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Abstract The continuous single-source capacitated multi-facility Weber problem
(SSCMFWP) where setup cost of opening facilities is taken into account is in-
vestigated. The aim is to locate a set of facilities on the plane, to define their
respective capacities which can be linked to the configuration of the processing
machines used, and to allocate customers to exactly one facility with the objec-
tive being the minimisation of the total transportation and setup costs. A new
nonlinear mathematical model based on the SSCMFWP is introduced where Rec-
tilinear and Euclidean distances are used. Efficient metaheuristic approaches based
on Variable Neighbourhood Search (VNS) and Simulated Annealing (SA) are also
developed. The proposed metaheuristics incorporate an exact method and the com-
monly used Cooper’s alternate location-allocation method. We also constructed a
new data set to reflect the characteristic of this particular location problem as no
data set is available in the literature. Computational experiments show that the
proposed metaheuristics generate interesting results for this class of continuous
location problems.
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1 Introduction

The continuous single-source capacitated multi-facility Weber problem (SSCM-
FWP) is to seek the location of p facilities on the plane and the allocation of
each customer to exactly one of the open facilities so that the sum of the total
transportation costs is minimised. This problem is one of the variants of the Multi-
facility Weber problem (MFWP) which is introduced by Cooper (1963, 1972) who
states that the objective function of MFWP is neither convex nor concave. Megiddo
and Supowit (1984) and Sherali and Nordai (1988) reveal that the MFWP is NP-
hard. The SSCMFWP is relatively more difficult to solve than its counterpart the
MFWP. This is mainly due to the binary nature of the decision variables when
allocating each customer to a single open facility. The SSCMFWP has several real
life applications. For example, in a telecommunication network design, a user is
assigned to a single base transceiver station while in the case of finding the loca-
tion of oil drill platforms, each oil well has to be allocated to one platform (Devine
and Lesso, 1972; Rosing, 1992).

In this paper, the SSCMFWP is studied where the setup cost of establishing an
open facility is based on the capacity which is related to the configuration of the
machines used. In this setting, a set of machine types is available where each type
is defined by its corresponding different capacity and cost. Here, the configuration
of the machines relates to the number of each machine type to be installed at each
open facility. In the discrete version, Li et al (2014) investigated the two-stage ca-
pacitated facility location problem with handling costs. The problem that we study
differs from the recent study of Irawan et al (2017) where the authors considered
each facility to require one type of machinery only. This kind of applications can
be found in engineering and manufacturing where the number of machine types
is limited to 3 or4 due to high design cost and also due to the limited usage. We
refer to this problem as the SSCMFWP-SC (SSCMFWP with Setup Cost). To
tackle such a strategic decision problem, we propose a new mathematical model
and efficient VNS- and SA-based metaheuristics.
Our contributions are threefold:

i. A new nonlinear mathematical model for the SSCMFWP-SC with the presence
of facility setup cost and its linearization are developed,

ii. Effective metaheuristic approaches based on VNS and SA are designed where
an exact method and a Cooper’s alternate location-allocation (ALA) method
are incorporated.

iii. Newly constructed data sets for the SSCMFWP-SC are produced and inter-
esting and competitive computational results presented.

The paper is organised as follows. In Section 2, a review of the literature
is presented followed by Section 3 that contains the mathematical model for the
SSCMFWP-SC. The description of the proposed metaheuristic approaches is given
in Section 4. The computational results are provided in Section 5. Finally, the
conclusions and some highlights of future research are presented in the last section.

2 Literature Review

In this section, a review on recent papers on the SSCMFWP are first presented
followed by a brief on related problems such as the capacitated MFWP (CMFWP),
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the Weber problem in the presence of facility fixed cost and the CMFWP with
fixed costs.

2.1 A review on recent papers on the SSCMFWP

Gong et al (1997) study a hybrid evolutionary method based on a Genetic Al-
gorithm (GA) and a Lagrangian relaxation (LR) method. The former is used to
determine the location of the facilities while the latter is implemented in the allo-
cation phase. An iterative two phase heuristic approach is proposed by Manzour-al
Ajdad et al (2012) where in the first part, an enhanced ALA method based on two
assignment rules is applied, while in the second, the generalised assignment prob-
lem (GAP) is solved optimally. Manzour et al (2013) also put forward a simpler
but less promising version of their earlier method.

Öncan (2013) develop three solution methods for the SSCMFWP with Eu-
clidean and Rectilinear distances. The first one is an enhanced ALA method where
the allocation problem is solved optimally, while in the second, the allocation prob-
lem is efficiently solved using a very large neighbourhood search procedure. The
third method is a discrete approximation technique where a LR is used to find
lower and upper bounds. Recently, Irawan et al (2017) propose two methods deal-
ing with the SSCMFWP with the presence of facility fixed cost. The first one is a
generalised two stage heuristic scheme whereas the second is based on VNS. The
proposed methods were also adapted to the SSCMFWP where these outperform
those recently published solution methods.

In this study, the fixed cost of an open facility is defined by a combination of
machine types which has led to a modified mathematical formulation. In addition,
two efficient solution methods based on VNS and SA are proposed incorporating
an exact method and an ALA heuristic. Moreover, an aggregation technique based
on a pseudo-random scheme that relies on randomness as well as the already found
promising sites is adopted alongside appropriate adaptations of the VNS heuristic.

2.2 A brief on related continuous location problems

Contrarily to the SSCMFWP, for example in the capacitated MFWP (CMFWP)
each customer can be served by more than one facility. In this case, when the
location of facilities is fixed, the allocation problem reduces to solving the trans-
portation problem (TP) instead of the GAP. Cooper (1972) proposes exact and
heuristic methods for the CMFWP. There are a few papers in this area and among
the recent ones we have for example Luis et al (2011) and Akyüs et al (2014). The
former propose a novel guided reactive greedy randomised adaptive search proce-
dure by incorporating the concept of restricted regions while the latter design two
types of branch and bound algorithms with the first one dealing with the alloca-
tion space whereas the second for the partition of the location space. For more
information and references therein, see Irawan et al (2017).

