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Abstract

The continuing growth in demand for better mobile broadband experiences has motivated
rapid development of radio-access technologies to support high data rates and improve
quality of service (QoS) and quality of experience (QoE) for mobile users. However,
the modern radio-access technologies pose new challenges to mobile network operators
(MNO) and wireless device designers such as reducing the total cost of ownership while
supporting high data throughput per user, and extending battery life-per-charge of the mo-
bile devices. In this thesis, a variety of optimization techniques aimed at providing innova-
tive solutions for such challenges are explored.

The thesis is divided into two parts. In the first part, the challenge of extending
battery life-per-charge is addressed. Optimal and suboptimal power-efficient schedulers
that minimize the total transmit power and meet the QoS requirements of the users are
presented. The second outlines the benefits and challenges of deploying wireless resource
virtualization (WRV) concept as a promising solution for satisfying the growing demand
for mobile data and reducing capital and operational costs. First, a WRV framework is
proposed for single cell zone that is able to centralize and share the spectrum resources
between multiple MNOs. Consequently, several WRV frameworks are proposed, which
virtualize the spectrum resource of the entire network for cloud radio access network (C-
RAN)- one of the front runners for the next generation network architecture.

The main contributions of this thesis are in designing optimal and suboptimal solu-
tions for the aforementioned challenges. In most cases, the optimal solutions suffer from
high complexity, and therefore low-complexity suboptimal solutions are provided for prac-
tical systems. The optimal solutions are used as benchmarks for evaluating the suboptimal
solutions. The results prove that the proposed solutions effectively contribute in addressing
the challenges caused by the demand for high data rates and power transmission in mobile
networks.

Keywords: Power Minimization, QoS, LTE, Packet Scheduling, Uplink, Virtualiza-
tion, C-RAN, Resource Sharing
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Chapter 1
Introduction

The demand for mobile data is growing exponentially and mobile network operators (MNOs)

are struggling more than ever to increase their capacity profitably. Mobile communication

is becoming an essential need for individuals and businesses. The number of new mobile-

connected devices added in 2014 reached almost half a billion, meaning the total number

of mobile-connected devices exceeds the world’s population [4]. Mobile Internet-access is

also visibly becoming affordable and available for a larger segment of the population. This

leads to Internet usage levels we thought were once unreachable. A look at the Youtube

statistics shows that more than 4 billion hours of video are watched on YouTube every

month. Pressures on the infrastructure, service levels and performance have never been

that high. The demand for mobile data does not stop there. Mobile data traffic forecasts

estimate a 10-fold increase in global mobile data traffic between 2014 and 2019. This un-

precedented penetration is accompanied by a major increase in mobile network connection

speeds. For example, the average mobile network downstream speed increased 20 percent

in 2014 [4].

At the same time, the high demand for mobile data has a significant impact on the

power consumed by mobile devices because their transmission power substantially in-

creases with the increase in uplink data rates. Furthermore, the increasing popularity of

using online storage services, social media, and social networking applications on Smart-

phones boosts the uplink traffic volumes. Thirty billion pieces of content are shared on

Facebook every month. Users do not only view downloaded content, they also contribute

to creating content by uploading photos and videos. Uplink usage is gaining more signif-

icance to the extent that, according to AT&T Labs Research, the uplink and the downlink

traffic volumes become similar in the case of large events like the Super Bowl [5]. All of

this demand is countered by an annual gain in battery capacities of just 4 percent [6]. Im-

provements in the battery capacity of mobile devices lag far behind the surging demand for
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transmission power, which makes power-efficient communication in uplink transmission

an essential requirement for next-generation mobile networks.

Due to the large investments in network resources needed to support the surge in

mobile data traffic, MNOs profits have not been growing at rate that the traffic volume

level would indicate. In their continuous endeavors to tackle this issue, MNOs have become

highly interested in cost-effective solutions in order to satisfy the high demand for mobile

data. To maximize the average revenue per user, MNOs have to efficiently utilize the

limited and highly expensive spectrum resources. A surprising fact here arises. Recent

spectrum utilization measurements have shown that the bandwidth licensed to MNOs is

mostly underutilized. According to a recent study by Nokia [7], only 20 percent of a radio

access network’s full capacity is used at any given time with 80 percent being idle and

waiting for peak hour demand. This motivates innovative solutions to efficiently use the

limited spectrum resources and maximize profits.

1.1 Thesis Outline and Contributions

The rest of this thesis is divided into five chapters. Chapter 2 presents two QoS-aware

power-efficient schedulers for mixed streaming services in long term evolution (LTE) up-

link systems. Chapter 3 focuses on finding a global optimal scheduler that minimizes the

total transmission power while satisfying particular delay requirements in the LTE uplink.

Moreover, two low-complexity heuristic schedulers are proposed to solve the optimal for-

mulation with comparable power consumption and comparable performance. It is worth

mentioning that chapter 2 optimizes the transmission power every transmission time in-

terval (TTI). Nevertheless, chapter 3 finds the global optimal solution by optimizing the

transmit power over multiple TTIs. In chapter 4, the concept of wireless resource virtu-

alization (WRV) is introduced. Furthermore, an efficient low-complexity WRV scheduler

that maintains access proportional fairness between users and MNOs at a single base sta-

tion is derived. Chapter 5 considers network-wide virtualization. Optimal and suboptimal

solutions for virtualizing cloud radio access networks (C-RANs) wireless resources are pro-

vided. Finally, Chapter 6 concludes the thesis and proposes future directions for extending

the research.
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1.2 Contributions of the Thesis

The major contributions of the thesis are summarized as follows.

1.2.1 Contributions of Chapter 2

1. An optimal formulation of the resource allocation problem in the LTE uplink is

presented. In contrast to previous work, the formulation considers the maximum

transmission power threshold of the users, which may produce infeasible solutions.

In addition, the challenge of solution infeasibility is addressed by amending the

objective function with additional terms.

2. The proposed schedulers are designed and evaluated for a realistic LTE framework,

where each user requests many bearers with different QoS requirements.

