86 research outputs found

    A New Hybrid Algorithm to Optimize Stochastic-fuzzy Capacitated Multi-Facility Location-allocation Problem

    Get PDF
    Facility location-allocation models are used in a widespread variety of applications to determine the number of required facility along with the relevant allocation process. In this paper, a new mathematical model for the capacitated multi-facility location-allocation problem with probabilistic customer's locations and fuzzy customer’s demands under the Hurwicz criterion is proposed. This model is formulated as α-cost minimization model according to different criteria. Since our problem is strictly Np-hard, a new hybrid intelligent algorithm is presented to solve the stochastic-fuzzy model. The proposed algorithm is based on a vibration damping optimization (VDO) algorithm which is combined with the simplex algorithm and fuzzy simulation (SFVDO). Finally, a numerical example is presented to illustrate the capability of the proposed solving methodologies

    The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem

    Get PDF
    In this study we investigate the single source location problem with the presence of several possible capacities and the opening (fixed) cost of a facility that is depended on the capacity used and the area where the facility is located. Mathematical models of the problem for both the discrete and the continuous cases using the Rectilinear and Euclidean distances are produced. Our aim is to find the optimal number of open facilities, their corresponding locations, and their respective capacities alongside the assignment of the customers to the open facilities in order to minimise the total fixed and transportation costs. For relatively large problems, two solution methods are proposed namely an iterative matheuristic approach and VNS-based matheuristic technique. Dataset from the literature is adapted to assess our proposed methods. To assess the performance of the proposed solution methods, the exact method is first applied to small size instances where optimal solutions can be identified or lower and upper bounds can be recorded. Results obtained by the proposed solution methods are also reported for the larger instances

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges

    A review of network location theory and models

    Get PDF
    Cataloged from PDF version of article.In this study, we review the existing literature on network location problems. The study has a broad scope that includes problems featuring desirable and undesirable facilities, point facilities and extensive facilities, monopolistic and competitive markets, and single or multiple objectives. Deterministic and stochastic models as well as robust models are covered. Demand data aggregation is also discussed. More than 500 papers in this area are reviewed and critical issues, research directions, and problem extensions are emphasized.Erdoğan, Damla SelinM.S

    A Logically Centralized Approach for Control and Management of Large Computer Networks

    Get PDF
    Management of large enterprise and Internet Service Provider networks is a complex, error-prone, and costly challenge. It is widely accepted that the key contributors to this complexity are the bundling of control and data forwarding in traditional routers and the use of fully distributed protocols for network control. To address these limitations, the networking research community has been pursuing the vision of simplifying the functional role of a router to its primary task of packet forwarding. This enables centralizing network control at a decision plane where network-wide state can be maintained, and network control can be centrally and consistently enforced. However, scalability and fault-tolerance concerns with physical centralization motivate the need for a more flexible and customizable approach. This dissertation is an attempt at bridging the gap between the extremes of distribution and centralization of network control. We present a logically centralized approach for the design of network decision plane that can be realized by using a set of physically distributed controllers in a network. This approach is aimed at giving network designers the ability to customize the level of control and management centralization according to the scalability, fault-tolerance, and responsiveness requirements of their networks. Our thesis is that logical centralization provides a robust, reliable, and efficient paradigm for management of large networks and we present several contributions to prove this thesis. For network planning, we describe techniques for optimizing the placement of network controllers and provide guidance on the physical design of logically centralized networks. For network operation, algorithms for maintaining dynamic associations between the decision plane and network devices are presented, along with a protocol that allows a set of network controllers to coordinate their decisions, and present a unified interface to the managed network devices. Furthermore, we study the trade-offs in decision plane application design and provide guidance on application state and logic distribution. Finally, we present results of extensive numerical and simulative analysis of the feasibility and performance of our approach. The results show that logical centralization can provide better scalability and fault-tolerance while maintaining performance similarity with traditional distributed approach

    The continuous single-source capacitated multi-facility Weber problem with setup costs: formulation and solution methods

    Get PDF
    The continuous single-source capacitated multi-facility Weber problem (SSCMFWP) where setup cost of opening facilities is taken into account is investigated. The aim is to locate a set of facilities on the plane, to define their respective capacities which can be linked to the configuration of the processing machines used, and to allocate customers to exactly one facility with the objective being the minimisation of the total transportation and setup costs. A new nonlinear mathematical model based on the SSCMFWP is introduced where Rectilinear and Euclidean distances are used. Efficient metaheuristic approaches based on Variable Neighbourhood Search and Simulated Annealing are also developed. The proposed metaheuristics incorporate an exact method and the commonly used Cooper’s alternate location-allocation method. We also constructed a new data set to reflect the characteristic of this particular location problem as no data set is available in the literature. Computational experiments show that the proposed metaheuristics generate interesting results for this class of continuous location problems
    corecore