364 research outputs found

    Resource allocation for transmit hybrid beamforming in decoupled millimeter wave multiuser-MIMO downlink

    Get PDF
    This paper presents a study on joint radio resource allocation and hybrid precoding in multicarrier massive multiple-input multiple-output communications for 5G cellular networks. In this paper, we present the resource allocation algorithm to maximize the proportional fairness (PF) spectral efficiency under the per subchannel power and the beamforming rank constraints. Two heuristic algorithms are designed. The proportional fairness hybrid beamforming algorithm provides the transmit precoder with a proportional fair spectral efficiency among users for the desired number of radio-frequency (RF) chains. Then, we transform the number of RF chains or rank constrained optimization problem into convex semidefinite programming (SDP) problem, which can be solved by standard techniques. Inspired by the formulated convex SDP problem, a low-complexity, two-step, PF-relaxed optimization algorithm has been provided for the formulated convex optimization problem. Simulation results show that the proposed suboptimal solution to the relaxed optimization problem is near-optimal for the signal-to-noise ratio SNR <= 10 dB and has a performance gap not greater than 2.33 b/s/Hz within the SNR range 0-25 dB. It also outperforms the maximum throughput and PF-based hybrid beamforming schemes for sum spectral efficiency, individual spectral efficiency, and fairness index

    Transmit Power Minimization in Small Cell Networks Under Time Average QoS Constraints

    Full text link
    We consider a small cell network (SCN) consisting of N cells, with the small cell base stations (SCBSs) equipped with Nt \geq 1 antennas each, serving K single antenna user terminals (UTs) per cell. Under this set up, we address the following question: given certain time average quality of service (QoS) targets for the UTs, what is the minimum transmit power expenditure with which they can be met? Our motivation to consider time average QoS constraint comes from the fact that modern wireless applications such as file sharing, multi-media etc. allow some flexibility in terms of their delay tolerance. Time average QoS constraints can lead to greater transmit power savings as compared to instantaneous QoS constraints since it provides the flexibility to dynamically allocate resources over the fading channel states. We formulate the problem as a stochastic optimization problem whose solution is the design of the downlink beamforming vectors during each time slot. We solve this problem using the approach of Lyapunov optimization and characterize the performance of the proposed algorithm. With this algorithm as the reference, we present two main contributions that incorporate practical design considerations in SCNs. First, we analyze the impact of delays incurred in information exchange between the SCBSs. Second, we impose channel state information (CSI) feedback constraints, and formulate a joint CSI feedback and beamforming strategy. In both cases, we provide performance bounds of the algorithm in terms of satisfying the QoS constraints and the time average power expenditure. Our simulation results show that solving the problem with time average QoS constraints provide greater savings in the transmit power as compared to the instantaneous QoS constraints.Comment: in Journal on Selected Areas of Communications (JSAC), 201

    Resource allocation for delay constrained wireless communications

    Get PDF
    The ultimate goal of future generation wireless communications is to provide ubiquitous seamless connections between mobile terminals such as mobile phones and computers so that users can enjoy high-quality services at anytime anywhere without wires. The feature to provide a wide range of delay constrained applications with diverse quality of service (QoS) requirements, such as delay and data rate requirements, will require QoS-driven wireless resource allocation mechanisms to efficiently allocate wireless resources, such as transmission power, time slots and spectrum, for accommodating heterogeneous mobile data. In addition, multiple-input-multiple-output (MIMO) antenna technique, which uses multiple antennas at the transmitter and receiver, can improve the transmission data rate significantly and is of particular interests for future high speed wireless communications. In the thesis, we develop smart energy efficient scheduling algorithms for delay constrained communications for single user and multi-user single-input-single-output (SISO) and MIMO transmission systems. Specifically, the algorithms are designed to minimize the total transmission power while satisfying individual user’s QoS constraints, such as rate, delay and rate or delay violation. Statistical channel information (SCI) and instantaneous channel state information (CSI) at the transmitter side are considered respectively, and the proposed design can be applied for either uplink or downlink. We propose to jointly deal with scheduling of the users that access to the channel for each frame time (or available spectrum) and how much power is allocated when accessing to the channel. In addition, the algorithms are applied with modifications for uplink scheduling in IEEE 802.16 Worldwide Interoperability for Microwave Access (WiMAX). The success of the proposed research will significantly improve the ways to design wireless resource allocation for delay constrained communications

    Interference mitigation using group decoding in multiantenna systems

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed

    Efficient Scheduling Algorithms for Wireless Resource Allocation and Virtualization in Wireless Networks

    Get PDF
    The continuing growth in demand for better mobile broadband experiences has motivated rapid development of radio-access technologies to support high data rates and improve quality of service (QoS) and quality of experience (QoE) for mobile users. However, the modern radio-access technologies pose new challenges to mobile network operators (MNO) and wireless device designers such as reducing the total cost of ownership while supporting high data throughput per user, and extending battery life-per-charge of the mobile devices. In this thesis, a variety of optimization techniques aimed at providing innovative solutions for such challenges are explored. The thesis is divided into two parts. In the first part, the challenge of extending battery life-per-charge is addressed. Optimal and suboptimal power-efficient schedulers that minimize the total transmit power and meet the QoS requirements of the users are presented. The second outlines the benefits and challenges of deploying wireless resource virtualization (WRV) concept as a promising solution for satisfying the growing demand for mobile data and reducing capital and operational costs. First, a WRV framework is proposed for single cell zone that is able to centralize and share the spectrum resources between multiple MNOs. Consequently, several WRV frameworks are proposed, which virtualize the spectrum resource of the entire network for cloud radio access network (C-RAN)- one of the front runners for the next generation network architecture. The main contributions of this thesis are in designing optimal and suboptimal solutions for the aforementioned challenges. In most cases, the optimal solutions suffer from high complexity, and therefore low-complexity suboptimal solutions are provided for practical systems. The optimal solutions are used as benchmarks for evaluating the suboptimal solutions. The results prove that the proposed solutions effectively contribute in addressing the challenges caused by the demand for high data rates and power transmission in mobile networks
    corecore