

Abdalla Saleh Khalifa Elkushli

]

Maryam Hussain Al Baloushi [Name as on Transcript]

April 2022

MASTER THESIS NO. 2022:16

College of Information Technology

Department of Information Systems and Security

DOCTORAL DISSERTATION No. 2022: ____

College of <college name>

AUTHENTICATED KEY ESTABLISHMENT PROTOCOL

FOR CONSTRAINED SMART HEALTHCARE SYSTEMS

BASED ON PHYSICAL UNCLONABLE FUNCTION

lDYNAMICS OF TUMOR CELLS AND IMMUNE SYSTEM

INTERACTIONS [DISSERTAION TITLE IN UPPERCASES]

United Arab Emirates University

College of Information Technology

Department of Information Systems and Security

AUTHENTICATED KEY ESTABLISHMENT PROTOCOL FOR

CONSTRAINED SMART HEALTHCARE SYSTEMS BASED ON

PHYSICAL UNCLONABLE FUNCTION

Abdalla Saleh Khalifa Elkushli

This thesis is submitted in partial fulfilment of the requirements for the degree of Master

of Science in Information Security

April 2022

Title

Title

United Arab Emirates University Master Thesis

2022: 16

Cover: Securing smart healthcare systems

(Photo: By Abdalla Saleh Khalifa Elkushli)

© 2022 Abdalla Saleh Khalifa Elkushli, Al Ain, UAE

All Rights Reserved

Print: University Print Service, UAEU 2022

 iii

24/4/2022

Declaration of Original Work

I, Abdalla Saleh Khalifa Elkushli, the undersigned, a graduate student at the United Arab

Emirates University (UAEU), and the author of this thesis entitled “Authenticated Key

Establishment Protocol for Constrained Smart Healthcare Systems Based on Physical

Unclonable Function”, hereby, solemnly declare that this thesis is my own original

research work that has been done and prepared by me under the supervision of Dr. Farag

Sallabi, in the College of Information Technology at UAEU. This work has not

previously formed the basis for the award of any academic degree, diploma or a similar

title at this or any other university. Any materials borrowed from other sources (whether

published or unpublished) and relied upon or included in my thesis have been properly

cited and acknowledged in accordance with appropriate academic conventions. I further

declare that there is no potential conflict of interest with respect to the research, data

collection, authorship, presentation and/or publication of this thesis.

Student’s Signature:

Date: _____________________

 iv

Approval of the Master Thesis

 v

This Master Thesis is accepted by:

Dean of the College of Information Technology: Professor Taieb Znati

Signature

Date

Dean of the College of Graduate Studies: Professor Ali Al-Marzouqi

Signature

 Date

13/06/2022

13/06/2022

 vi

Abstract

Smart healthcare systems are one of the critical applications of the internet of

things. They benefit many categories of the population and provide significant

improvement to healthcare services. Smart healthcare systems are also susceptible to many

threats and exploits because they run without supervision for long periods of time and

communicate via open channels. Moreover, in many implementations, healthcare sensor

nodes are implanted or miniaturized and are resource-constrained. The potential risks on

patients/individuals’ life from the threats necessitate that securing the connections in these

systems is of utmost importance. This thesis provides a solution to secure end-to-end

communications in such systems by proposing an authenticated key establishment

protocol. The main objective of the protocol is to examine how physical unclonable

functions could be utilized as a lightweight root of trust. The protocol’s design is based on

rigid security requirements and inspired by the vulnerability of physical unclonable

function to machine learning modeling attacks as well as the use of a ratchet technique.

The proposed protocol verification and analysis revealed that it is a suitable candidate for

resource-constrained smart healthcare systems. The proposed protocol’s design also has

an impact on other important aspects such as anonymity of sensor nodes and gateway-lose

scenario.

Keywords: Authenticated key establishment, Perfect forward secrecy, PUF, Root of

trust, Smart healthcare systems, Resource-constrained.

 vii

Title and Abstract (in Arabic)

ية غير ماد دالة بالاعتماد علىلأنظمة الرعاية الصحية الذكية المقيدة مصادقة وتأسيس مفتاح تشفير بروتوكول

 للاستنساخ قابلة

 ص الملخ

 المجتمعفئات العديد من تفيد هذه الأنظمةتطبيقات إنترنت الأشياء. أهم تعد أنظمة الرعاية الصحية الذكية أحد

عرضة للعديد من التهديدات تكون ة لخدمات الرعاية الصحية. أنظمة الرعاية الصحية الذكية ملحوظتحسينات توفرو

عامة عبر قنوات أن عملية التواصل فيها كمالأنها تعمل دون إشراف لفترات طويلة من الوقت، ختراقات الأمنيةوالا

ذا و تكون مزروعة داخل الجسم أر اشعالاستقد ع، هذه الأنظمة ن تطبيقاتالعديد مفي بالإضافة إلى ذلك، . غير آمنة

نعطي الأفراد أن أو ديدات على حياة المرضى المخاطر المحتملة من هذه التهتحتم علينا ، ومقيدة الموارد. حجم مصغر

الأ هذه قصوى. أهمية الأنظمة هذه في الاتصالات توفرتأمين قنوات حلاً طروحة بتأمين يقوم الأنظمة هذه لمثل

تصميم باقتراح وذلك الطرف، الى الطرف من فيها، ل الاتصال تشفيرابداعي مفتاح وتأسيس .بروتوكول مصادقة

أعباء قليلة أساس للثقة ذوك ستنساخغير قابلة للاالية مادروتوكول هو دراسة كيفية استخدام الدالة الالهدف الرئيسي للب

تمت الاستفادة من ضعف كما صارمة،حسب متطلبات أمنية البروتوكولنجاز الأهداف المرجوة، صمم . لإعلى النظام

 تالسقاطة. كشف آليةالتعلم الآلي بالإضافة إلى استخدام باستخدام نمذجة ال هجوم أمام المادية غير القابلة للنسخ دالةال

لبروتوكول المقترح أنه مرشح مناسب لأنظمة الرعاية الصحية الذكية ذات الموارد المحدودة. ل التحقق والتحليل عمليتا

فقدان سيناريو الاستشعار وتصميم البروتوكول المقترح له أيضًا تأثير على جوانب مهمة أخرى مثل إخفاء هوية عقد

 . جهاز الوسيط ال

، الدالة المادية الغير قابلة للاستنساخ، السرية التامة الأمامية، مصادقة وتأسيس مفتاح تشفير ال: مفاهيم البحث الرئيسية

 .أساس الثقة، أنظمة الرعاية الصحية الذكية، محدودة الموارد

 viii

Acknowledgements

I would like to express my sincere gratitude and appreciation to my advisor Dr.

Farag Sallabi for his continuous support, assistance, and patience. His immense

knowledge, motivation, and enthusiasm were key during my research thesis preparation,

implementation and writing.

Special thanks to Prof. Mohamed Adel Serhani for his assistance, understanding,

and continuous support during the period of my research thesis. Also, I would like to

thank the thesis examination committee members, Dr Muhammed Mehedy Masud and

Dr Hussam Al Hammadi of Khalifa University for their encouragement and insightful

feedback.

In addition, I would like to thank all members of the College of IT, academics and

staff for their guidance and help during my studies at UAEU.

 ix

Dedication

To my parents and family

 x

Table of Contents

Title ... i

Declaration of Original Work .. iii

Approval of the Master Thesis ... iv

Abstract ... vi

Title and Abstract (in Arabic) .. vii

Acknowledgements .. viii

Dedication ... ix

Table of Contents ... x

List of Tables ... xii

List of Figures .. xiii

List of Abbreviations .. xiv

Chapter 1: Introduction .. 1

1.1 Overview .. 1

1.2 Statement of the Problem ... 3

1.3 Research Objectives and Contribution ... 4

1.4 Relevant Literature ... 5

1.4.1 Identification and Authentication .. 5

1.4.2 Key Establishment and Management .. 8

1.4.3 Physical Unclonable Function (PUF) .. 9

1.4.4 Related Literature... 15

Chapter 2: Methodology and Design ... 19

2.1 Network Architecture ... 19

2.2 Adversary/Attack Model .. 20

2.3 Requirements of the Proposed Protocol ... 20

2.3.1 Essential Requirements .. 21

2.3.2 Enhanced Security Requirements .. 22

2.4 Key Hierarchy .. 22

2.5 How and Where PUF Could be Utilized? .. 23

Chapter 3: Protocol Implementation and Analysis .. 26

3.1 Setup Phase .. 27

3.1.1 Node Enrollment .. 27

file:///D:/Thesis/Thesis%20Report%20-%20CGS/Final%20Thesis%20CGS%20-%20v5%20-%20Sent%20to%20CGS.docx%23_Toc105005308

 xi

3.1.2 Gateway Registration ... 28

3.2 Authenticated Key Establishment Phase (Protocol Run) 30

3.3 Protocol Simulation .. 33

3.3.1 Overview .. 33

3.3.2 Simulation Process ... 34

3.3.3 Simulation Results ... 36

3.4 Discussion and Analysis... 37

3.4.1 Proof of Mutual Strong Entity Authentication .. 38

3.4.2 Proof of Session Key Security ... 38

3.4.3 Proof of Resistance to Core Attacks .. 40

3.4.4 Proof of Perfect Forward Secrecy (PFS) ... 41

3.4.5 Proof of Machine Learning Modeling Attack (ML-MA) Resistant 41

3.4.6 Performance Analysis and Comparison ... 42

Chapter 4: Conclusion ... 45

4.1 Research Implications .. 45

4.2 Research Limitation and Future Work ... 46

References .. 47

Appendix .. 51

 xii

List of Tables

Table 1: Characteristics of assigned and inherent identities .. 6

Table 2: Key types and hierarchy ... 23

Table 3: Protocol notation .. 26

Table 4: Computation cost comparison .. 42

Table 5: Advanced features comparison .. 43

 xiii

List of Figures

Figure 1: Challenge-response mapping .. 10

Figure 2: PUF attacks classification ... 14

Figure 3: Network architecture ... 20

Figure 4: Node enrollment process ... 27

Figure 5: Gateway registration process .. 28

Figure 6: Authenticated key establishment phase (Protocol run) 31

Figure 7: Simulation process .. 35

Figure 8: SPAN tool ... 36

Figure 9: Simulation results of OFMC ... 37

Figure 10: Simulation results of CL-AtSe .. 37

 xiv

List of Abbreviations

AKE Authenticated Key Establishment

AVISPA Automated Validation of Internet Security Protocols and

Applications

CA Certification Authority

CRP Challenge-Response Pair

DoSL Denial of Sleep

DY Dolev-Yao

EA Evolution Strategies

ECC Elliptic Curve Cryptography

ES Evolution Strategies

FS Forward Secrecy

GA Genetic Algorithm

HD Hamming Distance

HLPSL High Level Protocol Specification Language

IC Integrated Circuit

ID Identity/Identification

ID-PKC Identity-Based Public Key Cryptography

IoT Internet of Things

LR Logistic Regression

MAC Message Authentication Code

MITM Man in the Middle

ML-MA Machine Learning Modeling attack

NVM Non-Volatile Memory

PDA Personal Digital Assistant

PFS Perfect Forward Secrecy

 xv

PRNG Pseudo Random Number Generator

PUF Physical Unclonable Function

RoT Root of Trust

SCA Side Channel Attack

SHS Smart Healthcare Systems

SVM Support Vector Machine

TPKC Traditional Public Key Cryptography

TPM Trusted Platform Module

TTP Trusted Third-Party

WBAN Wireless Body Area Network

WMSN Wireless Medical Sensor Network

 1

Chapter 1: Introduction

1.1 Overview

Smart Healthcare Systems (SHS) are one of the critical applications of the Internet

of Things (IoT). SHS enables medical doctors and other healthcare professionals to

monitor and even control the health status of patients for an extended period, without the

need for their presence at the clinic or hospital, and with minimal human intervention. SHS

benefits many categories of the population, such as people with chronic diseases or the

elderly. Smart healthcare systems provide significant improvement to healthcare services.

They save human labor time and cut costs without sacrificing comfort.

A typical SHS consists of sensors, actuators, personal assistant devices connected

to the backend system for patient’s health monitoring and control. Sensors and actuators

can be deployed on or implanted inside an individual’s body. These nodes continuously

collect physiological data such as heart rate and body temperature and send it to the

healthcare provider. The data is transmitted through different devices and networks in the

system before it reaches its final aggregation point. The collected data could be used by

medical professionals to perform real-time patient monitoring and diagnosis or saved for

later analysis by other parties to improve both patient experience and healthcare quality.

