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Abstract: Supervisory control and data acquisition (SCADA) systems are among the major types of Industrial
Control Systems (ICS) and are responsible for monitoring and controlling essential infrastructures such as power
generation, water treatment, and transportation. Very common and with high added-value, these systems have
malware as one of their main threats, and due to their characteristics, it is practically impossible to test the
security of a system without compromising it, requiring simulated test platforms to verify their cyber resilience.
This review will discuss the most recent studies on ICS testbeds with a focus on cybersecurity and malware
impact analysis.
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Resumo: Os sistemas de controle de supervisão e aquisição de dados (SCADA) estão entre os principais tipos
de sistemas de controle industrial (ICS) e são responsáveis pelo monitoramento e controle de infraestruturas
essenciais, como geração de energia, tratamento de água e transportes. Muito comuns e de alto valor agregado,
esses sistemas têm malware como uma de suas principais ameaças e, devido às suas caracterı́sticas, é
praticamente impossı́vel testar a segurança de um sistema sem comprometê-la, sendo necessárias plataformas
de teste simuladas para verificar a sua resiliência cibernética. Esta revisão discutirá os estudos mais recentes
sobre plataformas de teste de ICS com foco em segurança cibernética e análise de impactos de malware.
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1. Introduction
Industrial Control Systems (ICS) are responsible for the con-
trol of critical strategic infrastructures, and their use has been
growing lately due to the increase in automation processes,
which is also followed by the growth of related cyber threats.
From 2017 to 2018, the number of vulnerabilities in ICS com-
ponents increased by 29%, among which more than half were
rated with a CVSS1 score equal to or greater than 7, indicating
high or critical levels [1].

When dealing with security of ICS, the consequences of
failures in the protection of critical infrastructures can be
severe. As a result, defenses against cyber threats to ICS have
become a priority in many national defense strategies. For
instance, in Brazil, the Cyber Defense Doctrine, published in
2014, states that failures in strategic infrastructures constitute
serious threats to national sovereignty. In consonance with
this doctrine, Cyber Defense was placed as one of the three

1⟨https://www.first.org/cvss⟩.

priorities of National Defense.
In this scenario, malware is considered one of the biggest

threats in the cyber environment. It is estimated that more
than one million new malware samples are collected each day
[2]. Process networks, which are an integral part of ICS and
contain the SCADA server, are very heterogeneous and run on
old operating systems that are usually not updated. This is be-
cause it is often not possible to interrupt running processes to
update the system and, besides, the effects of applying updates
or running antivirus applications are not known. Moreover,
many specific applications cannot be ported to new operating
systems.

In order to verify the resilience of ICS to cyber attacks,
testbeds are used. Testbeds are platforms for testing cyber-
physical systems and must capture the essence of these sys-
tems in order to be useful. In addition to being cost-effective,
they are a recommended security measure because they are
effective and do not harm the original systems [3].

Considering that malware can have activation mechanisms

https://www.first.org/cvss
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that vary according to the environment, they may not manifest
entirely if the environment is not appropriate [4]. Therefore,
a testbed must faithfully reproduce the original environment.
Also, since malware developed for the industrial sector is
generally of the zero-day2 type, it is important that detection
systems are able to identify threats that have not yet been
reported in an automated way. Behavioral traits can be applied
in malware classification, making it possible to classify even
undetected threats or mutations with similar behaviors.

Malware analyses in ICS are difficult to perform because
they require keeping the analyses tools hidden, besides the
need of a complex platform capable of faithfully reproducing
physical systems. Cumulatively, the implementation of a solu-
tion for detection in an ICS must attend to the particularities
of the systems and keep up with the advances in malware
development.

With the objective of analyzing the state of the art in ICS
testbeds, this work reviews the most current research in the
field, prioritizing those that, directly or indirectly, analyzes
the effects of malware impacts.

To identify the articles that would be part of our study, sup-
porting the analysis and review of the results, we carried out a
systematic review of the literature. First, we used the follow-
ing keywords in all search query providers: “malware” AND
(“behavior” OR “detection” OR “survey” OR “IDS”) AND
NOT (“android” OR “mobile”); “malware” AND “SCADA”
AND (“ICS” OR “testbed”) AND (“machine learning” OR
“deep learning”) AND NOT (“android” OR “mobile”); while
making minor adjustments to accommodate some syntax dif-
ferences between search providers and filtering results as of
2013. The search engines used were: Capes Journals’ Portal3;
ACM Digital Library4; IEEE Xplore5; Google Schoolar6; and
DBLP7. Of the 560 results returned in all queries, we selected
88 articles based on their titles and abstracts, considering the
existence of a consistent and relevant approach to the key-
words used. We then removed articles that were published in
vehicles with a low impact factor, those that used mobile or
cloud platforms, and those that used testbeds unrelated to ma-
chine learning. Finally, based on these results, we add some
of their references that we consider to be the most important.

