11 research outputs found

    Lightweight Pairwise Key Distribution Scheme for IoTs

    Get PDF
    Embedding a pairwise key distribution approach in IoT systems is challenging as IoT devices have limited resources, such as memory, processing power, and battery life. This paper presents a secure and lightweight approach that is applied to IoT devices that are divided into Voronoi clusters. This proposed algorithm comprises XOR and concatenation operations for interactive authentication between the server and the IoT devices. Predominantly, the authentication is carried out by the server. It is observed that the algorithm is resilient against man-in-the-middle attacks, forward secrecy, Denial of Service (DoS) attacks, and offers mutual authentication. It is also observed that the given scheme has low communication and computing overheads compared to some existing methods

    A secure lightweight authentication mechanism for IoT devices in generic domain

    Get PDF
    The Internet of Things prompt deployment enhances the security concerns of these systems in recent years. The enormous exchange of sensory information between devices raises the necessity for a secure authentication scheme for Internet of Things devices. Despite many proposed schemes, providing authenticated and secure communication for Internet of Things devices is still an open issue. This research addresses challenges pertaining to the Internet of Things authentication, verification, and communication, and proposes a new secure lightweight mechanism for Internet of Things devices in the generic domain. The proposed authentication method utilizes environmental variables obtained by sensors to allow the system to identify genuine devices and reject anomalous connections

    Bio-AKA: An efficient fingerprint based two factor user authentication and key agreement scheme

    Get PDF
    The fingerprint has long been used as one of the most important biological features in the field of biometrics. It is person-specific and remain identical though out one’s lifetime. Physically uncloneable functions (PUFs) have been used in authentication protocols due to the unique physical feature of it. In this paper, we take full advantage of the inherent security features of user’s fingerprint biometrics and PUFs to design a new user authentication and key agreement scheme, namely Bio-AKA, which meets the desired security characteristics. To protect the privacy and strengthen the security of biometric data and to improve the robustness of the proposed scheme, the fuzzy extractor is employed. The scheme proposed in the paper can protect user’s anonymity without the use of password and allow mutual authentication with key agreement. The experimental results show superior robustness and the simplicity of our proposed scheme has been validated via our performance and security analysis. The scheme can be an ideal candidate for real life applications that requires remote user authentication

    An Efficient Authentication Protocol for Smart Grid Communication Based on On-Chip-Error-Correcting Physical Unclonable Function

    Full text link
    Security has become a main concern for the smart grid to move from research and development to industry. The concept of security has usually referred to resistance to threats by an active or passive attacker. However, since smart meters (SMs) are often placed in unprotected areas, physical security has become one of the important security goals in the smart grid. Physical unclonable functions (PUFs) have been largely utilized for ensuring physical security in recent years, though their reliability has remained a major problem to be practically used in cryptographic applications. Although fuzzy extractors have been considered as a solution to solve the reliability problem of PUFs, they put a considerable computational cost to the resource-constrained SMs. To that end, we first propose an on-chip-error-correcting (OCEC) PUF that efficiently generates stable digits for the authentication process. Afterward, we introduce a lightweight authentication protocol between the SMs and neighborhood gateway (NG) based on the proposed PUF. The provable security analysis shows that not only the proposed protocol can stand secure in the Canetti-Krawczyk (CK) adversary model but also provides additional security features. Also, the performance evaluation demonstrates the significant improvement of the proposed scheme in comparison with the state-of-the-art

    Authenticated secret key generation in delay-constrained wireless systems

    Get PDF
    With the emergence of 5G low-latency applications, such as haptics and V2X, low-complexity and low-latency security mechanisms are needed. Promising lightweight mechanisms include physical unclonable functions (PUF) and secret key generation (SKG) at the physical layer, as considered in this paper. In this framework, we propose (i) a zero round trip time (0-RTT) resumption authentication protocol combining PUF and SKG processes, (ii) a novel authenticated encryption (AE) using SKG, and (iii) pipelining of the AE SKG and the encrypted data transfer in order to reduce latency. Implementing the pipelining at PHY, we investigate a parallel SKG approach for multi-carrier systems, where a subset of the subcarriers are used for SKG and the rest for data transmission. The optimal solution to this PHY resource allocation problem is identified under security, power, and delay constraints, by formulating the subcarrier scheduling as a subset-sum 0−1 knapsack optimization. A heuristic algorithm of linear complexity is proposed and shown to incur negligible loss with respect to the optimal dynamic programming solution. All of the proposed mechanisms have the potential to pave the way for a new breed of latency aware security protocols

