1,096 research outputs found

    Short breaks pathfinder evaluation: interim report: end of phase one

    Get PDF

    Measurement of the chi_{c2} Polarization in psi(2S) to gamma chi_{c2}

    Full text link
    The polarization of the chi_{c2} produced in psi(2S) decays into gamma chi_{c2} is measured using a sample of 14*10^6 psi(2S) events collected by BESII at the BEPC. A fit to the chi_{c2} production and decay angular distributions in psi(2S) to gamma chi_{c2}, chi_{c2} to pi pi and KK yields values x=A_1/A_0=2.08+/-0.44 and y=A_2/A_0=3.03 +/-0.66, with a correlation rho=0.92 between them, where A_{0,1,2} are the chi_{c2} helicity amplitudes. The measurement agrees with a pure E1 transition, and M2 and E3 contributions do not differ significantly from zero.Comment: 6 pages, 4 figures, 1 tabl

    SEND pathfinder programme report

    Get PDF

    Aplicación del enfoque multi-índice con imágenes Sentinel-2 para obtener áreas urbanas en la estación seca (Zonas semiáridas en el noreste de Argelia)

    Full text link
    [EN] The mapping of urban areas mostly presents a big difficulty, particularly, in arid and semi-arid environments. For that reason, in this research, we expect to increase built up accuracy mapping for Bordj Bou Arreridj city in semi-arid regions (North-East Algeria) by focusing on the identification of appropriate combination of the remotely sensed spectral indices. The study applies the ‘k–means’ classifier. In this regard, four spectral indexes were selected, namely normalized difference tillage index (NDTI) for built-up, and both bare soil index (BSI) and dry bare-soil index (DBSI), which are related to bare soil, as well as the normalized difference vegetation index (NDVI). All previous spectral indices mentioned were derived from Sentinel-2 data acquired during the dry season. Two combinations of them were generated using layer stack process, keeping both of NDTI and NDVI index constant in both combinations so that the multi-index NDTI/BSI/NDVI was the first single dataset combination, and the multi-index NDTI/DBSI/NDVI as the second component. The results show that BSI index works better with NDTI index compared to the use of DBSI index. Therefore, BSI index provides improvements: bare soil classes and built-up were better discriminated, where the overall accuracy increased by 5.67% and the kappa coefficient increased by 12.05%. The use of k-means as unsupervised classifier provides an automatic and a rapid urban area detection. Therefore, the multi-index dataset NDTI/ BSI / NDVI was suitable for mapping the cities in dry climate, and could provide a better urban management and future remote sensing applications in semi-arid areas particularly.[ES] La cartografía de las zonas urbanas presenta una gran dificultad, especialmente en los entornos áridos y semiáridos. Por esa razón, en esta investigación esperamos aumentar la precisión de la cartografía de la ciudad de Bordj Bou Arreridj en las regiones semiáridas (noreste de Argelia) centrándose en la identificación de la combinación adecuada de los índices espectrales obtenidos por teledetección. El estudio aplica el clasificador ‘k-means’. A este respecto, se seleccionaron cuatro índices espectrales, a saber, el índice de labranza de diferencia