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Abstract— This paper evaluates a novel scheme for direct 2D 

localization that employs least-squares support vector machines, 

using ray-tracing data. The scheme does not require non-line-of-

sight identification or mitigation, which means it can be applied 

under any conditions. The approach requires perfect knowledge 

of base-station positions and the ray-tracing data is location 

specific. This approach shows that when an outage probability of 

twenty percent is considered, the mobile’s location can be 

determined to within 15m of accuracy in a dense urban 

environment. Usage and application contexts for this approach are 

also provided. 
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I.  INTRODUCTION 

The problem of geolocation in dense urban areas is widely 

researched, with the aim of providing better accuracy in areas 

where Global Navigation Satellite Systems (GNSS) cannot 

provide adequate coverage due to urban canyon. The European 

GNSS Agency (GSA) reported in 2014 [1] that their tests had 

confirmed that Galileo will improves location accuracy in 

challenging environments (urban canyons and indoors) when 

used in addition to GPS and GLONASS. However, their tests 

still produced a horizontal accuracy of just 38m in a typical 

urban canyon environment. 

 

Common mobile signals-based positioning systems, determine 

the location by first, determining the range (distance from the 

base-station (BS)) of the mobile. Measurements like the time-

delay or the power level, of the received signal, are used in 

trilateration, and Angle-of-Arrival (AOA) measurements are 

used in triangulation. In triangulation, the challenge is to 

determine the true line-of-sight (LOS) angle of arrival at the BS, 

which is a difficult task in urban multipath environments, when 

all signals arriving at the BS are in non-line-of-sight (NLOS). 

In trilateration, the time delay measurements generally consist 

of a positive bias due to multipath. Both above cases give rise 

to the need for NLOS identification and mitigation. 

 

 

 

 

 

There are several ways to achieve NLOS identification and 

mitigation, one of which is the use of Least Squares Support 

Vector Machines (LSSVM) [3]. In this study, we take further, 

the ideas in [3] and apply a similar methodology for LSSVM 

function estimation, to directly estimate the x-coordinates and 

the y-coordinates of the mobile station (MS) positions. Use of 

support vector machines in these contexts may be thought of as 

applying artificial intelligence or machine learning concepts, to 

the problem of localisation. The approach in this study achieves 

localisation of the mobile without first having to go through 

NLOS identification or mitigation. 

 

Other related approaches like fingerprinting [2] involve 

matching the measured/observed received signal quantities, 

commonly the received signal strength, to the values that are 

pre-recorded in the fingerprinting database for a particular area. 

Fingerprinting database is built by collecting measurements per 

grid, of the area of interest. Positioning accuracy therefore 

depends on the grid size. Also fingerprinting requires cell 

matching before correlation with grids around that cell, whereas 

LSSVM handles BS matching and location estimation within 

the same model. Fingerprinting employs, either probabilistic 

algorithms like maximum likelihood, to estimate the position, 

or deterministic algorithms that calculate the similarity between 

the UE measurement and the database grid-based 

measurements. Fingerprinting is commonly talked of as an 

augmenting scheme to other approaches, to improve accuracy1. 

 

II. EXPERIMENTAL SETUP 

A. Ray-tracing 

A ray-tracing setup similar to the one described in [3] was used 

to generate data for 3 different areas of the greater city of 

Bristol, UK. These areas were chosen to represent 3 different 

environments which are; a dense urban area, an urban 

peripheral area and farm land. MS positions are randomly 

placed within the base-stations’ coverage area and ray-tracing 

is run for each BS-MS link. MS positions falling onto obscure 



areas like court yards do not produce any ray data, so they are 

excluded from the study. 

 

The key outputs from the ray-tracer, that are used in this study 

are; the BS and MS locations (x and y coordinates), the azimuth 

AOA at BS, the received power and the time delay, for each 

ray. No noise modeling is incorporated, and the ray-tracer 

output values are considered to be accurate. See [3] for more 

detail on the ray-tracing setup and data processing. 

B. Localisation  perfomance 

Performance of this scheme is defined by the MS location error 

𝑒, which is the distance between the true MS position and the 

estimated position. Location error is calculated as shown in 

equation 1 below. 
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corresponding LSSVM estimated MS coordinates. Location 

error cumulative distribution functions (CDF) are plotted to 

compare performance for different scenarios. 

