduced. Figure 

11 shows a few examples that are commonly used as pulse compressors. The main idea of negative 

GVD relies on forcing the longer wavelengths to travel along an additional optical path, so 

eventually, they arrive at the same time with the shorter wavelengths. In many cases, more than 

one scheme is adopted. For example, negatively chirped mirrors often work with a pair of thin 

prisms to achieve a continuous tuning of the introduced negative dispersion.  

When pulse duration reduces below 30 fs, not only the second-order dispersion but also 

dispersion of higher orders need to be carefully compensated. More sophisticated compensation 

requires an accurate measure of the pulse phase using one of the aforementioned pulse 

characterization techniques. Then a proper compensation scheme (or a combination of schemes) 

can be engineered to provide the necessary negative dispersion. The MIIPS system, on the other 

hand, has a built-in functionality to compress the pulse back to its transform-limited width while 

measuring the pulse characteristics, which can be convenient for experiments where consistent 

pulse duration is required.  
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Figure 11 Pulse compression schemes. (a) The incoming distorted pulse is compressed with a 

pair of prism back to the transform-limited pulse by introducing an additional optical path to the 

longer wavelength. (b) Pulse compression with a pair of gratings. (c) The multi-layer structure for 

a double-chirped mirror provides a negative dispersion. 
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1.3.4 Pulse shaping 

On top of pulse compression, ultrafast pulses can also be shaped into nearly arbitrary waveforms 

for user-specified applications, by controlling the amplitude, phase, and polarization of ultrafast 

pulses. Pulse shaping has wide-spread applications, including coherent controls for spectroscopy, 

optical communications, selective excitations of nonlinear optical process, and so on.[68] 

There are two major approaches to pulse shaping, namely in the time-domain or in the 

frequency domain. Among them, Fourier transform pulse shaping is the most commonly used 

technique. An example of grating-based pulse shaper is shown in Figure 12. The two lenses act as 

the Fourier transformation elements. In this configuration, if L > f, then the system provides a 

negative phase dispersion, so it is a pulse compressor. If L < f, on the other hand, a positive 

dispersion is added to the input pulse, so now the system is a pulse stretcher. These represent 

simple pulse shaping schemes. More complicated waveforms can be achieved by setting L = f and 

adding a phase mask at the focal plane, which is also known as a 4f pulse shaper.  

A programmable pulse shaper can be realized by inserting an active phase mask at the 4f 

focal plane, for example, a spatial light modulator (SLM). More details of the working principle 

of SLM are discussed in the Appendix. In principle, a single-layer SLM can achieve either phase 

or amplitude modulation of the pulse, while a double-layer SLM has full access to both phase and 

amplitude degrees of freedom. Arbitrary complex waveforms thus can be controlled by 

programming a double-layer SLM for various applications. In Chapter 5, the spectral amplitude 

control of sub-7 fs pulses has been demonstrated to generate selective narrow-band THz emission 

at LAO/STO nanojunctions with an over 100 THz ultra-broad bandwidth tunability. 
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Figure 12 Grating-based Fourier transform pulse shaper. 

 

1.4 TERAHERTZ SPECTROSCOPY OF NANOSCALE OBJECTS 

Terahertz (THz) radiation is an electromagnetic wave with a frequency range occupying the gap 

between microwave frequencies and optical frequencies. THz radiation can penetrate thin layers 

of non-conducting materials, and its lower energy compared to X-rays makes THz radiation an 

excellent safe alternative for security scanners. THz frequencies are also known as the 

characteristic frequencies for intramolecular and intermolecular motions, providing unique 

spectral fingerprints of materials.[69] Despite its great potential in both fundamental research and 

industrial applications, the THz technology is still at its early stage and faces limitations in 

bandwidth, tunability, spatial resolution and so on. 
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1.4.1 THz sources and detectors 

The advances of the THz technology largely depend on the development of THz sources and 

detectors. Tremendous efforts have been focused on both broadband and narrow-band THz 

generation and detection schemes, and a considerable amount of devices have been created. 

1.4.1.1 Broadband THz 

A thermal source, such as an arc lamp, can generate broadband radiation in the THz regime. But 

thermal sources are incoherent. Here, we focus on coherent broadband THz pulses that are usually 

produced by ultrafast laser pulses. There are two most commonly used approaches for generating 

coherent broadband THz pulses: photo-carrier acceleration and nonlinear process like optical 

rectification. 

The first approach exploits the transition current in a high-speed photoconductor.[70] 

Ultrafast laser pulses with a photon energy larger than the material bandgap create electron-hole 

pairs that can be accelerated by a bias electric field and generate a transient photocurrent. And this 

time-varying photocurrent radiates electromagnetic waves in the THz regime. 

The second approach relies on the inverse process of the electro-optic effect in a nonlinear 

material.[71] Frequency components in the ultrafast laser pulses mix through optical rectification, 

and the difference frequencies are generated in the THz regime. Such a process depends on the 

material’s nonlinear coefficient. Compared to the photo-carrier approach, optical rectification 

usually provides lower output power, but much higher bandwidth, though the bandwidth is often 

limited by the phase-matching condition in the material. It has been reported that an ultra-

broadband (0.1-100 THz) THz radiation can be generated from a thin GaSe crystal through the 

optical rectification.[72] 
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Other coherent broadband THz generation schemes include but not limited to free-electron 

lasers,[73] plasmon oscillations,[74] and microwave-drove nonlinear transmission lines.[75] 

Similarly, the detection of broadband THz waves can be achieved using thermal detectors, 

or through the photoconductive sampling or the electro-optic process as well. 

1.4.1.2 Narrow-band THz 

The narrow-band THz radiation provides a higher resolution for spectral applications as well as 

insights into the fundamental light-matter interaction by selective excitations of specific 

resonances. Various methods have been developed for the narrow-band THz generation, such as 

the upconversion of microwave frequencies,[76] the downconversion of optical frequencies,[77] 

and gas lasers.[78] Among them, the optical method delivers a tunable coherent narrow-band THz 

radiation through photo-mixing between two frequency-offset lasers or different frequency 

components from a single multimode laser. 

A continuously tunable narrow-band coherent THz source with a large bandwidth is 

essential for numerous applications. As mentioned above, another big limitation for THz 

frequencies is the spatial resolution. Due to the long wavelength of THz fields, diffraction usually 

limits the spatial resolution to around 10~100 µm, making it difficult to resolve features much 

below this scale. In Chapter 5, a selective difference frequency generation technique at LAO/STO 

nanojunctions is discussed with over 100 THz bandwidth through femtosecond optical pulse 

shaping, which provides an exceptional spatial precision of 10 nm. 
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1.4.2 Broadband THz generation and detection at 10 nm scale 

In 2013, Ma et al. reported a broadband THz generation and detection technique at 10 nm scale 

(Figure 13).[79] This new class of THz sources and detectors is realized using LAO/STO 

nanojunctions. The experimental implementation is shown in Figure 13a. Two nanojunctions, 

labeled A and B, are created at the LAO/STO interface using c-AFM lithography. The separation 

is around 12 µm, which is confirmed by the photovoltage scan and the reflection scan that are 

taken simultaneously (Figure 13b and c).  

To acquire the reflection and the photovoltage scan, one input laser beam is modulated by 

a chopper and raster scanned across the sample surface using a piezoelectric stage. A constant bias 

voltage is applied on the source (S) electrode, while the drain (D) electrode is grounded.  The 

photo-induced voltage change ΔV across the two voltage sensing electrodes V+ and V- (ΔV = V+ - 

V-) is measured at the same time as the reflection. Then the reflection and the ΔV are demodulated 

by a lock-in amplifier and plotted on a xy intensity map, respectively. The reflectance contrast 

between patterned gold electrodes and the oxide surface in the reflection image shows the sample 

position, while the simultaneously acquired photovoltage scan identifies the nanojunction. 

The nanojunction photoresponse in the visible to near-infrared regime may seem bizarre, 

as both LAO and STO have large bandgaps. This can be explained, however, by mid-gap states 

existed in the STO substrate[80] that could originate from oxygen vacancies or unintentional 

dopings of STO. Electrons in mid-gap states can be excited into the conduction band with sub-

bandgap lights and the photoexcited electrons will then be driven across the nanojunction by the 

bias field, leading to a photo-induced voltage change ΔV.[81] 

Ultrafast pulses coming from a Ti: Sapphire oscillator are split into two beams. One beam 

is modulated at frequency fA and focused on the nanojunction A, while the other beam is delayed 
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by time 𝜏, modulated at frequency fB focused on the nanojunction B. The photo-induced voltage 

change ΔV across the nanojunction is monitored as a function of time delay 𝜏 for both devices in 

a way that for device A, the signal ΔVA is demodulated at a frequency fB through a lock-in 

amplifier, while for device B, the signal ΔVB is demodulated at a frequency fA through another 

lock-in amplifier. In this configuration, the signal generated at one nanojunction is actually 

detected by the other nanojunction. The amplitudes for both ΔVA and ΔVB are plotted in Figure 

13d with respect to 𝜏. Each curve is an average of 100 measurements. A time delay around 44 fs 

is observed between the two signals. Figure 13e shows the corresponding fast Fourier transform 

spectra, both exhibiting a broad spectrum extending to 10 THz. 

The generation and detection mechanism has been attributed to the third-order nonlinear 

response in STO. As mentioned in Chapter 1, compared to many other materials, STO has 

unusually large third-order nonlinear optical susceptibility 𝜒(3). Frequency components in the 

ultrafast pulses mix at the nanojunction through a DC bias field mediated third-order nonlinear 

process, and generate emission at THz frequencies. The generated THz field from one 

nanojunction propagates to the other nanojunction, where its near field components are detected. 

The observed 44 fs time delay in Figure 13d corresponds to the THz field travelling 12 µm in 

vacuum.[79] 

Through the third-order nonlinear effect, ultrafast pulses provide temporal confinement to 

the THz emission, resulting in a broadband nature, while the LAO/STO interface nanojunction 

offers spatial confinement, leading to a nanoscale precision around 10 nm. Such nanoscale control 

of the THz emission, with a spatial resolution four orders of magnitude smaller than the diffraction 

limit, opens up new possibilities for probing a single nanoscale object at THz frequencies.  
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Figure 13 Broadband terahertz generation and detection at 10 nm scale at LAO/STO 

nanojunctions. (a) Schematic drawing of the experimental setup for the double-junction 

measurement. (b) and (c) are photovoltage images overlapped with the reflection scans that are 

taken simultaneously, showing the position of each nanojunction. (d) Time-resolved photovoltage 

changes across the two nanojunctions. A time delay around 44 fs is observed between the two 

signals. (e) The corresponding fast Fourier transform spectra of (d). Ref. [79] 
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2.0  EXPERIMENTAL METHODS 

This chapter describes the main experimental methods employed in the following work, including 

the c-AFM lithography for creating nanostructures at the complex oxide interfaces, the optical 

cryostat or dilution refrigerator and the electronic connections for low temperature measurements, 

the compact Michelson interferometer for probing the ultrafast optical responses, and the pulse 

shaper that is critical for ultrafast pulse compression and pulse shaping. 

2.1 C-AFM LITHOGRAPHY 

2.1.1 AFM working principle 

The atomic force microscopy (AFM) is one of the scanning probe microscopy (SPM) techniques, 

with a sub-nanometer resolution. It was first invented in the early 1980s, as a by-product of the 

development of scanning tunneling microscope (STM), and soon became one of the most widely 

used tools for nanoscale imaging, characterization, and manipulation. 

An AFM employs a sharp tip mounted on the free end of a cantilever. The curvature of the 

sharp tip is usually on the order of a few nanometers to tens of nanometers. When the cantilever 

approaches the sample surface, atomic forces between atoms at the very end of the tip and atoms 

on the sample surface bend the cantilever, which is detected to gain information about the sample. 

Depending on the distance between the tip and the sample, the atomic force can be either 

repulsive or attractive, as shown in Figure 14. When the tip is relatively far away from the sample 
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surface, the attractive force causes the cantilever to bend towards the surface. By contrast, when 

the tip is in close proximity to the sample, the cantilever is bent away from the surface by a 

repulsive force. The region in between is an intermediate area. Correspondingly, the AFM can be 

operated in three modes, namely the non-contact mode when the tip is far away from the sample, 

the contact mode where the tip is pressed to form direct contact with the sample surface, and the 

tapping mode when the tip is operating in between. Details of the three modes will be discussed 

further below. 

One common scheme to quantify the deformation of the cantilever involves a laser and a 

quadrant photodetector (Figure 15). The input laser beam reflects off the cantilever top surface 

onto the photodetector, and the relative position of the reflected beam with respect to the quad-

segmented regions A, B, C, and D is measured by VA, VB, VC, and VD, respectively. The sum of 

these voltages gives the “Sum” value displayed in the software 

 𝑆𝑢𝑚 = 𝑉𝐴 + 𝑉𝐵 + 𝑉𝐶 + 𝑉𝐷 (2.1) 

The vertical bending of the cantilever can be quantified using “Deflection” defined as 

 𝐷𝑒𝑓𝑙𝑒𝑐𝑡𝑖𝑜𝑛 = (𝑉𝐴 + 𝑉𝐵) − (𝑉𝐶 + 𝑉𝐷) (2.2) 

The lateral twisting of the cantilever is characterized using 

 𝐿𝑎𝑡𝑒𝑟𝑎𝑙 = (𝑉𝐴 + 𝑉𝐶) − (𝑉𝐵 + 𝑉𝐷) (2.3) 

Compared to other nanoscale probing techniques, such as STM, SEM, and TEM, AFM can 

work in air or liquid, and do not require special treatments for the sample. Different variants of the 

AFM have also been developed for varies applications over the years, including electrostatic force 

microscopy (EFM), Kelvin probe force microscopy (KPM), magnetic force microscopy (MFM), 

piezoresponse force microscopy (PFM), just to name a few. 
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2.1.1.1 Contact mode 

Contact mode is the first mode developed for imaging sample topography with AFM. In contact 

mode, the tip is brought into a firm contact with the sample, which is sitting on a xyz piezoelectric 

stage, as shown in Figure 15. The force between the tip and the sample can be described by 

Hooke’s law 

 𝐹 = −𝑘 × 𝐷 (2.4) 

where k is the cantilever spring constant and D is the vertical bending distance, which can be 

mapped to the induced deflection change. When the tip is scanned across the sample surface, the 

interaction force F changes, resulting in a change in the deflection. The sample topography in 

contact mode can be measured directly using the deflection change, or more commonly, using a 

feedback loop. In the latter scenario, the deflection is kept the same as the setpoint throughout the 

scanning by constantly feeding the difference into a feedback loop while controlling the piezo z 

movement. The topography image can then be plotted spatially using the z piezo height change 

across the scanned area. 

In ambient condition, water molecules in the environment usually form a liquid meniscus 

layer. Contact mode can penetrate through this layer, thus gives an accurate measure of the sample 

surface. But this “dragging” in water meniscus also increases the risk of damaging soft samples or 

getting the tip stuck to sample surface. Another possible problem with contact mode is the 

degrading of the tip (and/or even a rigid sample surface) after several scans. To solve these 

difficulties, tapping mode was introduced.  
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Figure 14 Atomic force microscopy (AFM) force curve. 

 

Figure 15 Schematic drawing of the AFM contact mode setup. 
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2.1.1.2 Tapping mode 

In tapping mode, the cantilever is operated in a dynamic scheme, thus is also called dynamic 

contact mode or sometimes AC (alternating current) mode. A piezo shaker attached to the 

cantilever or a modulated thermal source (e.g. infrared laser beam) drives it to oscillate at or near 

its resonance frequency (Figure 16), which leads to an oscillating deflection. A lock-in amplifier 

demodulates the AC deflection and outputs both its amplitude and phase. When the tip is closer to 

the sample surface, the interaction forces changes the amplitude of the cantilever oscillation 

(generally becomes smaller). The difference between the amplitude and the setpoint is fed into the 

feedback loop to control the z-axis of the piezoelectric stage underneath the sample to maintain a 

constant amplitude A.  

The oscillation amplitude in tapping mode is large, typically lies between several 

nanometers to 200 nm, so the tip can be close enough to measure short-range forces. The tip still 

strikes against the sample surface but detaches within each oscillation cycle. This mechanism 

largely reduces the lateral force, together with the small contact duration, making tapping mode 

less harmful to both the sample and the tip. Tapping mode is probably the most frequently used 

AFM mode, especially in ambient conditions or in liquids. 

In addition to topography or equivalently, height image, tapping mode also generates a 

phase image. This channel contains information regarding the oscillation energy dissipation 

difference across the sample surface. Areas with different types of materials can be differentiated, 

even if they exhibit the same height. 
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Figure 16 Schematic drawing for the AFM tapping and non-contact mode setup. 