    A Trusted Platform for Unmanned Aerial Vehicle-Based Bridge Inspection Management System

    Get PDF
    Bridge inspection has a pivotal role in assuring the safety of critical structures constituting society. However, high cost, worker safety, and low objectivity of quality are classic problems in traditional visual inspection. Recent trends in bridge inspection have led to a proliferation of research utilizing Unmanned Aerial Vehicles (UAVs). This thesis proposes a Trusted Platform for Bridge Inspection Management System (Trusted-BIMS) for safe and efficient bridge inspection by proving the UAV-based inspection process and improving the prototype of the previous study. Designed based on a Zero-Trust (ZT) strategy, Trusted-BIMS consist of (1) a database-driven web framework with security features for bridge inspection management, (2) a mobile interface supporting the inspection data collection using UAVs, and (3) a mutual authentication protocol for the Internet of Things (IoTs). The server script language used to implement the web system was PHP and React Native was used for the mobile application development. The secure communication algorithm used server-side PHP and client-side JavaScript, and MySQL was adopted as the database. This paper provides an overview and details of Trusted-BIMS and demonstrates the overall process of bridge inspection using UAVs and applied technologies to the proposed platform. The result of this research will make an important contribution to the field of UAV-based bridge inspection. Further research can be conducted on refined implementations of security algorithms, more comprehensive security schemes, and machine learning technology to reduce human intervention

    Securing IT/OT Links for Low Power IIoT Devices:Design considerations for industry 4.0

    Get PDF
    Manufacturing is facing a host of new security challenges due to the convergence of information technology (IT) and operational technology (OT) in the industry. This article addresses the challenges that arise due to the use of low power Industrial Internet of Things (IIoT) devices in modular manufacturing systems of Industry 4.0. First, we analyze security challenges concerning the manufacturing execution system (MES) and programmable logic controllers (PLC) in IIoT through a selective literature review. Second, we present an exploratory case study to determine a protocol for cryptographic key management and key exchange suitable for the Smart Production Lab of Aalborg University (a learning cyber-physical factory). Finally, we combine the findings of the case study with a quality function deployment (QFD) method to determine design requirements for Industry 4.0. We identify specific requirements from both the high-level domain of factory capabilities and the low-level domain of cryptography and translate requirements between these domains using a QFD analysis. The recommendations for designing a secure smart factory focus on how security can be implemented for low power and low-cost IIoT devices. Even though there have been a few studies on securing IT to OT data exchange, we conclude that the field is not yet in a state where it can be applied in practice with confidence

    AUTHENTICATED KEY ESTABLISHMENT PROTOCOL FOR CONSTRAINED SMART HEALTHCARE SYSTEMS BASED ON PHYSICAL UNCLONABLE FUNCTION

    Get PDF
    Smart healthcare systems are one of the critical applications of the internet of things. They benefit many categories of the population and provide significant improvement to healthcare services. Smart healthcare systems are also susceptible to many threats and exploits because they run without supervision for long periods of time and communicate via open channels. Moreover, in many implementations, healthcare sensor nodes are implanted or miniaturized and are resource-constrained. The potential risks on patients/individuals’ life from the threats necessitate that securing the connections in these systems is of utmost importance. This thesis provides a solution to secure end-to-end communications in such systems by proposing an authenticated key establishment protocol. The main objective of the protocol is to examine how physical unclonable functions could be utilized as a lightweight root of trust. The protocol’s design is based on rigid security requirements and inspired by the vulnerability of physical unclonable function to machine learning modeling attacks as well as the use of a ratchet technique. The proposed protocol verification and analysis revealed that it is a suitable candidate for resource-constrained smart healthcare systems. The proposed protocol’s design also has an impact on other important aspects such as anonymity of sensor nodes and gateway-lose scenario

    Mutual Authentication in IoT Systems Using Physical Unclonable Functions

    No full text
    corecore