normalizada (NDTI) para el área construida, el índice de suelo desnudo (BSI) y el índice de suelo desnudo seco (DBSI), que están relacionados con el suelo desnudo, así como el índice de vegetación de diferencia normalizada (NDVI). Todos los índices espectrales anteriores mencionados se derivaron de datos Sentinel-2 adquiridos durante la estación seca (agosto). Se generaron dos combinaciones de ellas utilizando el proceso de superposición de capas, manteniendo constante tanto el índice NDTI como el índice NDVI en ambas combinaciones, de modo que el multi-índice NDTI/BSI/NDVI fue la primera combinación de conjuntos de datos, y el multi-índice NDTI/DBSI/NDVI fue el segundo componente. Los resultados muestran que el índice BSI funciona mejor con NDTI en comparación con el uso de DBSI. Por lo tanto, BSI proporciona mejoras: las clases de suelo desnudo y la de construcciones fueron mejor discriminadas, aumentando la precisión global en un 5,67%, y el coeficiente kappa un 12,05%. El uso de k-means como clasificador no supervisado proporciona una detección del área urbana automática y rápida. Por lo tanto, el conjunto de datos de varios índices NDTI/ BSI/ NDVI fue adecuado para cartografiar las ciudades en clima seco, y podría proporcionar una mejor gestión urbana y futuras aplicaciones de teledetección en zonas semiáridas en particular.Rouibah, K.; Belabbas, M. (2020). Applying Multi-Index approach from Sentinel-2 Imagery to Extract Urban Area in dry season (Semi-Arid Land in North East Algeria). Revista de Teledetección. 0(56):89-101. https://doi.org/10.4995/raet.2020.13787OJS89101056Al-Quraishi, A. ( 2011). Drought mapping using Geoinformation technology for some sites in the Iraqi Kurdistan region. International Journal of Digital Earth, 4, 239-257. https://doi.org/10.1080/17538947.2010.489971Becerril-Piña, R., Mastachi-Loza, C. A., González-Sosa, E., Díaz-Delgado, C., Bâ, K. M. ( 2015). Assessing desertification risk in the semi-arid highlands of central Mexico. Journal of Arid Environments, 120, 4-13. https://doi.org/10.1016/j.jaridenv.2015.04.006Bouzekri, S., Aziz Lasbet, A., Lachehab, A. ( 2015). A New Spectral Index for Extraction of Built-Up Area Using Landsat-8 Data. Journal of the Indian Society of Remote Sensing, 43. https://doi.org/10.1007/s12524-015-0460-6Bramhe, V., Ghosh, S., Garg, P. ( 2018). EXTRACTION OF BUILT-UP AREA BY COMBINING TEXTURAL FEATURES AND SPECTRAL INDICES FROM LANDSAT-8 MULTISPECTRAL IMAGE. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-5, 727-733. https://doi.org/10.5194/isprs-archives-XLII-5-727-2018Chen, W., Liu, L., Zhang, C., Wang, J., Wang, J., Pan, Y. ( 2004). Monitoring the seasonal bare soil areas in Beijing using multitemporal TM images. Paper presented at the IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium. (Vol. 5, pp. 3379-3382). https://doi.org/10.1109/IGARSS.2004.1370429Congalton, R. ( 1991). A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data (Vol. 37). https://doi.org/10.1016/0034-4257(91)90048-BCongedo, L. (2016). Semi-Automatic Classification Plugin Documentation. Release 6.0.1.1.Côte, M. ( 1996). L'algerie espace er societe paris: masson.Daughtry, C. S. T., Serbin, G., Reeves, J. B., Doraiswamy, P. C., Hunt, E. R. ( 2010). Spectral Reflectance of Wheat Residue