There is however a shortage of papers which study the Weber problem in the
presence of fixed costs. Brimberg et al (2004) are among the first to investigate the
multi-source Weber problem with constant fixed cost. They propose a multiphase
heuristic to solve the problem where the discrete version of the problem is first
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solved to obtain the number of facilities and then the location of open facilities is
improved by implementing the ALA heuristic. Brimberg and Salhi (2005) consider
fixed costs when locating a single facility in the continuous space. The fixed costs
are zone-dependent defined as non-overlapping convex polygons. They also propose
an efficient method to optimally solve the problem. A discretization method to
address the multi facility problem is also presented.

Luis et al (2015) investigate the CMFWP with the presence of facility fixed
costs. The authors consider three types of fixed costs which are constant, zone-
based, and continuous fixed cost functions. Heuristic approaches that incorporate
the concept of restricted regions and a GRASP metaheuristic are applied to solve
the problem. Hosseininezhad et al (2015) develop a cross entropy heuristic to
solve the CMSWP with a zone-based fixed cost which consists of production and
installation costs.

3 Mathematical formulation

The mathematical model of the SSCMFWP-SC is given here. A set of machine
types (M) that can be used for each facility is taken into account where each
machine type (m ∈ M) is characterized by its capacity (qm) and its purchasing
cost (cm). The model also considers the number of machines available for each
type (um) . In addition, we consider that the maximum allowed capacity for each
facility j (j = 1, . . . , p) is bj . The following notations are used.

Set

I : the set of customers with i as its index where n = |I|
M : the set of machine types with m as its index.

Parameter

p: the number of facilities to open
ai = (a1i , a

2
i ): the location of customer i where ai ∈ R2, i ∈ I

wi: the demand of customer i (i ∈ I)
ĉ : the unit transportation cost per unit demand and per km
bj : the maximum allowed capacity for facility j, j = 1, . . . , p
qm : the capacity of machine type m ∈M
cm : the purchasing cost of machine type m ∈M
um : the total number of machines available for machine type m ∈M .

Decision Variable

Yij =

{
1 if customer i (i ∈ I) is assigned to facility j (j = 1, . . . , p),

0 otherwise

Xj = (xj , yj) : coordinates of facility j where Xj ∈ R2, j = 1, . . . , p
Ljm = the number of machines of type m ∈M used at facility j, j = 1, . . . , p.

Let d(Xj , ai) be the distance between facility j and customer i which is defined
as follows:

d(Xj , ai) = ||Xj − ai||1 =
(∣∣X1

j − a1i
∣∣+

∣∣X2
j − a2i

∣∣) for Rectilinear distance

d(Xj , ai) = ||Xj − ai||2 =
((
X1

j − a1i
)2

+
(
X2

j − a2i
)2)1/2

for Euclidean distance
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The mathematical model of the SSCMFWP-SC can be formulated as follows.

Objective function:

min

p∑
j=1

∑
i∈I

(Yij · d(Xj , ai) · ĉ · wi) +

p∑
j=1

∑
m∈M

(Ljm · cm) (1)

subject to
p∑

j=1

Yij = 1, ∀i ∈ I (2)

∑
m∈M

(Ljm · qm) ≤
(
bj + max

m∈M
qm

)
, ∀j = 1, . . . , p (3)∑

i∈I
(wi · Yij) ≤ bj , ∀j = 1, . . . , p (4)∑

i∈I
(wi · Yij) ≤

∑
m∈M

(Ljm · qm) , ∀j = 1, . . . , p (5)

p∑
j=1

Ljm ≤ um, ∀m ∈M (6)

Yij ∈ {0, 1}, ∀i ∈ I; j = 1, . . . , p (7)

Ljm ≥ 0, integer, ∀j = 1, . . . , p;m ∈M (8)

Xj ∈ R2, ∀j = 1, . . . , p (9)

The objective function (1) aims to minimise the sum of the total costs. The first
part of the objective function (1) is the total transportation cost (zt) whereas the
second defines the total setup cost (zs). Constraints (2) ensure that each customer
is served by one facility.

Motivated by Li et al (2014), Constraints (3) state that the configuration of
machines used by a facility must be restricted by its maximum capacity. It looks
unlikely that the total capacity based on all machines used by a facility is exactly
equal to its maximum capacity. Therefore, a simple upper bound (maxm∈M qm)
is added to indicate that in the worst case, the total capacity can be larger than
the maximum allowed capacity. Constraints (4) and (5) make sure that capacity
constraints of the facilities are satisfied. Here, the capacity constraints are based
on the total capacity of all used machines and the maximum allowed capacity.
Constraints (6) ensure that the number of machines (for each type of machine)
used for all facilities does not exceed the one available in the market. Constraints
(7) refer to the binary nature of the variables. Constraints (8) specify that the
number of machines (for each type of machine) used for each facility is an integer
variable. Constraints (9) indicate the continuous location variables. The above
model is nonlinear due to the first part of the objective function. This nonlinear
model can be solved by a commercial optimiser such as Lingo. Another way is to
linearise the model whenever possible and use powerful commercial solvers such
as CPLEX, Lindo, Gurobi, Xpress, etc. In this study, we can linearise the case
of rectilinear distances as will be presented next. For the optimiser, we opt for
CPLEX due to its availability and ease of implementation.
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3.1 Linearization of the model for the case of rectilinear distance

For this particular type of distance, the term of the objective function in the above
model can be linearized in a standard way as follows:

Given that

Yij · wi · ĉ · d(Xj , ai) = wi · ĉ
(∣∣∣Yij ·X1

j − Yij · a1i
∣∣∣+

∣∣∣Yij ·X2
j − Yij · a2i

∣∣∣)
Let the new real variables be V 1

ij = Yij ·X1
j and V 2

ij = Yij ·X2
j .