3. A low complexity iterative resource allocation algorithm is derived to solve the

optimal formulation with comparable power consumption and comparable perfor-

mance. Moreover, the computational complexity of the proposed schedulers is an-

alyzed. The algorithm is O(MK), where M is the numbers of users and K is the

number of RBs.

1.2.2 Contributions of Chapter 3

1. The global optimal scheduler is derived for the LTE uplink. The scheduler min-

imizes the total transmit power of all users while satisfying delay requirements.

Unlike Chapter 2, where the system is optimized for one time slot, the optimization

framework presented in this chapter takes into consideration several time slots, and

finds the minimum transmit power that satisfies the delay requirements of the users.

This solution can be used as a benchmark for comparing different schedulers used

for the LTE uplink.

2. The scheduling problem is formulated as a dynamic programming (DP) problem,

and the scheduler considers the dynamic nature of the traffic load, maximum trans-

mit power threshold, contiguous allocation, and the time-varying fading channel.
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3. To reduce complexity, we propose two power-efficient heuristic schedulers to solve

the scheduling problem. The algorithms areO(K×M×log(M)). The performance

of the heuristics is evaluated and compared to the optimal scheduler and to other

existing schedulers.

1.2.3 Contributions of Chapter 4

1. The main benefits of WRV and an overview of existing WRV techniques are pro-

vided and classified.

2. An efficient low-complexity WRV scheme is provided. The scheme aims at maxi-

mizing the throughput while maintaining access proportional fairness (APF) among

users and MNOs.

3. An iterative offline algorithm is developed to compute the optimal weights that the

scheme uses to maintain the APF. The algorithm has low complexity, converges

after a small number of iterations, and it is scalable to large-scale scenarios.

1.2.4 Contributions of Chapter 5

1. An optimal scheme that enables spectrum sharing between multiple MNOs and

RRHs is proposed and formulated. The scheme eliminates intercell interference

(ICI) between RRHs and considers fair distribution of spectrum resources between

RRHs based on their traffic loads. Moreover, it provides a high level of isolation

between MNOs, allows different MNOs to apply different customizable resource

scheduling policies, and offers efficient resource utilization across the network.

2. A suboptimal scheme that solves the optimization problem with lower complexity

is derived. The suboptimal scheme is obtained by dividing the wireless resource

allocation problem into sub-problems. The objective of each sub-problem is to al-

locate one RB to a set of non-interfering RRHs. The allocation per single RB is

formulated as a maximum weighted independent set problem, which is solved us-

ing binary integer programming (BIP) solvers.

3. To further reduce the complexity, a low-complexity heuristic algorithm that solves

the BIP problem is proposed. The proposed heuristic algorithm is greedy and finds
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the set of non-interfering RRHs for each RB iteratively. The time complexity of the

heuristic algorithm is considerably lower than the BIP scheme while its throughput

and delay performance are comparable.
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Chapter 2

QoS-Aware Power-Efficient Scheduler for LTE

Uplink

2.1 Introduction

The continuous introduction of mobile applications and services leads to a significant in-

crease of data usage over mobile devices. To accommodate the drastic growth of mobile

data traffic and improve the system capacity, long-term evolution (LTE) technology has

been developed by the 3rd generation partnership project (3GPP). LTE provides superior

speed, low latency and better quality of service (QoS) for mobile networks. The target

peak cell aggregated downlink throughput within a 20 MHz spectrum can reach 300 Mbit/s

in downlink, and 75 Mbit/s in uplink by applying multiple-input multiple-output (MIMO)

configurations [9]. However, the high speed data links offered by LTE systems increase the

power consumption of the user equipments (UEs) [10]. In uplink mobile communication

systems, the power source of the UE is limited to a battery. Nevertheless, the improvement

of battery technologies is much slower than the steadily rising demand for transmission

power by UEs. Consequently, the battery life per charge is currently one of the main fac-

tors that dominate the reliability of mobile devices.

To enhance the power efficiency of UEs, LTE uses single carrier frequency division

multiple access (SC-FDMA) in the uplink, while orthogonal frequency division multiple

access (OFDMA) is used for the downlink. SC-FDMA has a lower peak-to-average power

ratio (PAPR) when compared to OFDMA. The low PAPR advantage allows the power

A version of this chapter has been published in [8].
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amplifier at the transmitter to operate close to the saturation point which improves its effi-

ciency. However, the lower PAPR feature of SC-FDMA requires contiguous allocation of

the resource blocks (RBs) [9].

In this chapter, power-efficient schedulers for LTE uplink systems are proposed. The

proposed schedulers are able to minimize the total instantaneous transmission power from

all users while maintaining the LTE uplink physical layer constraints and the QoS require-

ments. It is noteworthy that minimizing the total instantaneous transmission power can lead

to minimizing the average transmission power specially in burst transmission.

The rest of the chapter is organized as follows. Section 2.2 presents the related

work. Section 2.3 presents the system model. The system constraints and the objective

of the work are presented in Section 2.4. The optimal and iterative formulations of the

proposed scheduler are described in Sections 2.5 and 2.6, respectively. In Section 2.7 the

PF scheduler is discussed. Intra-user scheduling is described in Section 2.8. Simulation

results are presented in Section 2.9, and Section 2.10 concludes the chapter.

2.2 Related Work

The resource allocation problem for OFDMA systems has been widely investigated in the

literature [11, 12]. As each RB cannot be assigned to more than one user, the resource

allocation is a combinatorial optimization problem [11], which cannot be solved in polyno-

mial time. Many studies have solved the allocation problem by using the convex relaxation

method [11, 12]. The relaxation replaces the binary variables by continuous variables in

the interval [0, 1], then Lagrange multipliers are derived to solve the resource allocation.

However, due to the contiguity constraint in SC-FDMA, the resource allocation methods

that are applied to OFDMA are not directly applicable to the LTE uplink [13]. More details

about the convex relaxation method are discussed in Section 2.4.

