174 research outputs found

    NFV and SDN-based differentiated traffic treatment for residential networks

    Get PDF
    Producción CientíficaResidential networks play a critical role in assuring that services or applications such as tele-work, tele-education, medical care, entertainment, home automation, among others, have the required resources to obtain an optimal performance. Although current residential gateways try to meet the Quality of Service (QoS) demands, the traditional networking paradigm does not have the appropriate mechanisms to address the heterogeneous and dynamic nature of the services running at home. In this context, a feasible solution consists of leveraging the flexibility and adaptability of the Software Defined Networking (SDN) and Network Functions Virtualization (NFV) paradigms to provide a differentiated traffic treatment intended to improve the QoS support of residential networks. The proposal takes advantage of the Service Function Chaining (SFC) concept intrinsic to NFV as well as the capacity of an SDN-based residential gateway to differentiate the traffic of a certain application. Thus, an association between an SFC and the differentiated traffic is stablished to apply a specific treatment. Besides, a comprehensive architecture composed of the software defined residential network (SDRN), the software defined access network (SDOAN) and the NFV-compliant ISP's edge cloud infrastructure is envisioned. This architecture would allow dramatically improving the life cycle management of the residential network from a centralized point which follows a user-centric approach.Ministerio de Ciencia, Innovación y Universidades (grants TEC2015-67834-R, TEC2017-84423-C3-1-P, RED2018-102585-T and 0677_DISRUPTIVE_2_E

    IWQoS 2017

    Get PDF
    Producción CientíficaThe promises of SDN and NFV technologies to boost innovation and to reduce the time-to-market of new services is changing the way in which residential networks will be deployed, managed and maintained in the near future. New user-centric management models for residential networks combining SDN-based residential gateways and cloud technologies have already been proposed, providing flexibility and ease of deployment. Extending the scope of SDN technologies to optical access networks and bringing cloud technologies to the edge of the network enable the creation of advanced residential networks in which complex service function chains can be established to provide traffic differentiation. In this context, this paper defines a novel network management model based on a user-centric approach that allows residential users to define and control access network resources and the dynamic provision of traffic differentiation to fulfill QoS requirements.Ministerio de Economía, Industria y Competitividad (context of GREDOS project TEC2015 -67834- R, TEC2014-53071- C3 -2P and Elastic Networks TEC2015-71932- REDT

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: An architectural survey

    Get PDF
    Over the last couple of years, industry operators' associations issued requirements towards an end-to-end management and orchestration plane for 5G networks. Consequently, standard organisations started their activities in this domain. This article provides an analysis and an architectural survey of these initiatives and of the main requirements, proposes descriptions for the key concepts of domain, resource and service slicing, end-to-end orchestration and a reference architecture for the end-to-end orchestration plane. Then, a set of currently available or under development domain orchestration frameworks are mapped to this reference architecture. These frameworks, meant to provide coordination and automated management of cloud and networking resources, network functions and services, fulfil multi-domain (i.e. multi-technology and multi-operator) orchestration requirements, thus enabling the realisation of an end-to-end orchestration plane. Finally, based on the analysis of existing single-domain and multi-domain orchestration components and requirements, this paper presents a functional architecture for the end-to-end management and orchestration plane, paving the way to its full realisation

    Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: an architectural survey

    Get PDF
    Over the last couple of years, industry operators' associations issued requirements towards an end-to-end management and orchestration plane for 5G networks. Consequently, standard organisations started their activities in this domain. This article provides an analysis and an architectural survey of these initiatives and of the main requirements, proposes descriptions for the key concepts of domain, resource and service slicing, end-to-end orchestration and a reference architecture for the end-to-end orchestration plane. Then, a set of currently available or under development domain orchestration frameworks are mapped to this reference architecture. These frameworks, meant to provide coordination and automated management of cloud and networking resources, network functions and services, fulfil multi-domain (i.e. multi-technology and multi-operator) orchestration requirements, thus enabling the realisation of an end-to-end orchestration plane. Finally, based on the analysis of existing single-domain and multi-domain orchestration components and requirements, this paper presents a functional architecture for the end-to-end management and orchestration plane, paving the way to its full realisation.This work was partially supported by the ICT14 5GExchange (5GEx) innovation project (grant agreement no.671636) co-funded by the European Union under the Horizon 2020 EU Framework Programme.Publicad