The objective function in Equation (1) can be rewritten as follow:

min

p∑
j=1

∑
i∈I

(
ĉ · wi ·

(∣∣∣V 1
ij − Yij · a1i

∣∣∣+
∣∣∣V 2

ij − Yij · a2i
∣∣∣))+

p∑
j=1

∑
m∈M

(Ljm · cm) (10)

We now have a linear model with the following additional constraints:

V 1
ij ≤ a1max · Yij , ∀i ∈ I, j = 1, . . . , p (11)

V 1
ij ≥ a1min · Yij , ∀i ∈ I, j = 1, . . . , p (12)

V 1
ij ≤ X1

j − a1min · (1− Yij), ∀i ∈ I, j = 1, . . . , p (13)

V 1
ij ≥ X1

j − a1max · (1− Yij), ∀i ∈ I, j = 1, . . . , p (14)

V 2
ij ≤ a2max · Yij , ∀i ∈ I, j = 1, . . . , p (15)

V 2
ij ≥ a2min · Yij , ∀i ∈ I, j = 1, . . . , p (16)

V 2
ij ≤ X2

j − a2min · (1− Yij), ∀i ∈ I, j = 1, . . . , p (17)

V 2
ij ≥ X2

j − a2max · (1− Yij), ∀i ∈ I, j = 1, . . . , p (18)

where a1min = mini∈I a
1
i , a1max = maxi∈I a

1
i , a2min = mini∈I a

2
i and a2max =

maxi∈I a
2
i .

Note that for the case of rectilinear distance, the linearized model is still hard to
solve optimally for n ≥ 25 as will be shown in the computational results section.
This is mainly due to the large number of additional constraints (11)-(18) resulting
in 8p|I| = 8pn new constraints. For p = 10 and n = 100 this amounts to 8,000
new constraints and if p = 50 and n = 500 this number jumps to 200,000.



The capacitated Weber problem with setup costs 7

3.2 Mathematical model of the related discrete problem

For benchmarking purposes, we also present a similar model for the discrete prob-
lem namely the capacitated facility location problem with setup cost (CFLP-SC).
Let K be a set of potential facility sites where the location of each potential site
(k ∈ K) is known. As the location of potential facility sites and customers is fixed,
the distance between a potential site and a customer (dik, i ∈ I, k ∈ K) is also
known. The problem is to determine whether a facility is located at a potential
site or not. If a potential site is selected, the maximum allowed capacity of this
facility must be determined. Moreover, the configuration of machines used for each
facility needs also to be optimised. The notation adopted for sets and parameters
in the CFLP-SC model is relatively similar to the one of the previous model with
the exception of the following additional items.

Set and parameter

K : the set of potential facility sites with k as its index.
dij : the distance between potential site k ∈ K and customer i ∈ I.

Decision Variable

Yik =

{
1 if customer i ∈ I is assigned to an open facility located in site k ∈ K ,

0 otherwise

Skj =

{
1 if facility j (with maximum capacity bj) is located in site k ∈ K,
0 otherwise

Lkm = the number of machines of type m ∈M used at a facility at site k ∈ K.

The CFLP-SC can be expressed as follows:

Objective function:

min
∑
k∈K

∑
i∈I

(Yik · dik · ĉ · wi) +
∑
k∈K

∑
m∈M

(Lkm · cm) (19)

subject to ∑
k∈K

Yik = 1, ∀i ∈ I (20)

p∑
j=1

Skj ≤ 1, ∀k ∈ K (21)

∑
k∈K

Skj = 1, ∀j = 1, . . . , p (22)

∑
m∈M

(Lkm · qm) ≤
p∑

j=1

(
Skj ·

(
bj + max

m∈M
qm

))
, ∀k ∈ K (23)

∑
i∈I

(wi · Yik) ≤
p∑

j=1

(bj · Skj) , ∀k ∈ K (24)

∑
i∈I

(wi · Yik) ≤
∑

m∈M
(Lkm · qm) , ∀k ∈ K (25)
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k∈K

Lkm ≤ um, ∀m ∈M (26)

Yik ∈ {0, 1}, ∀i ∈ I; k inK (27)

Lkm ≥ 0, integer, ∀k ∈ K;m ∈M (28)

Skj ∈ {0, 1}, ∀k ∈ K; j = 1, . . . , p (29)

The model is linear and has |K| · (|I|+ p) binary variables, |K| · |M | integer ones
and p+ 4|K|+ |I|+ |M | constraints.

4 Solution methods

In this section, the two proposed solution methods to solve the SSCMFWP-SC are
described. These are designed to solve both rectilinear and Euclidean problems. In
the first approach, a powerful metaheuristic technique using Variable Neighbour-
hood Search (VNS) is implemented while the second method is based on Simulated
Annealing (SA).

4.1 The proposed VNS approach

In this subsection, the proposed approach incorporates an aggregation technique,
an exact method, a Variable Neighbourhood Search (VNS) and the modified Alter-
nate Location-Assignment (ALA) heuristic introduced by Cooper (1964). VNS is
a powerful metaheuristic approach that consists of a local search and a neighbour-
hood search. The local search is to intensify the search whereas the neighbourhood
search aims to escape from the local optima. In the neighbourhood search, the next
(usually the larger) neighbourhood is systematically used if there is no improve-
ment, otherwise it will revert back to the first (usually the smallest) one (Hansen
and Mladenović, 1997). For more information on VNS and its applications and key
points, see Hansen et al (2010) and Salhi (2017). The main steps of the proposed
VNS are presented in Algorithm 1 which consists of two stages.

4.1.1 Stage 1 of Algorithm 1

Here, a good initial solution is obtained using an aggregation technique, an exact
method, a local search and the ALA heuristic. Stage 1 is an iterative process
where a set of the reduced discrete problems (CFLP-SC) is solved by the exact
method (CPLEX) and a local search that we propose. Each discrete problem
consists of a set of selected customer sites to be used as the potential facilities.
When n and |K| are large, the CFLP-SC is difficult to solve optimally. Here, an
aggregation approach is applied to reduce the number of potential facility sites
from n to η sites (η << n) while all customers are still served. In other words,
in each discrete problem, a set of selected customer sites (K̂) is pseudo randomly
selected and used as the potential facilities location. Note that the η customer
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Algorithm 1 The proposed VNS algorithm for the SSCMFWP-SC
1: Define H, kmax and η. Set z∗ =∞.
2: STAGE 1
3: repeat
4: Choose randomly η customer sites including the promising sites (F ∗). These sites are

considered as a set of potential facility sites (K̂) for the reduced discrete CFLP-SC
problem.

5: Solve the reduced discrete problem (CFLP-SC) which consists of n customers and
η potential facilities using an exact method (CPLEX) within τ ′ seconds. Let F =
{F1, . . . , Fp} be the set of customer sites to locate the p facilities where Cj(xj , yj)
be the coordinates of facility j. Denote σjm the number of machines of type m used by
facility j and Nj the set of customers to be served by facility j (j = 1, . . . , p).