While smart healthcare systems save lives and improve quality of life, they also

impose risks. Because SHS usually runs without supervision for long periods of time and

communicating messages and data between different devices are sent via open channels,

they are susceptible to many threats and exploits such as Denial of Sleep (DoSL) and node

impersonation (Kumar & Lee, 2012; Sun et al., 2019). These threats have widened the

attack surface and increased the security burden. The threats on SHS could have a serious

impact if realized. In addition to conventional consequences of cyber-attacks such as data

leakage, financial losses and violation of privacy, attacks on SHS also have the potential

to cause direct physical harm as well as jeopardize human life. Moreover, SHS faces many

challenges and constraints. In many implementations, healthcare nodes are implanted or

miniaturized (Hassija et al., 2021). These nodes are designed with a limited power source,

 2

memory, processing, and bandwidth. They are also constrained in their operational

environment.

The potential risks of SHS on patients/individuals’ life necessitate that measures

such as security to protect them are of utmost importance. Security measures should be

applied at hardware, such as nodes and other devices in the system, data, and

communication level. Typically, this is accomplished by satisfying security requirements

such as authentication, confidentiality, integrity, and access control.

In general, the initial step of achieving security in any modern communication

system is establishing a secure connection over open and insecure channels, such as the

internet. The secure channel is expressed by securely setting the secret key/s and other

parameters that are going to be used for that session and authenticate involved parties, in

the same session run. This is accomplished with Authentication and Key Establishment

(AKE) process. Authenticated key establishment is the basis of security and is either a

prerequisite or included in any security solution. The techniques and building blocks of

AKE protocols are mainly based on cryptography.

In fact, authenticated key establishment is not possible without an existing pre-set

secure channel between communicating parties. Pre-set secure channels are established

during the setup/initialization stage. They characterize genuine identities and associated

secret parameters for participating entities. Pre-set secure channel could be represented in

many ways, such as the availability of certificates, a shared key between participant

entities, or with hardware means. These means also provide a Root of Trust (RoT) for the

system.

The root of trust is any hardware or software component (or function) of a

participating device/entity in a security system that establishes the foundation for the chain

of trust (Verbauwhede & Schaumont, 2007). RoT performs and supports initial security-

critical functions such as protecting long-term cryptographic keys and authenticating

entities. The RoT element must be secure by design, protected and extremely hard to

mutate. For critical systems such as SHS, the ideal implementation would be in hardware.

Hardware RoT could be embedded within some system circuitry or as a standalone

security module on a chip. RoT also is highly related to the robustness and efficiency of

 3

security protocols. Accordingly, it should be considered as early as the design and

manufacturing process of nodes, not only during protocols design.

Traditional RoT solutions such as Trusted Platform Module (TPM) standard and

public key certificates are ideal for securing resource-rich nodes or the network and

application layer devices of the SHS architecture. However, they are not suitable for

resource-constrained nodes such as implanted sensors. This is because they usually rely

on complex and computation-intensive cryptographic algorithms. Furthermore, hardware

RoT needs to store the identity and keys on some sort of protected non-volatile memory

(NVM). This implementation requires more power sources, which are scarce in

constrained nodes. All these factors, in turn, add more complexity, area, and cost to the

constrained nodes, which ultimately will hinder the realization of ROT-based security

solutions for SHS.

There is another emerging technology that appears to agree with the requirements

and terms of RoT, and yet could be applicable to constrained nodes in SHS. This

technology is called Physical Unclonable Function (PUF). PUF is a hardware element that

could be integrated with any electronic device. PUF is a function that is generated from

the uniqueness and irreproducibility of the microstructure or circuitry of devices during

the manufacturing stage, thus, acting as the device biometrics. The main application of

PUF is the intrinsic identification of Integrated Circuits (IC). Integrating PUF technology

in constrained nodes can provide hardware RoT and hence could provide a robust basis of

security for SHS with constrained nodes. The unique input-to-output mapping (challenge-

response mechanism) of a PUF instance in a node can be utilized to authenticate the node

as well as assist in generating secret keys and other parameters.

1.2 Statement of the Problem

End-to-end connections (sensor/actuator-gateway-backend server) in smart

healthcare systems pass through different network segments of different service providers.

Therefore, providing secure and reliable connections become imperative and a challenge.

Authenticated key establishment is the first step towards securing these active channels.

The last connection between the gateway and the sensors is the weakest link in

cybersecurity as it involves the most resource-constrained devices (Alladi et al., 2021;

 4

Kompara et al., 2019). Several ongoing research is investigating the security challenges of

such connection but may not provide a suitable solution for resource-constrained SHS

implementation (Banerjee et al., 2019; Fotouhi et al., 2020; Gope et al., 2019; Kompara et

al., 2019).

More specifically, protocols that are based on shared keys as a RoT element don’t

imply good security properties and lack Perfect Forward Secrecy (PFS) property.

Moreover, protocols that are based on public-key cryptography are not lightweight.

Additionally, previous work that endeavors to use PUF was mainly focused on

authentication only and lack network infrastructure support. Their performance impact

also is not evident. PUF implementation also still an emerging field of research. It faces

many challenges and is susceptible to new threats, such as machine learning modeling

attacks (ML-MA) (Rührmair et al., 2010; Ruhrmair & Solter, 2014).

This work is based on the hypothesis that an authenticated key establishment

protocol design that is based on the lowest abstraction of security, i.e., node identity, and

coupled with the use of a lightweight hardware RoT, i.e., PUF, will enhance security and

reduce the computation and storage overhead. Since AKE is the cornerstone of security,

such a design is also likely to enhance other important aspects of SHS. Evaluating this

hypothesis is aligned with the answer to the following research questions:

• How could PUF be leveraged in an AKE protocol design for constrained SHS?

• What enhancements would such a design bring to security and efficiency in these

systems?

1.3 Research Objectives and Contribution

The objective of this work is to propose an improved authenticated key

establishment protocol that is more suitable and efficient for Smart Healthcare Systems

(SHS) with resource-constrained nodes. The proposed protocol aims to solve the

mentioned issues with the previous protocols by employing PUF in the nodes as an

intrinsic identity and the RoT. Specifically, the proposed protocol: (1) provides better

security leveraging the vulnerability of PUF to ML-MA and ratchet technique (Goutsos,

2020); (2) does not require the storage of any secrets on nodes (secret free); (3) and utilizes

 5

lightweight cryptographic primitives. Our contribution to achieving these goals is as

follows:

• Design an enhanced authenticated key establishment protocol for SHS with solid

requirements that satisfy the given objectives.

• Implement the proposed protocol using the AVISPA tool, which mainly simulates

and validates the proposed protocol. The tool also verifies the security of the

protocol against different attack models.

• Analyze the protocol and prove its correctness (against the requirements).

• Evaluate and compare the performance of the proposed protocol against previous

protocols, considering functional features as well as computation costs.

1.4 Relevant Literature

In order to understand the proposed protocol better, a short review of background

topics and the techniques are provided in this chapter. Furthermore, a comprehensive

analysis of previous related work from the literature is included, which highlights the

issues with previous protocols.

1.4.1 Identification and Authentication

Security starts as early as the identification of communicating entities. Entity IDs

also play an essential role in securing devices and preventing many attacks. Although

sometimes identification and entity authentication are treated as synonyms, they are

considered separate but fundamentally related topics. Identification is a significantly

weaker concept than authentication. It is merely stating or claiming an identity, without

necessarily presenting any credible proof. Identification is not expressly a security

mechanism since it doesn’t accomplish any meaningful security objectives. However, it

still has very useful features (Maes, 2013):

1. Identification is considered a necessary prerequisite for entity authentication and

hence an integral part of entity authentication and other security techniques.

 6

2. In certain situations, after authentication for the first time, identification only is

sufficient to fulfill re-authentication since the authentication conditions are met.

3. In some applications without strict security goals, such as non-critical closed

systems, identification only can be sufficient.

Identities can be either assigned or inherent, depending on their identifying

features. Assigned features of an entity could be a barcode that is printed on its surface or

a unique serial number that is either printed or retrieved in the bootstrapping process.

Inherent features are the specific characteristics of an entity that arises in its creation

process. The best analogy to describe the difference between both identification techniques

is with human beings, where we make a distinction between a person’s fingerprints, which

are inherent, and his/her name, which is assigned after birth. Table 1 highlights other

characteristics and differences between the two types of identity (Maes, 2013).

Table 1: Characteristics of assigned and inherent identities

Criteria Assigned identities Inherent identities

Uniqueness

A unique identity needs to be

generated before it is assigned to an

entity. To ensure high probability

uniqueness, a state needs to be kept by

the provisioning party (i.e., counter).

Uniqueness results naturally from

the creation process of inner

circuits of the entities.

Memory

requirements

Permanent physical changes (or at

least non-volatile) need to be made for

each entity during the assignment

process. These changes should be

compatible with the entity’s

construction and induce extra cost.

Additional physical memory

capabilities are not required.

Assignment

process

The process of writing an identity is

intrusive and adds many after-

manufacturing processes.

The process of reading an identity

(enrollment) is less intrusive and

much faster and more reliable.

Cost

Relatively easy and cheap to produce,

even after entity manufacturing.

Harder to produce, costly, and

sometimes impractical after entity

manufacturing.

While inherent identities possess many practical advantages, however, there is no

direct control over the values denoted by the identifiers. This is considered an issue if a

 7

meaning to an identifier value is needed to be assigned (e.g., a serial number that is based

on when an entity is created). Another undesirable aspect of most inherent identities is

their fuzzy nature. In general, the fuzzy random behavior of an inherent identity means

that its responses are not entirely and uniformly distributed. The same responses are also

not “perfectly” reproducible, when measured many times (Maes, 2013).

Authentication is the process of verifying and proving an identity. In information

security, authentication can be related to entities or to data. In the latter, it is called message

authentication. Besides validating identities, entity authentication also assures that the

participating entity is actively present during the authentication process (Menezes et al.,

1996). The types of authentication procedures are:

• One-way / Unilateral authentication: two parties wishing to communicate with each

other, one party authenticates itself to the other.

• Two-way / Mutual authentication: both entities authenticate each other.

• Via Trusted Third-Party (TTP) authentication systems.

Historically, weak entity authentication was considered as the only security

measure, where assigned IDs with passwords were enough to secure communications

between computers. In modern security, this approach does not satisfy most security

requirements. Strong authentication is needed to provide freshness and assurance of

relevant participants. Authentication is the basis of security. Authentication protocols

could be classified into two categories, non-cryptographic (challenge-response), including

conventional password, biometrics, and CAPCHA, and cryptographic. Research in this

field has been – and still – going for decades. In recent protocols, a hybrid approach of

both cryptographic and non-cryptographic types of authentication is included in the design

(Stallings & Brown, 2015).

In this work, the proposed protocol is based on inherent identity (provided by

employing PUF) rather than just the assigned identity of nodes. Even though entity

authentication is particularly considered in this thesis, and is implied whenever we talk

about authentication, message authentication is also needed to verify the integrity of

 8

exchanged messages during protocol run, this prevents many attacks such as message

tampering attacks.

1.4.2 Key Establishment and Management

Although authentication is the initial step of accomplishing security in any

communication protocol, however, authenticating participant entities alone is not

adequate, setting up other secret parameters is needed to secure the connection between

them. The notions “Establishing a secure channel” or “Starting up a secure session”

denotes authentication and key establishment (AKE). Authentication and key

establishment are the fundamental building blocks for securing network communications

over open and insecure channels, such as WLAN and the internet. AKE is performed at

the beginning of each session. The end goal of AKE is to securely establish the secret key/s

that are going to be used for that session - where involved parties have been authenticated

in the same session run.

Authenticated key establishment is the basis for any security protocol and is either

a prerequisite or included in any security solution. The significance of AKE is stated by

the fact that security algorithms and protocols cannot perform their function unless a

session key has been established securely and all parties know with whom they share this

key. The main requirements of any AKE protocol are (Boyd et al., 2020):

• Each party should be able to determine the identity of other participants in the

protocol.

• All participants should be able to construct the same session key.

• Any other party cannot predict the session key.