This work is structured as follows: in Section 2, some of
the most basic concepts are defined, such as what are ICS,
SCADA systems and malware; Section 3 presents some works
that approach testbeds for cybersecurity while presenting a
brief discussion about the characteristics chosen for the com-
parison of the selected studies; in Section 4 a survey about
some methods for malware detection that could be applied
to zero day malware is present; and, finally, in Section 5 we
present the conclusions of this work.

2those that exploit unreported vulnerabilities.
3⟨https://www.periodicos.capes.gov.br⟩
4⟨https://dl.acm.org/⟩
5⟨https://ieeexplore.ieee.org/⟩
6⟨https://scholar.google.com/⟩
7⟨https://dblp.org/⟩

2. Basic Concepts
This section introduces the concepts of ICS, SCADA Systems
and Malware.

2.1 Industrial Control Systems
ICS is a generic term that encompasses several types of control
systems such as SCADA systems, Programmable Logic Con-
trollers (PLCs), and Remote Terminal Units (RTUs). These
systems are common in industrial facilities and critical infras-
tructure [5]. ICS have two layers of control: a physical and a
cyber layer. The physical layer (i) comprises sensors, actua-
tors, and hardware such as PLCs, which act physically in the
system (opening gates, regulating voltage, pressure, etc.). The
cyber layer (ii) comprises communication and information
devices and their software to acquire data, develop processes
and strategies and give commands to the physical layer [6]

ICS have some important characteristics, such as wide
geographic distribution, constant synchronization, interaction
between logical and physical infrastructures in continuous
operation and system components with high useful life. There-
fore, malfunctions and attacks have more tangible effects in
ICS than in conventional IT systems [7].

The specificity of SCADA systems implies that most con-
ventional IT security measures cannot be applied, and some
measures can even cause harmful effects to the system instead
of protecting it. Moreover, due to their always-on requirement,
they cannot be updated or redesigned. Some security mech-
anisms such as virtual private networks (VPN) and firewalls
have been successfully adopted in SCADA systems. Encryp-
tion and authentication should be used with caution not to
cause unacceptable interruptions [7].

Although SCADA servers can be well protected, that does
not guarantee it will also be the case with the field devices.
These devices are often insecure, isolated and may have regu-
lar communication protocols, thus providing multiple access
ports that are vulnerable to cyber attacks [3].

2.2 SCADA Systems
SCADA Systems are among the main tools of ICS [3]. They
collect and store data from PLCs/RTUs, fully or partially man-
age processes and are essential for the automation and control
of industrial processes. The configuration of these systems
may include servers, Human-Machine Interfaces (HMI), local
area networks, database servers and communication devices
that allow remote control and monitoring of geographically
distributed installations [8].

Figure 1 displays an example of a complete generic in-
dustrial system architecture. The upper layer contains the
locations of the external access via the Internet, while the
other components of the system are connected through a fire-
wall. The corporate network group comprises workstations,
printers, and application servers, among others. Attached to
the corporate network is a demilitarized zone (DMZ), which
consists of servers that require external access. Separated
by another layer of security, there is the Control Network,
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Figure 1. The architecture of an industrial system.

comprising HMI devices, workstations, and SCADA servers
which are connected to the field devices, represented by Field 1
to 3, through any communication interface, such as telephone
lines, microwaves, satellites, among others. Finally, PLCs and
RTUs are connected directly to the industrial physical devices
to monitor or change their status.

2.3 Malware
Malware (malicious software) is a generic term to describe
all types of computer programs that have harmful intent [9].
These programs are used for several purposes, such as obtain-
ing financial advantages with the use of botnets. Currently, it
is possible to infect thousands of devices within a few hours
after the malicious artifact is released on the network [4]. A
recent example is the WannaCry ransomware, which infected
more than 300,000 devices in just 24 hours [2].

The nature of criminal activity on the internet has changed
and is no longer carried out by groups, but there is a diverse
market for illegal digital items in support of criminal activities
[10]. According to [4], the main types of malware can be
divided into the following categories. It should be noted that
these classes are not mutually exclusive as several malware
may have behaviors and characteristics that fit into different
categories.