 

 

III. DIRECT LOCALISATION WITH SUPPORT VECTOR 

MACHINES 

A. Methodology 

LSSVMs can be a robust and effective technique for solving 

non-linear function or density estimation in linear, kernel-based 

systems. Typically used for classification and regression as in 

[3] and [4], they can produce very good results for function 

estimation of which this study is concerned. Function 

estimation methodology, using Support Vector Machines 

(SVMs), seeks to construct a regressor, which is a function 

→
n

, of the form 
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given a training data set of N data points  N
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  are positive real constants and b  is a real 

constant, both which form the parameters of the regressor. 

),(
i

xx is the kernel. We choose the Radial Basis Function 

(RBF) kernel in this study because it gives the best validation 

and test set performance [5]. The LSSVM formulation leads to 

a linear system that incorporates a hyper-parameter γ which is 

used to tune the trade-off between the level of tolerable training 

errors and model complexity [6]. 

The inputs 
n

i
x   form a (N x 5) matrix whose 5 columns 

are; the BS x-coordinate, BS y-coordinate, the signal/ray’s 

AOA at BS, logarithm of its time delay, and logarithm of its 

received power. The output sequences used for training, 


i

y forms a column vector with the x-coordinates or the y-

coordinates of the MS depending on the coordinates being 

estimated at that point. A data-set size, N, of 10 000 points was 

used for training, of which half were LOS and half were NLOS. 

Training yields the regressor tuning parameters and constants, 

which are then used to estimate the coordinates of the MS for 

any new given data set. Training data was generated per each 

considered area and it is that training dataset, that is used for the 

LSSVM location estimation within that area. Training data 

from different areas or databases may be merged into a single 

dataset to allow one-time training, and then re-using of 

parameters for the localisation stage. 

 

Training is done separately for the x and y coordinates using the 

appropriate output sequences. This approach means estimation 

of the MS position is O(2) as compared to the traditional 

regression for NLOS mitigation. It is however possible to just 

estimate, say the y-coordinate, and use it together with LOS 

information where available (via NLOS identification or 

otherwise), to calculate the x-coordinates for those positions 

that are determined to be in LOS as shown in Fig 1. below. Once 

the estimate of the y-coordinate is obtained, the x-coordinate 

can then be calculated as follows 

 

𝑥𝑖 =  𝑦𝑖 . 𝑡𝑎𝑛(𝜃𝑖)  (3) 
 

Where 𝑥𝑖 is the x-coordinate corresponding to the y-coordinate 

𝑦𝑖  and 𝜃𝑖 is the AOA. This approach is only suitable for LOS 

positions. After obtaining the estimates for both the x and y 

coordinates of the MS, the location error is calculated in the 

same way as in equation 1. 

 
 

 
Fig 1. Obtaining the second coordinate for LOS scenarios 



 
 

Fig 2. Outlier removal 

 

B. Post-processing and outlier removal  

The ray-tracing setup has BS-BS distance of 300m so a 

coverage radius for each BS, of 150m is considered, for 

determining outliers. The BS deployment seeks to approximate 

envisaged 5G deployments, where a dense deployment of small 

cells is expected. The process of determining and excluding 

outliers involves calculating the distance 𝑑𝑖 between the known 

BS position and the estimated MS location, as follows 

 

𝑑𝑖 = √[(𝐵𝑆𝑥𝑖 − 𝑀𝑆�̂�𝑖)
2

+ (𝐵𝑆𝑦𝑖 −  𝑀𝑆�̂�𝑖)
2

] 
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where 𝐵𝑆𝑥𝑖 is the 𝑖𝑡ℎ BS x-coordinate and 𝑀𝑆�̂�𝑖 is the estimated 

𝑖𝑡ℎ MS x-coordinate. The other symbols’ meaning follow. 

 

A BS receives multiple rays from an MS and each ray is used 

to estimate the MS position. For a single MS position, some 

rays will estimate the position better than others, so those rays 

that result in the BS-MS distance greater than 150m are 

discarded. Empirical tests show that more regressor errors start 

increasing for MS positions beyond 100m from the BS. Outlier 

removal criteria may be tightened to any distance, but that will 

create more coverage black spots, hence we settled on 150m. 