Practically, establishing authenticated session keys (i.e., secure channel) is not

possible without the availability of pre-set secure channels. All protocols adhere to one of

these modes to establish a new session key (Boyd et al., 2020):

• All parties already share a secret cryptographic key

 9

• A trusted online server must be accessible: each party must share a key with the

trusted online server. To transfer information between the parties, it might be

necessary to pass it through a chain of other trusted online servers.

• A trusted offline server: All parties have private-public key pair, where public keys

are certified from a certification authority (CA).

• Secure physical means for key establishment. PUF is considered one of the

solutions under this category.

Modern security solutions, including authenticated key establishment are based on

cryptography. Cryptography, in turn, is based on keys and secret values. According to

Kerckhoff’s principle, a cryptosystem should be secure even if everything about the

system is public knowledge, except the keys. If the keys used in a system are not secure,

the whole system is not secure, even if secure and robust techniques and algorithms are

used.

Key management is a more general notion than the key establishment. It starts as

early as the registration and initialization procedure of entities (setup). Once initial and

secret keys have been established, they should be managed to provide secure

communication. Key management consists of many services such as establishment,

update, storage, backup, recovery, and revocation of cryptographic keys. Although it is

one of the most important aspects of cryptographic systems, key management is most often

neglected (Masdari et al., 2017). This work mainly focuses on the initial step of key

management, i.e., setup phase and the key establishment procedure during the protocol

run.

1.4.3 Physical Unclonable Function (PUF)

PUF is defined as an embodied function in the physical structure of a device that

maps input challenges to output responses. PUF is non-deterministic and varies for each

instance (Gassend et al., 2002), as opposed to a mathematical function that produces a

fixed output for the same input and is deterministic in nature. The idea of PUF was first

proposed by Pappu et al. (2002). Their concept was based on an optical principle of

operation. Following this work, the concept of silicon PUF was introduced by Gassend et

 10

al. (2002) where the authors argued that a complex integrated circuit could be regarded as

silicon PUF. The silicon PUF exploits the fundamental and random variations in CMOS

circuits as a result of the manufacturing process. In their study, a technique to identify and

authenticate individual ICs were also described.

The complex statistical variations of the circuits embedded in devices can be used

to map a set of challenges to an equivalent set of responses. Each instance of a silicon PUF

and its mapping should be different from other instances. The set of challenge-response

pairs (CRPs) for a silicon PUF can be defined as (Ci, Ri), where i = 1…n. In general,

challenges could be described as a k-bit inputs. The challenges actually control the

behavior of a PUF, where corresponding responses produced based on challenges applied.

As shown in Figure 1, when a challenge C is applied to two distinct PUFs (X and Y), the

respective responses R1 and R2 are generated, where response R1 ≠ response R2.

Figure 1: Challenge-response mapping

The uniqueness of responses act like electronic biometrics, which distinctively

identifies each PUF instance. Silicon PUF eliminates the need for storing secret keys in

the memory, unlike the conventional method of IC security (TPM). This way, secret keys

are only generated when required, by applying a challenge. This implementation provides

intrinsic, random, and secure features for devices embedded with PUF which make it a

promising technology that could replace current security solutions.

 11

1.4.3.1 Variants of PUF

Silicon PUFs can be classified into three categories, according to their challenge-

response properties, each with their own ideal applications (Guajardo et al., 2007; Lim et

al., 2005):

1. Strong PUFs: Strong PUFs are PUFs with a vast number of CRPs. The number of

CRPs increases exponentially as the number of bit challenges rises. The PUF

interface is directly accessible without a protection mechanism and the challenge-

response pairs could be collected using partial measurement.

2. Weak PUFs: PUFs with a small and limited number of CRPs. Weak PUFs also have

fixed challenges.

3. Controlled PUFs: An enhanced version of strong PUFs. The PUF interface is not

directly accessible and is protected by a logic processing unit. Different techniques

of protection such as hash function, obfuscation and permutation is used (Gassend

et al., 2008). Challenges and responses of the strong PUF are processed by the

protection function before being handled to or output from PUF. A model-building

attack is one of the probable attacks on strong PUFs, where the adversary builds a

numerical model of the PUF by measuring an adequate number of CRPs. The

introduction of extra pre and post-processing steps for the controlled PUFs

increases the level of difficulty to measure and collect the CRPs. Hence, it reduces

its vulnerability to model-building attacks.

Based on the above, the main distinction between strong and weak PUFs is the

number of CRPs. Because strong PUFs support a larger number of CRPs, they could be

utilized to provide authentication, particularly, to protocols that use challenge-response

mechanism. On the other hand, the limited number of CRPs of weak PUFs means that

these CRPs should be kept secret. This make weak PUFs more suited for secret key storage

and generation for cryptographic operation such as symmetric encryption and Message

Authentication Code (MAC) (Lim et al., 2005).

 12

1.4.3.2 Quality Metrics of PUF

Uniqueness: It is the ability of uniquely distinguishing one PUF instance from other

instances. The Hamming Distance (HD) is used to measure this uniqueness. The Inter_HD

is the HD between any two binary strings of the same length is the number of locations at

which their corresponding bits are diverse. If the same challenge C is applied to two chips,

i and j (where i≠ j), and n-bit responses are generated, Ri(n) and Rj(n), respectively, the

Inter_HD between k chips is defined as in Equation 1 (Maiti et al., 2013).

Inter_HD =
2

𝑘(𝑘−1)
∑ ∑

HD(𝑅𝑖(𝑛),𝑅𝑗(𝑛))

𝑛

𝑘

𝑗=𝑖+1

𝑘−1

𝑖=1

 × 100% (Equation 1)

To uniquely identify a PUF from other instances of PUFs of a similar type with

high probability, it is a desirable feature to have The PUF responses randomly distributed,

where the Inter_HD is centered close to 50%.

Reliability: This is determined by the consistency of the PUF responses, given the

same challenge at various ambient temperatures and supply voltage oscillations. Intra HD

is used to evaluate the reliability of a PUF instance. For a single chip, represented as i, it

has a challenge C and an n-bit reference response Ri(n) at default room temperature and a

reference supply voltage. If the same challenge C is applied to the chip i at the different

conditions to generate the n-bit response, R’i,j(n), the average Intra_HD form samples is

defined as in Equation 2 (Maiti et al., 2013).

Intra_HD =
1

𝑚
∑

HD(𝑅𝑖(𝑛),𝑅′𝑖,𝑗(𝑛))

𝑛

𝑚

𝑗=1

 × 100% (Equation 2)

From the Intra_HD value produced, the reliability of a PUF instance can be

defined as in Equation 3.

Reliability = 100% − Intra_HD (Equation 3)

 13

From the Equation 3, a small Intra_HD is desired to achieve high reliability.

Uniformity: It is the ratio of 0's and 1's in the response bits of a PUF. The uniformity

of a PUF characterizes the randomness of its response. Ideally, the value of PUF

uniformity should be around 50%. The Hamming Weight (HW) is used to measure the

uniformity in PUF. It evaluates the number of `1' bits in the binary sequence as described

in Equation 4 (Maiti et al., 2013), where ri,j is the jth binary bit of an n-bit response from

chip i.

(Uniformity)𝑖 =
1

𝑛
∑ 𝑟𝑖,𝑗

𝑛

𝑗=1
 × 100% (Equation 4)

Uniqueness and uniformity quality metrics are independent parameters. For k chips

of a similar type of PUF with an n-bit response from each chip, the average uniformity can

be close to the ideal value of 50%, but that does not necessarily mean 50% uniqueness.

For example, a number of chips k of the worst PUF could generate k similar n-bit

responses, which have a well-balanced distribution of 0's and 1's in their n-bit responses.

Furthermore, similar type of PUF k chips could achieve uniqueness around the ideal value

of 50%, whereas the average uniformity is not necessarily at 50%. For example, it is

possible that a number of the k chips of the PUF could generate all 1's or all 0's in their

corresponding responses.

1.4.3.3 Attacks on PUF

PUFs are exposed to many types of attacks. The main category of attacks are

invasive and non-invasive, as shown in Figure 2. Invasive attacks involve physical

modification of the PUF to evaluate it and gain deeper knowledge on its implementation.

Invasive attacks typically affect weak PUFs due to its limited challenges. On the other

hand, non-invasive attacks invisibly collect challenge-response pairs without any physical

modification to the PUFs. Non-invasive attacks usually threaten strong PUFs because they

have a huge number of challenges. In order for this kind of attack to succeed, data (CRPs)

must be gathered and then evaluated. The next section describes non-invasive attacks that

are closely related to our work.

 14

Figure 2: PUF attacks classification

The most significant non-invasive attack that threatens strong PUFs is known as

machine learning modeling attack (ML-MA). This attack was first introduced by Rührmair

et al. (2010). In this attack, an adversary collects vast number of CRPs from the strong

PUF. Next, the adversary infers the behavior of the PUF (challenge-response relationship)

on the unknown CRPs by combining numerical method of analysis along with the internal

characteristics of that specific PUF. The impact of this attack is surprisingly immense since

most strong PUFs, including enhanced versions of arbiter PUF are vulnerable to this type

of attack. Commonly, there are three effective machine learning algorithms, namely

logistic regression (LR), Support Vector Machine (SVM), and evolutionary algorithms

(EA), such as evolution strategies (ES) and genetic algorithm (GA), that are used to

execute modeling attacks.

LR is different from linear regression, where it outputs a probability between 0 and

1 instead of producing ±1 output. The SVM algorithm is a tool that utilizes the optimal

margin between vectors to set the best hyper plane. This method requires computing the

distance of input vectors from the hyperplane. As for the GA algorithm, it handles integer

and binary string solutions by simulating biological evolution using models such as

reproduction, mutation, and selection. ES algorithm is used to generate population

 15

heuristically by adapting the previously produced population to certain environmental

conditions (Ruhrmair & Solter, 2014). The data set processed is randomized to avoid them

from separated linearly. The final resulting model must be parameterized to ensure the

data set (CRPs) is reliable.

Another attack that is concerned with strong PUF is known as side-channel analysis

(SCA). The attacker performs SCA by observing the non-functional metrics of the PUF

element, such as the power consumption or timing parameters to extract information for

developing ML-MA. In general, SCA attack on PUF-based systems is challenging as it

involves attacking the main PUF component/circuitry embedded in the device . Since SCA

alone is hard to perform on PUF element, some researchers proposed combining ML-MA

with SCA to improve the attack results (Karakoyunlu & Sunar, 2010).

1.4.4 Related Literature

In recent years, many protocols that provide authenticated and key exchange

solutions to SHS in different settings have been proposed. Amin et al. (2018) proposed a

protocol for patient monitoring system utilizing wireless medical sensor networks

(WMSN), the protocol provides mutual authentication as well as user anonymity. It was

proved that their protocol is resilient against relevant and known attacks, lightweight and

is suitable for healthcare applications. Additionally, the session key was constructed by all

three entities. One-way function and symmetric encryption were employed for efficiency.

Despite their claim of robust security, Amin et al.’s scheme (2018) still has security

issues. The protocol was analyzed and found susceptible to off-line guessing and the de-

synchronization attacks by authors of (Wu et al., 2018). It was also proven prone to stolen

mobile attacks, secret key exposure and de-synchronization attacks by (Jiang et al., 2017).

Both authors of (Jiang et al., 2017; Wu et al., 2018) proposed an improved protocol that

withstands these attacks and is more efficient in terms of computation cost. Interestingly,

quadratic residues were used by (Jiang et al., 2017) to overcome the mentioned weaknesses

in (Amin et al., 2018).

Alternatively, the work of (Kompara et al., 2019) proposed a new authentication

and key agreement protocol for WBAN that solved the issues of anonymity and

 16

traceability of nodes as well as sensor node capture attack. Their solution came with a cost,

to attain a temporary node id and not reveal the real node id, extra parameters needed to

be saved on the node. Furthermore, the intermediary node (IN), such as smartphone was

excluded in their scheme, this, in turn, might add more overhead on the nodes.

Recently, Fotouhi et al. (2020) designed a lightweight two-factor authentication

protocol that is resilient to key compromise, impersonation, and denial of sleep attacks.

Additionally, they claim that the protocol achieves perfect forward security. Their scheme

also utilized a new hash chain technique and introduced revocation and invalidation of

users to prevent any unauthorized access in case of their password or other parameters

involved in the authentication process are compromised.