• Worm. It is a program that can run independently and
spread itself to other devices;

• Virus. It is a code snippet that adds itself to other pro-

grams, but cannot run independently, it needs a host
application;

• Trojan. It is a software that pretends to be benign and
useful, yet covertly performs malicious actions;

• Spyware. It is a software designed to steal informa-
tion from the system of a victim that sends it to the
attacker. This information can be bank accounts creden-
tials, keystrokes, accessed pages, e-mails, etc.;

• Bot. It is a type of malware that allows a hacker to
remotely control the device of the victim; and

• Rootkit. It is malware that has the ability to hide infor-
mation from the system. The hiding technique itself is
not malicious, however, the fact that many malware use
it to hide in the system justifies such a classification.

Just like the analysis methods, malware evasion techniques
are also becoming more sophisticated. Such techniques range
from self-modification, dynamic code generation, metamor-
phosis, logic bombs, obfuscation, cryptography and pack-
aging, to approaches that detect the presence of an analysis
environment, allowing the software to only operate in specific
circumstances.

It is important to analyze the behavior and techniques
employed by malware, as it will directly influence the testbed
implementation strategies. Also, the environments should be
created as close to reality as possible, otherwise the malware
may not manifest itself in its full form.
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3. Testbeds
Simulations are important because it is impractical to conduct
security experiments on real systems. This is due to scale, cost,
and possible risks to system stability. Some vulnerabilities
such as Denial-of-Service (DoS) attacks can cause disruptions
and delays or even the entire system to crash. Implementing a
real SCADA system just for testing, even on a small scale, is
very expensive and may not be worth it due to the diversity
of equipment used and its large scale. Some tested measures
may be effective and the system may not be secure against
certain attacks; what was designed to be a test may become a
real attack [11]. Thus, to test vulnerabilities and the resilience
of ICS, researchers turn to hardware and software simulation.

When reviewing the research literature, we found a large
set of studies that presented test platforms related to ICS se-
curity. Nevertheless, we found very few studies discussing
the detection and analysis of malware together with security
in ICS. Most testbeds that analyze malware focus on the re-
silience of the physical system while most malware analysis
systems do not cover ICS performance. In order to verify
testbeds and their ability to analyze malware, we selected the
most relevant attributes, which are presented in Table 1.

Besides testbeds, we also evaluated studies that verified
the impact of malware on ICS using testbeds. We assessed the
following aspects: whether real malware were used, whether
malware were inserted into the corporate network and whether
the impact on the physical layer was determined. We present
here the most relevant details of each study.

Davis et al.[12] used the proprietary tool Power World8 to
simulate the physical layer of an electrical power grid. For the
cybernetic layer, the RINSE network simulator [13] was used,
which allows large-scale real-time simulations. This approach
does not provide a real IT network, nor does have a SCADA
master server. It is possible to simulate some network attacks
but, although the simulation of the physical system is quite
sufficient, is not possible to truly assess the cybersecurity of
the system. To measure the impact of the attacks, the packet
loss rate was used as a metric.

McDonald et al.[14] presented a report from the SANDIA
Laboratory9, in which the VCSE, a safety simulator for en-
ergy systems, is described. The network was simulated with
RINSE[13] and CIPR/Sim, another simulator developed by
the Idaho National Laboratory10, for simulating the resilience
and protection of a critical infrastructure. It shows the ripple
effect of failures in multiple infrastructures before a real event
occurs. Although it is a extremely complete study, especially
concerning the physical layer, and has theoretical support
for testing real malware natively, no experiments with real
malware were reported.

Fovino et al.[15] implemented tests on a complete testbed,
with the corporate infrastructure included and physical de-
vices connected. One of the main limitations of this study is

8⟨https://www.powerworld.com/⟩.
9⟨http://www.sandia.gov/⟩.

10⟨https://www.inl.gov/⟩.

the lack of details about the testbed implementation, such as
which operating systems were used, whether the cyber envi-
ronment was virtualized or real, and whether the network was
real or simulated. It also did not analyze real malware - it only
simulated the behavior of five malware families using MAL-
Sim [16]. Moreover, this study does not produce background
traffic, although the proposed network appears to be complete,
with anti-virus and intrusion detection system. MALSim is a
malware behavior simulator built on top of JADE (Java Agent
Development Framework). It can simulate various malware
behaviors, such as mobility, duplication, and infection. All
code execution can be controlled to avoid damage to the test
system [16].

Chabukswar et al.[17] proposed a platform with OPNET++,
Matlab/Simulink and a proprietary command and control sys-
tem called C2WindTunnel11, which consists of a generic mod-
eling environment for simulations that are of the IEEE high-
level architecture standard (HLA). In this study, it was not
possible to analyze attacks with real malware, and a simulated
Distributed Denial-of-Service (DDoS) attack was performed.
As cited by Chertov, Fahmy e Shroff[18], the results of net-
work simulators in response to DoS attacks are not reliable.
This study mainly highlighted analyses of the simulated phys-
ical layer. It is a difficult solution to replicate due to the high
cost of the software used.