 

2.1.1.3 Non-contact mode 

Just as its name implies, in non-contact mode, the AFM tip does not contact the sample surface. 

The cantilever also oscillates at or close to its resonance frequency, but with much smaller 

amplitude (generally within a few nanometers) compared to tapping mode. Only long-range forces 

are measured in this case. Either amplitude modulation or frequency modulation can be used to 

form a feedback loop in non-contact mode. 

The non-contact mode is the gentlest mode among the three. No degradation is expected 

for tip nor sample even after repeated scans. However, the trade-off is the image validity in the 

presence of water meniscus, as the tip cannot penetrate through the meniscus layer. 
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2.1.2 c-AFM lithography 

In 2008, Cen et al. reported the ability to create and erase nanoscale conducting regions at the 

interface of LAO/STO using the c-AFM lithography technique.[43] This was done on a sample 

with 3.4 unit cells of LAO layer, which is just below the critical thickness. The interface is thus 

insulating but highly electric field tunable. As shown in Figure 17a and b, when scanning a 

positively biased AFM tip in contact mode from one electrode to the other, a conducting nanowire 

at the LAO/STO interface can be created, which is confirmed by the two-terminal conductance 

jump once the tip reaches the second electrode. And this process is reversible: a negatively biased 

AFM tip scanned across the existing nanowire can locally restore the interface back to an insulating 

state, and a conductance drop is observed as the tip erases the nanowire (Figure 17c and d).[43] 

The width of the nanowire can be estimated by fitting to the conductance drop. It has been shown 

that the nanowire width at the LAO/STO interface depends sensitively on the writing voltage. At 

+3 V, a wire width of 2~3 nm can be reached. But as the writing voltage increases, the nanowire 

width increases monotonically.[43, 82] With the most commonly used writing voltages (+10~15 

V), the wire width is typically around 10 nm.[18, 79, 83, 84] 

This reconfigurable and versatile technique has made LAO/STO a quite fruitful platform 

for both studying correlated electron interactions as well has realizing devices with various 

functionalities. A large number of nanostructures, such as field-effect transistors,[82] electric 

rectifiers,[85] sketched single-electron transistors,[83] ballistic electron waveguides,[18] 

photodetectors,[81] and broadband THz sources and detectors,[79] have been created and 

characterized. 
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Figure 17 c-AFM lithography. (a) Schematic drawing of creating a conducting nanowire at the 

LAO/STO interface by scanning a positively biased AFM tip between two electrodes. (b) The 

conductance between the two electrodes is monitored during writing and a conductance jump is 

observed once the tip reaches the second electrode. (c) Schematic drawing of erasing an existing 

nanowire at the LAO/STO interface by cutting with a negatively biased AFM tip. (d) A 

conductance drop is observed, from which the nanowire width can be extracted. Ref. [43] 
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2.1.3 Surface protonation and de-protonation 

The mechanism for the writing/erasing process is believed to involve the surface protonation/de-

protonation.[34, 86] Water molecules in the atmosphere are absorbed on the LAO surface and 

dissociate into H+ and OH- ions. The positively biased AFM tip removes a portion of the OH- ions 

along its path, thus locally charging the surface with the excessive H+. Similar to the modulation 

doping, the protonated surface will locally switch the LAO/STO interface from insulating to 

conducting. In the reverse process, the negatively biased AFM tip removes the extra H+, restoring 

the interface to an insulating state. The surface protonation/de-protonation process allows multiple 

writing and erasing cycles without degrading the oxide heterostructure. 

The c-AFM lithography creates nanoscale conducting regions in a gentle and non-

destructive way, leading to a much smoother confinement profile for the electrostatically confined 

nanowire. Also, the embedded conducting regions at the interface are not directly in contact with 

surface defects, edges or surface adsorbates, unlike nanostructures defined by the conventional 

lithography. 

2.2 LOW-TEMPERATURE MEASUREMENT 

2.2.1 Optical cryostat 

Ultrafast optical responses are measured at cryogenic temperatures using a Montana Instruments 

optical cryostat. It is a closed-cycle operation system, with a temperature range from 4 to 350 K. 

The temperature stability is less than 10 mK and vibration stability is below 5 nm. It is also 
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equipped with radiation-blocked optical windows and electronic connections, providing both 

optical and electronic access to the sample. 

The cryostat has four main components: a compressor, a control unit, the cryostat with a 

sample chamber, and a computer user interface. A schematic block diagram of the system is shown 

in Figure 18. The cooling is mainly provided by a two-stage cryo-cooler, which is part of the 

closed-loop helium flow circle. Thermometers and heaters are attached to both stages to accurately 

measure and control the stage temperature. A thermal radiation shield surrounding the sample is 

thermally coupled to the first stage, and the sample is mounted to a post that is thermally coupled 

to the second stage. A vacuum is created in the chamber to thermally isolate the sample, radiation 

shield, and outer shell. A PID feedback loop is used to control the helium flow and the heater 

power to maintain a set temperature. 

The sample is placed on a chip carrier that is attached to the PCB board (Figure 19a). The 

sample mount can be positioned either pointing up or sideways. Light can enter the sample 

chamber through any one of the windows, and the reflection or transmission after sample can be 

collected from the same or a different window, depending on the experimental scheme and sample 

mount orientation. Electronic properties of the sample can be measured through the 28 electrical 

feed-throughs, as shown in Figure 19b. In our system, the yellow spring wires are replaced by a 

ribbon cable that is connected to a Fisher connector to establish the electrical connection to 

instruments outside the sample chamber. 
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Figure 18 Montana Instruments optical cryostat block diagram. Image adopted from the 

Montana Instruments cryostat user manual. 
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Figure 19 Montana Instruments optical cryostat sample holder. (a) Internal components of the 

sample holder. (b) Picture of the sample holder and electronic connections. Images adopted from 

the Montana Instruments cryostat user manual. 

2.2.2 Dilution refrigerator 

Transport properties are measured at millikelvin temperatures using a Quantum Design Physical 

Property Measurement System (PPMS) that can reach a base temperature of 50 mK and a magnetic 

field of ±9 T. 

At atmospheric pressure, the boiling temperature of helium is around 4 K. Pumping can 

further reduce its temperature to 1.8 K. The millikelvin base temperature is achieved through a 

Quantum Design dilution refrigerator (DR) insert. The working principle for a DR can be 

explained by Figure 20. A phase diagram of 3H and 4H is shown in Figure 20a, where X is defined 

as the percentage of 3H in the 3H and 4H mixture. As the temperature decreases, the 3H and 4H 

mixture (33% 3H and 66% 4H) approaches from the normal stage to the forbidden state, and part 
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of the mixture turns into a concentrated 3H phase, while others reach a 4H + 6% 3H dilute phase. 

As the 3H has a lower boiling point (because it is lighter), when the turbo-pump pumps on the 

“still” (Figure 20b), the 3H vapor is pulled away mostly (~90%), reducing the 3H concentration in 

the dilute layer. So more 3H from the concentrated layer will come into the dilute layer, and this 

process absorbs heat. 

 

 

 

Figure 20 Dilution refrigerator working principle. (a) Phase diagram of 3H and 4H. (b) 

Simplified functional diagram of the dilute refrigerator. 
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2.3 COMPACT MICHELSON INTERFEROMETER 

The core component of the optical setup for studying ultrafast optical responses based on 

LAO/STO nanojunctions is a compact Michelson interferometer. A three-dimensional CAD 

drawing of the interferometer design is shown in Figure 21. Input laser pulses are directed into the 

compact interferometer by a plane mirror. There are two small irises for cross-checking the 

alignment. Then the pulses are divided by a 50/50 ultrafast beam splitter into two arms. The upper 

arm contains a compensation plate to fine tune the dispersion difference between the two arms. A 

piezoelectric state is also placed in the upper arm as an optical delay line. Its total closed-loop 

travel range is around 500 µm, corresponding to about 3.3 ps round-trip time delay. The right arm 

is sitting on a mechanical stage, which serves as a coarse adjustment of the relative time delay 

between the two arms. Each arm has a polarizer, so the light polarization can be varied 

independently before reflected back by a reflective chopper (Boston Micromachines Corporation). 

The reflected beams are then combined by the same 50/50 beam splitter and focused onto the 

sample through an objective. A second ultrafast beam splitter is designed for measuring the 

reflectance as well as monitoring ultrafast pulses. The objective is mounted on another three-axis 

piezoelectric stage that can scan in the xy plane and fine-tune the focus with the z-axis. A high-

quality reflection image can be taken using this configuration. Again, the three-axis piezoelectric 

stage is mounted on a three-axis mechanical stage for coarse position adjustments. 

There are three major merits with this interferometer design. First, the ultra-compact design 

gives precise control over beam positions. Its close proximity to the sample chamber guarantees a 

minimized optical path that light needs to travel before reaching the sample. By varying the angle 

of the mirror mount in each arm, each beam can be positioned independently to any location within 

the 30 µm × 30 µm canvas on the sample precisely. Experiments involve two nanojunctions can 
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thus be easily configured. Second, the piezoelectric stage in the upper arm provides very high 

resolution and repeatability for the optical delay. Last but not least, the conventional mechanical 

chopper is abandoned, instead, a reflective chopper is adopted for each arm. Basically, a reflective 

chopper can be viewed as a reflective diffraction grating that consists of a mirror membrane 

supported by an underlying actuator array. Light modulations are achieved by switching between 

an unpowered flat mirror-state and a powered diffractive state. Since essentially there are no 

moving parts in the reflective chopper, the vibrational noise is negligible. In addition, the 

modulation frequency can be as high as 200 kHz, and the two beams can either be modulated with 

the same frequency or different frequencies. 

 

 

Figure 21 3D drawing for the compact Michelson interferometer design. Inside the blue 

dashed callout is a schematic drawing for the reflective chopper (image adopted from the Boston 

Micromachines Corporation website). 
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2.4 PULSE SHAPER 

A picture of the actual home-built pulse shaper is shown in Figure 22. Main components include 

a grating, a concave mirror, and a programmable spatial light modulator. The basic idea is similar 

to the 4f Fourier transform pulse shaper introduced in Chapter 1, except a reflection configuration 

is adopted here to save space and a concave mirror acts as the Fourier transform element instead 

of a lens.  

Input pulses go through an input iris and get redirected by a plane mirror followed by a 

plane square mirror. Square mirrors are selected in this design to give the best clearance for beams 

at different heights. Then the beam incidents onto a ruled reflection grating with 600 g/mm and 

13° blaze angle. Different wavelengths are diffracted with different first order diffraction 

angles. The spread beam is then collected by a square mirror and focused onto the liquid 

crystal layers in the SLM by a concave mirror (focal length 200 mm). The SLM is set up in a 

reflection mode, and the reflected (and manipulated) beam travels back following almost the 

same path to the grating where different wavelengths are recombined spatially. To separate 

the input and the output beam, a small tilting in the z-direction (beam height slowly 

increases as it travels) is adjusted on purpose. The output beam goes through an iris and gets 

redirected by three plane mirrors before leaving the pulse shaper through the output iris. 

One important detail that needs to be mentioned is that, due to the intentional tilting in the 

z-direction, the beam experiences a conical diffraction from the grating. As a result, the diffracted 

wavelengths lie in a cone instead of a plane. In addition, the off-axis input for the concave mirror 

will also add additional spherical aberrations. But compared to other ways of separating the output 
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beam from the input beam, like adding a beam splitter, displacing the output beam vertically 

provides a much higher output power. 

 

 

 

Figure 22 Picture of the home-built pulse shaper. 
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3.0  EXTREME RECONFIGURABLE NANOELECTRONICS AT THE CZO/STO 

INTERFACE 

The contents of this chapter represent a collaborative work published in Chen, Li, Tang, Pai, Chen, 

Pryds, Irvin and Levy, Advanced Materials 30, 1801794 (2018). 

 

Complex-oxide heterostructures have fascinating emergent properties that originate from the 

properties of the bulk constituents as well as from dimensional confinement. The conductive 

behavior of polar/non-polar LAO/STO interface can be reversibly switched using c-AFM 

lithography, enabling a wide range of devices and physics to be explored.  Here, extreme nanoscale 

control over the CZO/STO interface, which is formed from two materials that are both nonpolar, 

is achieved. Nanowires with measured widths as narrow as 1.2 nm were realized at the CZO/STO 

interface at room temperature by c-AFM lithography. These ultra-thin nanostructures have spatial 

dimensions at room temperature that are comparable to single-walled carbon nanotubes, and hold 

great promise for alternative oxide-based nanoelectronics, as well as offer new opportunities to 

investigate the electronic structure of the complex oxide interfaces. The cryogenic properties of 

devices constructed from quasi-one-dimensional channels, tunnel barriers, and planar gates exhibit 

gate-tunable superconductivity, quantum oscillations, electron pairing outside of the 

superconducting regime, and quasi-ballistic transport. This newly demonstrated ability to control 

the metal-insulator transition at nonpolar oxide interface greatly expands the class of materials 

whose behavior can be patterned and reconfigured at extreme nanoscale dimensions. 
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3.1 INTRODUCTION 

Complex oxide heterostructures exhibit diverse emergent properties, including a tunable metal-

insulator transition,[30]magnetism,[45] superconductivity,[87] and spin-orbit coupling.[47, 88] 

The ability to create and reconfigure nanoscale conducting regions at the polar/nonpolar LAO/STO 

interface using the c-AFM lithography technique has made LAO/STO an attractive platform for 

both studying the fundamental physics of correlated electronic systems and developing future 

oxide-based nanoelectronic devices. Various nanostructures have since been realized in the 

LAO/STO system, including sketched single-electron transistors,[83] ballistic electron 

waveguides,[84] field-effect transistors,[82] photodetectors,[81] and broadband THz sources and 

detectors.[79] But to date, few devices created by c-AFM lithography have been reported[89] 

outside of the LAO/STO system. 

A two-dimensional electron system (2DES) can also be formed at the nonpolar/nonpolar 

oxide interface of CZO/STO by strain-induced polarization when the CZO layer is more than the 

critical thickness.[49-51] Here we report extreme nanoscale control of the nonpolar CZO/STO 

interface at room temperature using c-AFM lithography (Figure 23a). Conductive structures are 

stable with feature sizes as small as 1.2 nm at room temperature. A variety of nanodevices are 

created and characterized at low temperature, providing insight into the electronic confinement of 

the CZO/STO interface. The ability to create nanostructures at the nonpolar CZO/STO interface 

with the same c-AFM lithography technique expands the class of heterostructures which can be 

controlled at extreme nanoscale dimensions. 
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3.2 MATERIALS AND METHODS 

High quality (001) CZO film is grown on top of (001) TiO2-terminated STO substrate by pulsed 

laser deposition (PLD) in a 2D layer by layer growth mode. A thickness of the CZO is chosen to 

be close to the metal-insulator transition (eight unit cells), and the film thickness is monitored 

during growth by counting the intensity oscillations of the reflection high-energy electron 

diffraction (RHEED) pattern measured in-situ. Details of the growth conditions are reported 

elsewhere.[49] Terraces can clearly be seen from the AFM topography scan image (Figure 23b), 

confirming the CZO film is atomically smooth.  

CZO/STO samples are patterned with standard photolithography using AZ4210 

photoresist. The exposed CZO/STO after developing is etched with an argon ion mill 

(Commonwealth Scientific Ion Mill) at 500 W and 10 mA for 25 minutes. Electrodes contacting 

the interface are formed by filling the etched trenches with 4 nm of titanium and 25 nm of gold 

using a Perkin Elmer 6J sputtering system. Excessive metals are lifted off in Microposit Remover 

1165 at 50C for 18 hours. Bonding pads are sputtered onto the top surface with 4 nm titanium 

and 50 nm gold. The sample is finally cleaned in acetone and isopropyl alcohol with an ultrasonic 

cleaner, followed by oxygen plasma using an IPC Barrel Etcher, before measurement. The 

interface is found to be highly insulating (>0.5 GOhm between nearby electrodes which are 

separated by 2 µm) after sample processing. 
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Figure 23 Creating and erasing nanostructures at the CaZrO3/SrTiO3 (CZO/STO) interface.  

(a) Schematic drawing of c-AFM lithography. Gold electrodes are in direct contact with the 

CZO/STO interface. Green wires indicate the nanoscale conducting regions at the interface created 

by scanning a positively biased AFM tip from one electrode to the other. The junction in the middle 

of the nanowire is formed by applying a negative voltage on the AFM tip and cutting across the 

nanowire. (b) AFM topography image showing an atomically smooth CZO surface. (c) The four-

terminal conductance increases over three orders of magnitude when a nanowire is written. The 

inset shows the steep drop in conductance once the nanowire is cut. The width of the nanowire can 

be extracted by fitting to the conductance drop and calculating its corresponding differential 

conductance -dG/dx as a function of tip position x. The full-width at half-maximum of the nanowire 

is 2.8 nm. (d) Nanowire width plotted as a function of writing voltage. (e) Comparison of writing 
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in air and under modest vacuum. The nanowire here is ten times longer than the nanowire in (c) 

and the conductance background comes from photoconductance residue.  