Most recent research efforts on LTE uplink have addressed the maximization of the

total utility of the system [14, 15, 16, 17]. The utility function may depend on users’

throughputs, maximum permitted delays, or fairness between users. A sum-rate maximiza-

tion problem is investigated in [14]. The allocation problem is formulated as a set packing
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problem which is NP-hard. Consequently, low-complexity algorithms based on message-

passing paradigm are proposed to solve the allocation problem in polynomial time. An-

other sum-rate maximization scheduler that considers multiuser scheduling with transmit

antenna selection is investigated in [15]. Based on local ratio test approach, suboptimal

polynomial-time algorithms are proposed to solve the allocation problem. A scheduling

approach based on a genetic algorithm is presented in [16] to solve the sum-rate maximiza-

tion problem in LTE uplink systems. Nevertheless, sum-utility maximization problems

usually lead to transmitting data using the maximum allowable transmission power, which

often lowers the transmitter power efficiency [18].

A general packet scheduling scheme for LTE uplink is considered in [17]. The prob-

lem is proven to be MAX SNP-hard. Consequently, two approximation algorithms for the

scheduling problem are proposed to reduce complexity. The algorithms are evaluated for a

specific scenario that incorporates the queue length and channel quality information. Lee et

al. [19] investigated the proportional fair (PF) scheduler for the LTE uplink. The schedul-

ing problem is proven to be an NP-hard because of the contiguity constraint. Heuristic

algorithms were proposed and compared in terms of system throughput and fairness.

Few articles in the literature have considered power-efficient transmission in the LTE

uplink. For example, Dechene et al. [20, 21] considered power-efficient resource alloca-

tion subjected to rate and synchronous hybrid automatic repeat request constraint. At every

transmission time interval (TTI), each user transmits a fixed data rate. The solution feasi-

bility was guaranteed because maximum transmit power is not considered. However, prac-

tical LTE uplink systems limit the maximum transmission power to a threshold value, and

the data arrives randomly to the users’ buffers with different QoS requirements. Another

power-efficient scheduler that considers the buffers’ queue state information is presented

in [22]. The problem was formulated as a constrained Markov decision process (MDP), of-

fline solutions were then derived. However, the maximum transmission power threshold is

not considered. Besides, the solution complexity is high due to the large size of the search

space. Furthermore, the offline solution is applicable only to a particular scenario, meaning

that different solutions must be derived for different scenarios. For example, adding a user

to the system leads to a different solution.



Chapter 2: QoS-Aware Power-Efficient Scheduler for LTE Uplink 9

2.3 System Model

This study considers an LTE uplink multiuser system in a single cell, where K UEs com-

municate with an evolved node-B (eNB). It is assumed that each user has a maximum of

four bearers, or logical channels, associated with different QoS requirements, an assump-

tion which is justified in Section 2.3.1. The overall cell bandwidth is divided equally intoM

RBs, each of which contains 12 adjacent subcarriers. The bandwidth of an RB is 180 kHz.

To facilitate the readability, Table 2.1 summarizes the notations frequently used throughout

the chapter.

The contiguity constraint which is required by SC-FDMA can be modeled by con-

structing a binary matrix R as follows. Each column in R represents a potential contiguous

allocation, while each row represents an RB. The column index c in the matrix R with the

size M × 1 is denoted by rc. Therefore, R can be expressed as

R = [r1, r2, ..., rC ]. (2.1)

where C is the number of columns in R, which can be calculated for a system that has M

RBs as [20]

C =
1

2
M(M + 1). (2.2)

For example, a system with 3 RBs has an R that is equal to

R =


1 0 0

0 1 0

0 0 1

1 0 1

1 1 1

0 1 1

 . (2.3)

To better understand the meaning of allocating one column of R to a user, consider that the

column r1 is allocated to user k. The first element in r1 is one, which indicates that RB

number one is allocated to user k. The second and third elements in r1 are zeros, which

indicates that RB numbers two and three are not allocated to user k. As can be seen in (2.3),

R contains only contiguous allocations, for example the column [1 0 1]T is not contiguous

allocation and cannot exist in R.
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Table 2.1: Summary of the most significant notation used in this chapter.

Symbol Meaning
K, k Number of UEs, UE Index
M Number of RBs
J, j Number of MCSs, MCS Index
R Contiguous allocation matrix
rc The column number c in the matrix R
c RBs contiguous-chunk index
C Total number of contiguous chunks possible
Dn
k Maximum permitted-delay for bearer n of UE k

Qnk Maximum queue length corresponding to Dn
k

d̄nk Average delay of bearer n of UE k (ms)
q̄nk Average queue length of bearer n of UE k (bits)
q̂nk Maximum allowed average queue length of bearer n of UE k
λnk Arrival rate of bearer n of UE k (ms)
Tk,j,c TB size achieved by the choice k, j, c
β Binary number indicator

Pmax Maximum transmission power threshold
Ek TB size satisfies the rate and the delay constraints of UE k

The LTE frame duration is 10 ms and it is composed of 10 LTE subframes. Each

subframe has a duration of 1 ms, and represents a TTI [9]. When the normal cyclic prefix

is used [9], each subframe consists of 14 SC-FDMA symbols, each with a duration of

66.67µs. Following the assumption used in [20], three symbols in each frame are assigned

to uplink physical control signalling. The total number of data symbols in each RB per

subframe is (14− 3)× 12 = 132. Fig. 2.1 shows the LTE subframe structure.

The LTE physical layer supports various modulation and coding schemes (MCSs).

The MCS and the RBs that are assigned to a user determines the uplink transport block

(TB) size. Suppose that the column vector rc and the MCS number j are assigned to user

k, the TB size that user k can transmit over a TTI is calculated as follows

Tk(j, c) =
⌊
132× ζj × ‖rc‖

⌋
(2.4)

where ζj is the MCS efficiency for the MCS number j in terms of the number of useful bits

per symbol, ‖rc‖ is the the Hamming weight of rc, which represents the number of RBs

that are allocated to user k, and bxc denotes the largest integer number less than or equal to



Chapter 2: QoS-Aware Power-Efficient Scheduler for LTE Uplink 11

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

Subframe 
1 ms 

Symbol 

Subcarrier 

RB# 1 

Subframe 

Symbol number 

Su
b

carrie
r n

u
m

b
e

r 

R
e

so
u

rce b
lo

ck 

Figure 2.1: The structure of the LTE subframe.

x.