6: Apply the proposed local search presented in Algorithm 2 starting from F obtained
from the previous step.

7: Compute the total setup cost (zs) and the capacity for each facility κj based on σjm
and determine the total transportation cost (zt) based on F and Nj , see Equation (30).

8: Improve (zt) by applying the ALA heuristic presented in Algorithm 3 using Cj , Nj and
κj .

9: Calculate total cost z = zs + zt.
10: if z < z∗) then
11: Update z∗ = z along with F ∗ ← F , C∗j ← Cj , σ∗jm ← σjm and N∗j ← Nj .

12: end if
13: until H times
14: STAGE 2
15: Update z = z∗ along with F ← F ∗, Cj ← C∗j , σjm ← σ∗jm and Nj ← N∗j .

16: Set k = 1.
17: Shaking
18: Update Cj , σjm and Nj using Procedure Shaking given in Algorithm 4.
19: Local Search
20: Determine zs, zt and κj based on Cj , σjm and Nj .
21: Apply the modified ALA heuristic given in Algorithm 3 to improve the transportation cost

(zt) using κj and Cj .
22: Compute the total cost z = zs + zt.
23: Move or Not
24: if z < z∗) then
25: Update k = 1 and z∗ = z along with F ∗ ← F , C∗j ← Cj , σ∗jm ← σjm and N∗j ← Nj .

26: else
27: Update k = k+1 and z = z∗ along with F ← F ∗, Cj ← C∗j , σjm ← σ∗jm and Nj ← N∗j .

28: end if

sites include the promising sites (F ∗) which are the solution obtained from solving
the discrete problem that provides the smallest total cost (initially F ∗ = ∅). The
remaining potential facility sites (η − p) are randomly chosen from the customer
sites. A similar method has shown to be promising when solving large p-median
(Irawan et al, 2014; Irawan and Salhi, 2015b) and p-centre problems (Irawan et al,
2016). Irawan and Salhi (2015a) also produce an interesting review on aggregation
techniques for large facility location problems.

The reduced CFLP-SC is solved by CPLEX within τ ′ seconds to speed up and
control the search process. By solving the reduced CFLP-SC, the locations of the
p facilities (F ), the configuration of the machines that need to be installed for each
facility σjm and the set of allocations Nj are found. The capacity of each open
facility κj is determined based on the value of σjm. The solution found (F and
σjm) is then fed into the proposed local search given in Algorithm 2 as the initial
solution. The obtained total cost can be divided into the setup cost (zs) and the
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transportation cost (zt). The total setup cost (zs) and the capacity of each open
facility κj are calculated based on σjm while the total transportation cost (zt) is
determined based on Nj and the set of the p open facilities F = {F1, . . . , Fp} as
follows:

min
∑
j∈F

∑
i∈Nj

(
diFj
· ĉ · wi

)
(30)

The ALA heuristic is then applied to improve the total transportation cost
based on the locations of the p facilities and by fixing the capacity of each open
facility (κj). This process is repeated H times and the solution that yields the
smallest objective function value is chosen as the one to be fed into Stage 2 of
Algorithm 1 which is the VNS based algorithm.

A Local Search for the Discrete Problem

A local search for the reduced discrete problem (CFLP-SC) is proposed to
improve the quality of solution produced by the exact method in Line 5 of Al-
gorithm 1. The input of this local search is the objective function value (z), the
location of facilities (F ) and the capacity of each facility (σjm) which are obtained
by the exact method. The proposed local search comprises two phases where the
first phase uses the best improvement strategy whereas the second one applies the
first improvement strategy. In the first phase, the algorithm tries to find the best
facility in the current solution to be located in the best location in the potential
facility site (K̂). In the search, we fix the capacity of each facility (κj) which does
not change the total setup cost (zs). Here, the first phase will try to improve the
transportation cost. To speed up the search, the approximated approach is used
where the quality of solution is evaluated by solving the transportation problem
(TP) which is relatively easy to solve by the exact method. Moreover, facility j
can be moved to potential site k if a customer located in site k is served by facility
j. It means that facility j will not move far from its current location. In the TP,
the decision variable xij is used representing the size of the shipment from facility
j to customer i. The TP can be expressed as follows:

min
∑
j∈F

∑
i∈I

(xij · dij · ĉ) (31)

subject to ∑
j∈F

xij ≥ wi, ∀i ∈ I (32)

∑
i∈I

xij ≤ κj , ∀j ∈ F (33)

xij ≥ 0, integer, ∀i ∈ I; j ∈ F (34)

Based on the objective function value obtained by solving the TP, the best pair is
then taken. This new facility configuration (F ′) is evaluated by solving the CFLP-
SC using an exact method. This reduced CFLP-SC problem is relatively easy to
solve as the reduced model is solved to obtain the assignment problem and the
facility capacity configuration (σjm). If the new configuration gives a better result
then this configuration is treated as the incumbent solution. This procedure is
repeated until there is no improvement or it reached the time limit.
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In Phase 2, the algorithm tries to locate facility j on potential site k if a
customer located in site k is served by facility j. This new solution (F ′) is then
assessed by solving the CFLP-SC using an exact method. If the new facility con-
figuration together with its capacity configuration give a better result then this
facility configuration is treated as the incumbent solution and it will go back to
the beginning of Phase 2. This procedure is repeated until there is no improvement
or it reached the time limit.

Algorithm 2 The Local Search for the Discrete Problem
Require: z, F , and σjm ∀j = 1, . . . , p;m ∈M
1: Phase 1.
2: Set Imp = true, the time limit (τL) and determine κj based on σjm
3: repeat
4: Set z′ =∞ and Imp = false.
5: for j = 1 to p do
6: for k = 1 to η do
7: if The customer in site k ∈ K̂ is allocated to facility j then
8: Set F ′ ← F
9: Move facility F ′j to potential site k, F ′j = k. The capacity for each facility (κj)

does not change.
10: Using the set of customers (I) and the location of facilities (F ′) together with

their capacity (κj), solve the transportation problem (TP) where z′′ is the ob-
tained objective function value.

11: if z′′ < z′ then
12: Set ĵ = j, k̂ = k and z′ = z′′

13: end if
14: end if
15: end for
16: end for
17:
18: Set F̂ ← F and Fĵ = k̂

19: Based on the set of customers I and facilities F̂ , solve the discrete problem (CFLP-SC)
using an exact method. Denote ẑ the obtained objective function and σ̂jm the facility
capacity configuration.