The fact that all previous protocols are based on shared keys stored on the device

as a pre-set secure channel make them inadequate for addressing many security issues. For

example, perfect forward secrecy is hard to achieve with such schemes. In addition,

security features such as anonymity were often come with the cost of extra temporary

parameters saved on nodes. Moreover, many added security features such as two-factor

user authentication were implemented on the server-side of the network, and it did not

have any effect on the security on end nodes or intermediary devices, where it is needed

the most.

In the IEEE 802.15.6 communication standard (WBAN) security is initiated with

the security association procedure. During this process, the node and hub are identified to

each other, a pre-shared/new key is activated, and a pairwise temporal key is generated.

To achieve this goal, the nodes and hub negotiate which one of the four key agreement

protocols (defined in the standard) to be applied. All four protocols are based on public-

key cryptography. The security of these four protocols were challenged by (Toorani,

2015). The analysis showed that all the protocols do not provide forward secrecy and

vulnerable to KCI attack. The researchers also hinted that the security mechanism in the

standard does not show any indication for privacy.

Alternatively, other scholars such as in (He et al., 2017; Shen et al., 2018) opt to

use a different approach. The authors used elliptic curve cryptography (ECC) and identity-

based public-key cryptography (ID-PKC), respectively to avoid the need for certificates

 17

and the modular exponentiation in traditional public-key cryptography (TPKC) while

providing robust security. Although ECC and ID-PKC are considered better alternatives -

in terms of computation - than TPKC and might suit intermediary devices in the network

such as gateway, it would not be a suitable solution for constrained nodes.

The proposed protocol aims to design an efficient AKE protocol using PUF. PUF

implementation is rather challenging and is still considered an emerging field of research.

There have been many attempts to use PUF for security protocols. Previous work such as

(Goutsos, 2020; Yanambaka et al., 2019; Yilmaz et al., 2018) mainly consider

authentication. In these protocols, different designs were approached. For example,

Yilmaz et al. (2018) protocol aims for general IoT device without any consideration for

resource constraints. The protocol also assumes that a PUF model for the device is stored

in the verifier’s database along with its ID and MAC address. This scheme also consider

a lightweight secret key encryption to obfuscate the challenge-response relationship.

In (Yanambaka et al., 2019), the design assumes PUF is embedded in every device

participating in the protocol, including the server. During the node enrollment phase, the

response of initial challenge generated in the server is fed to the PUF instance in the node

as the challenge. The response is then fed back to the server which uses it to get a new

response from its PUF instance. The server stores this relationship as the initial CRP and

use it for authentication during protocol run. The CRP is renewed after each session. The

work of Goutsos (2020) presented a CRP ratcheting protocol that is based on PUF. The

protocol also provides only authentication for node to node communication scenario. The

strength of the protocol lies in renewing authentication secrets by blending parameters

from both participating nodes to create a secure link between them. The protocol

implementation also supports de-synchronization recovery.

On the other hand, some recent end-to-end protocols utilize PUF in AKE (Aman et

al., 2017; Banerjee et al., 2019; Gope et al., 2019). Gope et al. (2019) suggested real-time

information exchange security protocol for industrial WSN. Both sensor and end user

device is assumed to be embedded with PUF. In this scheme, most protocol computation

are carried out in the gateway which is considered as a trusted third party. This protocol

relied on the storage of a database of CRPs for each PUF instance in the gateway.

 18

Alternatively, Alladi et al. (2021) opt to store the initial CRP on the edge server side. The

node’s CRP is renewed in each session run and is transmitted securely to the server via a

secure channel. This channel is established during setup stage utilizing another PUF

instance in the gateway.

 19

Chapter 2: Methodology and Design

In this section, the approach used to realize the solution to our research problem is

demonstrated. First, the system architecture with the main entities of the protocol is

depicted. The adversary capabilities that pose threats to the proposed protocol are also

stated. Second, the requirements that the protocol should satisfy to achieve our objectives

are defined. Lastly, the practical steps taken to reach to final protocol design are described.

This includes exploration of key types and hierarchy, followed by an analysis of how and

where PUF could be utilized.

2.1 Network Architecture

The smart healthcare system network architecture is shown in Figure 3. The

architecture consists of three main levels, namely, sensor level, gateway level, and the

medical server level. The sensor level constitutes a Wireless Body Area Network

(WBAN), where sensors are implanted inside the patient’s body. The sensor nodes are

resource-constrained in terms of processing power, storage, data rate, energy, and

communications range. In the second level, a gateway connects the nodes to the server.

Both gateway and nodes are within close proximity, usually the body of the patient or

nearby IoT nodes. The gateway could be a smartphone or a proprietary Personal Digital

Assistant (PDA) provided by the healthcare provider. The gateway is assumed to have fair

resources to pre-process the packets received from the sensor nodes.

The third level is the backend server that resides at the edge computing of the

healthcare provider. In addition to receiving the data from the gateway and process them,

the server performs the protocol initialization and setting up parameters needed for the

protocol run (setup phase). It is assumed that the server is placed on a secure site, trusted

and with unlimited resources.

 20

Figure 3: Network architecture

2.2 Adversary/Attack Model

In the network architecture, the communication channels between nodes and

gateway, and between server and gateway are considered insecure and untrustworthy.

Therefore, the proposed protocol messages are susceptible to many attacks where an

adversary can have control over all these messages. The widely used Dolev-Yao model

(Dolev & Yao, 1983) is employed to assess the attacker capabilities and their impact on

the security of the proposed protocol. The model assumes that the adversary can read,

record, alter, forge, delay, redirect, and delete messages. The adversary also can replay

past or current messages and inject new messages between communicating parties.

Another popular model for evaluating the security of key-exchange protocols known as

the CK-adversary model (Canetti & Krawczyk, 2001) is also considered. Under this

model, an adversary can manipulate messages as in the DY model, as well as the ability

to exploit extra information such as the session keys, private keys, and session state.

2.3 Requirements of the Proposed Protocol

The literature on secure protocol design and the analysis of the previous work

(Section 1.4.4) reveal that addressing the mentioned issues needs rigid requirements

 21

during design stage. Thus, the proposed protocol needs to satisfy the following

requirements to accomplish the wanted objectives:

2.3.1 Essential Requirements

1. Strong entity authentication: The authenticating party should have a fresh

assurance of who is the other participating (authenticated) party.

2. Mutual authentication: Both communicating entities should prove their identities

to each other. This is a crucial security property and a countermeasure to prevent

many attacks.

3. Session key establishment/agreement

a. Key freshness: The session key should be newly generated and all involved

entities should be able to verify its freshness.

b. Key authentication: The session key should be known only to intended

parties.

c. Key integrity: Inputs to session key computation function should be

transferred to other participants in a verifiable manner to assure that they

have not been modified.

d. Key confirmation: Each participant of the protocol should have an

assurance that the generated session key is a good key and the other

participants possess the same session key.

4. Resistant to known attacks: The following list presents core attacks that are a

possible threat to AKE protocols. An adversary could also leverage them as part

of or prerequisite to other attacks. The proposed protocol should have

countermeasure mechanisms to prevent the success of such attacks:

a. Node impersonation attack.

b. Message tampering attack.

c. Replay attack.

d. De-synchronization attack.

e. Privileged insider attack.

f. Man in the middle attack (MITM).

 22

2.3.2 Enhanced Security Requirements

1. Forward secrecy (FS): FS signifies that future secrecy mistakes should not threat

past secrets and is a desirable security property in AKE protocols. The security

of session keys that have been previously established should not be affected even

if a participant entity's private/secret key has been compromised. On the other

hand, if the established session keys remained secure even with compromising

all private long-term keys of participant entities in the protocol, this denotes

perfect forward secrecy (PFS) (Toorani, 2015).

2. Machine learning modeling attack resistant (PUF related).

3. Lightweight (low overhead).

2.4 Key Hierarchy

Theoretically, satisfying the requirements should lead to a secure protocol design.

However, key management is practically the main challenge to achieve security goals.

This is because AKE protocols are based on cryptography, which is based on keys and

secrets. Failing this task usually results in vulnerabilities in the protocol implementation,

which comes in a form of exploiting - or even the likelihood of - some secret parameters

that the protocol’s security depends on. For this reason, key management should be

considered carefully at each stage in the design. The first practical step in the proposed

protocol design is to conceptualize distinct types of keys used in the protocol and how they

relate to each other. Table 2 summarizes key types and their hierarchy.

Table 2 helps in better understanding how various levels of keys and secrets are

related to AKE protocols. It also highlights that the key hierarchy in fact represents secure

channels and the interaction of an AKE protocol. The task of exhibiting a one-fits-all

generic high-level protocol is challenging. This is because the building blocks and steps

differ considerably from protocol implementation to another, for instance, whether

symmetric or asymmetric encryption is employed.

 23

Table 2: Key types and hierarchy

Level Description Example Uses
Occurrenc

e

0 Trusted key
CA key

RoT

Chain of trust

Authority
-

 Node enrollment -- Gateway registration -- Level 1 secret generation
Setup

(once)

1

Secured identity

and/or secret key

of entities

Pre-set secure channel

(Private public key pair

or shared secret key)

Authentication

MAC (integrity)

Construct lower-level

keys

-

2 Other secrets

Random values

Ephemeral keys

Pseudo/Temporary ID

Other computed secrets

Freshness

Extra secrecy

Anonymity/Privacy

Verification/Integrity

Setup

(each

session run)

3 Session key
Agreed-on session key

Distributed session key

Encryption of

transmitted data

Goal of

AKE

protocol

2.5 How and Where PUF Could be Utilized?

Essentially, a PUF instance uniquely identifies the device it is embedded in, which

intuitively makes it a good candidate for providing authentication for that device.

However, the classical implementation of PUF for authentication does not provide

adequate security properties. First, the authenticator (gateway or server) must store a vast

database of challenge-response pairs (CRPs) for each authenticating entity (node) in the

system. Second, this approach is vulnerable to modeling attacks using machine learning

techniques. The PUF’s vulnerability is due to the linearity of its output (follows Gaussian

distribution model). Lastly, this approach does not suit three participants' system model.

Alternatively, PUF could be leveraged differently in designing a security protocol

such as generating random values in the node, a secret function between the gateway and

the node, or as an ephemeral key (to provide PFS). To use PUF as a pseudo-random

number generator (PRNG) in the sensor node, the challenge C could act as a seed in the

generation process and the response RS as the random value generated. Most PUF types

 24

such as arbiter provide outstanding randomness and their output is uniquely and uniformly

distributed.

In protocols that use a shared key to establish the pre-set secure channel between

gateway and node, the constrained node such as implantable probably stores the key for

an extended period (years). If this key is exposed in the gateway the security of the system

will be compromised because it is hard to change the shared key in the node. PUF could

substitute the shared key between the gateway and the node. A pair of challenge-response

is used for this task. The challenge C could be used to identify a node while its response

RS acts as the shared key for node, without the need for any key storage. The challenge-

response pair (CRP) could be easily designed to be updated in each protocol run. However,

this method – again – requires the storage of a vast database for each node in the gateway

and is not secure. The gateway could be lost, stolen, or compromised, which results in

losing the secure channel with the node and jeopardizing the entire system.

The key to enhance PUF implementation in AKE protocols is hiding the

relationship between challenges Cs and responses RSs while abolishing the need for

storage of a database of CRPs. Generally, this implies obfuscating all responses and

storing the minimal CRPs on the gateway, yet, satisfying security requirements of the

protocol. Practically, this is a challenging task, especially for the proposed network

architecture. Considering any solution would be highly correlated to addressing the

following questions:

• How is the session key is going to be constructed?

• How are the secrets constructing the session key going to be transported and

authenticated from one participant to another?

The session key could be constructed as a function of contributions (inputs) from

all protocol participants (key agreement). These inputs could be random values freshly

generated by each participant during session run. Other parameters such as identities could

also be considered in the function for added obfuscation. More importantly, no one

participant should be able to predetermine the resulting session key. To transport the

session key inputs securely from one participant to another, the pre-set secure channel

(shared secret key) is usually used to encrypt the messages containing these key inputs.

 25

The encrypted messages also should be authenticated and verified at the receiving end to

assure their integrity (Section 2.3.1). This could be achieved by setting-up verification

parameters with the secret private keys of the participants.

The vulnerability of PUF to ML-MA (Section 1.4.3.3) could be leveraged to build

a model for each node so that responses RSs could be extracted in other participants than

the node. According to (Ruhrmair & Solter, 2014), a ML-MA on 128-bit arbiter PUF

yielded a 99.9% prediction accuracy rate for only 39200 CRPs. The training time was as

little as 2.10 seconds. Considering a model for PUF would consequently raise the

following questions:

• Where the PUF model would be stored? In the gateway or server?