The framework proposed by Chunlei, Lan e Yiqi[19] does
not include details about how the physical part is configured,
or about the capacity of the system for delays. The corporate
network is simulated with the NS-212 and it is very detailed;
however, the simulations do not allow interactions with real
malware. The simulation system has an OPC server13, a HMI
for OPC, a simulated business network, a protocol test appli-
cation for SCADA, and real RTUs. Citect14 was used as the
SCADA server, and real RTUs with multi-protocol capability.
No attack with real or simulated malware was performed on
the system, however they did perform a step-by-step attack
with the elevation of privileges due to the system not having
integrated malware analysis tools. This is a high cost testbed
because it uses proprietary tools and real hardware.

Mirkovic et al.[20] presented the DETER project, founded
by the United States Department of Homeland Security (DHS)
and the U.S. National Science Foundation (NSF), a national
resource for experimentation in cyber defense. The project
uses Emulab - a public testbed of the U.S.A. in which users
can access virtual machines and are able to configure their
desired topology, using the applications and operating sys-
tems they choose. The project consists of a testbed for cyber
simulations, which does not include tests in ICS yet but can
be used for that.

Morris, Vaughn e Dandass[21] presented the testbed from
the Mississippi State University SCADA laboratory. It con-

11⟨https://www.nist.gov/document/vanderbilt-c2wt-sztipanovitspdf⟩.
12⟨https://www.isi.edu/nsnam/ns/⟩.
13⟨https://www.opcconnect.com/freesrv.php⟩.
14⟨https://www.schneider-electric.com/en/brands/citect/⟩.
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Table 1. Compared features
Feature Description
Multiprotocol Ability to operate on multiple protocols
Cyber Layer Fidelity Have a cyber or physical layer that enables the execution of real malware
Simulated background
traffic

Integration of tools to generate background traffic, such as mouse movement, file opening,
network traffic, etc, necessary to prevent the testing environment from being detected and to
allow real life like situations

Real corporate network Integration of a corporate network in addition to the industrial network which can be an
important vector of infection and it is crucial to test the resilience of the SCADA system to
infections arising from it, whether real or virtual

Physical Layer Fidelity Possibility to work with devices such as real PLCs/RTUs not simulated in the physical layer
since attacks like DoS and buffer overflow cannot be evaluated effectively on emulated or
simulated hardware

SCADA master avail-
ability

Have a functioning SCADA master server.

Real malware analysis Allows testing, analysis and gathering of real malware information, which is necessary since it
is very difficult or even impossible to simulate all malware behavior

Repetition Ability to perform experiments automatically
Control Ability to allow total control of the experiment, data storage and modification of variables
Resilience and Security Enables easy post-attack recovery to ensure safe testing
Physical Multiprocesses Ability to implement several categories of physical processes simultaneously.
Interface Friendly interface for controlling experiments which is important for professionals not related

to the field of IT to operate the test platform
Documentation The platform must have ample documentation to allow safe operation and, in the case of open

source systems, its replication
Low cost Low cost of hardware and software for implementation

sists of seven physical systems on a small scale, all real, de-
tailed and operational. The HMI is the GE/Fanuc iFix15,
which supports 3 different protocols. The system has a master
SCADA implemented by the university, there is no corporate
network, and it is not possible to test real malware.

Queiroz, Mahmood e Tari[11] implemented SCADASim,
a testing framework on top of a simulated network in the OM-
NET++16 environment. In order to simulate the physical part,
MatLab/Simulink17 was used, which allows real devices to
be connected to the simulator. This system can only simulate
network-based attacks. Since it consists of a simulated system,
it is not possible to analyze the complex interactions caused
by malware. It stopped being developed in 2011, and it does
not simulate hosts with different behaviors on the corporate
network, such as e-mail servers, databases, etc.

The approach proposed by Genge et al.[6] supports a
wide variety of physical processes, typical components of net-
worked ICS, testing with real malware, security, resilience for
studies and high reliability with real systems. The frawework
allows scaling up to accurately simulate large ICS with more
than 100 PLCs, while being very complete and flexible. The
applicability was demonstrated with two case studies - one
of them addresses the influence of malware on a power plant
and the other analyzes the network conditions on a chemical

15⟨https://www.ge.com/digital/products/ifix⟩.
16⟨https://www.omnetpp.org/⟩.
17⟨https://www.mathworks.com/products/simulink.html⟩.

plant after a cyber attack. However, no real malware was
tested on this platform, just a script simulating the behavior of
Stuxnet. One of the limitations of this study is the difficulty in
replicability due to the use of the Emulab platform and lack of
description of how the platform was configured. The focus of
this study was the testing platform and not the case studies.