20: if ẑ < z then
21: Update z = ẑ, F ← F̂ , σjm ← σ̂jm and Imp = true.
22: end if
23: until Imp = false or CPU > time limit (τL)
24: Phase 2.
25: for j = 1 to p do
26: for k = 1 to η do
27: if The customer in site k ∈ K̂ is allocated to facility j then
28: if CPU > time limit (τL) then
29: Set F ′ ← F
30: Move facility F ′j to potential site k, F ′j = k.

31: Based on set of customers (I) and the location of facilities (F ′), solve the CFLP-
SC using an exact method. Denote z′ the obtained objective function and σ′jm
the facility capacity configuration.

32: if z′ < z then
33: Update z = z′, F ← F ′ and σjm ← σ′jm. Go to Line 25.
34: end if
35: end if
36: end if
37: end for
38: end for
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Cooper’s Alternate Location-Assignment (ALA) Heuristic

The modified ALA heuristic incorporates the Weiszfeld’s formula to seek a
new location for an open facility on the plane. The main steps of this heuristic
are given in Algorithm 3. The ALA heuristic requires the location of initial p
open facilities (Cj). The Weiszfeld equations (31) are iteratively performed to get
the new location of these p facilities (Ĉj , j = 1, . . . , p). Using the new location of
these p open facilities, the generalized assignment problem (GAP) is solved using
an exact method to find the new allocation of the customers to their respective
facilities Nj . The location-allocation problem and the GAP are alternately applied
until no improvement in total transportation cost can be attained. Note that in
the original ALA, the allocation is performed either by assigning customers to the
nearest facility (case of uncapacitated) or by solving the transportation problem
(case of capacitated). In other words, the same procedure is relatively slow due to
using GAP within Weiszfeld (Weiszfeld, 1937).

Algorithm 3 The ALA Heuristic

Require: zt, Cj(xj , yj), Nj and κj ∀j = 1, . . . , p
1: Define ε.
2: repeat
3: for j = 1 to p do
4: Let d(Cj , ai) is the distance between facility j and customer i

5: Determine the new coordinate of facility j (Ĉj(x̂j , ŷj)) using Weiszfeld’s equations

x̂j =

∑
i∈Nj

wi·a1
i

d(Cj ,ai)∑
i∈Nj

wi
d(Cj ,ai)

; ŷj =

∑
i∈Nj

wi·a2
i

d(Cj ,ai)∑
i∈Nj

wi
d(Cj ,ai)

(35)

6: if d(Cj , Ĉj) > ε then

7: Cj ← Ĉj

8: Go back to Line 4.
9: end if

10: end for
11: Solve the GAP using Cj and κj . Let ẑt be its objective function value and update Nj .
12: Set dif = zt − ẑt.
13: if dif > 0 then
14: Update zt = ẑt

15: end if
16: until dif < ε
17: Return zt, Cj and Nj

4.1.2 Stage 2 of Algorithm 1

In Stage 2 of Algorithm 1, the VNS algorithm is designed. This stage is divided into
three parts, namely shaking, local search and move or not. The shaking process
is presented in Algorithm 4, which is performed as follows: Firstly, a randomly
chosen facility from the current solution configuration is removed, and replaced
by a facility located at a customer site which is obtained by solving the discrete
CFLP-SC. Here, the new machines configuration for the new facility location is
also obtained. Let Γ be the set of open facilities except the removed facility where
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|Γ | = p− 1. Denote j̃k(k ∈ Γ ) as the index of the open facilities and σ̃km = σj̃km
k ∈ Γ ). The CFLP-SC is solved using all n customers and the set of potential
location sites K = Γ ∪ I ′ where I ′ being a subset of customer sites (I ′ ⊆ I).
For relatively large problems (n ≥ 300), I ′ is populated by the sites of customers
served by the removed facility only, otherwise, all customers’ sites are included in
the set I ′.

Algorithm 4 The algorithm for Shaking
Require: k, Cj , Nj and σjm
1: repeat
2: Select randomly a facility, say facility ĵ, from the set of open facilities.
3: Let Γ be a set of open facilities except facility ĵ where |Γ | = p − 1. Denote j̃k(k ∈ Γ )

be the index of the open facilities that are not being removed and σ̃km = σj̃km
k ∈ Γ ).

4: Set K = Γ ∪ I′ as potential location sites where I′ is a subset of customer sites (I′ ⊆ I).
For relatively large problem (n ≥ 300), I′ is populated by the sites of customers served

by the removed facility (ĵ) only. Otherwise, all customers’ sites are included in set I′.
5: Solve the discrete problem (CFLP-SC) which consists of n customers and |K| potential

facilities using an exact method (CPLEX) within τ ′′ seconds.
6: Take the solution of the discrete problem to determine the coordinate of the open

facilities (Cj), the configuration of machines installed for each facility (σjm) and the
customers allocation to their facilities (Nj).

7: until k times

The discrete problem (CFLP-SC) is solved by an exact method (CPLEX)
within τ ′′ seconds. Note that in the CFLP-SC model, we fixed some decision
variables so that the obtained solution will include the incumbent facilities (Γ )
with their machine configurations. This is achieved by introducing the following
additional constraints:

Skj = 1, ∀k ∈ Γ, j = j̃k (36)

Lkm = σ̃km, ∀k ∈ Γ,m ∈M (37)

The inclusion of these additional constraints into the model makes the problem
relatively easier to solve. Also, for relatively small problems, Constraints (33) may
not be included. By solving this problem, a location for a facility at a customer site
and its machines configuration are obtained. In the local search, the ALA heuristic
presented in Algorithm 3 is applied to find the local minima by improving the
total transportation cost. In the move or not move step, a larger neighbourhood
is systematically used if there is no improvement (i.e., k = k + 1), otherwise the
search reverts back to the smallest one (i.e., k = 1). The VNS terminates when
k > kmax.