On average, the total number of data points that were excluded 

because of this criteria were around 10%.  Fig 2., shows the 

effect of excluding those rays that are resulting in outlying MS 

positions. 

 

IV. RESULTS AND DISCUSSION 

 

Ray-tracing data for different areas of the city (Figs 4, 5 and 6) 

are used and the results for the location error CDF are shown in 

Fig 3. below. 

 

The LSSVM performance produced best accuracy for the dense 

urban environment. This is because, for a given MS position, 

the fingerprint (set of the parameters for rays that are received 

from that position) are generally unique in a multipath 

environment. This is demonstrated in Figs 4, 5 and 6 taken from 

the ray-tracer databases used for the dense urban area, an urban 

peripheral area and farm land area, respectively. 

 

 

 
 

Fig 3. Location error for different environments 

 

 

 

 
 

Fig 4. Dense urban area / City center (sampled color-coded positions: same 
color means positions with same received signal power.) 

 

 

 

 

 

 

 

 

 



 
 

Fig 5. Urban peripheral area 

 

 

 

 
 

Fig 6. Farmland / trees and open areas 

 

 

Sampled MS positions are indicated on the figures and they are 

color-coded according to quantized received signal power. To 

show why the location accuracy performance is better in dense 

multipath environments, consider a straight line extending from 

the BS (line of bearing) outward in any direction. It is easy to 

see that the line will cross multiple MS positions of the same 

given received power, in farmland type (LOS) area than in 

dense urban (NLOS) areas. This is the same reason why AOA 

is a key metric, as demonstrated later in Fig. 7, because it 

resolves ambiguities when multiple measurements have same 

TOA and received power. Peri-urban environment performed 

better for low resultant location errors because the BS was 

closer to the buildings, so more MS positions within 50m of the 

BS, were within the built-up area. 

 

In practical systems, both measurement and model errors 

(discrepancies between ray-tracing model and the actual 

environment) would be present. 

 

The sensitivity of the localisation estimate to measurement 

errors in the three quantities (AOA, TOA and received signal 

strength) used to determine location, has been investigated by 

introducing a Gaussian distributed error in each. This also gives 

an indication of which parameters/quantities that are more 

sensitive to errors, hence more critical for the performance of 

the LSSVM regressor. A 5% standard error was introduced in 

each parameter/quantity, each time performing location 

estimation, and also in all quantities at once, and performing 

location estimation, following our methodology. 

 

The results in Fig 7. show that our LSSVM approach is most 

sensitive to AOA errors. In practice, next-generation wireless 

systems that employ antenna arrays at the BS, like Massive 

MIMO [7], will likely provide very accurate AOA estimates, so 

this approach sits well with envisaged fifth generation (5G) 

systems. 

 

 

 

 
 

 

Fig 7. Sensitivity to measurement errors 

 

 

  

 

 

 

 

 

 

 

 



V. CONCLUSIONS 

 

This study has demonstrated an approach that is especially 

relevant for dense urban environments. Although these results 

may be location specific, it is easy to see how they can be 

relevant for similar urban environments. Extension of this 

approach, to 3D positioning increases computation, but is 

straight-forward. Employing this approach requires availability 

of ray-tracing data for any particular environment, and this is 

becoming more and more common for most cities as the ray-

tracing equipment becomes more portable, and the general 

availability of such equipment is increasing. Granularity and 

performance of the scheme can be further controlled by the 

training data size. A larger training data set improves the tuning 

parameters. Training can be done per BS, with the tuning 

parameters stored and referenced per each BS. This further 

simplifies the primary question “if the BS m, received n rays, 

each which records a set of measurements for user k, where is 

the user likely to be located?”. Since LSSVM training is done 

once per given coverage area, this approach can be used for 

cities, with the ray-tracing database getting updated regularly. 

The whole process of localising a MS position can then be 

thought of as a “measure and look-up” process. Artificial 

intelligence or machine learning, and big data, are popular and 

promising technologies for the future which are envisaged to 

become common place in the next decade. This study sits well 

with these topics, so whilst data availability may be a constraint 

today, we believe that will not be the case in the future. 
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