The selection of MCS is determined such that the BLER is lower than the target

BLER, which is 10% for LTE systems [9]. The BLER for each MCS depends on the

effective received signal to noise ratio (SNR). A simple criterion for choosing appropriate

MCSs is based on a set of SNR thresholds [9]. Given the effective received SNR for a

user, the eNB selects the most spectrally efficient MCS that satisfies BLER < 10%. In

practice, the BLER values are determined through a link-level simulator for all MCSs. Fig.

2.2 presents the simulation curves of the adopted MCSs in an LTE uplink over an additive

white Gaussian noise (AWGN) channel [3]. Table 2.2 shows the modulation, code rate,

spectral efficiency, and SNR thresholds for the MCSs [1]. The SNR thresholds can be

obtained from Fig. 2.2.

The effective instantaneous received SNR for user k who is assigned column rc at

TTI t is given by [20, 23]

γk[t] =
1

‖rc‖
∑
m∈rc

αk,m[t]Pk,m[t]

σ2
(2.5)
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Figure 2.2: BLER-SNR curves for all Table 2.2 MSC, from Index 1 (leftmost) to index 15
(rightmost) [3].

where Pk,m[t] is the transmission power of user k over the RB m during the TTI t,

αk,m[l] =
∣∣hk,m[t]

∣∣2, hk,m[t] is the channel gain of RB m at TTI t seen by user k, and σ2

is the AWGN variance.

To reduce the signalling overhead, LTE specifies that when a user is assigned more

than one RB, one power level should be transmitted over the assigned RBs [15]. In other

words Pk,1 = Pk,2 = · · · = Pk,m. Therefore, the RB index m can be dropped, and (2.5)

can be written as

γk[t] =
1

‖rc‖2
∑
m∈rc

αk,m[t]Pk[t]

σ2
(2.6)

where Pk[t] = ‖rc‖Pk,m[t] is the total transmission power of user k at TTI t. Using (2.6),

the required power to achieve an effective SNR of γk[t] is

Pk[t] = γk[t]

(∑
m∈rc

αk,m[t]

)−1

‖rc‖2σ2 (2.7)

To recap, when user k transmits Pk over the RB chunk that is represented by rc,

the effective received SNR of the user is γk, which can be mapped to an appropriate MCS
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Table 2.2: List of MCS indices [1]

Index j Modulation Coding Rate Spectral Efficiency ζ Effective SNR (dB) γk
0 — — 0 bits > −6.7536
1 QPSK 78/1024 0.15237 −6.7536 : −4.9620

2 QPSK 120/1024 0.2344 −4.9620 : −2.9601

3 QPSK 193/1024 0.3770 −2.9601 : −1.0135

4 QPSK 308/1024 0.6016 −1.0135 : +0.9638

5 QPSK 449/1024 0.8770 +0.9638 : +2.8801

6 QPSK 602/1024 1.1758 +2.8801 : +4.9185

7 16QAM 378/1024 1.4766 +4.9185 : +6.7005

8 16QAM 490/1024 1.9141 +6.7005 : +8.7198

9 16QAM 616/1024 2.4063 +8.7198 : +10.515

10 64QAM 466/1024 2.7305 +10.515 : +12.450

11 64QAM 567/1024 3.3223 +12.450 : +14.348

12 64QAM 666/1024 3.9023 +14.348 : +16.074

13 64QAM 772/1024 4.5234 +16.074 : +17.877

14 64QAM 873/1024 5.1152 +17.877 : +19.968

15 64QAM 948/1024 5.5547 > +19.968

through Table 2.2. Consequently, the TB size of user k can be calculated from (2.4).

2.3.1 LTE QoS and Buffer Status Reports (BSRs)

LTE systems are designed to support a wide range of applications and services. In general,

the user might run multiple applications simultaneously, each application requires differ-

ent QoS. For example, a user can play real-time game while downloading a file using a

file-transfer protocol. The eNB establishes multiple radio bearers per user to support mul-

tiple QoS requirements as shown in Fig. 2.3. The LTE defines two main radio bearer

categories [9]:

1. Bearers with guaranteed bit rate (GBR) are established for real-time applications

such as voice and video, which require certain GBR to satisfy their QoS require-

ments.

2. Non-GBR (NGBR) bearers do not guarantee any particular bit rate and are used for

non-real-time applications such as buffered video streaming.
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Figure 2.3: An example of four bearers established for a user.

The QoS class identifier (QCI) and the allocation and retention priority (ARP) are the

bearer QoS parameters. The QCI is a scalar that specifies Internet Protocol (IP) level packet

characteristics of the bearers. The ARP of a bearer is used for admission and handover

control. When the bearer is established, the ARP has no effect on packet transmissions,

which are managed only by their QCI specifications [9]. LTE uplink scheduling takes place

in the eNB, where information about buffered data sizes is reported for all UEs who have

data to be transmitted using the buffer status reporting (BSR) mechanism. A BSR has two

possible formats [9]: short BSR format and long BSR format. The short format reports one

bearer, while the long format reports up to four bearers. The choice of short or long format

is determined by the number of non-empty buffers. If a user has only one bearer, the short

format is used to conserve channel resources because the short format report requires fewer

bits. Although UEs may have more than four non-empty buffers, the maximum number of

reporting bearers is four. In the long format scheme, bearers are grouped into four groups

before they are reported, and therefore considering users with four bearers is practically

acceptable. In this chapter, it is assumed that each user has a maximum of four bearers,

where each bearer is modeled as an infinite first-in first-out buffer in the radio link control

(RLC) sub-layer.
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2.3.2 Uplink Data Transmission Procedure

The sequence of uplink data transmission is shown in Fig. 2.4. The UE receives uplink traf-

fic from upper layers. Data for multiple logical channels are queued in the RLC sub-layer

buffers. Information about buffered data sizes is reported to the eNB over the physical up-

link control channel using the BSR procedure. The scheduler in the eNB makes allocation

decisions according to a specific scheduling policy. Based on the allocation decisions, the

eNB sends allocation maps to the users over the physical downlink control channel. The

user’s allocation map specifies the assigned RBs, power control entity and MCS [24]. The

power control entity specifies the uplink transmission power for each user. The RBs chunk

and MCS that is assigned to a user determine the uplink transport block TB size. However,

how the TB is shared between users’ buffers is left to the user policy, which is discussed in

Section 2.8.