4.2 The proposed SA approach

Simulated annealing (SA) is a metaheuristic introduced by Kirkpatrick et al (1983)
to seek for feasible solutions and converge to a very good if not optimal solution.
This method benefits from a technique proposed by Metropolis et al (1953) who
simulate the cooling of material in a heat bath. In the method, the cooling process
is simulated by gradually decreasing the temperature of the system until it has
converged to a steady (freeze) state. This type of process is known as annealing.
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For more detailed information on SA and its variants, see Nikolaev and Jacobson
(2010), Bertsimas and Nohadani (2010), Dowsland and Thompson (2012), Fer-
reiro et al (2013), Salhi (2017) and Gerber and Bornn (2017). The proposed SA
algorithm for solving SSCMFWP-SC is presented in Algorithm 5.

Algorithm 5 The proposed SA algorithm for the SSCMFWP-SC
1: Define H, T , Tmin, α and L. Set z∗ =∞.
2: repeat
3: Select randomly p customer sites and locate the p facilities in these locations. Let F be

the set of customer sites to locate the p facilities
4: Solve optimally the reduced discrete problem (CFLP-SC) using an exact method where

the problem consists of n customers and the location of facilities is fixed. The objective
function value (z), the machines configuration (σjm) and the customers allocation (Nj)
are obtained.

5: if z < z∗) then
6: Update z∗ = z along with F ∗ ← F , σ∗jm ← σjm and N∗j ← Nj .

7: end if
8: until H times
9: Determine the coordinates of each facility (C∗j ) based on F ∗.

10: Update z = z∗ along with F ← F ∗, Cj ← C∗j , σjm ← σ∗jm and Nj ← N∗j .

11: while T > Tmin do
12: repeat
13: Select randomly a facility in the current solution (Cj), say facility ĵ.

14: Locate facility ĵ to a randomly chosen customer site that is assigned to facility ĵ in
the current solution. Let Ĉj be the set of new coordinates of open facilities.

15: Solve optimally the reduced CFLP-SC using an exact method where the location of
facilities (Ĉj) is fixed. The new (ẑ), (σ̂jm) and (N̂j) are also obtained.

16: Compute the total setup cost (ẑs) and the capacity for each facility κ̂j based on σ̂jm
and determine the total transportation cost (ẑt) based on Ĉj and N̂j .

17: Apply the ALA heuristic (Algorithm 3) to improve (ẑt) by using Ĉj , N̂j and κ̂j .
18: Calculate the new total cost ẑ = ẑs + ẑt.
19: Set ∆ = ẑ − z
20: if ∆ ≤ 0 then
21: Update z = ẑ along with Cj ← Ĉj , σjm ← σ̂jm and Nj ← N̂j .
22: if z < z∗ then
23: Update z∗ = z along with C∗j ← Cj , σ∗jm ← σjm and N∗j ← Nj .

24: end if
25: else
26: Generate a random number (ϕ) from U(0, 1)
27: if (ϕ) < exp(−∆/T ) then

28: Update z = ẑ along with Cj ← Ĉj , σjm ← σ̂jm and Nj ← N̂j .
29: end if
30: end if
31: until L times
32: Update the temperature by setting T = α · T .
33: end while

The initial solution used in SA is obtained using an iterative procedure where a
set of discrete problems (CFLP-SC) is optimally solved using an exact method. In
each discrete problem, p facilities are located at randomly chosen customer sites.
In other words, the location of facilities is fixed and the CFLP-SC is reduced by
replacing the set of potential facility sites (K) by p facility sites. The reduced
CFLP-SC is relatively easy to solve using an exact method which results in ob-
taining the machines configuration (σjm) and the customers allocation (Nj). The
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best solution from this iterative process is then taken to be an initial solution for
the SA algorithm.

In the SA algorithm, the parameters T , Tmin, α and L are defined first. T is
a temperature parameter dynamically adjusted using the correction parameter α
which is the rate of decrease of temperature. The termination condition of the
search is determined by Tmin and L. In the search, the new solution is generated
by moving the location of a randomly chosen facility in the current solution to
a randomly selected customer site that is assigned to this facility. Therefore, the
new location of the chosen facility is not too far from the original location which
will reduce the computational time. The new facility configuration is then evalu-
ated by solving optimally the reduced CFLP-SC using an exact method. The new
objective function value, machine and allocation configurations are then obtained.
The modified ALA heuristic given in Algorithm 3 is implemented to reduce the
transportation cost by improving the location of facilities. If an improvement is
found (∆ ≤ 0), a new solution is accepted, otherwise, the new solution is accepted
if (ϕ) < exp(−∆/T ) with (ϕ) being a random number generated in the range
[0, 1]. In other words, contrary to VNS, a non-improvement (worse) solution is
also allowed here.

5 Computational Experiments

As there is no data available in the literature to cater for the characteristics of
the SSCMFWP-SC, we constructed a new generated dataset where n = 50 to 500
with a step size of 50. The location of customers is also randomly and uniformly
generated in the square (n×n) with integer coordinates values. The demand of each
customer is randomly generated between 1 and 10. The number of open facilities
(p) is set to max(5, 0.1n). The number of machine types is set to 3 (i.e., |M | = 3).
The capacity, purchasing cost and the number of machines available for each type
of machine are also estimated based on the total demand of customers, the average
distance from one customer to others, and the number of open facilities (p). The
unit transportation cost per km and per unit of demand (ĉ) is set to $1. Here, the
dataset is constructed in such way that in a good solution the total transportation
cost obtained is close to the total setup cost.

It is worthwhile noting that a facility may have a different capacity compared
to other. For completeness, the coordinates (x, y) of customers’ location are also
provided along with the demand of each customer. The full dataset can be col-
lected from the authors or downloaded from the Centre for Logistics and Heuristic
Optimisation (CLHO) website (https://www.research.kent.ac.uk/clho/datasets/).
The implementation was written in C++ .Net 2012 and the mathematical model
is solved using the IBM ILOG CPLEX version 12.63 Concert Library and Lingo
version 12.0. The experiments were run on a PC with an Intel Core i5 CPU @
3.20GHz processor and 8.00 GB of RAM.