Ciancamerla, Minichino e Palmieri[22] tested a malware
infection and its spread on the corporate network with The
event simulator Netlogo18. DoS and Man-in-the-middle at-
tacks were also simulated. The proposed testbed uses NS-2
to simulate a corporate network and Wizcon19 as the SCADA
master. In order to measure the effectiveness of DoS attacks,
the travel time of SCADA system packages was used as a
metric. For the final impact on the smart grid, the FISR (Fault
Isolation and System Restoration) time was measured, which
is the time to restore, isolate and reconfigure quickly and
safely after a failure event.

Siaterlis, Genge e Hohenadel[23] presented the testbed
EPIC (Experimentation Platform for Internet Contingencies),
which is based on Emulab20 to simulate the cyber part and
on various software to simulate the physical part. Emulation
with Emulab allows easy repetition, scalability, and control of
experiments; however, it does not allow further analyses with
the insertion of real malware. Although in theory it would be

18⟨https://ccl.northwestern.edu/netlogo/⟩.
19⟨http://www.getcontrolmaestro.com/wizcon-en.html⟩.
20⟨http://www.emulab.net/⟩.
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possible to make that happen, given that Emulab is composed
of virtual machines, there are no analysis tools built into this
solution.

Ficco, Choraś e Kozik[24]used a network simulated with
OMNET++ and the physical layer was simulated with Mat-
Lab/Simulink. The simulation infrastructure was based on
Portico21, which is an open-source implementation for HLA.
Monitoring agents were implemented using JAVA Agent De-
velopment Framework (JADE). Only the simulation platform
was presented, no real attacks were simulated or executed,
and no case studies were presented.

Huda et al.[25] proposed a semi-supervised behavior-
based approach to malware detection. It is a highly complex
study that showed great results and uses a virtual machine and
the Cuckoo Sandbox22 software to collect information, mainly
Application Programming Interface (API) calls. It focused
on cyber-physical systems (CPS) and used a database auto-
matically updated with patterns extracted from the malware
behavior. Real malware was tested statically and dynamically
using Machine Learning (ML). Despite focusing on CPS, they
did not test for malware on ICS. Background traffic, in addi-
tion to that provided by Cuckoo, was also not generated, and
there was no corporate network. In 2018, a similar but more
evolved model, based on the Internet of Things (IoT), was
published [26].

Akhtar, Gupta e Yamaguchi[27] developed a testbed with
OPNET++ as a network simulator and MatLab/Simulink as a
simulator for real devices. It simulates the attack of malware
as DDoS. Among the metrics used to verify the impacts are
the voltage and the number of packets sent per second.

Jahromi et al.[28] examined the vulnerability of assisted
communication against cyber attacks using co-simulation.
This platform was developed using two integrated simula-
tors: OPAL-RT, which co-simulates a microgrid and Riverbed
Modeler, which consists of a network communications simu-
lator with support for a wide variety of protocols. DoS attacks
and injection of invalid data into the system were simulated.
The study revealed that systems are vulnerable to these types
of attacks.

Given the great diversity of existing simulation models,
all of them different in many aspects, a quantitative compari-
son is not feasible. Therefore, we compared the studies in a
qualitative way. The results are summarized in Table 2.

It should be noted that not all studies presented in Table
2 analyze malware attacks, and only one of them, Huda et
al.[25], applies real malware. Only four of the studies per-
formed experiments on virtual or real machines and another
four executed tests with simulated malware and analyzed their
impact on the physical layer.

Regarding networks, the comparisons between simulated
and emulated testbeds made by Chertov, Fahmy e Shroff[18]
showed significant differences. These differences were due to
the fact that simulators and emulators abstract a large number

21⟨http://www.porticoproject.org/⟩.
22⟨https://cuckoosandbox.org/⟩.

of system attributes and assume values involving package
management, which shows these types of simulations are not
reliable for security testing.

Approaches based on physical and cybernetic simulated
components are cheaper and tend to have many resources,
however they do not support the key features to enable ex-
perimentation with malware and real SCADA systems. Sim-
ulated systems like OPNET++ and NS-2 can model normal
operations, but fail to capture the complexity of interactions
between malware and real hardware.

4. Malware Detection Methods
In this section, we present some studies using ML techniques
to perform malware detection. Works using ML to detect
malware were researched since, as already discussed, a major
threat to SCADA systems is zero-day malware. With this in
mind, they become important systems that can detect threats
that have not yet been cataloged. The amount of work in this
area is extensive and with great results, however, many use
behavioral traits that are selected manually.