during Decomposition and Remotely Sensed Estimates of Residue Cover. Remote Sensing, 2(2), 416-431. https://doi.org/10.3390/rs2020416Deng, C., Wu, C. ( 2012). BCI: A biophysical composition index for remote sensing of urban environments. Remote Sensing of Environment, 127, 247-259. https://doi.org/10.1016/j.rse.2012.09.009Deventer, A., Ward, A. D., Gowda, P. H., Lyon, J. G. (1997). Using thematic mapper data to identify contrasting soil plains and tillage practices. Photogrammetric engineering and remote sensing., 63(1), 87-93.Diek, S., Fornallaz, F., Schaepman, M., Jong, R. ( 2017). Barest Pixel Composite for Agricultural Areas Using Landsat Time Series. Remote Sensing, 9, 1245. https://doi.org/10.3390/rs9121245Doumit, J., Sakr, S. ( 2015). La Cartographie du Sol nu dans la Vallee de la Bekaa à partir de la Tetedetection. InterCarto. InterGIS, 1, 19-24. https://doi.org/10.24057/2414-9179-2015-1-21-19-24Drusch M, U., D. B., S., C., Colin, O., Fernandez, V., Gascon, F., . . . Bargellini, P. ( 2012). Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120, 25-36. https://doi.org/10.1016/j.rse.2011.11.026Eskandari, I., Navid, H., Rangzan, K. ( 2016). Evaluating spectral indices for determining conservation and conventional tillage systems in a vetch-wheat rotation. International Soil and Water Conservation Research, 4(2), 93-98. https://doi.org/10.1016/j.iswcr.2016.04.002Ettehadi Osgouei, P., Kaya, S., Sertel, E., Alganci, U. ( 2019). Separating Built-Up Areas from Bare Land in Mediterranean Cities Using Sentinel-2A Imagery. Remote Sensing, 11(3). https://doi.org/10.3390/rs11030345Foody, G. M. ( 2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185-201. https://doi.org/10.1016/S0034-4257(01)00295-4Gašparović, M., Zrinjski, M., Gudelj, M. ( 2019). Automatic cost-effective method for land cover classification (ALCC). Computers, Environment and Urban Systems, 76, 1-10. https://doi.org/10.1016/j.compenvurbsys.2019.03.001Gllavata, J., Ewerth, R., Freisleben, B. (2004). Text detection in images based on unsupervised classification of high-frequency wavelet coefficients. Paper presented at the Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004. https://doi.org/10.1109/ICPR.2004.1334146Gupta, G., Singh, J., Pandey, P., Tomar, V., Rani, M., Kumar, P. ( 2014). Geospatial Strategy for Estimation of Soil Organic Carbon in Tropical Wildlife Reserve. pp. 69-83. https://doi.org/10.1007/978-3-319-05906-8_5.Jamalabad, M. ( 2004). Forest canopy density monitoring using satellite images. Paper presented at the Geo-Imagery Bridging Continents XXth ISPRS Congress, Istanbul, Turkey, 2004.Jieli, C. M., L.; Yongxue, L.; Chenglei, S.; Wei, H. ( 2010). Extract residential areas automatically by New Built-up Index. . Paper presented at the In Proceedings of the 2010 18th International Conference on Geoinformatics, Beijing, China. https://doi.org/10.1109/GEOINFORMATICS.2010.5567823Lee, J., Acharya, T., Lee, D. ( 2018). Exploring Land Cover Classification Accuracy of Landsat 8 Image using Spectral Indices Layer Stacking in Hilly Region of South Korea. Sensors and Materials, 30(12), 2927-2941. https://doi.org/2910.18494/SAM.12018.11934.Leroux, L., Congedo, L., Bellón, B., Gaetano, R., Bégué, A. ( 2018). Land Cover Mapping Using Sentinel-2 Images and