5.1 Computational results on the SSCMFWP-SC using the exact method

This subsection analyses the performance of the exact method when solving the
SSCMFWP-SC problem. The non-linear model of the SSCMFWP-SC problem
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(Equations 1–9) are solved using Lingo within 24 hours for both cases of Rectilinear
and Euclidean distance. We record the upper bound (UB), the lower bound (LB)
and the Gap (%) obtained where the Gap (%) is calculated as follow:

%Gap =
UB − LB

UB
× 100 (38)

For the case of Rectilinear distance, the linearized model is solved using CPLEX
within 2 hours. Our experiments show that the model can be optimally solved
using CPLEX when a relatively small problem (n = 25 and p = 5) is used. For
relatively large problems ((n ≥ 50 and p ≥ 5), CPLEX experienced difficulties to
solve the problems. We have tried to run CPLEX for more than three days using
a powerful computer, however the Gap (%) is not significanly improved compared
to the one obtained within 2 hours.

Table 1 presents the computational results for the SSCMFWP-SC problem
solved using the exact method. For the case of Rectilinear distance Lingo was able
to obtain the UB and LB within 24 hours for the problems with n ≤ 350 with
a relatively high average %Gap of 81.16. The performance of linearized model
solved by CPLEX within 2 hours is much better where it managed to yield the
average %Gap of 64.60 for the problem with n ≤ 350. Moreover, CPLEX was
able to obtain the UB and the LB for all instances with the average %Gap of
73.48 which is very high. It is also noted that the %Gap increases with the size
of the problem. This indicates that the linearized model is also still very hard to
solve. As mentioned in subsection 3.1, this added complexity is mainly due to the
large number of additional constraints resulting form the linearisation (i.e., 8pn in
total).

Table 1 Computational Results for the SSCMFWP-SC using the exact method

Ins n p

SSCMFWP-SC (Rectilinear) SSCMFWP-SC (Euclidean)

Linearized Model - CPLEX Non Linear Model - Lingo Non Linear Model - Lingo

UB LB Gap(%) UB LB Gap(%) UB LB Gap(%)

1 50 5 4,813.00 3,203.84 33.43 4,738.11 2,365.00 50.09 4,146.05 2,208.00 46.74

2 100 10 13,319.00 5,502.29 58.69 19,778.20 5,223.30 73.59 11,705.05 5,223.30 55.38

3 150 15 21,835.00 8,645.00 60.41 40,343.00 8,606.00 78.67 41,723.20 8,606.00 79.37

4 200 20 34,250.50 13,035.50 61.94 73,815.50 13,035.50 82.34 53,506.10 13,035.50 75.64

5 250 25 53,520.00 18,096.00 66.19 251,155.00 18,096.00 92.79 NA NA NA

6 300 30 121,537.50 25,287.50 79.19 271,111.50 25,287.50 90.67 NA NA NA

7 350 35 435,290.00 33,288.00 92.35 354,116.00 0.00 100.00 NA NA NA

8 400 40 576,533.00 37,166.50 93.55 NA NA NA NA NA NA

9 450 45 833,233.00 50,347.00 93.96 NA NA NA NA NA NA

10 500 50 1,185,433.00 58,653.00 95.05 NA NA NA NA NA NA

Average Ins 1-7 64.60 Average Ins 1-7 81.16 Average Ins 1-4 64.28

Average Ins 1-10 73.48

NA: Not applicable as the solver (Lingo) was not able to obtain the UB and LB
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For the case of Euclidean distance, Lingo was able to obtain the UB and LB for
the problems with n ≤ 200 only. According to Table 1, Lingo produce the average
%Gap of 64.28 for the first 4 instances. It seems that the problem with Euclidean
distance is harder to solve than the one with Rectilinear. Based on this finding,
we therefore opted to use metaheuristic approaches to overcome the limitation of
the exact method.

5.2 Computational results on the proposed solution methods

To evaluate the performance of the proposed solution methods (VNS and SA ap-
proaches), the solutions for the SSCMFWP-SC found by the exact method which
are presented in Table 1 are used for comparison purposes. Moreover, the solu-
tions obtained by solving the discrete CFLP-SC problem using the exact method
(CPLEX) are also used. In our experiments, we limit the computing time of
CPLEX for solving the discrete CFLP-SC problem to 2 hours. The performance
of the proposed methods is measured using the Gap (%) which is defined in Equa-
tion 38. Here, minor change is made in the equation where UB is replaced by Z
referring to the feasible solution cost obtained by either the exact method (UB)
or the proposed methods (VNS or SA approaches).

To assess the consistency of the proposed method, in each instance the pro-
posed methods (VNS and SA approaches) was executed 5 times and the average
results as well as the best ones are presented. In this study, we consider both
the rectilinear and Euclidean distances. In this subsection, we first present the
preliminary experiments for parameters setting used in the proposed methods.

5.2.1 Preliminary Experiments

In this subsection, preliminary experiments are performed to determine the most
suitable parameters setting for the proposed approaches. Table 2 shows the alter-
natives of the parameters setting for each method which classifies as low, medium
and high setting values. It is worth noting that higher values of these parameters
could be used and may have a greater chance to obtain better solutions but at the
expense of more computational time. In the ALA heuristic, the value of ε is set to
0.0001. Computational experiments on three instances are conducted to analyse
which paramaters setting is used for full experiments on the 10 instances. The
three instances are n = 50 with p = 5, n = 250 with p = 25 and n = 500 with
p = 50, representing two extreme sizes of instances and one in the middle.

Table 3 reveals the results of the preliminary experiments where the CPU time
is given together with the Dev (%) defined as follow:

Dev =
Z − Zb

Zb
× 100 (39)

where Zb refers to the best objective function obtained by the proposed methods
(VNS or SA approaches). According to Table 3, in general the quality of solution
(%Dev) obtained is better if the values of parameters (high) are used except for the
use of medium parameters on the SA. However, it needs long computational time
when high parameter is used which is almost double than medium parameter.
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Table 2 The alternatives of parameters setting

VNS SA

Params. Low Medium High Params. Low Medium High

η min{2p, 100} min{4p, 100} min{6p, 100} H for n < 200 5 10 15

H 3 5 7 H for n ≥ 200 3 5 8

kmax 3 5 7 T 500 1000 1500

τ ′ 1p 2p 4p Tmin 100 100 100

τ ′′ p/2 p/2 p/2 α 0.9 0.9 0.9

τL 1p 1p 1p L min{5, p} min{10, p} min{15, p}

Therefore, it is decided to use medium parameter for both methods in the full
computational experiments which is presented in the next subsection.

