1,201 research outputs found

    Digital twin and its implementations in the civil engineering sector

    Get PDF
    Digital Twin (DT) concept has recently emerged in civil engineering; however, some problems still need to be addressed. First, DT can be easily confused with Building Information Modelling (BIM) and Cyber-Physical Systems (CPS). Second, the constituents of DT applications in this sector are not well-defined. Also, what the DT can bring to the civil engineering industry is still ambiguous. To address these problems, we reviewed 468 articles related to DT, BIM and CPS, proposed a DT definition and its constituents in civil engineering and compared DT with BIM and CPS. Then we reviewed 134 papers related to DT in the civil engineering sector out of 468 papers in detail. We extracted DT research clusters based on the co-occurrence analysis of paper keywords' and the relevant DT constituents. This research helps establish the state-of-the-art of DT in the civil engineering sector and suggests future DT development

    Water and Wastewater Pipe Nondestructive Evaluation and Health Monitoring: A Review

    Get PDF
    Civil infrastructures such as bridges, buildings, and pipelines ensure society's economic and industrial prosperity. Specifically, pipe networks assure the transportation of primary commodities such as water, oil, and natural gas. The quantitative and early detection of defects in pipes is critical in order to avoid severe consequences. As a result of high-profile accidents and economic downturn, research and development in the area of pipeline inspection has focused mainly on gas and oil pipelines. Due to the low cost of water, the development of nondestructive inspection (NDI) and structural health monitoring (SHM) technologies for fresh water mains and sewers has received the least attention. Moreover, the technical challenges associated with the practical deployment of monitoring system demand synergistic interaction across several disciplines, which may limit the transition from laboratory to real structures. This paper presents an overview of the most used NDI/SHM technologies for freshwater pipes and sewers. The challenges that said infrastructures pose with respect to oil and natural gas pipeline networks will be discussed. Finally, the methodologies that can be translated into SHM approaches are highlighted

    D5.1 SHM digital twin requirements for residential, industrial buildings and bridges

    Get PDF
    This deliverable presents a report of the needs for structural control on buildings (initial imperfections, deflections at service, stability, rheology) and on bridges (vibrations, modal shapes, deflections, stresses) based on state-of-the-art image-based and sensor-based techniques. To this end, the deliverable identifies and describes strategies that encompass state-of-the-art instrumentation and control for infrastructures (SHM technologies).Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement EconòmicObjectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraPreprin

    Defect Detection and Classification in Sewer Pipeline Inspection Videos Using Deep Neural Networks

    Get PDF
    Sewer pipelines as a critical civil infrastructure become a concern for municipalities as they are getting near to the end of their service lives. Meanwhile, new environmental laws and regulations, city expansions, and budget constraints make it harder to maintain these networks. On the other hand, access and inspect sewer pipelines by human-entry based methods are problematic and risky. Current practice for sewer pipeline assessment uses various types of equipment to inspect the condition of pipelines. One of the most used technologies for sewer pipelines inspection is Closed Circuit Television (CCTV). However, application of CCTV method in extensive sewer networks involves certified operators to inspect hours of videos, which is time-consuming, labor-intensive, and error prone. The main objective of this research is to develop a framework for automated defect detection and classification in sewer CCTV inspection videos using computer vision techniques and deep neural networks. This study presents innovative algorithms to deal with the complexity of feature extraction and pattern recognition in sewer inspection videos due to lighting conditions, illumination variations, and unknown patterns of various sewer defects. Therefore, this research includes two main sub-models to first identify and localize anomalies in sewer inspection videos, and in the next phase, detect and classify the defects among the recognized anomalous frames. In the first phase, an innovative approach is proposed for identifying the frames with potential anomalies and localizing them in the pipe segment which is being inspected. The normal and anomalous frames are classified utilizing a one-class support vector machine (OC-SVM). The proposed approach employs 3D Scale Invariant Feature Transform (SIFT) to extract spatio-temporal features and capture scene dynamic statistics in sewer CCTV videos. The OC-SVM is trained by the frame-features which are considered normal, and the outliers to this model are considered abnormal frames. In the next step, the identified anomalous frames are located by recognizing the present text information in them using an end-to-end text recognition approach. The proposed localization approach is performed in two steps, first the text regions are detected using maximally stable extremal regions (MSER) algorithm, then the text characters are recognized using a convolutional neural network (CNN). The performance of the proposed model is tested using videos from real-world sewer inspection reports, where the accuracies of 95% and 86% were achieved for anomaly detection and frame localization, respectively. Identifying the anomalous frames and excluding the normal frames from further analysis could reduce the time and cost of detection. It also ensures the accuracy and quality of assessment by reducing the number of neglected anomalous frames caused by operator error. In the second phase, a defect detection framework is proposed to provide defect detection and classification among the identified anomalous frames. First, a deep Convolutional Neural Network (CNN) which is pre-trained using transfer learning, is used as a feature extractor. In the next step, the remaining convolutional layers of the constructed model are trained by the provided dataset from various types of sewer defects to detect and classify defects in the anomalous frames. The proposed methodology was validated by referencing the ground truth data of a dataset including four defects, and the mAP of 81.3% was achieved. It is expected that the developed model can help sewer inspectors in much faster and more accurate pipeline inspection. The whole framework would decrease the condition assessment time and increase the accuracy of sewer assessment reports