the Semi-Automatic Classification Plugin: A Northern Burkina Faso Case Study (pp. 131-165). https://doi.org/10.1002/9781119457107.ch4Li, H., Wang, C., Zhong, C., Su, A., Xiong, C., Wang, J., Liu, J. ( 2017). Mapping Urban Bare Land Automatically from Landsat Imagery with a Simple Index. Remote Sensing, 9(3). https://doi.org/10.3390/rs9030249Liu, Y., Chen, J., Cheng, W., Sun, C., Zhao, S., Yingxia, P. ( 2014). Spatiotemporal dynamics of the urban sprawl in a typical urban agglomeration: a case study on Southern Jiangsu, China (1983-2007).Frontiers of Earth Science, 8, 490-504. https://doi.org/10.1007/s11707-014-0423-1Loi, D., Chou, T.-Y., Fang, Y.-M. ( 2017). Integration of GIS and Remote Sensing for Evaluating Forest Canopy Density Index in Thai Nguyen Province, Vietnam. International Journal of Environmental Science and Development, 8, 539-542. https://doi.org/10.18178/ijesd.2017.8.8.1012Louis, J., Debaecker, V., Pflug, B., Main-Knorn, M., Bieniarz, J., Müller-Wilm, U., . . . Gascon, F. ( 2016). SENTINEL-2 SEN2COR: L2A Processor for Users.Lynch, P., Blesius, L. ( 2019). Urban Remote Sensing: Feature Extraction.MacQueen, J. ( 1967). Some Methods for Classification and Analysis of Multivariate Observations. Paper presented at the In L. M. Le Cam & J. Neyman (eds.) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability University of California Press, Berkeley, CA, USA.Muna, E., Walker, S. ( 2010). Environmental Degradation of Natural Resources in Butana Area of Sudan. https://doi.org/10.1007/978-90-481-8657-0_13.Nur Hidayati, I., Suharyadi, R., Danoedoro, P. ( 2018). Developing an Extraction Method of Urban Built-Up Area Based on Remote Sensing Imagery Transformation Index. Forum Geografi, 32. https://doi.org/10.23917/forgeo.v32i1.5907Pal, M., Antil, K. ( 2017). Comparison of Landsat 8 and Sentinel 2 data for Accurate Mapping of Built-Up Area and Bare Soil. Paper presented at the The 38th Asian Conference on Remote Sensing, New Delhi, India.Patel, N., Mukherjee, R. ( 2014). Extraction of impervious features from spectral indices using artificial neural network. Arabian Journal of Geosciences, 8. https://doi.org/10.1007/s12517-014-1492-xRasul, A., Balzter, H., Ibrahim, G. R. F., Hameed, H. M., Wheeler, J., Adamu, B., . . . Najmaddin, P. M. ( 2018). Applying Built-Up and Bare-Soil Indices from Landsat 8 to Cities in Dry Climates. Land, 7(3), 81. https://doi.org/10.3390/land7030081Rikimaru, A., Miyatake, S. ( 1997). Development of Forest Canopy Density Mapping and Monitoring Model using Indices of Vegetation, Bare soil and Shadow. . Paper presented at the Proceeding of the 18th Asian Conference on Remote Sensing (ACRS) 1997, Kuala Lumpur, Malaysia.Rikimaru, A., Roy, P., Miyatake, S. ( 2002). Tropical forest cover density mapping. Tropical ecology, 43(1), 39-47.Rouse, J., Haas, R., Schell, J., Deering, D., Freden, S. ( 1973). Monitoring vegetation systems in the Great Plains with ERTS.