The malware detection methods may be applied through
dynamic or static analysis. Besides these analysis, signature or
behavior-based techniques can also be applied in conjunction
with the traditional approaches.

Souri e Hosseini[29] presented a literature research on
malware detection using ML. The research scope is very broad
and it is relevant to verify the diversity and effectiveness of
the methods in the area. It presented works with dynamic
detection that reached 88 to 99 % accuracy.

Signature-based methods create, through a specific heuris-
tic, a fixed model for malware which allows its detection
whenever some pattern is found during an analysis. Behavior-
based methods are more flexible and can only be used based
on dynamic analysis. They usually use traces collected during
the execution of the malware which are then converted to fea-
tures, such as system logs and API calls. ML has been used to
perform the detection or classification of malicious artifacts
through the use of these selected attributes that are inserted as
input for the ML algorithms while generating flexible mathe-
matical models that correspond to the malware patterns used
as samples.

The researched works were separated into three categories,
based on the kind of information or method that they use to
conduct the detection process. The first category is for works
using mixed methods, the second is for those that used volatile
memory as information and the last one for those that used
text mining methods. Some works can be included in more
than one category.

4.1 Dynamic detection using mixed methods
Deep Sign [30] focuses on generating behavior-based “sig-
natures“. First, it inserts malware into the virtual machine
using the Cuckoo Sandbox, then all system change records are
collected and a vector of words is generated for each analy-
sis, using a Bag of words. The 20.000 most frequent terms
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are selected and converted to a binary bit-string format that
is passed to a self-coding network to reduce dimensionality,
from 20,000 to 30. These 30 real numbers are used then as
representation of the signature of the malware behavior. This
process proved to be successful in grouping all the numbers
collected with ML algorithms, verifying that malware from
the same family are mapped in the same group.

Fan et al.[33] uses API calls as the main features of the
malware dynamic analysis, but only, 80 selected ones are used
as the attributes for the chosen supervised ML algorithms.
773 malware and 253 goodware are used in order to evaluate
the performance of Decision Trees, SVM and Naive Bayes
classifiers, which uses a 10-fold cross validation approach. It
reported a F-1 of 95% and 88%, respectively, to the algorithms
Decision Tree and SVM.

Pirscoveanu et al.[34] worked with the scalable classifica-
tion of malware. 42,000 samples were dynamically analyzed
with the Cuckoo Sandbox and supervised ML techniques were
used to perform the classification that obtained an accuracy of
98% with the Random Forest classifier. The main attributes
collected were API calls. In their experiment, it is important
to highlight that virtual machines were used with Windows
7, where applications of common use were installed, scripts
were created to simulate background traffic and the InetSim
tool was used to simulate the network services .

Andrade, Mello e Duarte[32] proposed, using sandbox
tools and ML techniques, a fast and different approach for
detecting malware that obtained a 90% accuracy. API calls,
number of processes initiated and download counts were used
as attributes collected by Cuckoo Sandbox. The data model
used was the frequency in which terms appeared, during the
analysis, in the form of a vector, into five classification algo-
rithms: Naive Bayes, SVM, J48, CART and Random Forest.
The best result again was obtained with the Random Forest
algorithm, in a sample of more than 360,000 malware.

Mangialardo e Duarte[35] used the combination of static
and dynamic analysis, in order to circumvent the obfuscation
methods employed by malware which were classified using
single Decision Trees and Random Forest algorithms. As for
the chosen attributes, 9 were selected from the static analysis,
based on specialized knowledge and, for the dynamic anal-
ysis, API call counts were used. It used more than 131,000
samples of malware and 2,600 of goodware. In addition to the
problem of detection, a classification in malware families was
also carried out. The performance, with the Random Forest
algorithm, in the unified and dynamic analysis was 95.75%
and 93.55%, respectively.

Some papers are not focused on presenting testbeds or
on malware detection techniques like the study presented by
Ajmal et al.[31] that is targeted in thread hunting techniques.
In order to discover techniques, tactics, and procedures to
forecast threats, scenarios for malware detection were devel-
oped. This study used SCADABR as HMI in conjunction with
Conpot, that simulated PLCs and the whole SCADA network
with multiple protocols like DNP3 and Modbus. In addition,

it used Cuckoo Sandbox as one of the tools to analyze un-
known binaries and return data logs. As a complete testbed,
it allows the analysis of real SCADA malware like stuxnet,
trisis, triton, and hatman. In their experiments, more than 30
types of attacks could be analyzed and the results are about
60% faster than traditional thread hunting technologies.