In the UE media access control (MAC) sub-layer, a MAC protocol data units (PDU)

is formed according to the received map allocation. The MAC PDU contains data from one

or more RLC PDUs in addition to the MAC header. The MAC passes the MAC PDU to

the physical layer (PHY), which adds the cyclic redundancy check (CRC) bits to the MAC

PDU and then transmits the entire packet as a TB over the physical uplink shared channel

to the eNB. The PHY responsibility is to deliver the TB with an error probability less than

a targeted BLER.

2.3.3 Delay Analysis

As mentioned in Section 2.3.1, the BSR does not report explicit information about PDU

delays, but reports the sizes of the queued data in the UE buffers. In this section, the PDU

delay is mapped to the size of the queued data. The queue evolution during TTI t + 1 can

be described as

qnk [t+ 1] = qnk [t] + ank [t]− Tnk [t] (2.8)

where qnk [t] is the number of pending bits at the beginning of TTI t, ank [t] is the number

of bits arriving at TTI t with an average arrival rate of λnk , and Tnk [t] is the number of

transmitted bits from bearer n of user k at TTI t.
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LTE defines a packet delay budget (PDB) for each bearer, which defines an upper

bound for the time that a packet may be delayed between the UE and the packet data

network gateway. In LTE, the outage delay outage level should be less than 2% [9]

P (dnk > Ďn
k ) < 0.02 (2.9)

where dnk is the head of the line packet delay, and Ďn
k is the PDB. For high data traffic load,

the following approximation is valid [25]

P (dnk > Ďn
k ) ≈ e

(
−Ďnk /d̄

n
k

)
(2.10)

where d̄nk is the average value of dnk . Therefore, in the case of high data traffic load,

controlling d̄nk is approximately equivalent to controlling the delay violation probability

P (dnk > Ďn
k ). The justification for the assumption of heavy data traffic is that most delay

violations take place when the traffic load is heavy. By substituting (2.9) into (2.10), the

required average delay for bearer n of user k is given by

d̄nk < −
Ďn
k

ln(0.02)
. (2.11)

This work focuses on the the air-interface delay between UEs and eNB. It is assumed

that the air-interface delay Dn
k contributes to δ of the PDB as follows

Dn
k = δ Ďn

k (2.12)

where 0 ≤ δ ≤ 1. Using Little’s theorem [22], the average delay can be computed as

d̄nk =
q̄nk
λnk

(2.13)

where q̄nk is the average queue size. Substituting (2.13) and (2.12) into (2.11), the bearer

air-interface delay can be controlled by controlling the average number of bits in the users’

queues

q̄nk < q̂nk (2.14a)
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q̂nk = −
Qnk

ln(0.02)
(2.14b)

where q̂nk is the maximum allowable average queue length of bearer n of user k that satisfies

the delay requirement, and Qnk = Dn
k × λ

n
k is the average queue length that corresponds to

the air-interface delay Dn
k .

It is worth noting that the size of the data buffers is assumed to be greater than the

PDBs for all bearers. If the size of a buffer is less than the PDB, the PDB is assumed to be

the maximum buffer size for that bearer.

It is assumed that the eNB knows, or at least can estimate, the average arrival rates

for all bearers and users. One way to estimate the average arrival rates is reported in [26].

Suppose that the scheduler successfully maintains the delay requirements of buffer number

n of user k such that qnk ≤ q̂nk , the average arrival rate λnk is equal to the long-term average

of the service rate Tnk .

2.4 System Constraints and Objective

The resource allocation in LTE uplink requires the following constraints to maintain the

physical layer restrictions and the QoS requirements:

1. Exclusivity constraint: for every TTI, a single RB is allocated to no more than one

user.

2. Contiguity constraint: SC-FDMA restricts the RB allocations to be contiguous.

Each column in the matrix R represents a contiguous RB allocation. The conti-

guity constraint can be maintained by assigning one column from the matrix R to

each user.

3. Power constraint: the LTE standard specifies Pmax as the maximum transmission

power threshold that the user cannot exceed.

4. Rate constraint: minimum bit rate for the GBR bearers must be maintained.

5. Delay constraint: NGBR bearers subject to PDB. As discussed in Section 2.3.3, the

delay constraint can be maintained by controlling the average queue length.

The objective of this work is to minimize the sum of transmission power consumed

by the users while maintaining their QoS. This chapter is seeking to answer the following
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question: how should the available resources, in terms of RBs and transmission power, be

assigned to the users so that the total transmission power is minimized without violating

the users’ QoS requirements? Without loss of generality, a finite time horizon of length

F TTIs is chosen. It is assumed that the current time is t and the observation interval is

[t, t+ F ]. Denote W (x[t], L) as a sliding-average window of length L for variable x

W (x[t], L) =
1

L

t+L∑
l=t

x[l], (2.15)

and denote Pk,j,c[l] as the transmission power required to achieved the target BLER when

user k transmits using the MCS number j over the RB allocation number c at TTI l. The

resource allocation problem can be written as

min
t+F∑
l=t

K∑
k=1

J∑
j=1

C∑
c=1

Pk,j,c[l]βk,j,c[l] (2.16a)

subject to
K⋂
k=1

rc βk,j,c[l] = ∅, ∀l, j, c (2.16b)

Pk,j,c[l] ≤ Pmax,∀l, k, j, c (2.16c)

W (Tnk [t], F ) ≥ rnk (2.16d)

W (qnk [t], F ) ≤ Dmarg × q̂nk (2.16e)

where βk,j,c[l] is a binary number indicator that is equal to 1 if and only if the MCS num-

ber j and the column rc are selected for user k at TTI l, J is the total number of MCSs,

Dmarg ∈ (0, 1) is a margin used to maintain the delay less than the maximum in (2.14), and

rnk is GBR of the bearer number n of user k. Note that the exclusivity constraint is main-

tained by (2.16b), where the summation over c restricts the users to only contiguous RB

allocations and maintains the contiguity constraint. The power, rate, and delay constraints

are maintained by (2.16c), (2.16d), (2.16e), respectively.