(pp. 309-317). Paper presented at the Proceedings of 3rd Earth Resources Technology Satellite-1 Symposium. pp. 309-317Sun, G., Chen, X., Jia, X., Yao, Y., Wang, Z. ( 2016). Combinational Build-Up Index (CBI) for Effective Impervious Surface Mapping in Urban Areas. IEEE Journal of selected topics in applied earth observations and remote sensing, 9(5), 2081-2092. https://doi.org/10.1109/JSTARS.2015.2478914Tola, E., Al-Gaadi, K. A., Madugundu, R. ( 2019). Employment of GIS techniques to assess the long-term impact of tillage on the soil organic carbon of agricultural fields under hyper-arid conditions. PLOS ONE, 14, e0212521. https://doi.org/10.1371/journal.pone.0212521Tucker, C. J. ( 1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150. https://doi.org/10.1016/0034-4257(79)90013-0Useya, J., Chen, S., Murefu, M. ( 2019). Cropland Mapping and Change Detection: Toward Zimbabwean Cropland Inventory. IEEE Access, 7, 53603-53620. https://doi.org/10.1109/ACCESS.2019.2912807Valdiviezo-N, J., Téllez-Quiñones, A., Salazar-Garibay, A., López-Caloca, A. ( 2018). Built-up index methods and their applications for urban extraction from Sentinel 2A satellite data: discussion. Journal of the Optical Society of America A, 35, 35. https://doi.org/10.1364/JOSAA.35.000035Vanhellemont, Q., Ruddick, K. (2016). Acolite for Sentinel-2: Aquatic applications of MSI imagery. Paper presented at the Proceedings of the 2016 ESA Living Planet Symposium, 09 - 13 May 2016,Prague, Czech Republic. pp. 9-13.Vapnik, V. N. ( 1995). The nature of statistical learning theory: Springer-Verlag. https://doi.org/10.1007/978-1-4757-2440-0Vigneshwaran, S., Vasantha Kumar, S. ( 2018). EXTRACTION OF BUILT-UP AREA USING HIGH RESOLUTION SENTINEL-2A AND GOOGLE SATELLITE IMAGERY. ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLII-4/W9, 165-169. https://doi.org/10.5194/isprs-archives-XLII-4-W9-165-2018Waqar, M., Mirza, J., Mumtaz, R., Hussain, E. ( 2012). Development of New Indices for Extraction of Built-Up Area & Bare Soil from Landsat Data. Open Access Scientific Reports, 1(1), 01-04.Xi, Y., Xuan Thinh, N., Li, C. ( 2019). Preliminary comparative assessment of various spectral indices for built-up land derived from Landsat-8 OLI and Sentinel-2A MSI imageries. European Journal of Remote Sensing, 52, 240-252. https://doi.org/10.1080/22797254.2019.1584737Xian, G., Homer, C., Fry, J. ( 2009). Updating the 2001 National Land Cover Database land cover classification to 2006 by using Landsat imagery change detection methods. Remote Sensing of Environment, 113(6), 1133-1147. https://doi.org/10.1016/j.rse.2009.02.004Xu, H. ( 2007). Extraction of Urban Built-up Land Features from Landsat Imagery Using a Thematicoriented Index Combination Technique. Photogrammetric Engineering & Remote Sensing, 73(12), 1381-1391. https://doi.org/10.14358/PERS.73.12.1381Xu, H. ( 2008). A new index for delineating built-up land features in satellite imagery. International Journal of Remote Sensing, 29, 4269-4276. https://doi.org/10.1080/01431160802039957Yilmaz, E., Varol, B., topaloğlu, R., Sertel, E. ( 2019). Object-Based Classification of Izmir Metropolitan City by Using Sentinel-2 Images. 2019 9th International Conference on Recent Advances in Space Technologies (RAST), 407-412. https://doi.org/10.1109/RAST.2019.8767781Zha, Y., Gao, J., Ni, S. ( 2003). Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, 24(3), 583-594. https://doi.org/10.1080/01431160304987Zuur, A. F., Ieno, E. N., Smith, G. M. ( 2007). Principal component analysis and redundancy analysis. Analysing ecological data, 193-224. https://doi.org/10.1007/978-0-387-45972-