• What parameters need to be stored?

The PUF model would be better suited in the server as it is assumed to be physically

more secure than the gateway. In this case, the gateway should have knowledge of the

CRPs used as well as their transport and update mechanism in each session run. In fact,

the gateway participation plays a crucial part in the security of the protocol as the

intermediary device, yet, is the most vulnerable. This suggests that minimum secrets

should be stored in the gateway while maintaining a secure relationship between the server

and the node. The strength of the proposed approach lies in the integration between the

PUF instance in the node with the PUF model in the server with the minimum intervention

of the gateway.

To solve this issue a ratchet technique is introduced in the design of the proposed

protocol. The technique is built on ”ratcheting” or refreshing the protocol secrets where

the refreshment process is one-way only (Goutsos, 2020). In this technique, local state that

has been established in previous protocol session is renewed with each fresh session run.

This results in the inability to derive previous secrets from future ones and creates a trust

chain. This technique is used in previous work, such as in (Goutsos & Bystrov, 2019;

Poettering & Rösler, 2018). The proposed protocol is based on combining ratchet with

PUF to provide the desired requirements.

 26

Chapter 3: Protocol Implementation and Analysis

The proposed protocol is conducted in two phases, setup phase and authenticated

key establishment phase. In the setup phase, a secure channel – represented by shared

secrets and verification parameters – is established between the participants of the protocol

and is executed once. This phase is further divided into two stages, the node enrollment

and gateway registration. The authenticated key establishment phase is the main protocol

and is executed in each session run. The setup phase of the protocol is performed over a

secure channel and in a trusted environment, whereas the protocol run phase assumes

untrusted and insecure channel. The notations used in the proposed protocol are illustrated

in Table 3.

Table 3: Protocol notation

Notation Description

V, VID The healthcare provider server and its identity

Gj, GIDj The jth gateway and its identity

Ni, NIDi The ith node and its identity

Vsec Server secret key

Hvsec Masked server secret key

GLKj Gateway long term secret key

SKvg Registration token of gateway

RegN Registration Verifier (server-node)

Ai Masked SKvg (server side)

RegG Registration Verifier (gateway)

Bi Masked SKvg (Gateway side)

Di Masked RegG

Rv, Rg, Rn Random value generated by server, gateway and node, respectively

Kses Session key

Ci, Rsi Challenge and response

Cn, RSn New challenge and response

SNi, SNn Dynamic shared secret between Gj and Ni

 Bitwise XOR function

h () one-way hash function

PUF () Physically unclonable function

 27

3.1 Setup Phase

3.1.1 Node Enrollment

The goal of this stage is enrolling the node Ni to the healthcare system by the server

V. The server V controls the assignment of Ni to a specific gateway Gj. For this reason,

the presence of both Ni and Gj at the same time during both stages of the setup phase is

assumed. The node enrollment stage is performed in an offline mode and through a secure

and trusted channel. The procedure begins with the node Ni identifying itself to the server

V by sending its legitimate identity NIDi (assuming that Ni has an assigned identity). After

receiving NIDi, the server V generates random challenges C1, C2 …Ci and sends them to

the node Ni.

In each time the node Ni receives a challenge Ci, it extracts its corresponding

response RSi from its PUF instance and sends it to the server V. It is suggested that this

process repeats for about 40,000 times (enough challenge-response pairs to build a model

for the PUF with 99.9% prediction accuracy) (Ruhrmair & Solter, 2014). This stage

concludes with the server V generates a PUF model for the node Ni and stores it along

with NIDi in its database. Figure 4 demonstrates the steps carried out in this stage.

Figure 4: Node enrollment process

Server (V) Node (Ni)

Generates random challenges C1, C2, C3

Secure Channel

NIDi

Ci

RSi

Extract RSi = PUF (Ci)

NIDi , PUF model of Ni

 28

3.1.2 Gateway Registration

In this stage, one of the main goals is registering the gateway Gj to the healthcare

system by the server V. More importantly, the server V creates a secure channel between

all participating entities in the protocol (V, Gj, and Ni) where it computes needed secrets,

and initializes identifiers and verification parameters. This stage is executed after the node

Ni is enrolled in the system by the server V and server V has knowledge of NIDi and its

associated PUF model. It is performed in an offline mode and through a secure and trusted

channel. Figure 5 illustrates the procedures for realizing the goals of this stage. The

detailed steps are presented as follows:

Figure 5: Gateway registration process

Server (V) Gateway (Gj)

Secure Channel

GIDj

VID, SKvg, HVsec, C1, SN1

Di

Checks if GIDj exist
Computes HVsec = h(VID || Vsec)

Generates SKvg
Computes RegN = h(NIDi || GIDj || SKvg || HVsec)

Computes Ai = SKvg  h(GIDj || HVsec)

Computes C0 = h(GIDj || NIDi || SKvg || Vsec)
Extracts RS0 = PUF (C0)

Computes C1 = h(C0  h(RS0 || NIDi))
Extracts RS1 = PUF (C1)

Computes SN1= h(C1 || RS1)

Computes RegG = h(NIDi || VID || SKvg ||GLKj)

Computes Bi = SKvg  h(VID|| GLKj)

Computes Di = RegG  h(VID  SKvg  HVsec)

VID, Bi , NIDi, C1, SN1
Ai , RegN, GIDj, Di, NIDi, C0,

C1

 29

Step 1: The gateway Gj initiates this stage by sending its identity GIDj to the

healthcare server V as it is needed to be included in later computation.

Step 2: Upon receiving GIDj, the server V checks if this gateway is already

registered in its database - as the gateway Gj could be registered previously with different

node Ni. Next, the server V computes a masked version of its secret Vsec as HVsec =

(VID || Vsec) and generates a random secret SKvg to be shared with the gateway Gj. After

that, it computes registration value for the node Ni as RegN = h(NIDi || GIDj || SKvg ||

HVsec) to be used in later verification. Finally, a masked version of SKvg is computed as

Ai. Both HVsec and GIDj take part in the masking process.

Step 3: First, the server V computes C0 = h(GIDj || NIDi || SKvg || Vsec). Then, it

extracts the response RS0 of C0 from the PUF model for Ni. Next, it computes the

challenge C1 as h(C0  h(RS0 || NIDi)); extracts its response RS1 from the PUF model

of Ni; and computes the shared secret between the gateway and the node SN1. Lastly, the

server V sends the parameters VID, Ai, HVsec (from step 2), C1, and SN1 to the gateway

Gj.

Step 4: After receiving the server V’s message, the gateway Gj computes

registration verifier parameter RegG as h(NIDi || VID || SKvg || GLKj). Then, it hides the

shared secret SKvg by masking it with h(VID || GLKj) and save it as Bi. After that, it

masks RegG with h(VID  SKvg HVsec) as Di. Finally, the gateway sends Di to the

server V.

Step 5: The server V stores Ai, RegN, GIDj, Di, NIDi, C0, and C1, while the

gateway Gj stores VID, Bi, NIDi, C1, and SN1.

In the proposed protocol, the challenge C0 (Step 3) is considered as a reference

identifier for the node Ni in the system and is kept secret. C0 is constructed as a function

of parameters from all the protocol participants such as the server V’s private key (Vsec)

and shared secret between V and the gateway Gj (SKvg). On the other hand, the challenge

C1 is considered as initial sudo-identity and is constructed as a function of only the node

Ni’s characteristics such as assigned identity NIDi and the reference challenge C0. C1 is

also used as a function in constructing next challenge Ci during protocol run. C1 and SN1

 30

play a key role in the ratchet design. C0 also could be utilized in a fallback mechanism to

retrieve previous Ci.

At the end of this phase (setup), two secured channels are established. The first

channel is between the server V and the gateway Gj. This channel is proved by RegN and

RegG to verify the authentication process (constructed with the private keys of V and Gj,

Vsec and GLKj, respectively), and SKvg as a pre-set shred secret for encryption. The

second channel is between the gateway Gj and the node Ni. This channel is proved by C1

for authentication provision and SN1 as a dynamic shared secret. Both Ci and SNi are a

function of the PUF response RSi which considered the root of trust for the proposed

protocol. The server V verifies the newly generated Ci during the last step of the protocol

run (next phase).

3.2 Authenticated Key Establishment Phase (Protocol Run)

This is the main phase of the protocol that will run continuously to provide a secure

channel to SHS. Its goal is to secure the connection between the server V (could be

represented by registered application process or a user and is referred to as “authority”)

and enrolled node Ni, via the intermediary gateway Gj. To fulfil the goals, all participants

mutually authenticate each other, as well as contribute to (agree on) session key

construction. A summary of this phase is provided in Figure 6 and the steps are described

as follows:

Step 1: After choosing the desired Ni and its associated Gj, the authority on the

server V initiates the process (and authenticates itself) by entering VID and Vsec to get

the masked secret value HVsec*. Then, server V retrieves SKvg* from Ai and computes

RegN* using h(NIDi || GIDj || SKvg || HVsec*). After that, server V verifies whether

RegN* (computed) value is equal to RegN (stored). If RegN* is not valid, the server V

aborts the login process, otherwise, the server proceeds with the following operations:

generates random value Rv; retrieves RegG from Di and h(VID  SKvg  HVsec); masks

Rv as P1 by h(SKvg || GIDj)  Rv; and computes the verification parameter P2 by h(VID

|| NIDi || RegG || Rv). Finally, server V sends message M1 to Gj comprising GIDj, C1, P1,

and P2.

 31

Figure 6: Authenticated key establishment phase (Protocol run)

Server (V) Node (Ni)Gateway (Gj)

Chooses GIDj and NIDi
Inputs VID , Vsec

Computes HVsec* = h(VID || Vsec)

Retrieves SKvg* = Ai  h(GIDj || HVsec)
Computes RegN* = h(NIDi || GIDj || SKvg ||
HVsec*)

If RegN* ≠ RegN, aborts
Else:

Generates Rv
Computes RegG* = Di  h(VID  SKvg*  HVsec)

Computes P1 = h(SKvg || GIDj)  Rv

Computes P2 = h(VID || Ci || RegG* || Rv)

Checks VID, Ci

Retrieves SKvg* = Bi  h(VID II GLKj)
Computes RegG* = h(GIDj ||VID || SKvg* || GLKj)

Computes Rv* = P1*  h(SKvg* || GIDj)
Computes P2* = h(VID || NIDi || RegG* || Rv*)

If P2* ≠ P2, aborts
Else:

Computes P3 = h(Ci || Rv || SKvg)

Computes P4 = P3  SNi
Computes P5 = h(P3 || SNi || Ci)

Extracts RSi = PUF (Ci)
Computes SNi = h (Ci || RSi)

Computes P3* = P4*  SNi

Computes P5* = h (P3* || SNi || Ci)
If P5* ≠ P5, aborts
Else:

Computes Rn = h(RSi || NIDi)

Computes Cn = h (Ci  Rn)
Extracts RSn = PUF (Cn)
Computes SNn = h(Cn || RSn)

Computes Kses = h(P3 || Rn || Cn)

Computes P6 = h(P3 || SNi)  Rn

Computes P7 = h(P3  SNi)  SNn
Computes P8 = h(P3 || Rn || Ci || SNn || Cn)

Retrieves Rn* = P6*  h(P3 || SNi)

Computes Cn* = h (Ci  Rn*)

Retrieves SNn* = h(P3  SNi)  P7

Computes P8* = h(P3 || Rn* || Ci || SNn* || Cn*)
If P8* ≠ P8, aborts
Else:

Computes Kses* = h(P3||Rn || Cn)
Updates Ci, SNi with Cn, SNn

Computes P9 = P3  h(VID || SKvg)
Computes P10 = h(VlD || Kses || Cn)

Computes P3* = P9*  h(VID || SKvg*)

Computes Rn = h(RSi || NIDi)

Computes Cn = h (Ci  Rn)
Computes Kses* = h(P3 || Rn || Cn)
Computes P10* = h(VlD || Kses || Cn)

If P10* ≠ P10, aborts
Else:

Updates Ci with Cn
Confirms secure channel and terminates

M1 = (GIDj, Ci, P1, P2)

M2 = (Ci, P4, P5)

M3 = (Cn, P6, P7, P8)

M4 = (VID, P9, P10)

Insecure ChannelInsecure Channel

Secure channel (authenticated and encrypted by Kses)

 32

Step 2: Upon receiving the login message M1, the gateway Gj checks VID and Ci

against its stored credentials. If there is a match, it proceeds as follows: retrieves SKvg*

form Bi and h(VID || GLKj); computes RegG from h(GIDj || VID || SKvg* || GLKj);

retrieves Rv* form P1 and h(SKvg* || GIDj); and computes verification parameter P2* =

h(VID || NIDi || RegG* || Rv*). Gj verifies that P2* equals received P2. If P2* ≠ P2 the

protocol aborts, else, Gj produces Rg by computing P3 = h(Ci || Rv || SKvg). Gj also masks

P3 with SN1 as P4, computes P5 = h(P3 || SNi || Ci) for verification, forms message M2 =

C2, P4, and P5, and sends it to the node Ni.