The problem shown in (2.16) is a discrete time stochastic control process. One way

to solve this problem is to formulate it as a constrained MDP. Although general techniques
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exist to solve MDPs, they suffer from the curse-of-dimensionality problem [27], where

the number of states grows vastly with the numbers of both users and bearers. Conse-

quently, formulating and solving constrained MDPs is non-trivial as it deals with an ex-

tremely large number of transition probabilities. Therefore, approximated solutions are

often provided [27]. Moreover, a comprehensive knowledge of the users’ channel gains

and arrival processes may be required to solve the MDP. A similar problem in OFDM sys-

tems is investigated in [12] by relying on stochastic convex optimization. For each TTI, the

allocation depends on the instantaneous channel gains and Lagrange multipliers. The mul-

tipliers are associated with the QoS requirements and are estimated online using stochastic

approximation tools. However, many approximations are used while turning this problem

into a stochastic convex optimization. First, Shannon’s capacity formula is used (contin-

uous rate adaptation) instead of a practical discrete set of MCSs. Second, the exclusivity

constraint is relaxed. The relaxation replaces the binary indicators by contentious variables

belong to the interval [0, 1]. In OFDMA each binary number refers to a single RB or sub-

carrier. Having a fraction of a subcarrier translates into time sharing between users for the

subcarrier which creates a form of time-division multiple access. However, in SC-FDMA,

the allocated RBs for a particular user should be adjacent, and sharing chunks of RBs over

time is not applicable because the contiguous allocation is not guaranteed [13]. Third, it is

observed that, optimum values of the multipliers can never be found. Therefore stochastic

approximation is used to estimate the multiplier values.

An alternative approach to solve (2.16) is to design a non-causal optimal offline

scheduler, which gives a guideline to design and evaluate online suboptimal schedulers.

The offline optimal scheduler requires a prior knowledge of both arrival data units and

channel state information for {t, t+1, ..., t+F} at TTI t. Therefore, the problem turns into

a discrete time deterministic control process, which can be solved, for example, by binary

integer programming. Nevertheless, the search space of this formulation is extremely large

and can be calculated as follows. For one TTI, for user k, there are 1
2M(M + 1) possible

allocations in the frequency domain as shown in (2.2). For each possible allocation, J

MCSs exist. Therefore, the total number of choices possible for user k is J2M(M + 1). For

the K users, the search space is
(
J
2M(M + 1)

)K
. Consequently, the search space for F
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TTIs is (
J

2
M(M + 1)

)KF
. (2.17)

For example, assume a system with the following parameters: M = 6 RBs, J = 15 MCSs,

K = 4 and F = 10 TTIs. The search space size is 8.5590× 1099.

In the following sections, a computationally feasible version of the scheduling prob-

lem is presented.

2.5 BIP Formulation

To simplify the scheduler and to avoid the computationally-excessive optimization in (2.16),

a formulation of the optimization problem for a single time slot (F = 1) is presented here.

The exclusivity, contiguity, and power constraints must be satisfied for each TTI because

they are related to the physical system. However, the rate and delay constraints are based

on averages, which means they are soft and it is not necessary to satisfy them every TTI. In

other words, the rate and/or delay might not meet their QoS requirements at certain times,

but on average over a long time interval, the QoS requirements are met. Allowing the rate

and delay constraints to be soft avoids infeasible instantaneous solutions. Such solutions

appear when the instantaneous required data transmission rate is greater than the instant

channel capacity. However, it is assumed that, in the long term, the channel capacity can

provide the required QoS. In cases where the QoS requirements are greater than the avail-

able channel capacity, scheduling becomes infeasible, and dropping users may be the only

feasible solution [12]. An admission control procedure is responsible for deciding which

user should be dropped or admitted in such cases. This study does not consider admission

control procedures, and it is assumed that the average channel capacity can manage the

required QoS.

The following key observation can be extracted from (2.7). Given that user k has to

transmit Tk bits, the transmission power of user k can be decreased by a) increasing the

effective SNR by assigning RBs that have less fading; and/or b) transmitting the Tk bits

over a longer period of time (more subframes). The second point needs more elaboration.

Fig. 2.5 shows a logarithmic relationship between the spectral efficiency of the MCSs in
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Figure 2.5: Spectral efficiency versus SNR for the MCS that are shown in Table 2.2.

Table 2.2 and their corresponding effective SNRs. From (2.7), the transmission power de-

creases as a function of the effective SNR for a specific RB chunk allocation, which implies

that the transmission power is logarithmically related to the spectral efficiency of the trans-

mission. For example, transmitting four symbols using MCS number four is equivalent

to transmitting one symbol using MCS number nine. Although, the former transmission

requires additional four time slots, it consumes only 43% of the later transmission power

consumption. Therefore, splitting the data and transmitting lower data rates over more sub-

frames eventually lowers the total transmit power. However, the data rates should maintain

the users’ QoS requirements.

Modulation and coding schemes are less power-efficient at higher transmission rates

[28]. Therefore, the scheduler is designed to judiciously transmit the minimum number

of bits that softly satisfies the rate and the delay constraints at each TTI. Then by optimal

power allocation, optimal chunk of RBs is assigned to each user. Define Bnk as the mini-

mum number of transmit bits that satisfy both the rate and the delay constraints to bearer

n of user k at TTI t. Therefore, the total TB for user k that satisfies the rate and the delay



Chapter 2: QoS-Aware Power-Efficient Scheduler for LTE Uplink 23

constraints is

Ek =
4∑

n=1

Bnk .