3.3 RESULTS AND DISCUSSION 

3.3.1 Creating and erasing nanostructures at the CZO/STO interface 

The c-AFM lithography set up is shown in Figure 23a. An Asylum Research MFP-3D AFM is 

used under an ambient condition with a typical relative humidity around 35% at 27°C, unless 

otherwise specified. The DC writing voltage is applied to the c-AFM tip (highly doped silicon) 

through a 1 GΩ series resistor, and the interface of CZO/STO is grounded during writing. 

Nanoscale conducting regions are created by applying a positive voltage (+20 V) on the AFM tip 

while scanning the tip in contact mode along a designed path. A sharp conductance jump can be 

observed once the path is complete (Figure 23c), indicating that a conducting channel has been 

formed at the interface. The positive threshold voltage for forming conducting channels is around 

+6 V. This process is reversible: when the AFM tip is biased with a negative voltage (-20 V) and 

moved across the existing wire, a steep drop in the conductance is observed (Figure 23c inset). 

The AFM topography image after c-AFM lithography shows no visible deformation of the sample 

surface, even after repeated write/erase cycles. The width of the conducting channel can be 

extracted by fitting the drop in the conductance to a function of the form 𝐺(𝑥) = 𝑐0 + 𝑐1𝑥 +

𝑐2 tanh(𝑥 ℎ⁄ ) + 𝑐3𝑥 tanh(𝑥 ℎ⁄ )[43] (where 𝑐0−3 are fitting coefficients, x is the tip position, and 

h is the cutting length) and calculating the full-width at half-maximum of the corresponding 

differential conductance dG/dx. The wire width extracted in the inset of Figure 23c is around 2.8 
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nm. As shown in Figure 23d, when the tip bias voltage decreases from 20 V to 10 V, the nanowire 

width at the CZO/STO interface decreases to 1.2 nm. The nanowires created at the CZO/STO 

interface remain extremely narrow at all writing voltages tested, in contrast to nanowires formed 

at the LAO/STO interface, where the wire width depends sensitively on the writing voltage.[43] 

Compared to nanowires defined by conventional lithographic processes, ultrathin conducting 

regions created by c-AFM lithography are electrostatically confined which have much  smoother 

confinement profiles, and are physically separated from the surface charges that define their shape 

thus are less susceptible to atomic-scale defects.[35] Such high-quality and highly reconfigurable 

nanostructures, with dimensions comparable to most single-walled carbon nanotubes, hold great 

promise for alternative oxide-based nanoelectronics with length scales beyond the current 

semiconductor technology node, as well as offer new opportunities to study novel physics in 

CZO/STO heterostructures. 

The ability to achieve a metal-insulator transition locally and reversibly by the same c-

AFM lithography technique at a nonpolar/nonpolar interface naturally raises the question of the 

physical mechanisms responsible for the formation and suppression of conducting channels at 

complex oxide interfaces. To narrow down the possible physical mechanisms at play in the writing 

and erasing process, we compare the writing in air and under modest vacuum in a customized 

Nanomagnetics Instruments LT-AFM, as shown in Figure 23e. Before each writing, the sample is 

raster-scanned with a negative voltage to remove any remaining conducting patterns. The four-

terminal conductance shows a well-defined jump (red line) when writing in air with a relative 

humidity around 43% at 22 °C.  After erasing the existing nanowire, the AFM chamber is 

evacuated to a pressure of 3.9 × 10-1 mbar. The same four-terminal structure is then written with 

identical writing parameters, but no conductance jump is observed under this modest vacuum (blue 
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line). A subsequent writing is repeated after re-exposing the sample to air and a four-terminal 

conductance jump is again observed. The inability to write under vacuum is consistent with the 

same H2O-mediated surface protonation process as with the LAO/STO system.[34, 86] LAO/STO 

has a critical thickness of four unit cells,[30] and three-unit-cell LAO/STO can be hysteretically 

switched between conductive and insulating states either by application of +/-100V[30] or by c-

AFM lithography.[43] For this system, the polarization of the LAO layer brings the interface close 

to the metal-insulator transition.  Application of strain (e.g., from LSAT substrate[33]) can shift 

the critical thickness due to strain-induced polarizations.  The CZO layer is nonpolar, but is not 

lattice matched with the STO substrate.  In this case, the polarization discontinuity arises solely 

due to strain-induced effects.  When the strain-induced polarization is close to the metal-insulator 

transition, the interface can then be switched between conducting and insulating state through 

surface protonation arising from c-AFM lithography. Such a process allows numerous writing and 

erasing cycles without degradation of the oxide heterostructures, confirmed by repeated writing 

and erasing in the same region. The narrower nanostructures created at the CZO/STO interface 

may also be explained by variations in surface chemistry that result in a smaller water meniscus 

size formed under the AFM tip on CZO surface compared to LAO. Further insight into the writing 

and erasing mechanism could come from a more comprehensive study with different atmospheric 

conditions or surface adsorbates. For example, experiments similar to Ref. [34] could be used to 

gauge whether protons are the primary ionic species. 

3.3.2 Tunable superconductivity in the nanowire device 

At low temperatures, the electronic widths are expected to greatly increase[4, 18] due to the 

increase in dielectric permittivity of STO from 300 at room temperature to over 20,000 at low  
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Figure 24 Superconductivity in a nanowire created at the CZO/STO interface.  (a) Designed 

c-AFM lithography pattern overlaid on an AFM topography image of the canvas. The main 

channel length is L = 5 μm. (b) The four-terminal I-V curve (top) acquired at 0 T and 50 mK and 

the corresponding differential resistance dV/dI curve (bottom) show a superconducting state with 

zero resistance within the resolution of the measurement. The critical current is IC = 0.9 nA. (c) 

dV/dI curves at 50 mK with increasing out-of-plane magnetic field through the superconducting 

transition. (d) dV/dI intensity map as a function of magnetic field and bias current. (e) 

Temperature-dependent dV/dI curves at zero magnetic field. (f) Complete temperature and field 

phase diagram. The normal state is restored for temperatures above 270 mK and field values above 

0.26 T. 
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temperatures[10]. To investigate the low-temperature electronic properties of CZO/STO 

nanostructures, we focus on three types of devices, all created within the same 20 µm × 20 µm 

region (“canvas”). Before writing each device, the canvas is restored to a fully insulating phase by 

raster-scanning the entire canvas with a negative voltage, both vertically and horizontally at high 

resolution (5 nm spacing). Transport properties of a conducting nanowire at the CZO/STO 

interface are explored by writing a 5 µm-long nanowire device, as shown in Figure 24a. A T-

shaped side gate, located 1.1 µm away from the main channel, acts to adjust the chemical potential 

of the nanowire. Magnetotransport measurements are taken in a Quantum Design PPMS dilution 

refrigerator with a superconducting magnet whose axis is oriented out-of-plane with respect to the 

sample surface. Four-terminal current-voltage (I-V) curves are acquired by sourcing voltage from 

electrode 7, measuring current I73 from electrode 3, and measuring the voltage V15 across electrodes 

1 and 5. Source voltages are applied by a 24-bit digital/analog converters (National Instruments 

PXI-4461), which can also simultaneously perform 24-bit analog/digital conversion. The drain 

current is measured after amplified by a sub-femto-ampere current amplifier (Femto DDPCA-

300). The four-terminal voltage drop is measured by a 1 TΩ input impedance true differential 

voltage amplifier (Femto DLPVA). The upper panel of Figure 24b shows the average of ten I-V 

curves, acquired at T = 50 mK and B = 0 T. A flat region is observed for small current values. The 

bottom of Figure 24b is the differential resistance dV/dI calculated from the averaged I-V curve in 

units of the resistance quantum (h/e2), where e is the electron charge and h is Planck’s constant. A 

superconducting state is observed, with zero resistance within the resolution of the measurement. 

We define the critical current IC as the averaged current position of the two differential resistance 

peaks, i.e. IC = (|I+| + |I-|)/2. In this device, IC = 0.9 nA. In the superconducting state (|I| < IC), there 
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is a finite resistance that increases with current, which may be attributed to thermally activated 

phase slips[90] or Joule heating.[91, 92] 

The superconducting state disappears at elevated temperatures or higher magnetic fields. 

Figure 24c shows the differential resistance calculated from I-V curves acquired at 50 mK and 

under different magnetic fields from 0 T to 0.5 T with 0.005 T steps. Each curve is shifted by 0.1 

h/e2 for clarity. We denote the lowest differential resistance in the superconducting state (|I| < IC) 

to be RS and the differential resistance in the normal state (|I| ≫ IC) to be RN. As the magnetic field 

increases through the superconducting transition, IC gradually decreases while RS and RN both 

increase. Figure 24d shows an intensity map of the differential resistance as a function of magnetic 

field and bias current. The signal is symmetric and repeatable when reversing the direction of the 

magnetic field. There is an asymmetry with respect to the bias current, which will be discussed 

below. Similarly, Figure 24e shows the differential resistance calculated from I-V curves measured 

at zero magnetic field while stepping the temperature from 50 mK to 500 mK in steps of 4 mK. A 

broad transition from the superconducting state to the normal state is observed, which is usually 

explained by thermally activated phase slips as reported in other superconducting nanowires.[23] A 

complete phase diagram of RS as a function of both temperature and magnetic field is shown in 

Figure 24f. Here we define the critical temperature TC (field BC) as the temperature (field) at which 

the differential resistance is half of RN, yielding TC = 270 mK and BC = 0.26 T. The critical 

temperature and critical magnetic field observed for this system are consistent with 

superconductivity that originates primarily in the STO substrate.[23] 

This superconducting state can also be tuned by applied gate voltages, as shown in Figure 

25. I-V curves are measured at 50 mK and zero magnetic field with different gate voltages applied 

to the back of the STO substrate. When sweeping the back gate voltage Vbg from 0.28 to 2.18 V,  
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Figure 25 Gate tuning of superconductivity in the nanowire device.  (a) and (b) I-V curves and 

the corresponding differential resistances at different back gate voltages. (c) Critical current IC 

(extracted from (b)) increases with Vbg and saturates above 1.3 V. (d) and (e) I-V curves and the 

corresponding differential resistances at different sidegate voltages. (f) Critical current IC 

(extracted from (e)) increases with Vsg. 
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the superconducting resistance RS increases slightly, while the normal resistance RN decreases by 

almost a factor of two (Figure 25b). The critical current IC also increases with Vbg and saturates 

above Vbg = 1.3 V (Figure 25c). The gate-dependent resistance modulation in both the normal (RN) 

and superconducting state (RS and IC) is consistent with a superconducting gap that depends non-

monotonically with carrier concentration.[93] Note that the narrow width of the nanowires 

produces significant electric flux focusing, so a relatively small back gate voltage is sufficient to 

tune the carrier concentration in the thin nanowires.[94] The I-V curves exhibit hysteresis that 

increases with increasing Vbg, which has been attributed to motion of ferroelastic domains.[95] 

The asymmetry in the differential resistance intensity map (Figure 24d) provides additional 

evidence of this hysteretic behavior, where we only measured the I-V curves in one direction. 

Similar gate-dependent resistance modulation in both the normal and superconducting state can 

also be observed when tuning the device with a side gate (Figure 25d-e), except the critical current 

IC continues to increase even at the largest side gate voltage tested (100 mV) (Figure 25f). Further 

tuning of the superconductivity might be available by increasing the side gate voltage range. 

3.3.3 Quantum oscillations in the Hall bar device 

Properties of 2D CZO/STO channels are investigated by writing a Hall bar structure (Figure 26) 

with channel width w = 0.5 µm and length L = 3 µm. This pattern is created by raster-scanning the 

c-AFM tip within the designed rectangular regions in both horizontal and vertical directions with 

a line spacing of 10 nm. The longitudinal Hall resistance Rxx (transverse Hall resistance Rxy) is 

measured as a function of magnetic field at 50 mK by sourcing voltage from electrode 1, measuring 

current from electrode 3 and measuring Vxx (Vxy) from electrode 2 (7) and electrode 5 (2). The 

mobility 𝜇Hall and the carrier density 𝑛Hall extracted from the Hall measurement are 3,600 cm2V-
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1s-1 and 2.47 × 1013 cm-2, respectively. The 𝑛Hall  is comparable to other STO-based oxide 

heterostructures, while the 𝜇Hall  is relatively high.[96-101] Rxx shows a large positive 

magnetoresistance and oscillations at higher magnetic fields, which are more obvious after 

subtraction of a smooth background and plotted as a function of 1/B (Figure 26c). Such oscillations 

resemble the Shubnikov-de Haas (SdH) effect, despite the modest mobility and high carrier 

density. A fast Fourier transform (FFT) shows a broad peak around 30.6 T, corresponding to a 

carrier density of 𝑛SdH = 1.48 × 1012 cm-2. The discrepancy of carrier densities obtained from low 

field Hall measurement and high field SdH oscillations have been widely reported in other STO-

based 2D devices,[102-106] and recently it has been attributed to the naturally formed quasi-1D 

ferroelastic domain boundaries in these 2D systems, where the magnetic field depopulates the 

energy sub-bands.[4] Quantum oscillations are also observed in Rxy. The measured Rxy shows a 

slight deviation from antisymmetry for positive and negative magnetic fields, and an offset at zero 

field, which can be attributed to the mixing of Rxx and Rxy, and is likely enhanced by naturally 

occurring ferroelastic domain structure within the Hall bar channel.[107] 

3.3.4 Quasi-ballistic transport in the waveguide device 

To further characterize the electronic confinement of the interfacial nanostructures, a more 

complicated waveguide device that consists of two highly transparent barriers has also been written 

and characterized (Figure 27a). The barriers are 5 nm wide and separated by 50 nm and the total 

length of the main channel is 500 nm.  This device is created in two steps. First, a positive voltage 

(+20 V) is applied to the AFM tip to write the main channel, then the tip is biased with a small 

positive voltage (+5 V) and moved along the same writing path, during which two negative voltage  
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Figure 26 Hall bar device written at the CZO/STO interface.  (a) Designed c-AFM lithography 

pattern overlaid on an AFM topography image of the canvas. The width is w = 0.5 μm and length 

is L = 3 μm. (b) Rxx and Rxy plotted as a function of magnetic field. The mobility and the carrier 

density extracted from the Hall measurement are 3,600 cm2V-1s-1 and 2.47 × 1013 cm-2, 

respectively. Rxx also shows large positive magnetoresistance and quantum oscillations that 

resemble the SdH effect. Additional features also present in Rxy. (c) Oscillations in Rxx after 

subtraction of a smooth background. 
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Figure 27 Waveguide device written at the CZO/STO interface.  (a) Designed c-AFM 

lithography pattern overlaid on an AFM topography image of the canvas. The total length of the 

main channel is L = 500 nm, the width of the barrier is w = 5 nm, and the separation between the 

two barriers is d = 50 nm. (b) Zero-bias four-terminal conductance as a function of side gate voltage 

at 0 T, 1 T, and 9 T. Quantized conductance plateaus develop at high magnetic fields. (c) The 

transconductance as a function of chemical potential μ and magnetic field B shows peak splittings 

above a critical magnetic field. (d) The chemical potential difference of the split peaks as a function 

of magnetic field. Pairing fields can be extracted from the intercepts of the linear fit, and are larger 

than the upper critical magnetic field for superconductivity. 



 72 

pulses (-11 V) are applied to create the two narrow barriers. The chemical potential µ of the 

nanowire segment between the two barriers is tuned by a side gate that is located 800 nm away 

from the main channel. Zero-bias four-terminal conductance G = dI/dV is measured as a function 

of side gate voltages at 50 mK and under different magnetic fields (Figure 27b). At large negative 

side gate voltages, the waveguide conductance is tuned to zero. As the side gate voltage is 

increased, the four-terminal conductance increases to more than 5 e2/h (conductance quantum) at 

0 T (red line). Signatures associated with the superconducting regime appear as sharp increases in 

conductance.  Such sharp increases disappear for magnetic fields |B| > 0.26 T (green line). The 

remaining additional features may be attributed to either quantum mechanical tunneling through 

the barriers, scattering due to impurities in the waveguide, or both. For an ideal coherent quantum 

waveguide, each spin-resolved energy sub-band contributes one conductance quantum (e2/h) to 

the total conductance.[18] At 9 T, clear quantized plateaus near 1, 2, 3, and 4 e2/h are resolved 

(blue line). However, the conductance steps are not precisely quantized at integer values of e2/h. 

Nonetheless, the ability to tune the device to the lowest spin-resolved conductance plateau (≅ e2/h) 

is a good indication that quasi-ballistic transport can be achieved in the waveguide created at the 

CZO/STO interface. The electronic width at low temperatures, while larger than the room-

temperature width, is still significantly smaller than the measured scattering length.  