4.2 Detection using volatile memory
Mohaisen, Alrawi e Mohaisen[41] introduces AMAL, an au-
tomated behavior-based malware analysis system which uses
features such as the rate of use of the file system, memory,
network, records, etc. From this behavior, quantifiable at-
tributes are generated, and then used as input to ML classifiers
that divides them into families of the same behavior. More
than 115.000 samples were used and an accuracy of 98% was
obtained using an unsupervised clustering algorithm.

Aghaeikheirabady et al.[36] collected 130 attributes from
memory extracts which were manually selected. These at-
tributes were then used as input into the ML classification
algorithms through a 10-fold cross-validation approach with
only 350 malware and 200 goodware. An accuracy of 98%
was obtained using Naive Bayes and Decision Tree and Ran-
dom Forest obtained 96.6% 98.1% accuracy, respectively.

Zaki e Humphrey[42] proposed a rootkit identification sys-
tem based on changes in the volatile memory space reserved
for the kernel. It uses full memory images before and after
executing the malware. The Cuckoo Sandbox tool is also used
to perform dynamic analysis.

Dai et al.[37] used volatile memory graphically repre-
sented to classify malware. The raw image from the memory
is extracted during the dynamic analysis and then converted to
a gray scale image which is, then, used to generate attributes
using a histogram gradient from 1,984 malware of five dif-
ferent families. The ML algorithms used were multi-layer
perceptron and k-NN. The method is fast and achieves an
accuracy and F1 of 95.2% and 94.1% respectively with neural
networks.

4.3 Detection using text mining
Mosli et al.[38] used the Cuckoo Sandbox and real machines
with Windows 7 to perform the analysis of only 400 malware
and 100 benign applications. From this analysis, three types
of information are extracted directly from the logs of Cuckoo,
API calls, registry activities and library imports, all in plain
text format. With these extracts, a balanced frequency table
is built with the inversion of the frequency of the terms. The
samples are, then, classified as malware and not malware
using the ML algorithms. An accuracy of 96% was obtained
with the Stochastic Gradient Descending algorithm.

Al-Rimy et al.[40] combined behavior-based malware
techniques with anomaly detection to investigate ransomware.
The Cuckoo Sandbox was used to proceed with the dynamic
analysis, in which each sample was executed for five seconds
and then the API calls were collected. The attributes of the
classifiers were API-grams, the combination of subsequent
API calls, submitted to the calculation of the frequency of
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Table 2. Related works

D
av

is
et

al
.[1

2]
20

06

M
cD

on
al

d
et

al
.[1

4]
20

08

Fo
vi

no
et

al
.[1

5]
20

09

C
ha

bu
ks

w
ar

et
al

.[1
7]

20
10

C
hu

nl
ei

,L
an

e
Y

iq
i[

19
]2

01
0

M
ir

ko
vi

c
et

al
.[2

0]
20

10

M
or

ri
s,

V
au

gh
n

e
D

an
da

ss
[2

1]
20

11

Q
ue

ir
oz

,M
ah

m
oo

d
e

Ta
ri

[1
1]

20
11

G
en

ge
et

al
.[6

]2
01

2

C
ia

nc
am

er
la

,M
in

ic
hi

no
e

Pa
lm

ie
ri

[2
2]

20
13

Si
at

er
lis

,G
en

ge
e

H
oh

en
ad

el
[2

3]
20

13

Fi
cc

o,
C

ho
ra

ś
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Experimentation platform analysis (Testbed)
Multiprotocol ◦ • ◦ ◦ ◦ • • • • • • ◦ ◦ • •
Cyber layer fidelity ◦ • • ◦ ◦ • • ◦ • ◦ • ◦ • ◦ ◦
Simulated background traffic ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •
Real corporate network ◦ ◦ ∗ ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦
Physical layer fidelity ◦ ◦ • ◦ • ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦
SCADA master available ◦ ◦ • ◦ ◦ ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ •
Allows real malware ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ∗ ◦ • ◦ •
Allows automated repetition ◦ ∗ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ • ∗ • ◦ •
Allows data control ◦ ∗ ◦ ◦ ◦ ◦ ◦ ◦ ∗ ◦ • ∗ • ◦ •
Resilience and security • • ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ • • •
Physical Multiprocesses ◦ • • • ∗ ◦ ◦ • • ◦ • ◦ ◦ ◦ ◦
Interface ∗ ∗ ∗ ∗ ∗ • ∗ ∗ ∗ ∗ • ∗ • ◦ •
Documentation ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
Low cost • • ◦ ∗ ◦ • ∗ • ◦ ∗ • ∗ • ◦ •

Malware impact analysis
Using real malware ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •
External infection vector ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
Analysis in the physical layer ◦ • • ◦ ◦ ◦ ◦ • • ◦ ◦ ◦ ◦ ◦ ◦

A • indicates that the work has the feature.
A ◦ indicates that the work does not have the feature.
A ∗ indicates that the feature could not be evaluated.
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Table 3. Works related to malware detection using ML.

