31 research outputs found

    Statistical LOS/NLOS Classification for UWB Channels

    Full text link
    Ultrawideband (UWB) technology has attracted a lot of attention for indoor and outdoor positioning systems due to its high accuracy and robustness in non-line-of-sight (NLOS) environments. However, UWB signals are affected by multipath propagation which causes errors in localization. To overcome this problem, researchers have proposed various techniques for NLOS identification and mitigation. One of the approaches is statistical LOS/NLOS classification, which uses statistical parameters of the received signal to distinguish between LOS and NLOS channels. In this paper, we formulated several techniques which can be used for effectively classifying a Line of Sight (LOS) channel from a Non-Line of Sight (NLOS) channel. Various parameters obtained from Channel Impulse Response (CIR) like Skewness, Kurtosis, Root Mean Squared Delay Spread (RDS), Mean Excess Delay (MED), Energy, Energy Ratio, and Mean of Covariance Matrix are used for channel classification. In addition to this, the Joint Probability Density Functions (PDFs) of various parameters are used to improve the accuracy of UWB LOS/NLOS channel classification. Two different criteria-Likelihood Ratio and Hypothesis Tests are used for the identification of the channel

    EXPERIMENTAL EVALUATION OF MACHINE LEARNING ALGORITHMS FOR FINGERPRINTING INDOOR LOCALIZATION

    Get PDF
    One of the most preferred range-free indoor localization methods is the location fingerprinting. In the fingerprinting localization phase machine learning algorithms have widespread usage in estimating positions of the target node. The real challenge in indoor localization systems is to find out the proper machine learning algorithm. In this paper, three different machine learning algorithms for training the fingerprint database were used. We analysed the localization accuracy depending on a fingerprint density and number of line-of-sight (LOS) anchors. Experiments confirmed that Gaussian processes algorithm is superior to all other machine learning algorithms. The results prove that the localization accuracy can be achieved with a sub-decimetre resolution under typical real-world conditions

    UWB-INS Fusion Positioning Based on a Two-Stage Optimization Algorithm

    Get PDF
    Ultra-wideband (UWB) is a carrier-less communication technology that transmits data using narrow pulses of non-sine waves on the nanosecond scale. The UWB positioning system uses the multi-lateral positioning algorithm to accurately locate the target, and the positioning accuracy is seriously affected by the non-line-of-sight (NLOS) error. The existing non-line-of-sight error compensation methods lack multidimensional consideration. To combine the advantages of various methods, a two-stage UWB-INS fusion localization algorithm is proposed. In the first stage, an NLOS signal filter is designed based on support vector machines (SVM). In the second stage, the results of UWB and Inertial Navigation System (INS) are fused based on Kalman filter algorithm. The two-stage fusion localization algorithm achieves a great improvement on positioning system, it can improve the localization accuracy by 79.8% in the NLOS environment and by 36% in the (line-of-sight) LOS environment

    Estimation of Spatial Fields of Nlos/Los Conditions for Improved Localization in Indoor Environments

    Get PDF
    A major challenge in indoor localization is the presence or absence of line-of-sight (LOS). The absence of LOS, denoted as non-line-of-sight (NLOS), directly affects the accuracy of any localization algorithm because of the induced bias in ranging. The estimation of the spatial distribution of NLOS-induced ranging bias in indoor environments remains a major challenge. In this paper, we propose a novel crowd-based Bayesian learning approach to the estimation of bias fields caused by LOS/NLOS conditions. The proposed method is based on the concept of Gaussian processes and exploits numerous measurements. The performance of the method is demonstrated with extensive experiments

    Direct Localisation using Ray-tracing and Least-Squares Support Vector Machines

    Get PDF

    CIRNN: An Ultra-Wideband Non-Line-of-Sight Signal Classifier Based on Deep-Learning

    Get PDF
    Non-line-of-sight (NLOS) error is the main factor that reduces indoor positioning accuracy. Identifying NLOS signals and eliminating NLOS errors are the keys to improving indoor positioning accuracy. To better identify NLOS signals, a multi-stream model channel-impulse-response-neural-network (CIRNN) was proposed. The inputs of CIRNN include the channel impulse response (CIR) and a small number of channel parameters. To make a more obvious comparison between NLOS signals and line-of-sight (LOS) signals, a new energy normalization method is proposed. Fusing multi-dimensional features, the CIRNN network has a good convergence performance and shows stronger sensitivity to NLOS signals. Experimental results show that the CIRNN achieves the best accuracy on the open-source data set, the F1 score is 89.3%. At the same time, the working efficiency of CIRNN meets industry needs, CIRNN can refresh the target position at about 92.6 Hz per second

    UWB Channel Characterization for Compact L-Shape Configurations for Body-Centric Positioning Applications

    Get PDF
    This paper presents an analysis on the body-centric channel parameters classification for various compact 3 base station L-Shape configurations utilizing only a 2D-plane for installation. Four different L-Shape configurations (x-z/y-z plane) are studied (facing-front/side/back) by varying the position of the base stations in an indoor environment. Results and analyses highlight the variation of the channel parameters with respect to the orientation of the base station configurations and presence of the human subject. Channel parameters values (peak power delay profile (PDP)/rms delay spread sigma/Kurtosis) are reported for (line of sight (LOS): -65 to -50 dB/0.5-5 nsec/40-60) and (non-line of sight (NLOS): -80 to -65 dB/ 10-25 nsec/ 5-25). The 3D localisation accuracy obtained is highest (1-3 cm) for the x-z plane L-Shape configuration facing-front which has maximum number of LOS links (70%).The accuracy decreases by 1-2 cm for the x-z plane L-Shape configuration facing-back due to increase in NLOS links (70%) between the wearable antennas and the base stations
    corecore