The transconductance dG/dµ is calculated by taking derivative of the conductance curves 

with respect to the chemical potential µ (Figure 27c), revealing transitions where each new sub-

band contributes to transport. The chemical potential µ is converted from Vsg by the lever-arm α, 

which can be extracted from the finite-bias spectroscopy measurement.[18] I-V curves are taken 

under different side gate voltages at 9 T and 50 mK. Figure 28 shows the corresponding 

transconductance map calculated by taking the derivative of dI/dV with respect to Vsg. Lever-arm 
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α = eΔVsd/ΔVsg, where the source-drain voltage difference ΔVsd and side gate voltage difference 

ΔVsg mark the same transition between adjacent subbands. α extracted here is around 12.2 

µeV/mV, which gives a Landé 𝑔-factor 𝑔 = eΔVsd/µBB ≈ 0.5 (µB is the Bohr magneton). As 

mentioned above, signatures associated with the superconducting regime are observed near zero 

magnetic field and disappear at higher magnetic fields. The lowest two spin-resolved sub-bands 

are split with an offset Bp ~ 0.6 T (Figure 27d), signifying residual electron pairing outside of the 

superconducting regime.[52] Pairing field (Bp) can be extracted from the intercepts of the linear 

fits for both positive (0.57 T) and negative (-0.72 T) magnetic fields, and are larger than the upper 

critical magnetic field for superconductivity in this system (0.26 T). Such electron pairing without 

superconductivity has been reported in LAO/STO, where attractive electron-electron interactions 

are believed to suppress backscattering from impurities and lead to electron pairing without 

superconductivity.[52] The attractive electron-electron interaction is also believed to be 

responsible for the increased mobility in the nanowires created by c-AFM lithography at the 

LAO/STO interface when the channel width is reduced below 100 nm.[35] 

The transconductance is also measured at T = 500 mK and T = 900 mK (Figure 29b-c), and 

we observe the same splitting even at 900 mK, which is far above the transition temperature for 

superconductivity (270 mK). It is also interesting to note that the electron pairing field appears to 

increase with increasing temperature, reaching Bp = 3 T at T = 900 mK (Figure 29d-f), in contrast 

to what has been observed in LAO/STO. Further experiments, such as characterizations of the 

temperature dependence of 𝑔-factor, are needed to understand the physical mechanism responsible 

for this increase. 
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Figure 28 Transconductance of the waveguide device measured at 9 T and 50 mK.  Each 

purple region represents a conductance plateau. Quantized conductance numbers are labeled 

accordingly. Bright regions represent transitions between different plateaus. The side gate coupling 

factor can be calculated by α = eΔVsd/ΔVsg. Here ΔVsd = 0.25 mV, ΔVsg = 20.62 mV. 
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Figure 29 Temperature dependent zero-bias measurement in the waveguide device.  (a) (b) 

and (c) Transconductances (same color scale) as a function of chemical potential and magnetic 

field acquired at 50 mK, 500 mK, and 900 mK, respectively. The peak splitting still exists even at 

900 mK. (d) (e) and (f) show the corresponding linear fits to the chemical potential difference as 

a function of magnetic field at 50 mK, 500 mK, and 900 mK. The extracted pairing fields are 0.57 

T, 0.79 T, and 3.05 T, respectively. 
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3.4 CONCLUSIONS 

The ability to create arbitrary conducting nanostructures that can access quasi-1D, 2D, and local 

electronic properties of the complex oxide interface enables a new pathway to study fundamental 

questions of low-dimensional systems. Here, we have shown that c-AFM lithography can control 

the metal-insulator transition at the nonpolar CZO/STO interface, despite the lack of intrinsic polar 

discontinuity at the interface. The mechanism for writing/erasing has been attributed to a similar 

surface protonation/deprotonation process as in the LAO/STO system. Nanoscale conducting 

regions appear to be extremely narrow at room temperature. Nanodevices such as nanowires, Hall 

bars, and waveguides are created, through which tunable superconductivity, quantum oscillations, 

electron pairing outside the superconducting regime, and quasi-ballistic transport properties of the 

CZO/STO interface have been characterized. The success with extreme nanoscale control over the 

metal-insulator transition at the nonpolar CZO/STO interface opens up new opportunities both for 

fundamental research and future oxide-based nanoelectronics.  
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4.0  PHOTOCONDUCTIVE RESPONSE OF A SINGLE GOLD NANOROD 

COUPLED TO LAO/STO NANOJUNCTIONS 

The contents of this chapter represent a collaborative work published in Jnawali, Chen, Huang, 

Lee, Ryu, Podkaminer, Eom, Irvin and Levy, Applied Physics Letters 106, 211101 (2015). 

 

Terahertz (THz) spectroscopy is an important tool that provides resonant access to free carrier 

motion, molecular rotation, lattice vibrations, excitonic, spin, and other degrees of freedom. 

Current methods using THz radiation suffer from limits due to diffraction or low-sensitivity, 

preventing application at the scale of single nanoscale objects. Here, the coupling between 

plasmonic degrees of freedom in a single gold nanorod and broadband THz emission generated 

from a proximal LAO/STO nanostructure is presented. A strong enhancement of THz emission is 

measured for incident radiation that is linearly polarized along the long axis of the nanorod. This 

demonstration paves the way for the investigation of near-field plasmonic coupling in a variety of 

molecular-scale systems. 

4.1 INTRODUCTION 

Studying a single nanoscale object, such as a single molecule or an isolated nanoparticle, by 

detecting its photoconductive response is one of the most challenging applications in nanoscale 

optics. Terahertz (THz) radiation is an ideal probe to detect and analyze such objects because it 

can couple to a range of excitations in molecules or nanoparticles, revealing their unique spectral 
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fingerprints.[108-112] The THz portion of the electromagnetic spectrum is of particular interest 

since it directly interrogates the dynamics of the free carriers without the complication of interband 

transitions.[110, 113] Current techniques involving THz radiation such as THz time-domain 

spectroscopy[113] are severely limited by diffraction, resulting in low spatial resolution and 

diminished detection sensitivity for nanoscale objects. 

Efforts to improve the sensitivity of THz spectroscopy have focused on enhancing the 

interaction between the THz radiation and the specimen. For example, waveguide-assisted THz 

sensing,[114-117] metamaterial-based THz sensors,[118] and nanoslit-based techniques[119, 120]  

have been successfully employed for a variety of spectroscopic investigations on thin layers of 

biomolecules, explosives, and drugs. However, the necessary spatial resolution or sensitivity to 

detect single nanoscale objects has not been achieved using the aforementioned techniques. 

Surface-enhanced methods[121-124] are particularly promising for molecular-scale spectroscopy 

by exploiting local field enhancement in the vicinity of a plasmonic nanostructure. However, it 

requires lengthy lithographic fabrication procedures for patterning nanoscale plasmonic structures 

such as a narrow constriction or apertures and proper positioning technique to locate the specimen. 

Signal-to-noise is also an issue due to the low transmission through these sub-wavelength 

apertures. 

Recently Ma et al.[79] have demonstrated a broadband THz spectrometer operating at 

10 nm length scales, opening up the possibilities for THz spectroscopy at molecular scales. The 

nanojunction device is fabricated by writing nanowires at the interface of an LAO/STO 

heterostructure using c-AFM lithography.[43, 82] THz field is generated and detected using the 

same nanojunction by illuminating short laser pulses in a pump-probe setup, thus allowing the 

probing of the ultrafast photoresponse of a nanoscale object located on the junction. The writing 
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cycle can be accomplished reversibly, i.e., the nanojunctions can be formed or reformed on 

demand, enabling the object to be first located with the AFM and then a nanojunction formed 

around it for optical measurements. 

Here, we demonstrate some of the promises of this technique by probing the 

photoconductive response of a single isolated gold nanorod (AuNR) on an LAO/STO sample. 

AuNR is of particular interest because it exhibits localized plasmon resonances,[125-129] which 

cause strong enhancement of radiative properties such as absorption and scattering.[130-134] As 

will be discussed in more detail below, the photoconductive response is measured by detecting 

induced THz fields at two orthogonal polarizations of the incident laser pulses with respect to the 

nanorod axis. The THz field is generated at the nanojunction of the LAO/STO nanowire device 

via optical excitation. Since a single AuNR is precisely positioned at the nanojunction during 

device writing process, the effective interaction with its plasmonic fields will be probed by 

detecting the change of THz field at on and off-resonance conditions. 

4.2 MATERIALS AND METHODS 

LAO/STO heterostructures are fabricated by growing a 3.4-unit cell thick (~1.2 nm) LAO film on 

a TiO2-terminated STO(001) substrate using pulsed laser deposition (PLD). The LAO thickness is 

calibrated by in-situ monitoring of reflection high-energy electron diffraction (RHEED) spot 

intensity during growth. Details about growth conditions and fabrication of electrical contacts to 

the LAO/STO interface are described elsewhere.[33] A commercially available organic AuNR 

solution (Nanopartz Inc.) was used to deposit nanorods on a patterned LAO/STO sample. Prior to 

deposition, AuNR was characterized by optical absorption measurements using a UV-vis 
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spectrophotometer (Lambda 35, Perkin Elmer). The collected light signal, i.e., the extinction 

spectrum (absorption and scattering response), of AuNRs dispersed in an aqueous solution is 

shown in Figure 30. As expected from the light scattering properties of AuNR,[125-128] the 

spectrum exhibits two localized plasmon resonances that correspond to light-induced electron 

oscillations perpendicular and parallel to the long axis of the rods. The parallel or longitudinal 

mode peaks at 810 nm, while the perpendicular or transverse mode peaks at 517 nm. The resonance 

peaks are inhomogeneously broadened due to the intrinsic polydispersity in nanorod size. 

Since the original AuNR solution is highly concentrated and dissolved in organic solvents, 

it is necessary to prepare a clean and residue free AuNR solution, which preserves the clean surface 

of LAO/STO even after nanorod deposition. The original AuNR solution was diluted by 1/10 of 

the original concentration by adding deionized water and mixing in an ultrasonic bath for one 

minute. The resultant AuNR solution was then centrifuged at 6,000 rpm for ten minutes and the 

supernatant was gently removed. The remaining precipitate of the AuNR solution was re-dispersed 

in deionized water and centrifuged again. The centrifuging process was repeated three times to 

completely remove excess residue. In order to deposit the nanorods on the substrate surface, the 

sample was immersed in the prepared AuNR solution for three minutes. The sample was then 

washed for several seconds in deionized water followed by an ethanol rinse, and finally dried with 

nitrogen gas. An AFM is used to identify a single AuNR. C-AFM lithography is then used to define 

a four-terminal interfacial nanowire device with a nanojunction underneath the single AuNR 

(Figure 31a). All lithography procedures are performed under ambient conditions with a typical 

temperature of 27∘C and relative humidity of 28%.  

Figure 31a shows the non-contact AFM image of AuNRs deposited on LAO/STO sample.  

Several single, multiple, and clusters of nanorods are clearly visible as blue dots. Among them, 
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Figure 30 UV-Vis extinction spectra acquired from an aqueous solution of gold nanorods 

(AuNRs). Two broad peaks at near-Infrared and visible spectral regions are due to localized 

plasmon resonances parallel to the long axis of the AuNR and perpendicular to it. Plasmon 

resonance at 810 and 517 nm are denoted as longitudinal and transverse modes, respectively. 
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single isolated AuNRs are identified by performing a high-resolution topographic image as shown 

in Figure 31b. The height profiles are measured along two orthogonal directions indicated by ∥ 

and ⊥, i.e., along the long axis of the nanorod and perpendicular to it, respectively. The length of 

a single AuNR is 80 nm and the width is 40 nm, as confirmed by AFM height profiles (Figure 

31c). The four-terminal interfacial nanowire device is created by moving a c-AFM tip with positive 

bias along the sketched region, as shown in Figure 31a. The dashed white lines correspond to the 

interfacial nanowires, which are connected to metallic gold electrodes by “virtual electrodes” 

(green triangles). Virtual electrodes are created in a wedge-shaped pattern using a tip voltage 

𝑉𝑡𝑖𝑝 = +20 V and tip scanning speed of 𝜐𝑡𝑖𝑝 = 400 nm/s to form a robust electrical contact to 

the oxide interface, followed by curved single lines from one electrode to another using a 𝑉𝑡𝑖𝑝 =

15 V and 𝜐𝑡𝑖𝑝 = 400 nm/s. 

To verify that the nanorod is located precisely on the path of the nanowire, a non-contact 

AFM image is acquired before and after the writing process. During c-AFM lithography, the 

conductance between the electrodes and conductance decay rate are monitored, as shown in Figure 

32. There is a conductance jump when two lines are connected to each other, indicating the 

formation of a fully conducting path, i.e., an uninterrupted interfacial nanowire at the interface. 

The width of the nanowire is approximately 10 nm, estimated from writing and cutting experiments 

performed under similar conditions. As a final and crucial step, a nanojunction is created directly 

underneath the AuNR by softly approaching the negatively biased tip in non-contact-mode. Once 

the AuNR image is scanned, the tip is moved towards the edge of the rod and softly engaged on 

the nanorod surface. As soon as the tip touches the surface of the nanorod, a junction is created, 

which is identified by a sharp decrease of conductance between the source (S) and drain (D) 

electrodes, as indicated by red arrow in Figure 32. After making the junction, a close-up image is 
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Figure 31 LAO/STO nanojunction device targeting a single AuNR. (a) non-contact AFM 

height image showing the surface morphology of AuNRs deposited on LAO/STO sample. The 

upper right side of the sample is used to sketch-write four-terminal nanojunction devices using c-

AFM lithography. White dashed lines are the writing path for nanowire device and green structures 

show the virtual electrodes to connect wires to the gold electrodes, which are connected to the 

interface.  Black arrow points to a single AuNR located on the path of the nanowire. (b) 3D view 

of an AFM height image of a single AuNR. (c) AFM height profiles across the single AuNR along 

parallel (red curve) and perpendicular (blue curve) to the longer axis of the nanorod, as indicated 

by the white dashed line in (b). (d) Typical two-terminal current-voltage (I-V) characteristics of 

the nanowire device measured between the electrodes as indicated in (a). The inset shows the 

typical nonlinear I-V curve between the source (S) and drain (D) electrodes, indicating the 

formation of nanojunction. 
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Figure 32 Typical two-terminal conductance of nanowires during fabrication of a four-

terminal device by c-AFM lithography. As soon as the writing path is finished by scanning the 

positively biased tip from one electrode to another as indicated, there is a sharp jump of 

conductance and it decays slowly due to exposure to ambient conditions. Nanojunction is created 

between source and drain electrodes (S & D) by cutting (erasing) the nanowire path with negatively 

biased tip. As soon as the junction is created, conductance drops to zero as shown by the red arrow. 
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recorded again in non-contact mode to ensure that the nanorod has not been displaced following 

the creation of the junction. The sample is then quickly mounted into a cryostat integrated to the 

optical setup. 

The nanojunction device is characterized at low temperature (120 K) by performing 

current-voltage (I-V) measurements between each electrode pairs. Figure 31d shows typical two-

terminal I-V curves acquired by connecting different electrodes. As expected, the left and right 

nanowires without a junction exhibit linear I-V characteristics, while the nanowire between S and 

D, which has a nanojunction located at the AuNR, shows a typical nonlinear I-V curve. The 

junction width is larger than typical nanojunction[79] created by direct cutting of the nanowire, as 

indicated by large threshold voltages for conduction (> 1 V) (see inset of Figure 31c). These 

measurements also show that the device is behaving as expected, without any leakage or decay of 

the interface conductance.  

4.3 RESULTS AND DISCUSSION 

The steady-state photoresponse is measured electrically by focusing the laser spot onto the 

nanojunction using a 100 × microscope objective with 𝑁𝐴 = 0.73.[79, 81] A constant DC bias 

(10 mV) is applied between the S and D electrodes. Two voltage-sensing electrodes are used to 

measure the photoinduced differential voltage drop 𝑉𝑝ℎ = 𝑉+ − 𝑉−. An optical chopper modulates 

the laser beam at a frequency of 2 kHz, and the resulting signal Δ𝑉𝑝ℎ is measured using a lock-in 

amplifier. A photoconductive map is generated by measuring Δ𝑉𝑝ℎ  while raster scanning the 

focused laser spot. A laser fluence of 10 μJ/cm2  is used for steady-state measurements. The 

reflected laser light is simultaneously collected using a photodiode via a separate lock-in amplifier, 
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allowing the polarization dependence detection of the reflectance of the AuNR deposited sample 

to be probed. All the optical measurements were performed at 120 K. 

