170,382 research outputs found

    Differentiation of multipotent vascular stem cells contributes to vascular diseases.

    Get PDF
    It is generally accepted that the de-differentiation of smooth muscle cells, from the contractile to the proliferative/synthetic phenotype, has an important role during vascular remodelling and diseases. Here we provide evidence that challenges this theory. We identify a new type of stem cell in the blood vessel wall, named multipotent vascular stem cells. Multipotent vascular stem cells express markers, including Sox17, Sox10 and S100β, are cloneable, have telomerase activity, and can differentiate into neural cells and mesenchymal stem cell-like cells that subsequently differentiate into smooth muscle cells. On the other hand, we perform lineage tracing with smooth muscle myosin heavy chain as a marker and find that multipotent vascular stem cells and proliferative or synthetic smooth muscle cells do not arise from the de-differentiation of mature smooth muscle cells. In response to vascular injuries, multipotent vascular stem cells, instead of smooth muscle cells, become proliferative, and differentiate into smooth muscle cells and chondrogenic cells, thus contributing to vascular remodelling and neointimal hyperplasia. These findings support a new hypothesis that the differentiation of multipotent vascular stem cells, rather than the de-differentiation of smooth muscle cells, contributes to vascular remodelling and diseases

    A functional motor unit in the culture dish : co-culture of spinal cord explants and muscle cells

    Get PDF
    Human primary muscle cells cultured aneurally in monolayer rarely contract spontaneously because, in the absence of a nerve component, cell differentiation is limited and motor neuron stimulation is missing(1). These limitations hamper the in vitro study of many neuromuscular diseases in cultured muscle cells. Importantly, the experimental constraints of monolayered, cultured muscle cells can be overcome by functional innervation of myofibers with spinal cord explants in co-cultures. Here, we show the different steps required to achieve an efficient, proper innervation of human primary muscle cells, leading to complete differentiation and fiber contraction according to the method developed by Askanas(2). To do so, muscle cells are co-cultured with spinal cord explants of rat embryos at ED 13.5, with the dorsal root ganglia still attached to the spinal cord slices. After a few days, the muscle fibers start to contract and eventually become cross-striated through innervation by functional neurites projecting from the spinal cord explants that connecting to the muscle cells. This structure can be maintained for many months, simply by regular exchange of the culture medium. The applications of this invaluable tool are numerous, as it represents a functional model for multidisciplinary analyses of human muscle development and innervation. In fact, a complete de novo neuromuscular junction installation occurs in a culture dish, allowing an easy measurement of many parameters at each step, in a fundamental and physiological context. Just to cite a few examples, genomic and/or proteomic studies can be performed directly on the co-cultures. Furthermore, pre- and post-synaptic effects can be specifically and separately assessed at the neuromuscular junction, because both components come from different species, rat and human, respectively. The nerve-muscle co-culture can also be performed with human muscle cells isolated from patients suffering from muscle or neuromuscu diseases(3), and thus can be used as a screening tool for candidate drugs. Finally, no special equipment but a regular BSL2 facility is needed to reproduce a functional motor unit in a culture dish. This method thus is valuable for both the muscle as well as the neuromuscular research communities for physiological and mechanistic studies of neuromuscular function, in a normal and disease context

    Statin-induced myopathic changes in primary human muscle cells and reversal by a prostaglandin F2 alpha analogue

    Get PDF
    Statin-related muscle side effects are a constant healthcare problem since patient compliance is dependent on side effects. Statins reduce plasma cholesterol levels and can prevent secondary cardiovascular diseases. Although statin-induced muscle damage has been studied, preventive or curative therapies are yet to be reported. We exposed primary human muscle cell populations (n = 22) to a lipophilic (simvastatin) and a hydrophilic (rosuvastatin) statin and analyzed their expressome. Data and pathway analyses included GOrilla, Reactome and DAVID. We measured mevalonate intracellularly and analyzed eicosanoid profiles secreted by human muscle cells. Functional assays included proliferation and differentiation quantification. More than 1800 transcripts and 900 proteins were differentially expressed after exposure to statins. Simvastatin had a stronger effect on the expressome than rosuvastatin, but both statins influenced cholesterol biosynthesis, fatty acid metabolism, eicosanoid synthesis, proliferation, and differentiation of human muscle cells. Cultured human muscle cells secreted ω-3 and ω-6 derived eicosanoids and prostaglandins. The ω-6 derived metabolites were found at higher levels secreted from simvastatin-treated primary human muscle cells. Eicosanoids rescued muscle cell differentiation. Our data suggest a new aspect on the role of skeletal muscle in cholesterol metabolism. For clinical practice, the addition of omega-n fatty acids might be suitable to prevent or treat statin-myopathy

    Bindarit inhibits human coronary artery smooth muscle cell proliferation, migration and phenotypic switching