Work Attributes ML Algorithm Accuracy (%)

Andrade, Mello e Duarte[32] API RF 90,00

Fan et al.[33] API DT 95,56

Pirscoveanu et al.[34] API RF 98,00

Mangialardo e Duarte[35] API RF 93,55

Aghaeikheirabady et al.[36] RAM NB 98,90

Dai et al.[37] RAM NN 95,20

David e Netanyahu[30]* Logs SVM 98,60

Mosli et al.[38] Logs SGD 96,00

Mosli et al.[39] RAM SVM 91,00

Al-Rimy et al.[40] API SVM 99,00

85.0 90.0 95.0 100.0

Generic detection methods
Use of attributes from the RAM memory
Use of TF-IDF to process attributes
Only the attributes and classifiers that obtained the best results are presented;
* - Only performed classification, not detection.

terms balanced with the inverse of the frequency in the docu-
ments. The samples were balanced with 90% of goodware and
10% of malware, using 1000 benign applications and 38,152
ransomware. Dynamic detection was performed using SVM
and 10-fold cross-validation, reaching an accuracy of 99 %.

Mosli et al.[39] uses 3,130 malware and 1,157 benign
applications, which, of the malware, 668 did not manifest
themselves, probably because of anti-vm mechanisms. In
their experiment, four systems are virtualized with Windows 7
SP1, and InetSim, in order to simulate network traffic. Images
were taken from the RAM memory during the analysis with
the Cuckoo Sandbox. From this memory images, the handles,
which are abstract pointers used to identify and access system
objects without knowing their exact location in memory, are
extracted and then converted into tokens and vectors using
TF-IDF. A 80% holdout cross validation was performed with
the ML algorithms, obtaining an accuracy of 91% with KNN,
SVM and Random Forest.

4.4 Comparative Analysis
Among the data representation techniques for classification,
term frequency is one of the most used when data are in textual
form or in n-grams. This technique is very efficient when
dealing with a large number of attributes, such as textual data
obtained from volatile memory. When the scope of research
is reduced to works that detect malware from behavioral traits,
using ML and information retrieval techniques from volatile
memory, the amount of research found is greatly reduced,

however, their results are very promising.

It was also noticed a scarcity of studies in the area of
malware detection in ICS. Huda et al.[26] emphasized that
ICS have specific characteristics, which make it difficult to
apply conventional detection methods. Among these charac-
teristics are not being able to have its processes interrupted
and a detection that uses many system resources can delay
communication and compromise connected physical devices.
The choice of using RAM memory is also due to the fact
that it does not depend on the existence or not of a malware
analysis system involved in the process, which can be applied
to real systems. The memory image collection is a simple
and low computational process while the ML training for the
classifiers can be done on another computer.

Table 3 presents a summary of the main works researched
in the area of malware detection using ML. It is important
to note that there is no standard methodology for research
in this area and the works are different from each other in
several aspects, such as sample sizes and types, execution
times, attribute types, analysis tools, processing time, among
others. This requires comparisons to be made in a qualitative
way, rather than quantitative. Table 3 presents a summary of
the final results of each work, with the best classifiers and
accuracies obtained. Those performance measures, however,
should not be used as a quantitative comparison.
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5. Conclusions
ICS are responsible for controlling strategic infrastructures
and, given their importance, they are the target of frequent
cyber attacks with military, financial, or political motivation.
Also, open communication standards are increasingly being
used in ICS, differently from the past when most ICS used
proprietary technologies. Therefore, the vulnerabilities of con-
ventional IT systems are also present in ICS, and the potential
consequences of failures or attacks on critical infrastructures
could be much more impactful.

The analysis of real malware in ICS can expose unknown
vulnerabilities and security demands. In the event of an attack,
it is important to know how impactful the effects could be on
ICS. Testing with real malware is not a common practice, but
only with this approach one can analyze the real impact of
this type of attack.

A large number of studies uses approaches based on phys-
ical and cybernetic simulated components. They are cheaper,
have many features, but do not support the key features to
enable experimentation with real malware and SCADA. Sim-
ulated network systems can model normal operations, but
fail to capture the complexity of interactions between real
software, malware, and hardware.

The presentation of test platforms in ICS with real mal-
ware and impact analysis should be a priority in future studies
in the field. Furthermore, they should allow the faithful repro-
duction of the cyber and physical layers, allowing the wide
execution of the malware.
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