As the rate and the delay constraints are converted to soft constraints, the minimum-

cost solution is a trivial one, i.e., no power is consumed if no data is transmitted. To address

this issue, an extra weight ρk,j,c is defined and added to the applied power cost as follows

ρk,j,c = log(Ek)− log(Tk,j,c/E
GBR
k ), Tk,j,c > 0, (2.18)

where the Tk,j,c are the TB achieved using MCS j over the RB allocation number c, and

EGBRk is the number of bits that satisfies all the GBR bearers of user k

EGBRk =
∑

n∈NGBRk

Bnk , (2.19)

where NGBR
k is a set contains the index of the GBR bearers that belongs to user k.

The weights ρk,j,c measure how close the Ek are to the actual transmitted TB Tk,j,c.

To better illustrate extra weights, consider the demonstration shown in Fig. 2.6. Two main

interesting characteristics can be observed. First, users with higher EGBRk values have

higher weights, which gives them a higher priority through the scheduling. Second, as the

number of bits transmitted increases, weight values drop rapidly when Tk,j,c < EGBRk ,

but slightly when Tk,j,c > EGBRk . The second characteristic implies that satisfying GBR

requirements for all users are more important than that for NGBR requirements.

In this context, for single TTI, (2.16) is expressed as (time index is omitted for sim-

plicity)

min
K∑
k=1

J∑
j=1

C∑
c=1

(
ρk,j,c + Pk,j,c

)
βk,j,c (2.20a)

subject to

Tk,j,c ≤ Ek (2.20b)

(2.16b), (2.16c) (2.20c)
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Figure 2.6: Extra weight demonstration for Ek = 200 bits.

2.5.1 Binary Integer Programming

The bintprog optimization package from MATLAB is used to solve the non-convex prob-

lem. The general form of a BIP optimization can be presented as

min cTx (2.21a)

subject to

Ax ≤ b, Aeqx = beq, (2.21b)

where the vector c represents the weights ρk,j,c plus the transmission power costs Pk,j,c,

and the binary decision vector x minimizes the objective function and represents the term

βk,j,c in (2.20a). Constraints (2.20b), (2.20c) are maintained by linear inequality and

equality constraints, Ax ≤ b, Aeqx = beq, respectively, where A, Aeq are matrices con-

taining the coefficients of the inequality and equality constraints, and b, beq are vectors that

fulfill the inequality and equality constraints, respectively. The exclusivity and contiguity

constraints are defined as follows. Consider user k with contiguous allocation matrix R as

in (2.3) with a dimension of M×C. Each column in R presents a feasible contiguous allo-
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cation. For each feasible contiguous allocation, J different MCSs are possible, the matrix

which contains all feasible contiguous allocations for all MCSs is defined as

Ak = [R,R, . . . ,R︸ ︷︷ ︸
J

]. (2.22)

Each column in (2.22) is associated with a potential transmit power cost calculated from

Pk,j,c. The power constraint is maintained by deleting columns with potential transmission

power greater than Pmax. Define the matrix Ath
k which has all columns in Ak less than

or equal to Pmax. Define matrix A which concatenates all matrices Ath
k for all users as

follows:

A =
[
Ath

1 ,A
th
2 , . . .A

th
K

]
, (2.23)

where each row in A represents a single RB, to ensure the exclusivity constraint, and the

vector b = 1M , where 1M is a vector of M ones. The equality constraints maintain a

unique selection from all feasible allocations for all data sizes per user, and therefore

J∑
j=1

Ck∑
c=1

βk,j,c = 1,∀k.

The equality constraints are expressed as follows

Aeq =


1T∣∣∣Ath1 ∣∣∣ · · · 0T∣∣∣AthK ∣∣∣

... . . . ...

0T∣∣∣Ath1 ∣∣∣ · · · 1T∣∣∣AthK ∣∣∣

 (2.24)

where
∣∣∣Ath

k

∣∣∣ is the number of columns in Ath
k which denotes the number of potential al-

location choices for user k, and 1Tx ,0
T
x are row vectors of length x of ones and zeros,

respectively. The vector beq is defined as beq = 1K to guarantee that only one of the

possible allocations is assigned for each user.
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2.5.2 Complexity of BIP

Consider the worst case scenario, where all columns in A′k,∀k are less or equal to Pmax.

The search space of BIP formulation is similar to the search space of (2.17) for a single

TTI (F = 1) (
1

2
J M(M + 1)

)K
. (2.25)

For example, assume a system with the following parameters: M = 6 RBs, J =

15 MCSs, and K = 4. The BIP worst case search space size is 9.8456 × 109. Thus,

the approach as formulated is still computationally expensive. Therefore, low-complexity

algorithms are needed to solved the resource allocation problem.

2.6 Iterative Algorithm

In this section, an iterative algorithm is proposed to solve the BIP with much less compu-

tational complexity. The algorithm belongs to the greedy algorithm family. The objective

is to minimize the summation of the total users’ costs by assigning RBs to the users it-

eratively. In each iteration, a single RB is assigned to a user who can achieve maximum

reduction in the cost function. Therefore, the algorithm needs M iterations to assign all the

RBs to users. For each iteration, the algorithm finds the best RB for each user. The best RB

of user k is defined as the RB that has the highest instantaneous channel gain (αk,m) and

satisfies the contiguous allocation of user k. Then, the change in the user’s cost value be-

fore and after assigning the best RB is calculated for each user. As the algorithm is greedy,

the user who has the maximum positive change in the user’s cost function is granted the

allocation. The pseudo-code in Table 2.3 describes the algorithm. The proposed algorithm

consists of four main steps as follows:

Lines 1-7: find the minimum rate (Ek) for each user k that satisfies the rate and the

delay constraints. In addition, in this step the following parameters are initialized: the set

of users index K, the set of non-assigned RBs M, the set of RBs that assigned to users

Mk, ∀k ∈ K, and the initial cost for each user Ψk = log(Ek),∀k ∈ K. It is worth noting

that the initial cost of a user is equal to maximum extra weight of the user.
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Lines 8-14: find the best feasible RB Fk for each user k. Users, who have been

assigned one or more RB, are limited to their neighboring RBs (line: 11). Therefore, two

RBs are feasible at most to any user who has been assigned one or more RBs. For example,

suppose that user k has been assigned the RB numbers {4, 5, 6}. Therefore, the feasible

RBs to user k are 3 and 7 if they are not assigned to any user. However, users who have not

yet been assigned RBs can select any RB of the non-assigned RBs setM (line: 13). In the

case that a user has more than one feasible RB, the algorithm selects the RB that has the

maximum instantaneous channel gain.