Table 3 The preliminary study results

n p Zb

VNS

Low Medium High

Dev (%) CPU (s) Dev (%) CPU (s) Dev (%) CPU (s)

Rectilinear Distance

50 5 4,675.48 0.1644 12 0.7908 24 0.0000 46

250 10 44,670.46 1.0324 135 0.2810 449 0.0000 1,040

500 50 136,443.05 1.0778 485 0.0000 1,495 0.3780 2,118

Average 0.7582 210 0.3573 656 0.1260 1,068

Euclidean Distance

50 5 4,145.90 0.7428 18 0.0000 35 0.0036 71

250 10 39,594.57 1.0549 162 0.1527 444 0.0000 948

500 50 120,882.12 0.6236 504 0.0261 1,015 0.0000 2,100

Average 0.8071 228 0.0596 498 0.0012 1,040

n p Zb

SA

Low Medium High

Dev (%) CPU (s) Dev (%) CPU (s) Dev (%) CPU (s)

Rectilinear Distance

50 5 4,673.00 0.7354 21 0.1913 28 0.0000 43

250 10 45,030.20 0.3936 197 0.0000 509 0.6982 1,052

500 50 135,751.62 0.8700 1,387 0.2130 2,073 0.0000 4,497

Average 0.6664 535 0.1348 870 0.2327 1,864

Euclidean Distance

50 5 4,145.87 0.0000 49 0.0000 44 0.0000 70

250 10 39,573.21 0.6947 307 0.3152 389 0.0000 2,057

500 50 120,127.10 0.0000 1,605 0.6412 2,762 0.1544 3,856

Average 0.2316 654 0.3188 1,065 0.0515 1,994
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5.2.2 Experiments on the rectilinear distance

In this scenario, for n ≥ 50, optimality is not guaranteed as the positive value of
%Gap is obtained when solving the non-linear or linearized model by the exact
method (Lingo and CPLEX) which is presented in Section 5.1. Here, we only
present the results of linearized model as this model performs better than the
non-linear one. The discrete CFLP-SC model is relatively easy to solve using the
exact method. For the discrete problem, CPLEX was able to obtain the optimal
solutions for n ≤ 150 within 2 hours. The summary results on the Rectilinear
distance are shown in Tables 4 where the best objective function value (Zb), the
Gap (Gap) obtained by each solution method, and the computational time (CPU)
in seconds are provided. The Gap is calculated using Equation (38). The bold
numbers in the table refer to the best gap found including ties.

Based on Tables 4, it can be noted that the proposed methods (VNS and
SA approaches) produce better results when compared to both the exact method
on the linearized model and the CFLP-SC. The average %Gap produced by the
proposed VNS and SA approaches based on the best results of 5 executions are
55.15% and 55.17% respectively. These are much better than the average %Gap
yielded by the exact method on the linearized model (73.48%) and the discrete
CFLP-SC (55.39%). According to the results, the proposed VNS outperforms the
SA approach as the VNS produce the smallest average %Gap based on the best
results and average results of 5 executions. Moreover, the VNS approach runs faster
than the SA method. In general, the proposed method is shown to be efficient as
it produces good quality solutions within a relatively short computational time.
The proposed methods also provide consistent results as the average deviation is
not too far from the best one.

We also record the proportion of setup and transportation costs in the solu-
tions produced by the exact method and the proposed approach for the rectilinear
distance. It reveals an interesting observation that in a good solution, the share of
setup cost is quite close to the one of transportation cost. For instance, based on
the best results of the proposed VNS approach, the average share of transportation
cost is 56.27%. It is worth noting that the proposed method produces the small-
est transportation cost compared to the exact method on the linearized model
(72.72%) and on the discrete CFLP-SC (56.58%). It is also worthwhile mentioning
that if the problem has a much higher setup cost than the transportation cost, the
problem can be considered in general to be relatively easier to solve.
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5.2.3 Experiments on the Euclidean distance

The summary results on the SSCMFWP-SC for this scenario are presented in
Tables 5 and 6. In Table 5, the performance of the proposed method is evaluated
using %Gap (Equation 38) for the problems with n ≤ 200. While in Table 6, the
%Dev is presented to assess the proposed methods for the problems with n > 200 as
the exact method (Lingo) did not find the feasible solutions for these problems. The
tables show that the proposed methods (VNS and SA approaches) provide better
results when compared to the exact method on the SSCMFWP-SC and the discrete
CFLP-SC. In contrast to the previous results, for the problem with Euclidean
distance the proposed SA method performs better than the VNS approach. Based
on the average results of 5 executions, the SA approach yields a better average
%Gap and %Dev compared to the VNS approach. However, the SA approach
requires relatively more computational time than the VNS method. In brief, the
proposed methods are found to run much faster than the exact method while
producing better solutions. We also notice that both setup and transportation
costs share a similar portion to the total cost, an observation noted earlier for
the first scenario. Based on the best results, the average portion of transportation
cost is 50.80% to the total cost whereas the exact method on the CFLP-SC only
provides 51.06%. Here, it can be shown that the proposed method improves the
quality of the solution by reducing the total transportation cost.

6 Conclusions

The continuous single-source capacitated multi-facility Weber problem (SSCM-
FWP) is studied where setup cost of facilities is considered by a set of capacitated
machines. We refer this problem to the SSCMFWP-SC. A new non-linear mathe-
matical model for the SSCMFWP-SC is developed in order to minimise the sum
of setup and transportation costs. In case that the SSCMFWP-SC uses rectilinear
distance, the new linearized model is introduced. Two metaheuristic frameworks
based on Variable Neighbourhood Search and Simulated Annealing are proposed
to efficiently solve the problem. The proposed approaches integrate the aggregation
technique, the application of an exact method using CPLEX, and the alternate
location-allocation method of Cooper. A set of new instances which we constructed
for the new model is used to examine the performance of the proposed methods.
Very competitive results are attained by the proposed approaches when compared
against the exact method on the non-linear problem and the discrete location
problem (CFLP-SC).

The following research avenues could be worth exploring. For instance, the
neighbourhoods in both VNS and SA could be adaptively adjusted during the
search by introducing forbidden regions to avoid exploring already visited areas as
successfully exploited by Luis et al (2009) for the capacitated Weber problem. The
proposed method can also be extended to incorporate routing effects, see Salhi and
Nagy (2009). The fleet can obviously be based on homogeneous or heterogeneous
vehicle fleet.
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