    Get PDF
    Bindarit, a selective inhibitor of monocyte chemotactic proteins (MCPs) synthesis, reduces neointimal formation in animal models of vascular injury and recently has been shown to inhibit in-stent late loss in a placebo-controlled phase II clinical trial. However, the mechanisms underlying the efficacy of bindarit in controlling neointimal formation/restenosis have not been fully elucidated. Therefore, we investigated the effect of bindarit on human coronary smooth muscle cells activation, drawing attention to the phenotypic modulation process, focusing on contractile proteins expression as well as proliferation and migration. The expression of contractile proteins was evaluated by western blot analysis on cultured human coronary smooth muscle cells stimulated with TNF-α (30 ng/mL) or fetal bovine serum (5%). Bindarit (100-300 µM) reduced the embryonic form of smooth muscle myosin heavy chain while increased smooth muscle α-actin and calponin in both TNF-α- and fetal bovine serum-stimulated cells. These effects were associated with the inhibition of human coronary smooth muscle cell proliferation/migration and both MCP-1 and MCP-3 production. The effect of bindarit on smooth muscle cells phenotypic switching was confirmed in vivo in the rat balloon angioplasty model. Bindarit (200 mg/Kg/day) significantly reduced the expression of the embryonic form of smooth muscle myosin heavy chain, and increased smooth muscle α-actin and calponin in the rat carodid arteries subjected to endothelial denudation. Our results demonstrate that bindarit induces the differentiated state of human coronary smooth muscle cells, suggesting a novel underlying mechanisms by which this drug inhibits neointimal formation

    Establishing laboratory standards for biological flight experiments

    Get PDF
    The general objective of this research was to assess the effects of exposure to simulated microgravity on ultrastructural aspects of the contractile system in chicken skeletal muscle cells. This general objective had two specific experimental components: (1) the progression of changes in cell morphology, fusion, and patterns of contractile filament organization in muscle cell cultures grown in hollow fibers in the Clinostat were evaluated, with appropriate controls; (2) to initiate experiments in which muscle cells were grown on the surface of microcarrier beads. The ultimate objective of this second portion of the work is to determine if these beads can be rotated in a bioreactor and thereby obtain a more accurate approximation of the effects of simulated microgravity on differentiated muscle cells

    Abnormal expression of p27kip1 protein in levator ani muscle of aging women with pelvic floor disorders – a relationship to the cellular differentiation and degeneration

    Get PDF
    BACKGROUND: Pelvic floor disorders affect almost 50% of aging women. An important role in the pelvic floor support belongs to the levator ani muscle. The p27/kip1 (p27) protein, multifunctional cyclin-dependent kinase inhibitor, shows changing expression in differentiating skeletal muscle cells during development, and relatively high levels of p27 RNA were detected in the normal human skeletal muscles. METHODS: Biopsy samples of levator ani muscle were obtained from 22 symptomatic patients with stress urinary incontinence, pelvic organ prolapse, and overlaps (age range 38–74), and nine asymptomatic women (age 31–49). Cryostat sections were investigated for p27 protein expression and type I (slow twitch) and type II (fast twitch) fibers. RESULTS: All fibers exhibited strong plasma membrane (and nuclear) p27 protein expression. cytoplasmic p27 expression was virtually absent in asymptomatic women. In perimenopausal symptomatic patients (ages 38–55), muscle fibers showed hypertrophy and moderate cytoplasmic p27 staining accompanied by diminution of type II fibers. Older symptomatic patients (ages 57–74) showed cytoplasmic p27 overexpression accompanied by shrinking, cytoplasmic vacuolization and fragmentation of muscle cells. The plasma membrane and cytoplasmic p27 expression was not unique to the muscle cells. Under certain circumstances, it was also detected in other cell types (epithelium of ectocervix and luteal cells). CONCLUSIONS: This is the first report on the unusual (plasma membrane and cytoplasmic) expression of p27 protein in normal and abnormal human striated muscle cells in vivo. Our data indicate that pelvic floor disorders are in perimenopausal patients associated with an appearance of moderate cytoplasmic p27 expression, accompanying hypertrophy and transition of type II into type I fibers. The patients in advanced postmenopause show shrinking and fragmentation of muscle fibers associated with strong cytoplasmic p27 expression

    11,12-EET stimulates the association of BK channel α and β(1) subunits in mitochondria to induce pulmonary vasoconstriction