 

4.3.1 Polarization-dependent optical reflectance 

Optical reflectance measurements are performed using a Ti: Sapphire laser centered at 800 nm 

(average power of 200 mW, 30 fs pulses at a repetition rate of 100 MHz). At this wavelength, the 

AuNRs show up clearly due to the plasmonic enhancement. In addition, the reflectance contrast 

varies with the polarization angle of the incident laser pulse, as shown in Figure 33a and b. When 

the laser polarization is parallel to the long axis of the nanorod, i.e., in resonance with the 

longitudinal mode, the scattering efficiency increases and a relatively high reflectance contrast is 

observed. To compare the polarization dependence reflectance contrast, the position of each single, 

multiple and clusters of AuNRs are marked by black circles. Black arrow shows the position of 

the single nanorod located on the nanojunction device. Spatial mapping of photocurrent is 

performed by applying a 10 mV DC bias voltage between the S and D electrodes. Figure 33d shows 

that the simultaneously measured reflectance and photocurrent scans overlap with each other. The 

spatial matching between photocurrent maximum and the reflectance maximum in the vicinity of 

nanorod position verifies the precise alignment of the single AuNR on the junction. 

4.3.2 Plasmonic interaction with induced THz field 

The ultrafast photoconductive response of the single AuNR is measured by recording the induced 

THz emission from the nanojunction by employing a pump-probe autocorrelation technique using  
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Figure 33 Identification of a single AuNR at the nanojunction device on the LAO/STO 

sample by using non-contact AFM height topography, optical reflectance, and photocurrent 

scan. (a) Non-contact AFM height scan acquired before writing the device. (b) and (c) Optical 

reflectance images recorded at 800nm under two polarization conditions: perpendicular and 

parallel to the long axis of the nanorod, respectively. Reflectance signal is only visible for some 

nanorods, which are in resonance with longitudinal plasmon mode of the nanorod at 800nm. (d) 

Scanning photocurrent map overlaid on simultaneously recorded reflectance image (c), showing 

the precise positioning of a single AuNR on the nanojunction. All images have the same scan size 

(12 × 12 μm2). 
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ultrafast laser pulses. A DC bias of -1 V is applied between the S and D electrodes and the 

photoinduced electrical signal Δ𝑉𝑝ℎ is detected as a function of pump-probe delay time. Details of 

the optical setup and data acquisition method are described elsewhere.[79] During the 

measurements, the pump and probe fluences are kept sufficiently low to minimize heating 

(25 μJ/cm2). Spatial mapping of the ultrafast photoconductive response is obtained by recording 

time resolved Δ𝑉𝑝ℎ at different locations around the nanojunction region. An optical polarizer is 

used to change the polarization state of both pump and probe pulses simultaneously. Here, we note 

that both pump and probe laser pulses are polarized along the same direction to generate THz 

emission because orthogonal polarization cancels out the third-order nonlinear coefficient (3) in 

STO.  

A previous study has confirmed that the THz field is spatially confined,[79] which allows 

us to probe any interaction caused by the single AuNR positioned at the junction. Figure 34a 

displays the THz time-domain signals and the corresponding power spectra (inset) measured at 

two orthogonal polarization conditions of the laser pulses with respect to the single AuNR 

orientation located at the nanojunction. Each THz waveform represents an average of 100 

sequentially acquired time-delay scans. When the laser is polarized parallel to the long axis of the 

AuNR, the THz signal is enhanced by approximately a factor of two compared to the perpendicular 

polarization. To confirm that this enhancement is spatially confined in the vicinity of the 

nanojunction, spatial mapping of both time-domain signal and power spectra are recorded at two 

polarization conditions without changing the data acquisition parameters and laser fluences. As 

shown in Figure 34b-e, there is a significant change in the THz response (both signal distribution 

and the maxima) for the two polarization directions. Such enhancement is directly associated with 
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Figure 34 Plasmonic interaction of a single AuNR with the induced THz field at the 

nanojunction device on LAO/STO heterostructure. (a) Time-domain signals of the generated 

THz emission at the nanojunction measured at two orthogonal polarization states of the incident 

laser pulses with respect to the nanorod orientation. The inset shows the corresponding power 

spectra. (b)-(c) Time-averaged spatial mapping (8 × 8 μm2) of time-domain signals at the maxima 

in the vicinity of the nanojunction at two different polarization states. (d)-(e) Spectral amplitude 

mapping at the maxima (at 0.8 THz) of the corresponding time-domain signals. Both mappings 

are shown with equivalent color scales. The THz field enhances almost a factor of two for parallel-

polarized laser pulses as compared with the signals from perpendicularly polarized laser pulses, 

which can be attributed to enhanced efficiency of scattering properties of a single AuNR at the 

resonance. 
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the plasmonic coupling with induced THz emission at the nanojunction because the scattering 

efficiency of AuNR is stronger at parallel polarization conditions. While consistent with previous 

works on different systems,[135-137] this demonstration offers a unique capability to probe single 

nanoscale objects.  

4.4 CONCLUSIONS 

In conclusion, we have demonstrated the photoconductive response of a single isolated plasmonic 

AuNR coupled to a nanoscale LAO/STO junction. The photoconductive response of this coupled 

system is measured by detecting plasmonic enhancement of the photoinduced THz emission at the 

nanojunction. A strong plasmonic enhancement occurs when the incident laser is polarized along 

the long axis of the AuNR. This technique shows promise for measuring THz and plasmonic 

properties of single nanoscale objects with unprecedented resolution. 
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5.0  OVER 100-THZ BANDWIDTH SELECTIVE DIFFERENCE FREQUENCY 

GENERATION AT LAO/STO NANOJUNCTIONS 

The contents of this chapter represent a collaborative work by Chen, Sutton, Lee, Lee, Li, Eom, 

Irvin and Levy, which has been submitted for publication. 

 

The ability to combine continuously tunable narrow-band terahertz (THz) generation that can 

access both far-infrared and mid-infrared regime with a nanometer-scale spatial resolution holds 

great potential for uncovering underlying light-matter interactions as well as realizing selective 

control of rotational or vibrational resonances in nanoparticles or molecules. Here, selective 

difference frequency generation with over 100 THz bandwidth through femtosecond optical pulse 

shaping is reported. The THz emission is generated at nanoscale junctions at the interface of 

LAO/STO defined by conductive atomic force microscopy lithography, with the potential to 

perform THz spectroscopy on individual nanoparticles or molecules. Numerical simulation of the 

time-domain signal helps to identify different contributing components for the THz generation. 

This ultra-wide bandwidth tunable nanoscale coherent THz source transforms the LAO/STO 

interface into a promising platform for integrated lab-on-chip optoelectronic devices with various 

functionalities. 
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5.1 INTRODUCTION 

Electromagnetic waves at terahertz (THz) frequencies allow resonant interactions with matter 

through various intrinsic low-energy excitations, revealing information related to lattice, charge 

and spin degrees of freedom. In the past few decades, extensive research efforts have focused on 

developing narrow-band THz radiation sources in both far-infrared (<10 THz)[138] and mid-

infrared (10-100 THz)[139] regimes, due to their potential to provide insight into the fundamental 

physics of matter by selective excitations of different resonances. For a large number of 

applications, including spectroscopy,[140] inspection,[108] communication,[141] and coherent 

control,[142] tunability of the narrow-band THz radiation is required. On the other hand, THz 

techniques are also often limited by spatial resolution.[143, 144] Owing to the relatively long 

wavelength of THz radiation, diffraction usually limits the spatial resolution to the order of 10-

100 um, making it difficult to resolve features much below this scale. Several techniques have 

been pursued to reach a nanometer-scale spatial resolution, such as combining THz radiation with 

scattering-type near-field scanning optical microscopy[145] or scanning tunneling 

microscopy[146]. However, to date, a continuously tunable, quasi-monochromatic THz source that 

can cover both the far- and mid-infrared regime with sub-10 nm spatial resolution is not available. 

Here, we report >100 THz bandwidth selective difference frequency generation at 

LaAlO3/SrTiO3 (LAO/STO) nanojunctions through femtosecond optical pulse shaping. Selected 

frequency components of a sub-7 fs ultrafast pulse are mixed at the nanojunction through the third-

order nonlinear effect in STO,[79]  and their frequency difference results in narrow-band THz 

emission. By controlling the selected frequency components, the frequency of narrow-band THz 

emission can be tuned from far-infrared to mid-infrared regime. The spatial resolution of this THz 

source is determined by the nanojunction size, typically around 10 nm, but can be as small as 2 
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nm,[43, 79] thus realizing an ultra-broad bandwidth, continuously tunable, quasi-monochromatic 

THz source with a spatial resolution comparable to a single nanoparticle or even a single 

molecule.[147] 

5.2 MATERIALS AND METHODS 

The LAO/STO samples are grown by pulsed laser deposition. A thin film (3.4 unit cells) of LAO 

is deposited epitaxially on the (001) TiO2-terminated STO substrate at 550 C and in an oxygen 

pressure of 10-3 mbar, with its thickness monitored in-situ by high-pressure reflection high-energy 

electron diffraction (RHEED). This thickness is just below the critical thickness of the metal-

insulator transition, resulting in an insulating interface. Additional details of the growth method 

are described elsewhere.[33] Electrical contacts to the interface are fabricated by conventional 

photolithography, where pre-defined regions are etched by Ar+ ion milling (25 nm) then filled with 

Ti/Au (4 nm/25 nm). A second layer of Ti/Au is added on top of the LAO surface for wire bonding. 

The LAO/STO nanojunctions are created by conductive atomic force microscopy (c-AFM) 

lithography,[43] as shown in Figure 35. A positively biased AFM tip, scanned along a line in 

contact over the LAO surface, locally charges the LAO surface with protons,[34, 86] which then 

attract electrons to the buried interface to form a conducting nanowire with a typical width of 10 

nm. A negatively biased AFM tip scanned over the conducting regions removes the adsorbed 

protons, restoring the interface to an insulating state.  Of particular relevance to this work is the 

“nanojunction” pattern, in which a nanowire is created with a nanoscale (~10 nm) insulating gap 

(Figure 35b). 
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Figure 35 Schematic drawing of the four-terminal nanojunction device at the interface of 

LAO/STO for selective difference frequency generation. a Conductive atomic force 

microscopy (c-AFM) lithography. Gold electrodes are patterned by conventional photolithography 

to form direct contact with the LAO/STO interface. The green wires represent the designed device 

geometry. A positively-biased AFM tip writes the conducting nanowires in contact mode, while a 

negatively-biased AFM tip creates a nanojunction by cutting across the nanowire. b Side view of 

the sample shows that the c-AFM lithography defined device is located at the interface of 

LAO/STO heterostructure. Both nanowires and the nanojunction have a spatial confinement 

around 10 nm. The dimensions here are not to scale.  
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A four-terminal structure with a nanojunction in the middle (Figure 35a) is designed and 

created at the LAO/STO interface for the selective difference frequency THz generation, where 

electrodes labeled S and D are used to apply a DC bias voltage 𝑉𝑑𝑐 across the nanojunction, and 

two voltage sensing electrodes (𝑉+ and 𝑉−) are used to measure the induced photovoltage change 

by ultrafast laser pulses, which will be described in detail below. The four-terminal geometry 

provides an accurate measurement of the photo-induced voltage change across the nanojunction, 

since any voltage drops in the leads, external wires or imperfect contacts are eliminated in this 

geometry. 

Figure 36a shows the schematic drawing of the experimental setup. The ultrafast pulses 

from a sub-7 fs Ti: Sapphire oscillator (Spectra-Physics Rainbow 2 UHP) are directed into an 

optical pulse shaper based on a dual-mask spatial light modulator (SLM, Jenoptik SLM-S640d), 

where different wavelengths are spatially separated by a grating and focused onto different pixels 

of the SLM. Both the amplitude and the phase of the ultrafast pulse can be controlled 

independently. Here we focus on spectral amplitude control. After the pulse shaper, the 

manipulated pulses are redirected to a compact Michelson interferometer, which has two 

approximately equal length arms. A p-polarized 50/50 ultrafast beam splitter (BS) splits the input 

pulses into two beams. The reflected beam incident normally onto a plane mirror (PM) that is 

mounted on a piezoelectric stage (PS) which serves as an optical delay line. The transmitted beam 

reflects off a plane mirror that is mounted on a mechanical stage, which provides coarse adjustment 

of the time delay.  Both beams are re-combined by the same beam splitter after normal reflection 

and then focused on the nanojunction by an objective (OB). During the measurement, the delay 

line is scanned continuously from negative to positive time delay values. A DC bias voltage (𝑉𝑑𝑐 =

−550 mV) is applied to electrode S through a 50 Ω impedance analog output port, while electrode 



 96 

D is grounded. The photovoltage, which is the voltage difference Δ𝑉 = 𝑉+ − 𝑉− between the two 

voltage sensing electrodes, is measured and amplified by a differential voltage amplifier (DVA) 

with 1 MΩ input impedance, and recorded as a function of the time delay τ. 

Figure 36b shows an example of the pulse spectral amplitude control by the pulse shaper. 

The red curve represents the full spectrum from the Ti: Sapphire oscillator without any spectral 

amplitude manipulation. A broad spectrum ranging from 650 nm to 920 nm is measured by a 

spectrometer. By applying an appropriate voltage to each pixel of the SLM, the output at all 

wavelengths can be efficiently suppressed (green curve). We can then specifically select one, two 

or a few wavelengths to pass through the SLM, while keeping all the other wavelengths 

suppressed. The blue curve shows a configuration in which light at 735 nm and 768 nm is allowed 

to pass through the SLM, while other wavelengths are suppressed. 

5.3 RESULTS AND DISCUSSION 

5.3.1 Experimental results 

To demonstrate the ultra-broad bandwidth selective difference frequency generation capability at 

the LAO/STO nanojunction, we perform nonlinear wavelength mixing experiments. We select 35 

different fundamental wavelength pairs with the frequency difference within each pair ranging 

from 2 THz to 106 THz. The total input excitation power is on the order of 100 µW. For each 

fundamental wavelength pair, the amplified photovoltage Δ𝑉 is recorded as the optical time delay 

line varies from 𝜏 =-500 fs to +500 fs, and the same measurement is repeated 40 times for 

averaging purposes. Figure 37a shows six representative averaged time-domain signals, with their 
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Figure 36 Optical setup and the spectral amplitude control. a Schematic drawing of the optical 

setup. BS: beam splitter, PM: plane mirror, MS: mechanical stage, PS: piezoelectric stage, OB: 

objective, DVA: differential voltage amplifier. The dimensions here are not to scale. b Spectral 

amplitude control of the femtosecond optical pulse by the pulse shaper. 
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difference frequencies and fundamental wavelength pairs labeled accordingly. Different curves are 

distinguished by color, and all plots in Figure 37 share the same color code. A constant background 

has been subtracted for each curve, which originates from the DC bias voltage as well as from 

persistent photoconductance by mid-gap states in STO.[81] A beating envelope can be clearly seen 

in each signal, and the lower half of the envelope has a larger amplitude than the upper half. Power 

spectra (Figure 37b,c) are calculated from the time-domain signals to reveal the frequency 

components. Figure 37b shows the frequency of all the 35 selected fundamental wavelength pairs, 

while Figure 37c displays the 35 resulting selective difference frequencies generated at the 

LAO/STO nanojunction. For example, a fundamental wavelength pair of 757 nm (396 THz) and 

797 nm (376 THz) is selected from the ultrafast pulse by the pulse shaper to generate a narrow-

band emission at 20 THz. The corresponding time-domain signal is measured and plotted in Figure 

37a (yellow curve), and its power spectrum clearly shows the fundamental wavelength pair (at the 

arrowheads in Figure 37b) and confirms that a 20 THz difference frequency is generated (indicated 

in Figure 37c). The measured linewidth of the narrow-band THz generation (~2 THz on average) 

in this configuration is limited by the spectral resolution of the SLM as well as the total travel 

range of the optical delay line (1 ps, which corresponds to 1 THz resolution). 
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Figure 37 Over 100 THz ultra-broad bandwidth selective difference frequency generation at 

the LAO/STO nanojunction. a Time-domain signals of six representative difference frequency 

generations. b Power spectra of time-domain signals showing 35 pairs of selected fundamental 

frequencies. c The generated 35 difference frequencies through the third-order nonlinear effect at 

the nanojunction that spans the entire far- to mid-infrared regime. All plots are color coded. 
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5.3.2 Theoretical model 

Due to the large bandgaps for both LAO and STO, the input photon energies in the experiments 

are not sufficient to excite valence electrons to the conduction band. Though there are mid-gap 

states exist in STO,[80] the reported lifetime for STO photo-excited carriers is at least on the order 

of nanoseconds,[148, 149] which is not relevant for the time scale involved here. On the other 

hand, the nonlinear optical process (optical rectification) is known to be able to generate a 

broadband THz field. The experiments are performed at temperature 𝑇 =80 K. Below 𝑇 =105 K, 

bulk STO undergoes a cubic-to-tetragonal transition; however, the STO remains centrosymmetric, 

with a vanishing second-order susceptibility 𝜒(2). Even though the breaking of inversion symmetry 

at the interface of LAO/STO can produce a 𝜒(2) response,[150, 151] the 2D nature of the interface 

makes it unlikely for the second-order nonlinear effect to play a dominant role. In contrast, the 

third-order susceptibility 𝜒(3) is known to be exceedingly large for bulk STO.[28] It has been 

experimentally demonstrated that the ultrafast photoconductive response at the LAO/STO 

nanojunction is DC electric field tunable and spatially confined in the region of the 

nanojunction.[79] These prior results suggest that the third-order nonlinear effect is the leading 

mechanism for wave mixing. The nanometer scale dimension (~10 nm) of the nanojunction 

provides a strong confinement of the DC bias field, resulting in 5.5×105 V/cm for Vdc = -550 mV. 