    Aplicação de índices espectrais na avaliação do aporte de sedimento aos reservatórios das Usinas Hidrelétricas Itumbiara e Batalha (Brasil)

    Get PDF
    In this work, two spectral indexes were implemented using Landsat images, the Normalized Difference Water Index (NDWI) for the delimitation of the water mirror and the Normalized Difference Turbidity Index (NDTI) to evaluate the sediment contribution to the reservoirs of the hydroelectric power plants Itumbiara and Batalha, located on the borders of the states of Goiás and Minas Gerais. The acquisition and processing were carried out in the Google Earth Engine platform and the post-processing in the QGIS software. The NDTI was applied to the reservoirs considering the variation in water level between the dry and rainy seasons in 2020. The highest concentration of turbidity in the Itumbiara reservoir occurred in September, and the lowest in June. August was the month with the highest turbidity concentration and July the lowest in the Batalha reservoir.En este trabajo se implementaron dos índices espectrales utilizando imágenes Landsat, el Índice de Diferencia de Agua Normalizada (NDWI) para la delimitación del espejo de agua y el Índice de Turbidez de Diferencia Normalizada (NDTI) para evaluar el aporte de sedimentos a los embalses de las centrales hidroeléctricas Itumbiara y Batalha, ubicadas en los límites de los estados de Goiás y Minas Gerais. El NDTI se aplicó en los embalses considerando la variación del nivel del agua entre las épocas seca y lluviosa de 2020. La mayor concentración de turbiedad en el embalse de Itumbiara se presentó en septiembre y la menor en junio, siendo agosto el mes con mayor concentración de turbidez y julio con la menor en el embalse de Batalha.Dans ce travail, deux indices spectraux ont été implémentés à l'aide d'images Landsat, le Normalized Difference Water Index (NDWI) pour la délimitation du miroir d'eau et le Normalized Difference Turbidity Index (NDTI) pour évaluer la contribution des sédiments aux réservoirs des centrales hydroélectriques. Itumbiara et Batalha, situées aux confins des états de Goiás et Minas Gerais. Le NDTI a été appliqué dans les réservoirs en tenant compte de la variation du niveau d'eau entre les saisons sèche et pluvieuse de 2020. La plus forte concentration de turbidité dans le réservoir d'Itumbiara s'est produite en septembre et la plus faible en juin. Dans le réservoir de Batalha, août étant le mois avec la plus forte concentration de turbidité et la plus faible en juillet.In questo lavoro sono stati implementati due indici spettrali utilizzando immagini Landsat, il Normalized Difference Water Index (NDWI) per la delimitazione dello specchio d'acqua e il Normalized Difference Turbidity Index (NDTI) per valutare il contributo dei sedimenti ai serbatoi delle Centrali Idroelettriche Itumbiara e Batalha, situate ai confini degli stati di Goiás e Minas Gerais. L'acquisizione e l'elaborazione sono state effettuate nella piattaforma Google Earth Engine e la post-elaborazione nel QGIS. L'NDTI è stato applicato nei bacini considerando la variazione del livello dell'acqua tra la stagione secca e quella piovosa del 2020. La più alta concentrazione di torbidità nel bacino di Itumbiara si è verificata a settembre, e la più bassa a giugno. Nel bacino di Batalha, agosto è il mese con la più alta concentrazione di torbidità e il più basso a luglio.Neste trabalho foram implementados dois índices espectrais utilizando imagens Landsat, o Índice da Diferença Normalizada de Água (NDWI) para delimitação do espelho d’água e o Índice de Turbidez por Diferença Normalizada (NDTI) para avaliação do aporte de sedimentos aos reservatórios das Usinas Hidrelétricas Itumbiara e Batalha, localizadas nas divisas dos estados de Goiás e Minas Gerais. A aquisição e o processamento foram realizados na plataforma Google Earth Engine e o pós-processamento no software QGIS. O NDTI foi aplicado nos reservatórios considerando a variação do nível de água entre as estações seca e chuvosa de 2020. A maior concentração de turbidez no reservatório de Itumbiara se deu em setembro, e a menor em junho. Já no reservatório de Batalha, sendo agosto o mês com maior concentração de turbidez, e a menor em julho

    An analysis of flooding coverage using remote sensing within the context of risk assessment

    Get PDF
    Results of research of the identification of flooding as a result of groundwater table fluctuations on the example of the valley of the River Vistula, with the use of multi-spectral Sentinel-2 images from the years 2017–2018 are presented. An analysis of indexes of water use, calculated on the basis of green, red and shortwave infrared (SWIR) bands, for extraction of water objects and flooded areas was carried out. Based on the analyses conducted, a mapping method was developed, using three water indexes (MNDWI Modified Normalised Difference Water Index, NDTI Normalised Difference Index and NDPI Normalised Difference Pond Index). Results show that the 10 metre false colour composite RNDTIGNDPIBMNDWI obtained significantly improved submerged extractions more than did individual water indexes. Moreover, the 10-m-images of MNDWI and NDPI, obtained by the sharpening High Pass Filter (HPF), may represent more detailed spatial information on floods than the 20-m-MNDWI and NDPI, obtained from original images

    Estimation of evapotranspiration using satellite TOA radiances

    No full text

    Analytical associate pool : summary of recent small-scale research projects : June 2019

    Get PDF
    corecore