Step 3: When the node Ni receives M2, it verifies its legitimacy and authenticity

first. To carry out this task Ni does the following: retrieves RSi from the PUF of Ci;

computes SNi = h (Ci || RSi); retrieves P3* by masking P4 and h(SNi); and computes

verification value P5* = h (P3* || SNi || Ci). Then, Ni verifies whether P5* is equal to the

received P5. If P5* is not valid, the protocol aborts, otherwise, Ni performs the following:

generates Rn = h(RSi || NIDi); computes the new challenge Cn as h(Ci || Rn); retrieves

RSn from the PUF of Cn; and computes session key Kses from h(P3 || Rn || Cn). After

that, it masks Rn with h(P3 || SNi) as P6, SNn with h(P3  SNi) as P7, and computes

verification value P8 = h(P3 || Rn || Ci || SNn || Cn). Lastly, Ni forms the message M3 =

(C2, P6, P7, P8) and sends it back to the gateway Gj.

Step 4: Upon receiving the message M3, Gj first retrieves Rn* by xoring P6 with

h(P3 || SNi), computes Cn* = h (Ci  Rn*), and retrieves SNn* by xoring P7 with h(P3 

SN1). Then, it computes the verification parameter P8* = h(P3 || Rn* || Ci || SNn* || Cn*).

If P8* ≠ received P8 holds, the protocol aborts, else, Gj proceeds with computing the

session key Kses = h(P3 || Rn || Cn) and updating Ci and SNi with Cn and SNn. After that,

Gj masks P3 with h(VID || SKvg) as P9 and computes the verification parameter P10 =

h(VlD || Kses || Cn). Finally, Gj constructs message M4 comprising VID, P19, and P10,

and sends it to the server V.

Step 5: After the server V receives M4 from Gj, it first verifies its legitimacy and

authenticity. To accomplish this, V retrieves P3* form P9*  h(VID || SKvg*), computes

Rn = h(RSi || NIDi) and Cn = h (Ci  Rn) with aid of Ni PUF model. Then V constructs

the session key Kses* = h(P3 || Rn || Cn) and forms the verification message P10* = h(VlD

 33

|| Kses* || Cn*) using previously retrieved and computed parameters . If P12* ≠ P12, the

protocol aborts, else, V updates Ci with Cn in its database, confirms secure channel

establishment, and terminates.

3.3 Protocol Simulation

3.3.1 Overview

To verify that the proposed protocol will function as required and is secure against

the threats in the attack model (Section 2.2), a formal verification tool is required. Formal

verification tools simulate and validate security protocols. Automated Validation of

Internet Security Protocols and Applications (AVISPA) is one of the verification tools that

is extensively used and supported by the research community (Armando et al., 2005;

Viganò, 2006). AVISPA tool uses model checking and state exploration approach. This

tool is used to evaluate the functionality and security of the proposed protocol. The reason

for choosing AVISPA over other tools such as ProVerif and Scyther are:

• AVISPA is actually a back-end framework of four well-known tools. These tools

are: OFMC (On-the-fly Model-Checker), CL-AtSe (Constraint-Logic-based Attack

Searcher), SATMC (SAT-based Model-Checker) and TA4SP (Tree Automata-

based Protocol Analyzer) (Viganò, 2006).

• AVISPA can analyze small, medium-scale protocols as well as large scale internet

security protocols. It also detects attacks against a protocol for infinite as well as

predefined number of sessions.

• AVISPA can analyze many algebraic properties such as Exclusive-Or and

exponentiation natively, as opposed to some other tools that either cannot deal with

these properties or introduce an add-on to achieve that.

AVISPA tool provides a sophisticated language called high level protocol

specification language (HLPSL) to implement a variety of security protocols and describe

their security features. HLPSL is a role-based language. Each participant in the protocol

plays a role. There is also a session and an environment section that connects all the roles

and the way they interact. The goal section sets the security objectives of the protocol.

 34

3.3.2 Simulation Process

1. The proposed protocol design was translated to HLPSL language. The HLPSL

script written as text and then saved in a .hlpsl file, as detailed in appendix. A

summary of the HLPSL language types used in the protocol is as follows:

agent: to represent the participant/entity of the protocol.

symmetric_key: defines the private-key of the agents.

function: defines functions for the whole domain of the message and is helpful

in modeling cryptographic functions. For example, a hash function is a function

of type hash_func.

channel: defines the communication channel between the agents. It is used to

send/receive messages to/from another agent.

played_by: to specify the role played by each agent.

local: declares local variables for agents. For example, to declare variable State

as nat (a natural number) to an agent that indicates its local state. The initial value

of the variable should be set to zero in the init section.

text: to indicate a type of text for the message and is considered to be fresh. For

example, a nonce.

nat : represents natural numbers in non-message contexts.

const: declares a global constant for the roles.

protocol_id: declares constants as protocol identifiers. For example, indicating a

secret between different agents which to be measured later.

Snd/Rcv: defined as of type channel (dy) for communication between agents.

P = | > Q: represents the immediate transition of an event P that is related to an

action Q.

 35

witness(A, B, id, T): declares authentication property T of the agent A by the

agent B on the protocol identifier id in the goal section. The statement

authentication_on id must be present in the goal section.

request(B, A id, T): denotes strong authentication property of A by B on T on the

protocol identifier id in the goal section.

secret(T, idt; A, B): indicates that T is a secret and known for only A and B. The

identifier idt measures the secrecy of E in the goal section. The statement

secrecy_of idt must be presented in the goal section.

2. An interface tool called security protocol animator (SPAN) which is installed in

a Linux operating system environment converts the protocol HLPSL script using

the HLPSL2IF translator into a lower level specification called Intermediate

Format (IF). The IF specification is then fed to the back-ends. Each back-end

provides the results of the protocol analysis in an Output Format (OF). This

process is illustrated in Figure 7.

Figure 7: Simulation process

 36

3. When the SPAN tool executes an HLPSL specification file, the chosen back-end

analyzes the security of the protocol and provides a descriptive output. The

output results describes whether the protocol is secure or has weaknesses against

certain attacks(s). Figure 8 shows a screenshot of the proposed protocol’s

HLPSL file opened with SPAN.

Figure 8: SPAN tool

3.3.3 Simulation Results

The proposed protocol was verified by model checkers OFMC and CL-AtSe back-

ends and the simulation results are presented in Figure 9 and 10. Both results on the model

checkers OFMC and CL- AtSe showed that the proposed protocol is “SAFE” which

concludes that the protocol is secure against known attacks. The simulation against the

other two model checkers SATMC and TA4SP are not applicable since these back-ends

do not support the XOR operation.

 37

Figure 9: Simulation results of OFMC

Figure 10: Simulation results of CL-AtSe

3.4 Discussion and Analysis

In this section, the proposed protocol is analyzed and its validity is discussed. As

the protocol is designed with rigid requirements in mind (described in Section 3.3), the

analysis details how these requirements are satisfied in the proposed protocol. The analysis

focuses on the gateway and the node as well as the exchanged messages between them

 38

during protocol run. The server involvement in the protocol will be discussed only as

needed. The performance of the proposed protocol against other work is also analyzed.

3.4.1 Proof of Mutual Strong Entity Authentication

The proposed protocol achieves strong entity authentication by using nonces

(random challenges) in a challenge-response mechanism to provide freshness and

cryptographically bind entity’s identity to the corresponding authentication messages. The

nonce challenges are represented by Rv, Rg, and Rn. Response is denoted by the messages

contain the encrypted nonce received from the authenticating party along with its identity,

as a fresh proof of its current participation. In the proposer protocol nonces are considered

instead of timestamps or counters (sequence numbers). This is because timestamps and

counters require synchronization and keeping state which must be maintained securely.

They are also more prone to de-synchronization attacks and might add overhead to

constrained nodes.

For example, when the gateway Gj wants to authenticate the node Ni, it initiates

the authentication process by sending Rg (masked with SNi as P4) in message M2 as the

challenge (step 2). The node Ni responds by sending back Rg and its identity Ci -

cryptographically protected by newly generated shared key SNn - represented by

parameter P8, with the message M3 (step 3). This way, the protocol provides strong entity

authentication of Ni to Gj, where: Gj is convinced that the other party is Ni; Gj is assured

that Ni participates in the current protocol run; and Gj knows that Ni is intentionally

communicating with it. Similarly, the gateway Gj authenticates itself to the node Ni with

Cn, Rn and verification parameter P8.

3.4.2 Proof of Session Key Security

Key freshness: The proposed protocol establishes the session key Kses with

participating entities’ contributions, i.e., key agreement. Each entity contributes with a

random value that it freshly generated. Kses is computed as a function of these random

values. The function used is a one-way function. In particular, the protocol computes Kses

as a function of P3 (includes both Rv and Rg) which is generated in the gateway G and Rn

 39

that is constructed from the PUF in the node Ni. In the protocol, this is denoted by Kses =

h(P3 || Rn || Cn). This way, each participant in the protocol is confident that Kses is fresh.

Key authentication: In order to be able to construct the session key Kses, V, Gj, and

Ni should receive other participants’ contributions (Rv, Rg, or Rn) from each other in a

secure manner. Ni receives P3 from Gj in an encrypted form (protected with dynamic

shared key SNi). Likewise, Gj receives Rn from Ni encrypted with SNi and Rv from V

encrypted with shared key between them SKvg. Since SNi is known to only Ni and Gj,

they can both assured the authenticity of the exchanged random values. Similarly, as SKvg

is a secret that is shared between only Gj and V, they can be confident that Rv is authentic.

Key integrity: The protocol verifies the integrity of all inputs to the session key

Kses function (Rv, P3, Rn, and Cn) after their transport between the participants. The

verification process ensures that sent messages are not tampered with or modified by an

adversary. The protocol accomplishes this task by validating the received verification

parameter against the computed one. The verification parameters are generated with a one-

way function that is not possible to reverse.

For example, the gateway Gj computes verification parameter P5 = h(P3 || SNi ||

Ci) that includes both Rv and Rg and sends it with message M2. When the node Ni receives

M2, it computes P5 as well after retrieving other needed parameters. If received parameter

P5 is equivalent to the one computed in Ni that proves the message M2 has not been

altered. Similarly, the node Ni computes verification parameter P8 = h(Rn || Ci || SNn ||

Cn) that includes Rn and Cn and sends it with M3. The gateway Gj verifies the received

parameter P8 against the computed one.

Key confirmation: In the proposed protocol, all participants can confirm that the

established session key Kses is a good key (fresh and authentic) since they could ensure

the freshness and authenticity of the received Kses contributions. Furthermore, the server

V - the initiator of the protocol and final data aggregation point – can confirm that the node

Ni (data collector) possess the same session key Kses. This is achieved by inclusion of the

computed Kses in the gateway and the new challenge Cn in the verification parameter P10.

The server V is assured that the node Ni is mutually believe in the session key Kses and

wants to communicate with it using Kses when it validates the integrity of P10.

 40

3.4.3 Proof of Resistance to Core Attacks

The proposed protocol prevents node impersonation attack with a dynamic pseudo

identity mechanism where the identity of the node Ni changes not only for each session,

but even in each message. The pseudo identity is represented with challenges Ci and Cn.

The challenges are also cryptographically bound in the verification parameters P5 and P8.

Furthermore, even if the adversary succeeded in masquerading as the node Ni to the

gateway Gj, this attempt would fail when the server V verifies that the new challenge Cn

received from Gj is actually not valid.

Replay attack also is not possible with the proposed protocol because of the

freshness element in the messages exchanged, particularly between the gateway Gj and

the node Ni. Freshness is provided by the newly generated random nonces in each session

Rv, Rg (P3), and Rn. The sending party generates the nonce and sends it - encrypted - to

the other party. The receiving party returns it back cryptographically bound to the message.