In this sense, the third-order nonlinear process can also be viewed as a DC bias field mediated 

second-order nonlinear process. 

The electric field of the fundamental wavelength pair selected by the pulse shaper can be 

expressed as 

 𝐸𝑖𝑛𝑝𝑢𝑡 = 𝐸1 cos(𝜔1𝑡) + 𝐸2 cos(𝜔2𝑡) (5.1) 
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where 𝐸1 and 𝐸2 are the amplitude, and 𝜔1 and 𝜔2 are the angular frequency of the plane wave 

for the two fundamental wavelengths, respectively. The intensity of this input field 𝐸𝑖𝑛𝑝𝑢𝑡 is then 

divided equally by a 50/50 ultrafast beam splitter. An additional time delay 𝜏 is added to the 

reflected beam by scanning the piezoelectric stage, compared to the transmitted beam. The electric 

field for the transmitted beam 𝐸𝑡𝑟𝑎𝑛 and the reflected beam 𝐸𝑟𝑒𝑓𝑙 are thus given by 

 𝐸𝑡𝑟𝑎𝑛 =
1

√2
[𝐸1 cos(𝜔1𝑡) + 𝐸2 cos(𝜔2𝑡)] (5.2) 

 𝐸𝑟𝑒𝑓𝑙 =
1

√2
(𝐸1 cos[𝜔1(𝑡 − 𝜏)] + 𝐸2 cos[𝜔2(𝑡 − 𝜏)]) (5.3) 

The two beams are re-combined by the same beam splitter, and focused onto the 

LaAlO3/SrTiO3 (LAO/STO) nanojunction, yielding an optical electric field 𝐸𝑜𝑝𝑡 in the following 

form 

 
𝐸𝑜𝑝𝑡 =

1

2
(𝐸1 cos(𝜔1𝑡) + 𝐸2 cos(𝜔2𝑡) + 𝐸1 cos[𝜔1(𝑡 − 𝜏)]

+ 𝐸2 cos[𝜔2(𝑡 − 𝜏)]) 

(5.4) 

A DC bias voltage is applied across the nanojunction, which can be described as a quasi-

static local field 𝐸𝑏𝑖𝑎𝑠. The optical field and the bias field interact at the nanojunction, resulting in 

a change in the polarization P in STO: 

 𝑃 = 𝜀0(𝜒
(1)𝐸𝑜𝑝𝑡 + 𝜒(3)𝐸𝑏𝑖𝑎𝑠

2 𝐸𝑜𝑝𝑡 + 𝜒(3)𝐸𝑏𝑖𝑎𝑠𝐸𝑜𝑝𝑡
2 + 𝜒(3)𝐸𝑜𝑝𝑡

3 ) (5.5) 

where 𝜀0  is vacuum permittivity, 𝜒(1)  and 𝜒(3)  are the linear and third-order nonlinear 

susceptibility of STO, respectively. The second-order nonlinear response is neglected, for reasons 

that are described above. This time-varying polarization generates an induced electric field 

𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑, which offsets the photovoltage across the nanojunction. In addition, the induced field 

can also mix with the bias field, optical field and itself, further modulating the polarization in STO. 
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The resulting photo-induced voltage change ∆𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝜏) at the nanojunction for the selected 

wavelength pair thus takes the form 

 

∆𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝜏) ~ 𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑 + 𝜒(1)𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑 + 𝜒(3)𝐸𝑏𝑖𝑎𝑠
2 𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑

+ 𝜒(3)𝐸𝑏𝑖𝑎𝑠𝐸𝑜𝑝𝑡𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑 + 𝜒(3)𝐸𝑏𝑖𝑎𝑠𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑
2

+ 𝜒(3)𝐸𝑜𝑝𝑡
2 𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑 + 𝜒(3)𝐸𝑜𝑝𝑡𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑

2 + 𝜒(3)𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑
3  

(5.6) 

We ignore (𝜒(3))
3
 terms. And due to the slow sample response time compared to the 

optical frequencies, terms containing 𝜔1𝑡 or 𝜔2𝑡 vanish, leading to 

 

∆𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝜏) ~ 
𝜒(3)𝐸𝑏𝑖𝑎𝑠

64
(4𝐸1

2 [4 + 6𝜒(3)𝐸1
2 + 12𝜒(3)𝐸2

2 + 8𝜒(3)𝐸𝑏𝑖𝑎𝑠
2

+ (𝜒(1))
2
(4 + 9𝜒(3)𝐸1

2 + 18𝜒(3)𝐸2
2)

+ 4𝜒(1)(2 + 3𝜒(3)𝐸1
2 + 6𝜒(3)𝐸2

2 + 2𝜒(3)𝐸𝑏𝑖𝑎𝑠
2 )] cos(𝜔1𝜏)

+ 4𝐸2
2 [4 + 6𝜒(3)𝐸2

2 + 12𝜒(3)𝐸1
2 + 8𝜒(3)𝐸𝑏𝑖𝑎𝑠

2

+ (𝜒(1))
2
(4 + 9𝜒(3)𝐸2

2 + 18𝜒(3)𝐸1
2)

+ 4𝜒(1)(2 + 3𝜒(3)𝐸2
2 + 6𝜒(3)𝐸1

2 + 2𝜒(3)𝐸𝑏𝑖𝑎𝑠
2 )] cos(𝜔2𝜏)

+ 3 [2 + 4𝜒(1) + 3(𝜒(1))
2
] 𝜒(3)[𝐸1

4 cos(2𝜔1𝜏)

+ 𝐸2
4 cos(2𝜔2𝜏)]

+ 12𝐸1
2𝐸2

2 [2 + 4𝜒(1) + 3(𝜒(1))
2
] 𝜒(3)(cos[(𝜔1 − 𝜔2)𝜏]

+ cos[(𝜔1 + 𝜔2)𝜏])) 

(5.7) 

The small non-vanishing fundamental pulse background after the pulse shaper also 

contributes to the measured photo-induced voltage change. We approximate the input pulse shape 

as a Gaussian: 
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 𝐸𝑖𝑛𝑝𝑢𝑡
𝑃𝑢𝑙𝑠𝑒(𝑡) = 𝐸0𝑒

−(𝑡 𝑡𝑝⁄ )
2

cos(𝜔𝑐𝑡) (5.8) 

Where 𝑡𝑝 is the pulse width, 𝐸0 is the amplitude and 𝜔𝑐 is the central angular frequency of 

the pulse wave. Similarly, the focused pulse optical field at the nanojunction is given by 

 𝐸𝑜𝑝𝑡
𝑝𝑢𝑙𝑠𝑒 =

𝐸0

2
(𝑒

−(
𝑡
𝑡𝑝

)
2

cos(𝜔𝑐𝑡) + 𝑒
−(

𝑡−𝜏
𝑡𝑝

)
2

cos[𝜔𝑐(𝑡 − 𝜏)]) (5.9) 

Since the material response time is much longer than the pulse duration, an integral of t 

from −∞ to ∞ is needed to derive the pulse-induced photovoltage change ∆𝑉𝑝𝑢𝑙𝑠𝑒(𝜏) across the 

nanojunction: 

 

∆𝑉𝑝𝑢𝑙𝑠𝑒(𝜏)~∫ (𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑 + 𝜒(1)𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑 + 𝜒(3)𝐸𝑏𝑖𝑎𝑠
2 𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑

∞

−∞

+ 𝜒(3)𝐸𝑏𝑖𝑎𝑠𝐸𝑜𝑝𝑡
𝑝𝑢𝑙𝑠𝑒𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑 + 𝜒(3)𝐸𝑏𝑖𝑎𝑠𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑

2

+ 𝜒(3)(𝐸𝑜𝑝𝑡
𝑝𝑢𝑙𝑠𝑒)

2
𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑 + 𝜒(3)𝐸𝑜𝑝𝑡

𝑝𝑢𝑙𝑠𝑒𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑
2

+ 𝜒(3)𝐸𝑖𝑛𝑑𝑢𝑐𝑒𝑑
3 ) 𝑑𝑡 

(5.10) 

Ignore (𝜒(3))
3
 and higher order terms. Terms containing 𝑒−(𝜔𝑐𝑡𝑝)

2

 can also be ignored 

owing to their extreme small values (−(𝜔𝑐𝑡𝑝)
2
≅ −590). The computed ∆𝑉𝑝𝑢𝑙𝑠𝑒(𝜏) then reads 

 

∆𝑉𝑝𝑢𝑙𝑠𝑒(𝜏)~
𝜒(3)𝐸0

2𝐸𝑏𝑖𝑎𝑠

128
𝑡𝑝√𝜋((12𝐸0

2[2 + 𝜒(1)(4 + 3𝜒(1))]𝜒(3)𝑒
−
3
4
(

𝜏
𝑡𝑝

)
2

+ 16√2(1 + 𝜒(1))(1 + 𝜒(1) + 2𝜒(3)𝐸𝑏𝑖𝑎𝑠
2 )𝑒

−
1
2
(

𝜏
𝑡𝑝

)
2

) cos(𝜔𝑐𝜏)

+ 3𝐸0
2[2 + 𝜒(1)(4 + 3𝜒(1))]𝜒(3)𝑒

−(
𝜏
𝑡𝑝

)
2

[2 + cos(2𝜔𝑐𝜏)]) 

(5.11) 
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The measured photo-induced voltage change ∆𝑉(𝜏) across the LAO/STO nanojunction is 

the sum of both ∆𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝜏) and ∆𝑉𝑝𝑢𝑙𝑠𝑒(𝜏): 

 ∆𝑉(𝜏) = ∆𝑉𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑(𝜏) + ∆𝑉𝑝𝑢𝑙𝑠𝑒(𝜏) (5.12) 

For simplicity, we further assume 𝐸2 ≅ 𝐸1, and rewrite Eq. (5.7) and Eq. (5.11) into 

 

∆𝑉(𝜏) ~ 𝑎 ([cos(𝜔1𝜏) + cos(𝜔2𝜏)]

+ 𝑏[cos(2𝜔1𝜏) + cos(2𝜔2𝜏)

+ 4(cos[(𝜔1 − 𝜔2)𝜏] + cos[(𝜔1 + 𝜔2)𝜏])] + [𝑐𝑒
−
1
2
(

𝜏
𝑡𝑝

)
2

+ 4 𝑑 𝑒
−
3
4
(

𝜏
𝑡𝑝

)
2

]cos(𝜔𝑐𝜏) + 𝑑𝑒
−(

𝜏
𝑡𝑝

)
2

[2 + cos(2𝜔𝑐𝜏)]) 

(5.13) 

using following abbreviations 

 

𝑎 =
1

16
[4 + 18𝜒(3)𝐸1

2 + 8𝜒(3)𝐸𝑏𝑖𝑎𝑠
2 + (𝜒(1))

2
(4 + 27𝜒(3)𝐸1

2) + 4𝜒(1)(2 +

9𝜒(3)𝐸1
2 + 2𝜒(3)𝐸𝑏𝑖𝑎𝑠

2 )]𝜒(3)𝐸1
2𝐸𝑏𝑖𝑎𝑠  

(5.14) 

 𝑏 =
3

64𝑎
[2 + 𝜒(1)(4 + 3𝜒(1))](𝜒(3))

2
𝐸1

4𝐸𝑏𝑖𝑎𝑠  (5.15) 

 𝑐 =
1

8𝑎
𝑡𝑝√2𝜋(1 + 𝜒(1))(1 + 𝜒(1) + 2𝜒(3)𝐸𝑏𝑖𝑎𝑠

2 )𝜒(3)𝐸0
2𝐸𝑏𝑖𝑎𝑠  (5.16) 

 𝑑 =
3

128𝑎
𝑡𝑝√𝜋[2 + 𝜒(1)(4 + 3𝜒(1))](𝜒(3))

2
𝐸0

4𝐸𝑏𝑖𝑎𝑠  (5.17) 

A nonlinear least-squares fit is performed to obtain the initial fitting parameters. The initial 

values for a-d and their corresponding standard errors are listed below 
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Table 2 Initial fitting parameter values and standard errors 

 Estimate Standard Error 

a -0.0000425596 3.46618×10-8 

b 0.0128076 0.000221672 

c 0.887046 0.0123936 

d 0.147767 0.00276426 

 

A slight fine-tuning of a-d is then performed manually around the initial values to better 

reproduce the experimental data, and final values used for the simulation in the next section are 

𝑎 ≅ 4.33 × 10−5 (V), 𝑏 = 0.018, 𝑐 = 1.10, 𝑑 = 0.154.  

5.3.3 Numerical simulation and discussion 

The time-varying optical field 𝐸𝑜𝑝𝑡 from ultrafast pulses and the quasi-static bias field 𝐸𝑏𝑖𝑎𝑠 from 

the DC bias voltage interact at the LAO/STO nanojunction, resulting in a change in the polarization 

in STO. Frequency components 𝜔1 and 𝜔2 in the optical fields mix, and the resulting time-varying 

polarization produces an induced field, which offsets the applied DC electric field, as well as 

further mix with the bias field, the optical field and even with itself to produce a photo-induced 

voltage change at the difference frequency 𝜔1 − 𝜔2 at the LAO/STO nanojunction.  

To better understand the different contributing components for the THz generation, a 

numerical simulation of the measured time-domain signal has been performed using Eq.(5.13), 

and the result is shown in Figure 38. The first term represents the linear response of the two 

selected frequencies at the LAO/STO nanojunction. The second term corresponds to the frequency 
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mixing through the third-order nonlinear effect. The third and fourth terms are the induced linear 

and third-order nonlinear photoconductive response by the pulse at the nanojunction, respectively. 

These two terms exist because of the small non-vanishing fundamental pulse background (baseline 

of the blue curve in Figure 36b). In Figure 38, we compare the measured time-domain signal at a 

difference frequency of 20 THz (yellow curve in Figure 37a) with the numerical simulation. Both 

the beating envelope and the asymmetry in the upper and lower amplitude of the envelope are 

reproduced. The overall decay of the signal amplitude is due to the finite width of the two selected 

fundamental wavelengths. Figure 38b shows a close-up of the measured signal and simulated 

response near 𝜏 = 0, showing good agreement between the two. The unequal amplitudes of the 

lower and upper envelope are a result of the nonlinear process that produces the THz response. 

The fast oscillation with beating envelope mostly comes from the superposition of the two 

fundamental frequencies. Discrepancies between the measured signal and the simulation are most 

visible at the node (near 𝜏 = 20 fs), and are attributed to imperfect alignment of the two beams 

during the movement of the optical time delay line. In addition to the main non-resonant three-

wave mixing process, other responses could also take place. For example, the mid-gap states, 

which are known to form in STO,[80] could introduce near-resonant structure to the response. 

Nonetheless, the good agreement between the simulation (fit to Eq. (5.13)) and the experimental 

data indicates that these responses are unlikely to play a dominant role. The linear dependence of 

signal amplitude on the bias voltage (as indicated by the theoretical model) has also been 

confirmed experimentally.[79]  
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Figure 38 Comparison between the numerical simulation and measured time-domain signal. 

a Both the beating envelope and the asymmetry in the upper and lower amplitude of the envelope 

are reproduced in the simulation plot. b A close-up of the measured and simulated time-domain 

signal near time delay 𝜏 = 0, showing good agreement between the two. 
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Compared to other existing ultra-broad bandwidth THz sources, such as free-electron 

lasers,[73] or nonlinear crystals such as GaSe crystals,[152] the LAO/STO nanojunctions are easy 

to fabricate and reconfigurable, and do not rely on phase matching due to the extremely small 

dimension of the device.  Here, the bandwidth of the THz emission is not restricted by the material, 

but rather limited only by the spectral bandwidth of the ultrafast pulses. Moreover, a high spatial 

resolution comes naturally with the LAO/STO nanojunctions. By simply drop-casting the target 

nanoscale objects onto LAO/STO surface, and creating a nanojunction in the vicinity of a single 

particle or molecule, individual nanoscale objects can be addressed independently, offering 

insights that would otherwise be inaccessible from averaging over the ensemble. Spatial mapping 

of arbitrary substrates is also possible by scanning an LAO/STO nanojunction device in close 

proximity to the sample (or the other way around). Variations on the sample surface lead to 

modifications in the interaction among different fields at the nanojunction, which can be reflected 

by the measured photo-induced voltage change, with a spatial resolution determined by the 

nanojunction size. In this work, we only control the amplitude of the input ultrafast pulse. Full use 

of the dual-mask SLM, which can achieve both amplitude and phase modulation, can enable 

arbitrary shape of the THz waveform for future applications. 

