640 research outputs found

    N-grams Based Supervised Machine Learning Model for Mobile Agent Platform Protection against Unknown Malicious Mobile Agents

    Get PDF
    From many past years, the detection of unknown malicious mobile agents before they invade the Mobile Agent Platform has been the subject of much challenging activity. The ever-growing threat of malicious agents calls for techniques for automated malicious agent detection. In this context, the machine learning (ML) methods are acknowledged more effective than the Signature-based and Behavior-based detection methods. Therefore, in this paper, the prime contribution has been made to detect the unknown malicious mobile agents based on n-gram features and supervised ML approach, which has not been done so far in the sphere of the Mobile Agents System (MAS) security. To carry out the study, the n-grams ranging from 3 to 9 are extracted from a dataset containing 40 malicious and 40 non-malicious mobile agents. Subsequently, the classification is performed using different classifiers. A nested 5-fold cross validation scheme is employed in order to avoid the biasing in the selection of optimal parameters of classifier. The observations of extensive experiments demonstrate that the work done in this paper is suitable for the task of unknown malicious mobile agent detection in a Mobile Agent Environment, and also adds the ML in the interest list of researchers dealing with MAS security

    A Review of Testbeds on SCADA Systems with Malware Analysis

    Get PDF
    Supervisory control and data acquisition (SCADA) systems are among the major types of Industrial Control Systems (ICS) and are responsible for monitoring and controlling essential infrastructures such as power generation, water treatment, and transportation. Very common and with high added-value, these systems have malware as one of their main threats, and due to their characteristics, it is practically impossible to test the security of a system without compromising it, requiring simulated test platforms to verify their cyber resilience. This review will discuss the most recent studies on ICS testbeds with a focus on cybersecurity and malware impact analysis

    Intelligent Agents for Active Malware Analysis

    Get PDF
    The main contribution of this thesis is to give a novel perspective on Active Malware Analysis modeled as a decision making process between intelligent agents. We propose solutions aimed at extracting the behaviors of malware agents with advanced Artificial Intelligence techniques. In particular, we devise novel action selection strategies for the analyzer agents that allow to analyze malware by selecting sequences of triggering actions aimed at maximizing the information acquired. The goal is to create informative models representing the behaviors of the malware agents observed while interacting with them during the analysis process. Such models can then be used to effectively compare a malware against others and to correctly identify the malware famil

    Advanced Threat Intelligence: Interpretation of Anomalous Behavior in Ubiquitous Kernel Processes

    Get PDF
    Targeted attacks on digital infrastructures are a rising threat against the confidentiality, integrity, and availability of both IT systems and sensitive data. With the emergence of advanced persistent threats (APTs), identifying and understanding such attacks has become an increasingly difficult task. Current signature-based systems are heavily reliant on fixed patterns that struggle with unknown or evasive applications, while behavior-based solutions usually leave most of the interpretative work to a human analyst. This thesis presents a multi-stage system able to detect and classify anomalous behavior within a user session by observing and analyzing ubiquitous kernel processes. Application candidates suitable for monitoring are initially selected through an adapted sentiment mining process using a score based on the log likelihood ratio (LLR). For transparent anomaly detection within a corpus of associated events, the author utilizes star structures, a bipartite representation designed to approximate the edit distance between graphs. Templates describing nominal behavior are generated automatically and are used for the computation of both an anomaly score and a report containing all deviating events. The extracted anomalies are classified using the Random Forest (RF) and Support Vector Machine (SVM) algorithms. Ultimately, the newly labeled patterns are mapped to a dedicated APT attacker–defender model that considers objectives, actions, actors, as well as assets, thereby bridging the gap between attack indicators and detailed threat semantics. This enables both risk assessment and decision support for mitigating targeted attacks. Results show that the prototype system is capable of identifying 99.8% of all star structure anomalies as benign or malicious. In multi-class scenarios that seek to associate each anomaly with a distinct attack pattern belonging to a particular APT stage we achieve a solid accuracy of 95.7%. Furthermore, we demonstrate that 88.3% of observed attacks could be identified by analyzing and classifying a single ubiquitous Windows process for a mere 10 seconds, thereby eliminating the necessity to monitor each and every (unknown) application running on a system. With its semantic take on threat detection and classification, the proposed system offers a formal as well as technical solution to an information security challenge of great significance.The financial support by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs, and the National Foundation for Research, Technology and Development is gratefully acknowledged