Preventing message tampering assures the integrity of the messages sent form one

participant to another. In the proposed protocol, this is realized by the verification

parameters P2, P5, P8, and P10. In each step in the protocol, sending entity computes a

verification parameter for the message it intends to send and includes it with the message

itself. The recipient entity verifies that the message was not modified during transmission

by computing the same verification parameter and comparing it with the received one. The

function used to create the verification parameters is a one-way function that is easy to

compute but hard to manipulate.

As for de-synchronization attack, it is more common with protocols that use time

stamps or a counter as a freshness element or when certain parameters need to be updated

in each session run. This attack is not applicable in the proposed protocol as nonces are

used instead. However, the attacker could try to manipulate the pseudo identity Ci to

impact the sequence of the protocol as Ci get updated in each session run and plays

significant role in the protocol. The attacker would not gain anything as manipulating Ci

has no direct effect on the node Ni and could be easily detected in the verification process

and the server V, similar to the countermeasure technique to prevent node impersonation.

 41

Since the communication channel is insecure and exposed, the proposed protocol

is prone to many more attacks. Nevertheless, most of the advanced attacks primarily rely

on the previous core attacks to succeed. The proof of protocol's resistance against the core

attacks infers that it is also secure against more advanced attacks such as privileged insider

attack and man in the middle attacks.

3.4.4 Proof of Perfect Forward Secrecy (PFS)

The proposed protocol’s design prevents an adversary from obtaining past session

keys even upon compromising all the secret long-term keys. In the proposed protocol, the

adversary has the ability to read exchanged messages between any two participants.

Assuming that the adversary acquired previous messages M2 and M3, then, at some point,

compromised the secrets Vsec, SKvg, GLKj, and SNi, the adversary cannot obtain or

compute any previous session key Kses. This is due to the following: First, the adversary

could decrypt the collected messages with the possessed secret keys and get Rv and Rg

(P3), but not Rn. Rn is transported from the node to the gateway encrypted with the node

secret SNi. SNi is dynamic and updated in each session run. Second, none of the

compromised long-term keys participate in the generation or transportation new SNi

(SNn). Furthermore, SNn is constructed as a function of the response RSn which is never

revealed in the messages and the function is irreversible.

3.4.5 Proof of Machine Learning Modeling Attack (ML-MA) Resistant

The design and security of the proposed protocol depend on the challenge-response

relationship of the PUF instance in the node Ni. An adversary could utilize ML-MA to

disclose this relationship to break the security of the protocol. The success of ML-MA

depends on collecting a vast number of challenge-response pairs to construct a model for

the PUF. This is not possible in the proposed protocol. While the adversary could easily

collect challenges Ci (sent in the clear), the responses RSi are never revealed - in any form

- in the protocol messages or the gateway, to be collected. The worst-case scenario is that

the adversary is able to collect Ci, SNi pairs - by any means - and attempts to use machine

learning techniques to extract RSi from SNi. The adversary would not be able to achieve

his/her goal because even though SNi is in fact a function of RSi, the function is only one-

way.

 42

3.4.6 Performance Analysis and Comparison

In this section, the performance of the proposed protocol is evaluated in terms of

computation costs as well as advanced security features. To demonstrate the advantages

of the proposed protocol, it was compared with some of the recently proposed protocols

from the literature, such as protocols of Fotouhi et al. (2020), Kompara et al. (2019), Gope

et al. (2019), and Banerjee et al. (2019).

All the protocols comprise of pseudo random number generator (PRNG), bitwise

XOR, and one-way function such as hash operations. The proposed protocol and protocols

(Banerjee et al., 2019; Gope et al., 2019) also carry out PUF operation as well. The PRNG

and XOR operations are assumed to have very low overhead and are omitted from the

computation cost calculations. Based on the work of Banerjee et al. (2019), the PUF and

hash operations (p and h) in the node are reported with computation time of 0.43 and 1.37

milliseconds (ms), respectively, while the hash operation in the gateway is evaluated at

0.68 milliseconds. The computation cost for both the node and gateway is calculated as

the computation time multiplied by the number of occurrences of that operation. Table 4

shows the computation cost comparison.

Table 4: Computation cost comparison

Protocol

Node Gateway Total

Operations
Comp cost

(ms)
Operations

Comp cost

(ms)
Comp cost

(ms)

Fotouhi et al.

(2020)
7h 9.59 17h 11.56 21.15

Kompara et al.

(2019)
3h 4.11 5h 3.4 7.51

Gope et al. (2019) 4h + 2P 6.34 9h 6.12 12.46

Banerjee et al.

(2019)
6h + 2P 9.08 8h 5.44 14.52

Proposed protocol 9h + 2P 13.19 10h 6.8 19.99

 43

Although all compared protocols achieve the required basic AKE security goals,

their computation time to accomplish this task differs considerably. The proposed protocol

has the highest computation cost in the node (13.19 ms) and the second highest in total

(19.99 ms) among the other protocols. This computation overhead – especially in the node

– is due to the advanced security features in the protocol, such as providing PFS,

adaptability to network changes (offline scenarios), and compromised gateway recovery,

which are not provided by the other protocols. Table 5 compares the proposed protocol’s

advanced security features against the other selected protocols.

Table 5: Advanced features comparison

Protocol PUF PFS
Network

adaptability

Compromised

or lost

gateway

Node

anonymity

Fotouhi et al.

(2020)
× ✓ × × ✓

Kompara et al.

(2019)
× × × × ×

Gope et al. (2019) ✓ ✓ × × ✓

Banerjee et al.

(2019)
✓ ✓ × × ✓

Proposed protocol ✓ ✓ ✓ ✓ ✓

The mentioned features are crucial for any AKE protocol and its security. In fact,

these features are all concerned with the gateway. In all compared protocols, the gateway

acts like a trusted intermediary device, yet is the most vulnerable entity in the protocol.

This is because the gateway stores private and secret keys as well as other secret

parameters for the system. In addition, if the patient lost the gateway, the connection to

the PUF will be lost forever. This is because the CRPs are mostly stored on the gateway.

To collect the CRPs, the PUF circuit usually investigated directly (extracting responses

from sent challenges) only once, during the setup phase, then there should be a mechanism

 44

preventing this for the security of the system. In conclusion, securing the gateway from

such scenarios necessitate the increase in computation overhead.

 45

Chapter 4: Conclusion

This thesis aimed to provide a solution to secure end-to-end connection for smart

healthcare systems with resource-constrained nodes such as implanted sensors. The

proposed solution was designing an enhanced authenticated key establishment (AKE)

protocol based on physical unclonable function as the root of trust and with rigid security

requirements. The protocol was simulated and validated by AVISPA tool as well as

informally verified by analyzing it against the requirements. The formal and informal

analysis of the protocol proved the hypothesis. PUF implementation in AKE protocols not

only enhances security but also could be leveraged in other features such as anonymity

and adaptability for network changes.

4.1 Research Implications

Besides the achievement of its goals, the protocol’s design revealed other features

that could be a significant impact on other important aspects. First, most protocols assume

online connection between the node Ni and the server V via the gateway Gj. A patient

utilizing a smart healthcare system where he/she is equipped with implanted sensor node

could lose the gateway-server connection (internet) for many reasons. The implication of

losing such a connection is that the gateway does not receive the random value generated

in the server Rv nor be able to send the updated node secret Cn to it. The server is also not

aware of the random values generated it the gateway Rg during the disconnection. In this

scenario, the proposed protocol’s design allows for a countermeasure mechanism to be

easily applied to it to retain its functionality and with the same level of security.

The gateway Gj could reuse the last known Rv as a seed in computing a new Rv in

the gateway Gj in such a way that it could be recomputed later in the server V. One

suggestion is using a counter. Another recommendation is using Rv as an input to an

irreversible function such as h(Rv). Since Rg is constructed as a function of Rv, it could

be easily reconstructed back in the server V. One important aspect here is that the server

should have a mechanism in place to trace back the modifications.

 46

Another impact of the proposed design is node anonymity, which is a desirable

property that assures the privacy of patients and their data. In the proposed protocol, the

challenge Ci changes randomly for each session run. In this case, Ci is possibly an ideal

candidate to provide anonymity since it represents a pseudonym of the node Ni. Moreover,

while Ci is known to the node and the server (computed) even in offline mode, it is

transported and updated in the gateway Gi. An alias of the gateway’s identity GIDj could

be also constructed from Ci, for example, as h(Ci  GIDj).

4.2 Research Limitation and Future Work

The main limitation of the proposed protocol is the assumption of an ideal PUF

scenario where responses are 100% reproducible. In fact, the fuzziness of PUF output is

one the issues that hinder utilizing PUF more. A generic (arbiter) PUF also was assumed

without regard to any specific PUF construction type. In the future, the protocol could be

implemented empirically on hardware and the PUF programed in a field programable gate

array (FPGA) to verify the applicability and the performance of the protocol in a more

realistic scenario. Further improvements to the protocol might include performance

optimization as well as more analysis with advanced formal security proof methods such

as real-or-random (RoR).

 47

References

Alladi, T., Chamola, V., & Naren (2021). HARCI: A two-way authentication protocol for

three entity healthcare IoT networks. IEEE Journal on Selected Areas in

Communications, 39(2), 361-369.

Aman, M. N., Chua, K. C., & Sikdar, B. (2017). Mutual authentication in IoT systems

using physical unclonable functions. IEEE Internet of Things Journal, 4(5), 1327-

1340.

Amin, R., Islam, S. H., Biswas, G. P., Khan, M. K., & Kumar, N. (2018). A robust and

anonymous patient monitoring system using wireless medical sensor

networks. Future Generation Computer Systems, 80, 483-495.

Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuéllar, J., Drielsma,

P. H., Heám, P. C., Kouchnarenko, O., Mantovani, J., Mödersheim, S., von

Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., & Vigneron,

L. (2005, July). The AVISPA tool for the automated validation of internet security

protocols and applications. In International conference on computer aided

verification (pp. 281-285). Springer, Berlin, Heidelberg.

Banerjee, S., Odelu, V., Das, A. K., Chattopadhyay, S., Rodrigues, J. J., & Park, Y. (2019).

Physically secure lightweight anonymous user authentication protocol for internet

of things using physically unclonable functions. IEEE Access, 7, 85627-85644.

Boyd, C., Mathuria, A., & Stebila, D. (2020). Protocols for authentication and key

establishment (Vol. 2). Heidelberg: Springer.

Canetti, R., & Krawczyk, H. (2001, May). Analysis of key-exchange protocols and their

use for building secure channels. In International Conference on the Theory and

Applications of Cryptographic Techniques (pp. 453-474). Springer, Berlin,

Heidelberg.

Dolev, D., & Yao, A. (1983). On the security of public key protocols. IEEE Transactions

on information theory, 29(2), 198-208.

Fotouhi, M., Bayat, M., Das, A. K., Far, H. A. N., Pournaghi, S. M., & Doostari, M. A.

(2020). A lightweight and secure two-factor authentication scheme for wireless

body area networks in healthcare IoT. Computer Networks, 177, 107333. DOI:

10.1016/j.comnet.2020.107333.

 48

Gassend, B., Clarke, D., Van Dijk, M., & Devadas, S. (2002, November). Silicon physical

random functions. In Proceedings of the 9th ACM conference on Computer and

communications security (pp. 148-160).

Gassend, B., Dijk, M. V., Clarke, D., Torlak, E., Devadas, S., &Tuyls, P. (2008).

Controlled physical random functions and applications. ACM Transactions on

Information and System Security (TISSEC), 10(4), 1-22.

Gope, P., Das, A. K., Kumar, N., & Cheng, Y. (2019). Lightweight and physically secure

anonymous mutual authentication protocol for real-time data access in industrial

wireless sensor networks. IEEE transactions on industrial informatics, 15(9),

4957-4968.

Goutsos, K. (2020). Physical Unclonability Framework for the Internet of Things,

Doctoral dissertation, Newcastle University. Newcastle, UK.

Goutsos, K., & Bystrov, A. (2019, August). Lightweight PUF-based Continuous

Authentication Protocol. In 2019 International Conference on Computing,

Electronics & Communications Engineering (iCCECE) (pp. 229-234). IEEE.

Guajardo, J., Kumar, S. S., Schrijen, G. J., &Tuyls, P. (2007, September). FPGA intrinsic

PUFs and their use for IP protection. In International workshop on cryptographic

hardware and embedded systems (pp. 63-80). Springer, Berlin, Heidelberg.