5.4 CONCLUSIONS 

In conclusion, we have demonstrated over 100 THz bandwidth selective difference frequency 

generation at LAO/STO nanojunctions that spans the entire far-infrared to mid-infrared regime by 

femtosecond optical pulse shaping. The ultra-broad tunability, combined with an exceptional 

spatial precision of 10 nm, shows great promise for exploring fundamental physics in single 
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nanoscale objects such as quantum dots, nanoparticles or individual molecules. The low optical 

excitation power imposes minimal heating or other adverse effect on the analyte. The LAO/STO 

nanojunction serves both as generator and detector of THz emission.[79] By writing two similar 

nanojunctions adjacent to each other, one can achieve both generation and detection of tunable 

ultra-broad bandwidth THz fields in a micro-scale area. On the other hand, numerous 

nanoelectronic devices have already been realized at the LAO/STO interface, such as 

photodetectors[81] and field-effect transistors.[82] Combining the versatility of the LAO/STO 

nanodevices with tunable THz functionality further enables a new pathway towards integrated lab-

on-chip optoelectronic devices. 
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6.0  ULTRAFAST OPTICAL RESPONSE OF GRAPHENE/LAO/STO 

NANOSTRUCTURES 

The contents of this chapter represent a collaborative work involving several projects. Section 

6.1.1 represents a collaborative work submitted in Li, Hsu, Lee, Tripathi, Guo, Chen, Huang, 

Dhingra, Lee, Eom, Irvin, Levy and D’Urso, arXiv:1606.08802. Section 6.1.2 represents a 

collaborative work published in Huang, Jnawali, Hsu, Dhingra, Lee, Ryu, Bi, Ghahari, 

Ravichandran, Chen, Kim, Eom, D’Urso, Irvin and Levy, APL Materials 3, 062502 (2015). 

Section 6.2 and 6.3 discuss some preliminary results of an on-going study of the ultrafast optical 

response of graphene/LAO/STO nanostructures. 

 

Graphene exhibits exceptional electronic and optical properties in the THz regime. For example, 

plasmons can be induced in graphene by femtosecond pulses, and their resonance frequencies can 

be gate-tuned over a broad THz range through varying the graphene pattern sizes or gate 

voltages.[153] Another 2D electron system, the complex-oxide heterostructure LAO/STO, has 

also shown great promise for control and detection of broadband THz emissions at extreme 

nanoscale dimensions.[79] Recently, these two platforms have been successfully integrated. A 

graphene/LAO/STO structure with a high mobility in the graphene channel[154, 155] and oxide 

nanostructures directly underneath the graphene layer has been created[156]. Here, efforts to probe 

ultrafast optical responses of graphene in the THz regime using nanoscale THz spectrometer at the 

LAO/STO interface are discussed. 
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6.1 GRAPHENE/LAO/STO HETEROSTRUCTURE 

6.1.1 Graphene transfer with perfluoropolymers 

Chemical vapor deposition (CVD) grown graphene offers large sizes and uniform graphene sheets, 

making it ideal for a variety of device applications. Commonly used transferring techniques 

usually involve a polymeric layer, such as poly(methyl methacrylate) (PMMA), which leave 

residues on or under the graphene sheet. And those hard-to-remove residues act as additional 

scattering centers, posing a detrimental effect on the electrical properties of graphene, such as 

limiting its mobility. Recently, a new wet-transferring handle that uses Hyflon instead is 

reported.[155] A small amount of remnants is observed on the sample surface after transferring, 

and those remnants can be easily removed with contact mode AFM scans, leading to an atomically 

clean graphene sheet and a high mobility near the Dirac point at low temperatures.[155] 

The high-quality graphene used throughout this chapter is grown by atmospheric pressure 

CVD on ultra-flat diamond turned copper substrates.[157] Compared to traditional copper foils, 

ultra-flat copper substrates provide much smoother graphene and larger domain sizes.[157] The 

as-grown graphene/copper substrate is then spin-coated with a Hyflon buffer layer. Hyflon is a 

perfluoropolymer. It is hydrophobic and shows a high resistance to solvents or acids, so graphene 

remains attached to the Hyflon coat during etching of copper substrate in ammonium persulfate. 

After rinsed in deionized water, the Hyflon/graphene layer is transferred onto the LAO/STO 

substrate, followed by spin-coating photoresist for the subsequent standard photolithography to 

define graphene patterns. The photoresist is later removed by acetone, and the Hyflon buffer layer 

is finally dissolved in FC-40, leaving only patterned graphene on LAO/STO surface. Figure 39 

shows a non-contact mode AFM scan phase image right after the transferring and patterning 
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procedures. A Hall bar patterned graphene sheet can be clearly seen as the light grey contrast 

compared to the darker grey LAO/STO surface. Only a small amount of Hyflon residues can be 

seen on the sample surface, and those residues can be further cleaned with simple AFM contact 

mode scans. The Hyflon buffer layer protects the graphene and LAO/STO surface from directly 

contacting the photoresist, resulting in very little hard-to-remove contaminations. 

 

 

 

Figure 39 AFM non-contact mode phase image of patterned graphene on LAO/STO surface. 

The light grey area represents the graphene Hall bar pattern, and the darker grey surroundings are 

the LAO/STO surface. 
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6.1.2 c-AFM lithography on graphene/LAO/STO 

Since the LAO layer only has a thickness of around 1.2 nm (3.4 unit cells), a strong coupling 

between the 2D graphene sheet and quasi-2D LAO/STO interface is expected. But in order to 

probe the ultrafast optical response from this hybrid graphene-complex-oxide heterostructure, an 

important question of whether the c-AFM lithography still works with graphene on top of the 

LAO/STO surface needs to be answered first. Recently, the ability to control the metal-insulator 

transition at the LAO/STO interface underneath single-layer graphene has been reported.[156] 

Raman spectra taken over areas that have been exposed to the c-AFM lithography show no 

distinguishable difference compared to the unexposed areas, proving that the graphene quality is 

not affected by the c-AFM lithography. Interestingly, no conductance jump is observed when 

writing across multi-layer graphene flakes.[156] It is believed that surface protons can penetrate 

the single-layer graphene, allowing modulation doping at the LAO/STO interface. However, this 

process does not work for the multi-layer situation.[158] 

Figure 40 shows an example of creating a four-terminal nanostructure in the 

graphene/LAO/STO heterostructure. Figure 40a displays the designed c-AFM lithography pattern 

overlaid with a non-contact mode AFM topography image. Green triangles are the virtual 

electrodes, and pink wires are four-terminal leads. The main channel is represented by the yellow 

wire, which runs across the graphene sheet. The two-terminal conductance between different 

electrodes is monitored during the c-AFM lithography. Figure 40b shows that a conductance jump 

measured between electrode 1 and 4 is observed once the main channel is complete, indicating the 

nanowire at the LAO/STO interface, which is also partly underneath graphene, is conducting 

without interruption. 
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Figure 40 C-AFM lithography on the Graphene/LAO/STO heterostructure. (a) The designed 

c-AFM lithography pattern overlaid on a non-contact mode AFM topography image of the canvas. 

Green triangles represent virtual electrodes, while pink wires show the four-terminal leads. The 

path of the main channel, which is designed across the graphene sheet, is indicated by the yellow 

wire. (b) Two-terminal conductance monitored between electrode 1 and 4 during the c-AFM 

lithography. Once the main channel is complete, a conductance jump is observed. 
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6.2 ULTRAFAST OPTICAL RESPONSE OF GRAPHENE/LAO/STO 

NANOSTRUCTURES 

6.2.1 Experimental approach 

To study the ultrafast optical response of graphene/LAO/STO nanostructures, a high-quality 

single-layer CVD grown graphene flake needs to be transferred onto the LAO/STO substrate and 

patterned into an ideal shape (for example, a Hall bar). A four-terminal structure is then designed 

and created by the c-AFM lithography to ensure a nanojunction is located underneath the graphene 

flake (Figure 41). A planner side gate (SG) parallel to the main channel can also be created for 

applying electric fields to the nanojunction as well as to graphene. After c-AFM lithography, the 

graphene/LAO/STO sample is transferred to an optical cryostat to study its behavior at low 

temperatures. Ultrafast pulses are focused on the nanojunction, with a controlled time delay 

between adjacent pulses. A DC bias voltage is applied between the source (S) and drain (D) 

electrodes to provide the initial field offset across the nanojunction. Ultrafast optical responses can 

then be monitored by measuring the photo-induced voltage change ∆𝑉 = 𝑉+ − 𝑉− as a function of 

time delay 𝜏. The tunability of the ultrafast optical response can also be studied by applying 

different gate voltage combinations to the top-gate (TG), which is connected to the graphene sheet 

directly, SG and/or back gate (BG). 
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Figure 41 Experimental approach to studying ultrafast optical responses of 

graphene/LAO/STO nanostructures. DVA: differential voltage amplifier, SG: side gate, TG: 

top-gate, S: source, D: drain, V+ and V- are voltage sensing electrodes, VGate3 represents the voltage 

applied to the back gate, and 𝜏 is the time delay between two adjacent ultrafast pulses.  
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6.2.2 Preliminary results 

An optical reflection scan is taken first to locate the canvas. In Figure 42, the dark blue “fingers” 

pointing toward the center are 16 gold electrodes. Eight of them are surface electrodes that connect 

to the graphene sheet, and the other eight electrodes are interface electrodes that are etched through 

the LAO layer to form a direct contact to the LAO/STO interface. The graphene Hall bar can be 

barely seen in this image due to its low reflectance, so a fake color (light blue) drawing is overlaid 

here to guide the eye. Red grains are Hyflon residues being pushed to the edge of the c-AFM 

lithography defined device region. 

 

 

 

Figure 42 Optical reflection image of the graphene/LAO/STO canvas. 
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The four-terminal nanojunction structure is exhibited in Figure 43a. The background is a 

close-up of the reflection scan as indicated by the black dashed box in Figure 42. The main channel 

is created in three steps. First, the upper half of the curved wire is written from top to bottom, then 

the lower half is written in the opposite direction. There is a 10 nm gap between the ends of the 

two wires. After finishing the second half, a negative voltage is applied to the AFM tip and the tip 

is touched down gently to reaffirm the nanojunction. After the sample is cooled to 80 K, a bias 

voltage of -400 mV is applied to the S electrode, and an input laser power around 20 µW is focused 

onto the sample through a 100x objective (numerical aperture 0.73). Figure 43b shows the 

photovoltage scan that is taken simultaneously with the reflection scan in Figure 43a, confirming 

a nanojunction exists at the LAO/STO interface underneath graphene. Such photovoltage can be 

tuned by applying different top-gate voltages on graphene as shown in Figure 44. The light remains 

focused on the nanojunction, and the top-gate voltage is swept from 0 V to positive voltages, 

followed by negative voltages and then back to 0 V (Figure 44a). As a result, the photovoltage 

increases first, maximized at the largest top-gate voltage, followed by a decrease with decreasing 

top-gate voltages, then increases almost back to the initial value when the top-gate is swept back 

to 0 V. In Figure 44b, a square wave (1 Hz with the peak amplitude 𝑉𝑝 = 0.8 V) top-gate voltage 

is applied on graphene, and the simultaneously monitored photovoltage jumps and drops 

accordingly. A fast rising (falling) time followed by a slow decay (recover) of the photovoltage is 

observed. 

Ultrafast optical responses of graphene/LAO/STO nanostructures have also been studied. 

The preliminary results show additional oscillations in the THz time-domain signal that possibly 

originate from the graphene sheet. The bias voltage in this configuration is -500 mV and the input 

laser power is around 80 µW. In Figure 45a, the photovoltage ∆𝑉 is plotted as a function of time 
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Figure 43 The designed four-terminal nanojunction device across graphene and the 

measured photovoltage scan. (a) The designed four-terminal nanojunction geometry overlaid on 

an optical reflection scan of the graphene/LAO/STO canvas. The source (S), drain (D), and voltage 

sensing electrodes (V+ and V-) are labeled accordingly. A nanojunction is located in the middle of 

the main channel (curved green wire), which is directly underneath the graphene sheet. Note that 

all the conducting nanostructures are buried at the interface of LAO/STO. (b) The photovoltage 

scan that is taken simultaneously with the reflection scan in (a). The photo-induced voltage change, 

which is monitored as ∆𝑉 = 𝑉+ − 𝑉−, shows that a nanojunction is created at the interface of 

LAO/STO and its location matches the designed c-AFM lithography path. 
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Figure 44 Graphene gate tunable photovoltage across the nanojunction. (a) Tuning the 

photovoltage ∆𝑉  by sweeping the top-gate on graphene. (b) The simultaneously monitored  

photovoltage ∆𝑉 change (red) when a square wave voltage is applied to the top-gate (blue). 
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delay 𝜏 under different configurations. Each curve is an average of 30 consecutive scans. The 

grey curve is taken from a clean LAO/STO sample without graphene, which shows a standard 

dip response around 𝜏 = 0 with shoulder-like structures coming from the laser itself. The 

colored curves are from the graphene/LAO/STO sample with 5 different top-gate voltages on 

graphene. Additional oscillations from the graphene sample can be clearly seen, which have a 

frequency around 55 THz, as shown in the corresponding power spectra (broad peaks in color 

curves in Figure 45b). The sharp peaks at 40 THz in Figure 45b are due to the vibrational noise 

from the cryostat. Both plots here are normalized and shifted for clarity. 

6.2.3 Possible physical mechanism 

For the additional oscillation around 50-60 THz observed from the graphene/LAO/STO sample, it 

is still unclear what is the physical origin. However, there are two directions, in particular, that 

might be worth further looking into. 

A single layer defect-free graphene sheet usually exhibits a G peak around 1600 cm-1 and 

a 2D peak around 2600 cm-1 in the Raman spectrum.[156] The G peak is due to the doubly 

degenerate zoon center E2g phonon mode. Converting the wavenumber of G peak to frequency 

yields 48 THz. So it is possible that the additional oscillation corresponds to a specific phonon 

mode in graphene. The reason that there is no peak observed in the Raman spectrum that 

corresponds to a frequency in the range of 50-60 THz might be attributed to the fact that the THz 

measurements here are done at a spatial confinement of 10 nm×10 nm, so the ultrafast response of 

graphene is very local. While for the Raman spectrum, the signal is averaged over a large laser 

spot size that is usually at least on the order of a few hundreds of nanometers. 
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Figure 45 Ultrafast optical responses of graphene/LAO/STO nanostructures. (a) The THz 

time-domain signal, which measures ∆𝑉 as a function of the time delay. The grey curve is from a 

clean LAO/STO sample without graphene, while colored curves come from the 

graphene/LAO/STO sample with different top-gate voltages on graphene. (b) Power spectra of 

signals in (a) show additional peaks around 50-60 THz for the graphene/LAO/STO sample. 
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Another possible origin of the additional oscillation could be the graphene plasmon 

resonances. Plasmons can be induced in graphene by femtosecond laser excitations.[153] It has 

been discussed previously in Chapter 4 that plasmonic response can couple with the induced THz 

emission at the LAO/STO nanojunctions and modify the measured time-domain signal. 

6.3 FUTURE DIRECTIONS 

In order to figure out the physical mechanism for the observed additional oscillations in the 

graphene/LAO/STO sample, as well as explore other ultrafast optical responses and coupling 

between the two layers of (quasi-)2D materials, several experiments can be done in the future. 

Firstly, the gate dependent THz response, where the graphene is gated through its Dirac 

point, can reveal information relates to the effect of graphene carrier density and even carrier type 

on the ultrafast optical response. The gating can be done through several schemes. The simplest 

case would be back gating. STO has a large dielectric constant at low temperatures, and the small 

size of conducting nanostructures at the LAO/STO interface further provides electric flux focusing, 

thus the back gating can be very efficient. Another gating scheme that is more direct involves 

applying the same offset on both sides of the nanojunction while keeping the bias voltage across 

the nanojunction unchanged. This can be referred to as the interface gating. Since the LAO/STO 

interface is only 1.2 nm away from graphene, interface gating requires even smaller voltage to tune 

the graphene across its Dirac point. Both schemes mentioned so far can offer a gate-dependent 

THz response, but with the price of changing the property of the nanojunction itself at the same 

time. To accommodate this side effect, a separate side gate can be created when writing the 

nanostructure, as shown in Figure 41. The combination of the side gate and back gate and/or 
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interface gate, in principle, could tune the graphene carrier density while maintaining the properties 

of the nanojunction. 