    Challenges and Outlook in Machine Learning-based Malware Detection for Android

    Get PDF
    Just like in traditional desktop computing, one of the major security issues in mobile computing lies in malicious software. Several recent studies have shown that Android, as today’s most widespread Operating System, is the target of most of the new families of malware. Manually analysing an Android application to determine whether it is malicious or not is a time- consuming process. Furthermore, because of the complexity of analysing an application, this task can only be conducted by highly-skilled—hence hard to come by—professionals. Researchers naturally sought to transfer this process from humans to computers to lower the cost of detecting malware. Machine-Learning techniques, looking at patterns amongst known malware and inferring models of what discriminates malware from goodware, have long been summoned to build malware detectors. The vast quantity of data involved in malware detection, added to the fact that we do not know a priori how to express in technical terms the difference between malware and goodware, indeed makes the malware detection question a seemingly textbook example of a possible Machine- Learning application. Despite the vast amount of literature published on the topic of detecting malware with machine- learning, malware detection is not a solved problem. In this Thesis, we investigate issues that affect performance evaluation and that thus may render current machine learning-based mal- ware detectors for Android hardly usable in practical settings, and we propose an approach to overcome those issues. While the experiments presented in this thesis all rely on feature-sets obtained through lightweight static analysis, several of our findings could apply equally to all Machine Learning-based malware detection approaches. In the first part of this thesis, background information on machine-learning and on malware detection is provided, and the related work is described. A snapshot of the malware landscape in Android application markets is then presented. The second part discusses three pitfalls hindering the evaluation of malware detectors. We show with extensive experiments how validation methodology, History-unaware dataset construction and the choice of a ground truth can heavily interfere with the performance results of malware detectors. In a third part, we present an practical approach to detect Android Malware in real-world settings. We then propose several research paths to get closer to our long term goal of building practical, dependable and predictable Android Malware detectors

    The Effect of Code Obfuscation on Authorship Attribution of Binary Computer Files

    Get PDF
    In many forensic investigations, questions linger regarding the identity of the authors of the software specimen. Research has identified methods for the attribution of binary files that have not been obfuscated, but a significant percentage of malicious software has been obfuscated in an effort to hide both the details of its origin and its true intent. Little research has been done around analyzing obfuscated code for attribution. In part, the reason for this gap in the research is that deobfuscation of an unknown program is a challenging task. Further, the additional transformation of the executable file introduced by the obfuscator modifies or removes features from the original executable that would have been used in the author attribution process. Existing research has demonstrated good success in attributing the authorship of an executable file of unknown provenance using methods based on static analysis of the specimen file. With the addition of file obfuscation, static analysis of files becomes difficult, time consuming, and in some cases, may lead to inaccurate findings. This paper presents a novel process for authorship attribution using dynamic analysis methods. A software emulated system was fully instrumented to become a test harness for a specimen of unknown provenance, allowing for supervised control, monitoring, and trace data collection during execution. This trace data was used as input into a supervised machine learning algorithm trained to identify stylometric differences in the specimen under test and provide predictions on who wrote the specimen. The specimen files were also analyzed for authorship using static analysis methods to compare prediction accuracies with prediction accuracies gathered from this new, dynamic analysis based method. Experiments indicate that this new method can provide better accuracy of author attribution for files of unknown provenance, especially in the case where the specimen file has been obfuscated

    Unsupervised Intrusion Detection with Cross-Domain Artificial Intelligence Methods

    Get PDF
    Cybercrime is a major concern for corporations, business owners, governments and citizens, and it continues to grow in spite of increasing investments in security and fraud prevention. The main challenges in this research field are: being able to detect unknown attacks, and reducing the false positive ratio. The aim of this research work was to target both problems by leveraging four artificial intelligence techniques. The first technique is a novel unsupervised learning method based on skip-gram modeling. It was designed, developed and tested against a public dataset with popular intrusion patterns. A high accuracy and a low false positive rate were achieved without prior knowledge of attack patterns. The second technique is a novel unsupervised learning method based on topic modeling. It was applied to three related domains (network attacks, payments fraud, IoT malware traffic). A high accuracy was achieved in the three scenarios, even though the malicious activity significantly differs from one domain to the other. The third technique is a novel unsupervised learning method based on deep autoencoders, with feature selection performed by a supervised method, random forest. Obtained results showed that this technique can outperform other similar techniques. The fourth technique is based on an MLP neural network, and is applied to alert reduction in fraud prevention. This method automates manual reviews previously done by human experts, without significantly impacting accuracy

    Proceedings of the 18th Irish Conference on Artificial Intelligence and Cognitive Science

    Get PDF
    These proceedings contain the papers that were accepted for publication at AICS-2007, the 18th Annual Conference on Artificial Intelligence and Cognitive Science, which was held in the Technological University Dublin; Dublin, Ireland; on the 29th to the 31st August 2007. AICS is the annual conference of the Artificial Intelligence Association of Ireland (AIAI)
    corecore