    Analysis of end-to-end multi-domain management and orchestration frameworks for software defined infrastructures: An architectural survey

    Get PDF
    Over the last couple of years, industry operators' associations issued requirements towards an end-to-end management and orchestration plane for 5G networks. Consequently, standard organisations started their activities in this domain. This article provides an analysis and an architectural survey of these initiatives and of the main requirements, proposes descriptions for the key concepts of domain, resource and service slicing, end-to-end orchestration and a reference architecture for the end-to-end orchestration plane. Then, a set of currently available or under development domain orchestration frameworks are mapped to this reference architecture. These frameworks, meant to provide coordination and automated management of cloud and networking resources, network functions and services, fulfil multi-domain (i.e. multi-technology and multi-operator) orchestration requirements, thus enabling the realisation of an end-to-end orchestration plane. Finally, based on the analysis of existing single-domain and multi-domain orchestration components and requirements, this paper presents a functional architecture for the end-to-end management and orchestration plane, paving the way to its full realisatio

    A service-oriented hybrid access network and clouds architecture

    Get PDF
    Many telecom operators are deploying their own cloud infrastructure with the two-fold objective of providing cloud services to their customers and enabling network function virtualization. In this article we present an architecture we call SHINE, which focuses on orchestrating cloud with heterogeneous access and core networks. In this architecture intra and inter DC connectivity is dynamically controlled, maximizing the overall performance in terms of throughput and latency while minimizing total costs. The main building blocks are: a future-proof network architecture that can scale to offer potentially unlimited bandwidth based on an active remote node (ARN) to interface end-users and the core network; an innovative distributed DC architecture consisting of micro-DCs placed in selected core locations to accelerate content delivery, reducing core network traffic, and ensuring very low latency; and dynamic orchestration of the distributed DC and access and core network segments. SHINE will provide unprecedented quality of experience, greatly reducing costs by coordinating network and cloud and facilitating service chaining by virtualizing network functions.Peer ReviewedPostprint (author’s final draft

    Energy Efficiency and Quality of Services in Virtualized Cloud Radio Access Network

    Get PDF
    Cloud Radio Access Network (C-RAN) is being widely studied for soft and green fifth generation of Long Term Evolution - Advanced (LTE-A). The recent technology advancement in network virtualization function (NFV) and software defined radio (SDR) has enabled virtualization of Baseband Units (BBU) and sharing of underlying general purpose processing (GPP) infrastructure. Also, new innovations in optical transport network (OTN) such as Dark Fiber provides low latency and high bandwidth channels that can support C-RAN for more than forty-kilometer radius. All these advancements make C-RAN feasible and practical. Several virtualization strategies and architectures are proposed for C-RAN and it has been established that C-RAN offers higher energy efficiency and better resource utilization than the current decentralized radio access network (D-RAN). This project studies proposed resource utilization strategy and device a method to calculate power utilization. Then proposes and analyzes a new resource management and virtual BBU placement strategy for C-RAN based on demand prediction and inter-BBU communication load. The new approach is compared with existing state of art strategies with same input scenarios and load. The trade-offs between energy efficiency and quality of services is discussed. The project concludes with comparison between different strategies based on complexity of the system, performance in terms of service availability and optimization efficiency in different scenarios

    Progressive introduction of network softwarization in operational telecom networks: advances at architectural, service and transport levels

    Get PDF
    Technological paradigms such as Software Defined Networking, Network Function Virtualization and Network Slicing are altogether offering new ways of providing services. This process is widely known as Network Softwarization, where traditional operational networks adopt capabilities and mechanisms inherit form the computing world, such as programmability, virtualization and multi-tenancy. This adoption brings a number of challenges, both from the technological and operational perspectives. On the other hand, they provide an unprecedented flexibility opening opportunities to developing new services and new ways of exploiting and consuming telecom networks. This Thesis first overviews the implications of the progressive introduction of network softwarization in operational networks for later on detail some advances at different levels, namely architectural, service and transport levels. It is done through specific exemplary use cases and evolution scenarios, with the goal of illustrating both new possibilities and existing gaps for the ongoing transition towards an advanced future mode of operation. This is performed from the perspective of a telecom operator, paying special attention on how to integrate all these paradigms into operational networks for assisting on their evolution targeting new, more sophisticated service demands.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Eduardo Juan Jacob Taquet.- Secretario: Francisco Valera Pintor.- Vocal: Jorge López Vizcaín
    corecore