    The role of deep learning in urban water management: A critical review

    Get PDF
    This is the final version. Available on open access from Elsevier via the DOI in this recordDeep learning techniques and algorithms are emerging as a disruptive technology with the potential to transform global economies, environments and societies. They have been applied to planning and management problems of urban water systems in general, however, there is lack of a systematic review of the current state of deep learning applications and an examination of potential directions where deep learning can contribute to solving urban water challenges. Here we provide such a review, covering water demand forecasting, leakage and contamination detection, sewer defect assessment, wastewater system state prediction, asset monitoring and urban flooding. We find that the application of deep learning techniques is still at an early stage as most studies used benchmark networks, synthetic data, laboratory or pilot systems to test the performance of deep learning methods with no practical adoption reported. Leakage detection is perhaps at the forefront of receiving practical implementation into day-to-day operation and management of urban water systems, compared with other problems reviewed. Five research challenges, i.e., data privacy, algorithmic development, explainability and trustworthiness, multi-agent systems and digital twins, are identified as key areas to advance the application and implementation of deep learning in urban water management. Future research and application of deep learning systems are expected to drive urban water systems towards high intelligence and autonomy. We hope this review will inspire research and development that can harness the power of deep learning to help achieve sustainable water management and digitalise the water sector across the world.Royal SocietyAlan Turing InstituteNational Natural Science Foundation of Chin

    EG-ICE 2021 Workshop on Intelligent Computing in Engineering

    Get PDF
    The 28th EG-ICE International Workshop 2021 brings together international experts working at the interface between advanced computing and modern engineering challenges. Many engineering tasks require open-world resolutions to support multi-actor collaboration, coping with approximate models, providing effective engineer-computer interaction, search in multi-dimensional solution spaces, accommodating uncertainty, including specialist domain knowledge, performing sensor-data interpretation and dealing with incomplete knowledge. While results from computer science provide much initial support for resolution, adaptation is unavoidable and most importantly, feedback from addressing engineering challenges drives fundamental computer-science research. Competence and knowledge transfer goes both ways

    Advanced photonic and electronic systems WILGA 2018

    Get PDF
    WILGA annual symposium on advanced photonic and electronic systems has been organized by young scientist for young scientists since two decades. It traditionally gathers around 400 young researchers and their tutors. Ph.D students and graduates present their recent achievements during well attended oral sessions. Wilga is a very good digest of Ph.D. works carried out at technical universities in electronics and photonics, as well as information sciences throughout Poland and some neighboring countries. Publishing patronage over Wilga keep Elektronika technical journal by SEP, IJET and Proceedings of SPIE. The latter world editorial series publishes annually more than 200 papers from Wilga. Wilga 2018 was the XLII edition of this meeting. The following topical tracks were distinguished: photonics, electronics, information technologies and system research. The article is a digest of some chosen works presented during Wilga 2018 symposium. WILGA 2017 works were published in Proc. SPIE vol.10445. WILGA 2018 works were published in Proc. SPIE vol.10808

    Quality assessment of CIPP lining in sewers:Crucial knowledge acquired by IKT and research gaps identified in Germany

    Get PDF
    Deterioration of buried water and sewer pipes is a significant concern among utilities around the world. Cured-In-Place-Pipe (CIPP) is one of the techniques commonly adopted to rehabilitate pipes. The main purpose of this paper is to provide a brief, but comprehensive, summary of information needed by researchers, engineers and municipalities to recognize the barriers and difficulties that may arise during CIPP sewer rehabilitation work. Thus, this paper outlines the issues and challenges associated with CIPP rehabilitation of main and lateral sewers by analyzing a series of projects conducted by IKT-Institute for Underground Infrastructure in Germany over the last two decades. Finally, ideas for further research are then proposed to reduce the obstacles and risks linked with this technique
    • …
    corecore