    Get PDF
    In the systemic circulation, 11,12-epoxyeicosatrienoic acid (11,12-EET) elicits nitric oxide (NO)- and prostacyclin-independent vascular relaxation, partially through the activation of large conductance Ca2+-activated potassium (BK) channels. However, in the lung 11,12-EET contributes to hypoxia-induced pulmonary vasoconstriction. Since pulmonary artery smooth muscle cells also express BK channels, we assessed the consequences of BKβ1 subunit deletion on pulmonary responsiveness to 11,12-EET as well as to acute hypoxia. In buffer-perfused mouse lungs, hypoxia increased pulmonary artery pressure and this was significantly enhanced in the presence of NO synthase (NOS) and cyclooxygenase (COX) inhibitors. Under these conditions the elevation of tissue EET levels using an inhibitor of the soluble epoxide hydrolase (sEH-I), further increased the hypoxic contraction. Direct administration of 11,12-EET also increased pulmonary artery pressure, and both the sEH-I and 11,12-EET effects were prevented by iberiotoxin and absent in BKβ1−/− mice. In pulmonary artery smooth muscle cells treated with NOS and COX inhibitors and loaded with the potentiometric dye, di-8-ANEPPS, 11,12-EET induced depolarization while the BK channel opener NS1619 elicited hyperpolarization indicating there was no effect of the EET on classical plasma membrane BK channels. In pulmonary artery smooth muscle cells a subpopulation of BK channels is localized in mitochondria. In these cells, 11,12-EET elicited an iberiotoxin-sensitive loss of mitochondrial membrane potential (JC-1 fluorescence) leading to plasma membrane depolarization, an effect not observed in BKβ1−/− cells. Mechanistically, stimulation with 11,12-EET time-dependently induced the association of the BK α and β1 subunits. Our data indicate that in the absence of NO and prostacyclin 11,12-EET contributes to pulmonary vasoconstriction by stimulating the association of the α and β1 subunits of mitochondrial BK channels. The 11,12-EET-induced activation of BK channels results in loss of the mitochondrial membrane potential and depolarization of the pulmonary artery smooth muscle cells

    Alteration of cystic airway mesenchyme in congenital pulmonary airway malformation.

    Get PDF
    Congenital pulmonary airway malformation (CPAM) is the most common congenital lesion detected in the neonatal lung, which may lead to respiratory distress, infection, and pneumothorax. CPAM is thought to result from abnormal branching morphogenesis during fetal lung development, arising from different locations within the developing respiratory tract. However, the pathogenic mechanisms are unknown, and previous studies have focused on abnormalities in airway epithelial cells. We have analyzed 13 excised lung specimens from infants (age < 1 year) with a confirmed diagnosis of type 2 CPAM, which is supposed to be derived from abnormal growth of intrapulmonary distal airways. By examining the mesenchymal components including smooth muscle cells, laminin, and elastin in airway and cystic walls using immunofluorescence staining, we found that the thickness and area of the smooth muscle layer underlining the airway cysts in these CPAM tissue sections were significantly decreased compared with those in bronchiolar walls of normal controls. Extracellular elastin fibers were also visually reduced or absent in airway cystic walls. In particular, a layer of elastin fibers seen in normal lung between airway epithelia and underlying smooth muscle cells was missing in type 2 CPAM samples. Thus, our data demonstrate for the first time that airway cystic lesions in type 2 CPAM occur not only in airway epithelial cells, but also in adjacent mesenchymal tissues, including airway smooth muscle cells and their extracellular protein products. This provides a new direction to study the molecular and cellular mechanisms of CPAM pathogenesis in human

    Architecture of the Medial Smooth Muscle of the Arterial Vessels in the Normal Human Brain: A Scanning Electron-Microscopic Study

    Get PDF
    The architecture of the medial smooth muscle of arterial vessels in normal human brains was investigated using scanning electron microscopy. We could divide the arterial vessels into four subdivisions according to the number of the circular muscle cells. The arteries ( \u3e 100 μm in diameter) had 4-20 layers of circular smooth muscle cells; individual circular muscle cells were spindle-shaped and occasionally had branches at their ends. Multidirectional muscle cells were observed in the medio-adventitial border only at the branching sites in large arteries (\u3e300 μm), but at both branching and non-branching sites in the small arteries (100-300 μm). The nonterminal arterioles (30-100 μm) had 2-3 layers of circular muscle cells; most of the circular muscle cells had nodular or rod-like processes at their branched ends. Multidirectional muscle cells were most frequently observed in the medio-adventitial border in this subdivision at both branching and non-branching sites. The terminal arterioles (10-30 μm) had a single layer of circular muscle cells. Multipolar (stellate in appearance) smooth muscle cells were mainly seen in the medio-adventitial border at branching sites. The precapillary arterioles (7-10 μm) had a single layer of branched muscle cells; individual muscle cells had 2-4 circular branches on both sides of the central bulges

    Activation and contraction of human ‘vascular’ smooth muscle cells grown from circulating blood progenitors

    Get PDF
    Blood outgrowth smooth muscle cells offer the means to study vascular cells without the requirement for surgery providing opportunities for drug discovery, tissue engineering and personalised medicine. However, little is known about these cells which has meant their therapeutic potential remains unexplored. Our objective was to investigate for the first time the ability of blood outgrowth smooth muscle cells and vessel derived smooth muscle cells to sense the thromboxane mimetic U46619 by measuring intracellular calcium elevation and contraction. U46619 (10 26 -6 M) increased cytosolic calcium in blood outgrowth smooth muscle cells fibroblasts. Increased calcium signal peaked between 10-20 seconds after U46619 in both smooth muscle cell types. Importantly, U46619 (10-9 to 10-6 M) induced concentration-dependent contractions of both blood outgrowth smooth muscle cells and vascular smooth muscle cells but not in fibroblasts. In summary, we show that functional responses of blood outgrowth smooth muscle cells are in line with vascular smooth muscle cells providing critical evidence of their application in biomedical research
    • …
    corecore