Hassija, V., Chamola, V., Bajpai, B. C., & Zeadally, S. (2021). Security issues in

implantable medical devices: Fact or fiction? Sustainable Cities and Society, 66,

102552. DOI: 10.1016/j.scs.2020.102552.

He, D., Zeadally, S., Kumar, N., & Lee, J. H. (2016). Anonymous authentication for

wireless body area networks with provable security. IEEE Systems Journal, 11(4),

2590-2601.

Jiang, Q., Ma, J., Yang, C., Ma, X., Shen, J., & Chaudhry, S. A. (2017). Efficient end-to-

end authentication protocol for wearable health monitoring systems. Computers

& Electrical Engineering, 63, 182-195.

Karakoyunlu, D., & Sunar, B. (2010, December). Differential template attacks on PUF

enabled cryptographic devices. In 2010 IEEE International Workshop on

Information Forensics and Security (pp. 1-6). IEEE.

Kompara, M., Islam, S. H., & Hölbl, M. (2019). A robust and efficient mutual

authentication and key agreement scheme with untraceability for WBANs.

Computer Networks, 148, 196-213.

 49

Kumar, P., & Lee, H. J. (2012). Security issues in healthcare applications using wireless

medical sensor networks: A survey. sensors, 12(1), 55-91.

Lim, D., Lee, J. W., Gassend, B., Suh, G. E., Van Dijk, M., & Devadas, S. (2005).

Extracting secret keys from integrated circuits. IEEE Transactions on Very Large

Scale Integration (VLSI) Systems, 13(10), 1200-1205.

Maes, R. (2013). PUF-based entity identification and authentication. In Physically

unclonable functions (pp. 117-141). Springer, Berlin, Heidelberg.

Maiti, A., Gunreddy, V., &Schaumont, P. (2013). A systematic method to evaluate and

compare the performance of physical unclonable functions. In Embedded systems

design with FPGAs (pp. 245-267). Springer, New York, NY.

Masdari, M., Ahmadzadeh, S., & Bidaki, M. (2017). Key management in wireless Body

Area Network: Challenges and issues. Journal of Network and Computer

Applications, 91, 36-51.

Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of applied

cryptography. CRC press.

Pappu, R., Recht, B., Taylor, J., &Gershenfeld, N. (2002). Physical one-way functions.

Science, 297(5589), 2026-2030.

Poettering, B., & Rösler, P. (2018, August). Towards bidirectional ratcheted key

exchange. In Annual International Cryptology Conference (pp. 3-32). Springer,

Cham.

Ruhrmair, U., & Solter, J. (2014). PUF modeling attacks: An introduction and overview.

In 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)

(pp. 1-6).

Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., &Schmidhuber, J. (2010,

October). Modeling attacks on physical unclonable functions. In Proceedings of

the 17th ACM conference on Computer and communications security (pp. 237-

249).

Shen, J., Chang, S., Shen, J., Liu, Q., & Sun, X. (2018). A lightweight multi-layer

authentication protocol for wireless body area networks. Future Generation

Computer Systems, 78, 956-963.

Stallings, W., Brown, L. (2015). Computer security: principles and practice (pp. 838-0).

Upper Saddle River, NJ, USA: Pearson Education.

 50

Sun, Y., Lo, F. P. W., & Lo, B. (2019). Security and privacy for the internet of medical

things enabled healthcare systems: A survey. IEEE Access, 7, 183339-183355.

Toorani, M. (2015, January). On vulnerabilities of the security association in the IEEE

802.15. 6 standard. In International conference on financial cryptography and

data security (pp. 245-260). Springer, Berlin, Heidelberg.

Verbauwhede, I., & Schaumont, P. (2007, April). Design methods for security and trust.

In 2007 Design, Automation & Test in Europe Conference & Exhibition (pp. 1-

6). IEEE.

Viganò, L. (2006). Automated security protocol analysis with the AVISPA tool.

Electronic Notes in Theoretical Computer Science, 155, 61-86.

Wu, F., Li, X., Sangaiah, A. K., Xu, L., Kumari, S., Wu, L., & Shen, J. (2018). A

lightweight and robust two-factor authentication scheme for personalized

healthcare systems using wireless medical sensor networks. Future Generation

Computer Systems, 82, 727-737.

Yanambaka, V. P., Mohanty, S. P., Kougianos, E., & Puthal, D. (2019). PMsec: Physical

unclonable function-based robust and lightweight authentication in the Internet of

Medical Things. IEEE Transactions on Consumer Electronics, 65(3), 388-397.

Yilmaz, Y., Gunn, S. R., & Halak, B. (2018, July). Lightweight PUF-based authentication

protocol for IoT devices. In 2018 IEEE 3rd international verification and security

workshop (IVSW) (pp. 38-43). IEEE.

 51

Appendix

HLPSL code

role server

(V, Gj, Ni : agent,

SK : symmetric_key,

H : hash_func,

Snd, Rcv : channel(dy))

played_by V

def=

local

State : nat,

VID, GIDj, NIDi, Vsec, HVsec, GLKj, SKvg, RegN, Ai, RegG, Bi, Di, Rv, Rn, Kses,

C0, RS0, Ci, RSi, Cn, RSn, SNi, SNn, P1,P2, P3, P4, P5, P6, P7, P8, P9, P10 : text

const scrt_vn, scrt_g, scrt_vg, scrt_vgn, node_gateway : protocol_id

init State := 0

transition

1. State = 0 /\ Rcv(start) =|>

State' := 1 /\ HVsec' := H(VID.Vsec)

/\ secret({Vsec}, scrt_vn, {V, Ni})

/\ SKvg' := new()

/\ secret ({SKvg}, scrt_vg, {V, Gj})

/\ RegN' := h(NIDi.GIDj.SKvg.HVsec)

/\ Ai' := xor(SKvg,H(GIDj.HVsec))

/\ C0' := H(GIDj.NIDi.SKvg.Vsec)

/\ RS0' := H(xor(C0,Vsec))

/\ Ci' := H(xor(C0,H(RS0.NIDi)))

/\ RSi' := H(xor(Ci,Vsec))

 52

/\ SNi' := H(Ci.RSi)

/\ secret ({SNi}, scrt_vgn, {V, Gj, Ni})

/\ Snd({VID.SKvg.HVsec.Ci.SNi}_SK)

2. State = 1 /\ Rcv({Di}_SK)=|>

State':= 2 /\ HVsec' := H(VID.Vsec)

/\ SKvg' := xor(Ai,H(GIDj.HVsec))

/\ Rv' := new()

/\ RegG' := xor(Di,H(xor(VID,xor(SKvg,HVsec))))

/\ P1' := xor(Rv,H(SKvg.GIDj))

/\ P2' := H(VID.Ci.RegG.Rv)

/\ Snd(GIDj.Ci.P1.P2)

3. State = 2 /\ Rcv(VID,P9,P10) =|>

State':= 3 /\ P3' := xor(P9,H(VID.SKvg))

/\ RSi' := H(xor(Ci,Vsec))

/\ Rn' := H(RSi.NIDi)

/\ Cn' := H(xor(Ci,Rn))

/\ Kses' := H(P3.Rn.Cn)

/\ Ci' := Cn

end role

role gateway

(V, Gj, Ni : agent,

SK : symmetric_key,

H : hash_func,

Snd, Rcv : channel(dy))

played_by Gj

def=

local

State : nat,

 53

VID, GIDj, NIDi, Vsec, HVsec, GLKj, SKvg, RegN, Ai, RegG, Bi, Di, Rv, Rn, Kses,

Ci, Rsi, Cn, RSn, SNi, SNn, P1,P2, P3, P4, P5, P6, P7, P8, P9, P10 : text

const scrt_vn, scrt_g, scrt_vg, scrt_vgn, node_gateway : protocol_id

init State := 0

transition

1. State = 0 /\ Rcv({VID.SKvg.HVsec.Ci.SNi}_SK) =|>

State' := 1 /\ RegG' := H(NIDi.VID.SKvg.GLKj)

/\ secret({GLKj}, scrt_g, {Gj})

/\ Bi' := xor(SKvg,H(VID.GLKj))

/\ Di' := xor(RegG,H(xor(VID,xor(SKvg,HVsec))))

/\ Snd({Di}_SK)

2. State = 1 /\ Rcv(GIDj.Ci.P1.P2) =|>

State' := 2 /\ SKvg' := xor(Bi,H(VID.GLKj))

/\ RegG' := H(GIDj.VID.SKvg.GLKj)

/\ Rv' := xor(P1,H(SKvg.GIDj))

/\ P3' := H(Ci.Rv.SKvg)

/\ P4' := xor(P3,SNi)

/\ P5' := H(P3.SNi.Ci)

/\ witness(Gj,Ni,node_gateway,P3)

/\ Snd(Ci.P4.P5)

3. State = 2 /\ Rcv(Cn.P6.P7.P8) =|>

State' := 3

/\ Rn' := xor(P6,H(P3.SNi))

/\ Cn' := H(xor(Ci,Rn))

/\ SNn' := xor(H(xor(P3,SNi)),P7)

/\ Kses' := H(P3.Rn.Cn)

/\ Ci' := Cn

/\ SNi' := SNn

/\ P9' := xor(P3,H(VID.SKvg))

 54

/\ P10' := (VID.Kses.Cn)

/\ Snd(VID.P9.P10)

end role

role sensornode

(V, Gj, Ni : agent,

SK : symmetric_key,

H : hash_func,

Snd, Rcv : channel(dy))

played_by Ni

def=

local

State : nat,

VID, GIDj, NIDi, Vsec, HVsec, GLKj, SKvg, RegN, Ai, RegG, Bi, Di, Rv, Rn, Kses,

Ci, RSi, Cn, RSn, SNi, SNn, P1,P2, P3, P4, P5, P6, P7, P8, P9, P10 : text

const scrt_vn, scrt_g, scrt_vg, scrt_vgn, node_gateway : protocol_id

init State := 0

transition

1. State = 0 /\ Rcv(Ci.P4.P5) =|>

State' := 1 /\ RSi' := H(xor(Ci,Vsec))

/\ SNi' := H(Ci.RSi)

/\ P3' := xor(P4,SNi)

/\ Rn' := H(RSi.NIDi)

/\ Cn' := H(xor(Ci,Rn))

/\ RSn' := H(xor(Cn,Vsec))

/\ SNn' := H(Cn.RSn)

/\ Kses' := H(P3.Rn.Cn)

/\ P6' := xor(H(P3.SNi),Rn)

/\ P7' := xor(H(xor(P3,SNi)),SNn)

 55

/\ P8' := H(P3.Rn.Ci.SNn.Cn)

/\ request(Ni,Gj,node_gateway,P3)

/\ Snd(P7, P8)

end role

role session

(V, Gj, Ni : agent,

SK : symmetric_key,

H : hash_func)

def=

local

SVch, RVch, SNch, RNch, SGch, RGch : channel(dy)

composition

server(V,Gj,Ni,SK,H,SVch,RVch)

/\ gateway(V,Gj,Ni,SK,H,SGch,RGch)

/\ sensornode(V,Gj,Ni,SK,H,SNch,RNch)

end role

role environment()

def=

const v, gj, ni : agent,

sk : symmetric_key,

h : hash_func,

scrt_vn, scrt_g, scrt_vg, scrt_vgn, node_gateway : protocol_id

intruder_knowledge = {v,gj,ni,h}

composition

session(v,gj,ni,sk,h)

end role

 56

goal

secrecy_of scrt_vn

secrecy_of scrt_g

secrecy_of scrt_vg

secrecy_of scrt_vgn

authentication_on node_gateway

end goal

environment()

This thesis proposes an Authenticated Key Establishment (AKE) protocol to

secure smart healthcare systems with constrained sensors such as implantable.

The protocol utilizes Physical Unclonable Function (PUF) and ratchet

technique to satisfy rigid security requirements and investigate some security

issues that were not addressed in previous protocols.

UAE UNIVERSITY MASTER THESIS NO. 2022:16

Abdalla Elkushli received his MSc in Information Security from the

Department of Information Systems and Security, College of Information

Technology at UAE University, UAE. He received his BSc from the School of

Computing and Information Science, Faculty of Science and Engineering,

Anglia Ruskin University, UK.

Online publication of thesis:

https://scholarworks.uaeu.ac.ae/etds/