More exotic patterns can also be created underneath graphene, such as superlattices or 

structures ensemble metamaterials, which provide further possibility and controllability for the 

coupling between graphene and the LAO/STO interface. 
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7.0  SUMMARY AND OUTLOOK 

Combining the rich physics in STO-based complex oxide heterostructures with the versatile c-

AFM lithography technique has enabled the exploration of electron-electron interactions and other 

emergent properties in these strongly correlated systems at reduced dimensionalities. A vast 

variety of nanodevices with different functionalities have also been developed, making the STO-

based complex oxide heterostructure continued to be a promising candidate for next-generation 

nanoelectronic and nanophotonic devices. 

In this dissertation, the c-AFM lithography has been proved to be able to control the metal-

insulator transition at the interface of a nonpolar/nonpolar complex oxide heterostructure of 

CZO/STO, with extreme feature size as small as 1.2 nm at room temperature. The created 

nanodevices shed light on the electronic structure of the CZO/STO interface through transport 

measurements at low temperatures. This successful demonstration shows great potential in 

patterning the conductivity in other types of heterostructures by the c-AFM lithography, providing 

a new way to engineer their own unique properties for more complicated applications. 

Furthermore, the nanodevices can, in turn, reveal the underlying electronic behavior of the 

heterostructures that would otherwise be inaccessible. 

One interesting future experiment for the CZO/STO sample is to measure the lattice 

distortion using piezoresponse force microscopy (PFM). It has been shown that the charge 

accumulation at the interface of LAO/STO leads to a lattice elongation. [159] However, the lattice 

mismatch between CZO and STO has an opposite sign compared to the mismatch between LAO 

and STO (+2.67% for CZO/STO and -2.79% for LAO/STO). It is possible that the CZO/STO may 

exhibit a different carrier-mediated lattice distortion, which can result in very different band 
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structures compared to the extensively studied LAO/STO system. It would be interesting to 

measure the electro-mechanical response of the c-AFM lithography written and un-written area of 

CZO/STO by taking PFM scans. 

It has been previously demonstrated that both THz emission and detection can be realized 

using LAO/STO nanojunctions.[79] In this dissertation, this nanoscale THz source is proved to be 

able to detect the plasmonic response of a single gold nanorod, with a size of tens of nanometers. 

The capability of this THz source is further expanded by upgrading the femtosecond laser and 

adding a home-built pulse shaper to the setup. Over 100 THz selective difference frequency 

generation has been demonstrated. Besides the already investigated quasi-1D nanorod and the still 

under investigation quasi-2D graphene, this exceptional control of THz fields has unlimited 

potential for studying individual nanoscale objects or local responses, as shown in Figure 46. 

Among the quasi-0D nanoparticles, CdSe/CdS core/shell nanoparticles are of particular interest 

due to their large two-photon absorption cross-sections. Initial experiments to probe the selective 

two-photon excitation are already underway. 

Another direction that is definitely worth pursuing is to incorporate the MIIPS and arbitrary 

pulse shaping functionalities in the THz setup. Our pulse shaper has the capability to control both 

pulse amplitude and phase independently. After compressing the femtosecond pulse back to its 

transform limited width, a user-defined amplitude and/or phase mask can be applied to the pulse 

for any given applications, thus maximizing the potential of the nanoscale THz generator and 

detector at LAO/STO nanojunctions. 

The STO-based complex oxide heterostructure is an ideal platform for realizing integrated 

oxide-based circuits as well. Devices such as photodetectors, THz sources and detectors, 
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waveguides, and transistors can be created by c-AFM lithography on a single micrometer scale 

substrate, providing numerous complex functionalities that are only limited by our imagination. 

 

 

 

 

Figure 46 The nanoscale THz platform based on LAO/STO nanojunctions.  Materials that be 

investigated include quasi-0D nanoparticles, quasi-1D nanorods or nanowires, quasi-2D graphene 

or MoS2 sheets, and possibly many other materials or systems. 
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APPENDIX A 

SPATIAL LIGHT MODULATOR 

A.1 SLM WORKING PRINCIPLE 

A.1.1 Birefringence 

Anisotropic materials often exhibit birefringence, in which lights with different polarizations and 

propagation directions experience different refractive indices. This phenomenon was first observed 

in calcite in 1669. By rotating the calcite crystal on top of a target, a second transmission image 

may occur and rotate with respect to a fix transmission image. This phenomenon was later 

explained by the concept of light polarization.  

If we describe light as an electromagnetic wave with a propagation direction along the z-

axis, then the oscillation direction of the electrical field, which is also called the “polarization”, 

lies in the xy-plane. In principle, any polarization state can be projected to two orthogonal axes. 

And when the light is incident on a birefringent crystal, these two perpendicular polarizations may 

experience different refractive indices, thus leaving the crystal with different output trajectory, 

resulting in two images. 

Crystals with non-cubic lattice structures are often birefringent. The simplest case for 

birefringence is the uniaxial crystal, like calcite. The term “uniaxial” refers to the fact that there is 

only one direction in this kind of crystal, along which different polarizations propagate with the 
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same refractive index. This direction is also called the “optical axis” (OA in Figure 47a). For any 

polarizations perpendicular to the optical axis, the refractive index is termed as the “ordinary 

refractive index” (no). While for polarization along the optical axis, it experiences an 

“extraordinary refractive index” (ne). A beam polarized in between has an effective refractive 

index 

 
1

𝑛(𝜃)2
=

𝑐𝑜𝑠2(𝜃)

𝑛𝑜
2

+
𝑠𝑖𝑛2(𝜃)

𝑛𝑒
2

 (A.1) 

where θ is the angle between the input beam and the optical axis. Note that both no and no depend 

on the wavelength as well. Conventionally, if a crystal exhibits no > ne, then the crystal is classified 

as a negative birefringent material. Oppositely, if no < ne then the crystal is a positive birefringent 

material. 

A special configuration is when the optical axis is parallel to the crystal surface, and light 

is incident normally. In this case, the two orthogonal polarizations still experience different 

refractive indices, but their propagation directions are the same. For a positive birefringent crystal, 

the extraordinary beam arrives after the ordinary beam, which means a phase retardation has been 

introduced to the extraordinary beam. This principle can be used to realize wave plates, in which 

by varying the thickness of the crystal, certain phase retardation can be specified to change the 

output polarization state. Figure 47b shows an example of different output polarizations that can 

be achieved by adding different phase retardations between the two orthogonal polarizations. 

A more complicated case for birefringence is the biaxial crystal, which involves three 

different refractive indices, each along one principal axis. However, there are two unique 

directions, along which light may propagate without birefringence, hence termed as “biaxial”. 

Mathematical description for a biaxial crystal is much more complicated than the uniaxial case, 

and we will not go into details here. 
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Figure 47 Birefringence. (a) Refractive index ellipsoid of a uniaxial positive birefringent crystal. 

(b) Different polarization states that can be achieved by adding different phase retardations to a 

linearly polarized input light. 
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A.1.2 Liquid crystal cells 

Besides naturally available crystals, there are various artificial birefringent materials. For example, 

the liquid crystal cell. As shown in Figure 48, a liquid crystal cell consists of a thin layer of nematic 

planar liquid crystal that is in between two parallel glass substrates. Transparent electrodes are 

attached to the inner surface of the glass substrate, on top of which an alignment layer is coated to 

provide an initial orientation of the nematic liquid crystal molecules. The oval shape of these 

molecules yields an optical anisotropy in refractive index once they are aligned, with the optical 

axis parallel to the long axis of the molecules.  

At zero bias voltage on the transparent electrodes, no electric field is applied to the 

molecules, thus they are simply aligned with the alignment layer, as shown in the left image in 

Figure 48. The optical axis is along the x-axis. Once a bias voltage is applied, the electric field 

across glass substrates turns the direction of liquid crystal molecules, rotating the optical axis 

towards the z-axis accordingly. For a normally incident light along the z-axis, this process can be 

equivalently described as follows: light with polarization along x- and y-axis starts with the 

maximum phase retardation at zero bias voltage, and as the bias voltage increases, the retardation 

decreases until all the molecules are aligned parallel to the z-axis. At that time, the induced phase 

retardation is zero. 

The maximum phase retardation a liquid crystal cell can offer depends on both the 

difference between ne and no (sometimes defined as the birefringence of a material) as well as the 

total thickness of the liquid crystal layer d 

 𝜙𝑚𝑎𝑥 = 2𝜋
(𝑛𝑒 − 𝑛𝑜)𝑑

𝜆
 (A.2) 

where λ is the input light wavelength.  
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Figure 48 Schematic drawing for the liquid crystal cell and its birefringence. Image adopted 

from the Jenoptik SLM-S640d manual. 

 

A.1.3 SLM structure 

In Chapter 5, a Jenoptik spatial light modulator (SLM-S640d) is used for the femtosecond pulse 

shaping. This SLM has a dual mask design, with 640 pixels on each mask, for independently 

controlling the phase and amplitude of different wavelengths in the femtosecond pulse. A layout 

of one mask is shown in Figure 49a. There are 640 pixels aligned linearly along the x-axis. Each 

pixel has a size of 97 µm × 10 mm, and they are separated by 3 µm. Then two identical masks are 

glued back-to-back, with each pixel precisely aligned (Figure 49b). Voltages can be applied 

separately to each pixel on the individual mask. An optical anti-reflection (AR) coating from 600 

nm to 1200 nm is also added to both masks to minimize unwanted multi-reflections. 
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Figure 49 Schematic drawing of Jenoptik SLM-S640d. (a) The layout of the 640 pixels of a 

single SLM mask. (b) Schematic drawing of the dual mask design, with two SLM masks attached 

back-to-back. Images adopted from the Jenoptik SLM-S640d manual. 
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A.2 JONES CALCULUS 

Jones calculus can be used to describe the light polarization after different optical components, 

where light polarization is represented by a Jones vector and each optical element is represented 

by a Jones matrix. The process of light passing through an optical element is then described by 

multiply the corresponding Jones matrix to the input light vector. Note that only fully polarized 

light can be described by the Jones calculus. 

If light propagates along the z-axis, then the Jones vector to describe the light polarization 

is 

 (
𝐸𝑥𝑒

𝑖𝜙𝑥

𝐸𝑦𝑒
𝑖𝜙𝑦

) (A.3) 

 For simplicity, the light intensity is usually normalized 𝐸𝑥
2 + 𝐸𝑦

2 = 1, and the phase start 

with 0, which means 𝑒0 = 1 and 𝑒𝑖𝜋/2 = 𝑖. The Jones vectors for most common polarizations are  

Table 3 Jones vectors for different polarizations 

Polarization Jones vector 

Linear along the x-axis (
1

0
) 

Linear along the y-axis (
0

1
) 

Linear +45° from the x-axis 
1

√2
(
1

1
) 

Linear -45° from the x-axis 
1

√2
(

1

−1
) 

Right-hand circular 
1

√2
(

1

−𝑖
) 
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Left-hand circular 
1

√2
(
1

𝑖
) 

 

The Jones matrices for a few commonly used optical elements are 

Table 4 Jones matrices for different optical element 

Optical element Jones vector 

Linear polarizer along the x-axis (
1 0
0 0

) 

Linear polarizer along the y-axis (
0 0
0 1

) 

Linear polarizer +45° from the x-axis 
1

2
(
1 1
1 1

) 

Linear polarizer -45° from the x-axis 
1

2
(

1 −1
−1 1

) 

Right-hand circular polarizer 
1

2
(

1 𝑖
−𝑖 1

) 

Left-hand circular polarizer 
1

2
(
1 −𝑖
𝑖 1

) 

Quarter-wave plate with fast axis at θ from 

the x-axis 
(
𝑐𝑜𝑠2𝜃 + 𝑖𝑠𝑖𝑛2𝜃 (1 − 𝑖)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

(1 − 𝑖)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑖𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃
) 

Half-wave plate with fast axis at θ from the 

x-axis 
(
𝑐𝑜𝑠2𝜃 𝑠𝑖𝑛2𝜃
𝑠𝑖𝑛2𝜃 −𝑐𝑜𝑠2𝜃

) 

Arbitrary phase retardation Δ𝜙 with fast axis 

at θ from the x-axis 

(
𝑐𝑜𝑠2𝜃 + 𝑒𝑖Δ𝜙𝑠𝑖𝑛2𝜃 (1 − 𝑒𝑖Δ𝜙)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃

(1 − 𝑒𝑖Δ𝜙)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃 𝑒𝑖Δ𝜙𝑐𝑜𝑠2𝜃 + 𝑠𝑖𝑛2𝜃
) 

 

In our home-built pulse shaper setup, the optical axis of the first mask in the SLM (Display 

A in Figure 50) is at +45° from the x-axis, while the second mask (Display B) is at -45° from 
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the x-axis. The SLM works in a reflection mode, which means light gets reflected back after 

Display B and re-enters Display B and Display A consecutively. The input light has a linear 

polarization parallel to the x-axis and a linear polarizer that passes the horizontal 

polarization is placed after the pulse shaper. In this configuration, the output light can be 

described as 

 

𝐸𝑜𝑢𝑡
⃑⃑ ⃑⃑ ⃑⃑ ⃑⃑ 

= (
1 0
0 0

) ∙ (
𝑐𝑜𝑠2 (

𝜋

4
) + 𝑒𝑖Δ𝜙𝐴𝑠𝑖𝑛2 (

𝜋

4
) (1 − 𝑒𝑖Δ𝜙𝐴)𝑠𝑖𝑛 (

𝜋

4
) 𝑐𝑜𝑠 (

𝜋

4
)

(1 − 𝑒𝑖Δ𝜙𝐴)𝑠𝑖𝑛 (
𝜋

4
) 𝑐𝑜𝑠 (

𝜋

4
) 𝑒𝑖Δ𝜙𝐴𝑐𝑜𝑠2 (

𝜋

4
) + 𝑠𝑖𝑛2 (

𝜋

4
)

)

∙ (
𝑐𝑜𝑠2 (−

𝜋

4
) + 𝑒𝑖Δ𝜙𝐵𝑠𝑖𝑛2 (−

𝜋

4
) (1 − 𝑒𝑖Δ𝜙𝐵)𝑠𝑖𝑛 (−

𝜋

4
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𝜋

4
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4
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4
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) + 𝑠𝑖𝑛2 (−

𝜋

4
)
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∙ (
𝑐𝑜𝑠2 (

𝜋

4
) + 𝑒𝑖Δ𝜙𝐴𝑠𝑖𝑛2 (

𝜋

4
) (1 − 𝑒𝑖Δ𝜙𝐴)𝑠𝑖𝑛 (

𝜋

4
) 𝑐𝑜𝑠 (

𝜋

4
)

(1 − 𝑒𝑖Δ𝜙𝐴)𝑠𝑖𝑛 (
𝜋

4
) 𝑐𝑜𝑠 (

𝜋

4
) 𝑒𝑖Δ𝜙𝐴𝑐𝑜𝑠2 (

𝜋

4
) + 𝑠𝑖𝑛2 (

𝜋

4
)

) ∙ (
1

0
)

=
1

2
(𝑒𝑖2Δ𝜙𝐴 + 𝑒𝑖2Δ𝜙𝐵) ∙ (

1

0
) 

(A.4) 

The output can be further rewritten into 

 cos(Δ𝜙𝐴 − Δ𝜙𝐵) 𝑒𝑖(Δ𝜙𝐴+Δ𝜙𝐵) ∙ (
1

0
) (A.5) 

with the amplitude A and phase 𝜙 of the output light expressed as 

 𝐴 = cos(Δ𝜙𝐴 − Δ𝜙𝐵) (A.6) 

 𝜙 = Δ𝜙𝐴 + Δ𝜙𝐵 (A.7) 
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By controlling the phase retardation in mask A and mask B, both amplitude and phase of the 

output beam can be controlled. In addition, pure amplitude (or phase) modulation can be 

achieved by changing both ∆𝜙𝐴  and ∆𝜙𝐵 in a way that ∆𝜙𝐴 + ∆𝜙𝐵 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  (or ∆𝜙𝐴 −

∆𝜙𝐵 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡). Writing out the phase retardation for each mask specifically yields 

 𝜙𝐴 =
1

2
(𝜙 + 𝑎𝑐𝑟𝑐𝑜𝑠(𝐴)) (A.8) 

 𝜙𝐵 =
1

2
(𝜙 − 𝑎𝑐𝑟𝑐𝑜𝑠(𝐴)) (A.9) 

Note that what is actually being measured experimentally is the intensity of the output light 

I = A2. 

 

 

 

Figure 50 Schematic drawing for a horizontally polarized input light passing through two 

SLM masks and a horizontal polarizer. 
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