Lines 15-21: after finding the best feasible RB to each user, the users’ cost values

of the new potential allocation sets are computed Ψ∗k, ∀k ∈ K. Then, the potential cost

reduction ∆Ψk for each user is computed, where ∆Ψk is the difference between the actual

cost value Ψk and the potential cost value Ψ∗k. If all users do not benefit (reduce their cost

values) from the new potential allocation sets, the algorithm stops (lines 19 and 20). The

COST (Mk, Ek) function finds the total costs, i.e. ρk,j,c+Pk,j,c, associated with assigning

the set of RBsMk to user k. In case ofMk = ∅, the total cost is COST (∅, Ek) = log(Ek),

as illustrated in line 5.

Lines 22-26: determine the winning user who achieved the maximum cost-reduction

∆Ψ∗k (lines 22). Then the algorithm assigns RB F∗k to the winning user (lines 24), and

updates the set of non-assigned RBs (lines 25).

2.6.1 Complexity of the Iterative Algorithm

For each major iteration (lines 8-27), an RB is allocated, and therefore, the maximum

number of major iterations is M . The first major iteration for each user requires at most

M operations to compute costs. When a user is assigned one or more RB, this number is

reduced to two at most to the lower and upper RB. Assume that each user performs two

operations. For K users there are 2 × K operations in each major iteration. Therefore,

the complexity of the proposed iterative algorithm is O(MK). In a similar example to

that in Section 2.5.2, the complexity of the worst case is in the order of 24 iterations,

which is significantly less than the optimal algorithm complexity. For a realistic scenario,
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Table 2.3: Iterative allocation

1: M = {1, 2, . . . ,M}
2: K = {1, 2, . . . ,K}
3: for k ∈ K do
4: find Ek
5: Ψk = log(Ek)
6: Mk = ∅
7: end for
8: while |M 6= ∅| do
9: for k ∈ K do
10: ifMk 6= ∅ then
11: Fk = arg max

m∈{min(Mk)−1,max(Mk)+1}∩M
{αk,m}

12: else
13: Fk = arg max

m∈M
{αk,m}

14: end if
15: M∗k =Mk ∪ Fk
16: Ψ∗k = COST (M∗k, Ek)
17: ∆Ψk = Ψk −Ψ∗k
18: end for
19: if Ψ∗k < 0, ∀k ∈ K then
20: exit
21: else
22: k∗ = arg max

k
{∆Ψk}

23: Ψk = Ψ∗k
24: M∗k =Mk ∪ Fk
25: M∗ =M\Fk
26: end if
27: end while
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the maximum number of RBs in LTE system is 100 RBs. Thus, the complexity of such

scenario is in the order of 10, 000 iterations.

2.7 Proportional Fair Scheduler

The PF scheduler has been widely investigated in the literature. The objective of the PF

scheduler is maximizing the total throughput of the system while maintaining level of fair-

ness between users. Lee et al. [19] investigated the PF scheduler for SC-FDMA systems.

The scheduling problem is known to be an NP-hard.

To determine the power efficiency of the proposed algorithms, the PF scheduler is

used as the baseline scheme for comparison. The PF scheduler of [19] have been modified

to cope with our system model. The objective function at TTI t can be expressed as

max
K∑
k=1

J∑
j=1

Ck∑
c=1

ωk[t]× Tk,j,c[t], (2.26a)

subject to

(2.16b), (2.16c) (2.26b)

where ωk[t] is a scheduling weight assigned to user k at TTI t. The scheduling weights

depend on transmission history for users as follows

ωk[t] =
1

W (Tk[t− 1], LPF )
(2.27)

where W (Tk[t − 1], LPF ) is a sliding-average window defined in (2.15) of length LPF .

Users who have low historical average data rates are assigned higher weights than those

who have high historical average data rates, which increases their chances of obtaining

more RBs during the scheduling.

The PF scheduling worst-case search space is the same as BIP. However, for the BIP

scheduler, the number of available MCSs is often less than that for PF scheduler because

the BIP scheduler avoids rate transmission higher than Ek. Therefore, the complexity of

the BIP is expected to be lower than that for the PF.
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Table 2.4: Intra-user scheduling for user k

1: EGBRk =
∑

n∈NGBR
k

Bn
k

2: ENGBRk =
∑

n/∈NGBR
k

Bn
k

3: if EGBRk < Tk then
4: Tnk = Bn

k , ∀n ∈ NGBR
k

5: Tnk = (Tk − EGBRk )× (Bn
k /E

NGBR
k ), ∀n /∈ NGBR

k

6: else
7: Tnk = Tk × (Bn

k /E
GBR
k ), ∀n ∈ NGBR

k

8: Tnk = 0, ∀n /∈ NGBR
k

9: end if

2.8 Intra-User Scheduling

In all the scheduling schemes discussed above, the scheduler output is the set Tk, ∀k =

1, 2, ..K, which indicates the TB size for each user. It is assumed that UEs share their TBs

between their bearers as follows:

1. GBR bearers should be satisfied before NGBR bearers.

2. Within the same radio bearer category (GBR or NGBR), the allocated resources are

distributed proportionally to Bnk . In case of PF scheduler, Bnk are replaced by the

queues length of bearer n.

The pseudo-code in Table 2.4 describes the intra-user scheduling, where Tnk denotes

the portion of Tk allocated to bearer n of user k.

2.9 Numerical Results

The simulation default parameters are shown in Table 2.5. The channel is modeled as a

quasi-static frequency-flat Rayleigh fading channel. The channel gain is assumed to be

constant over each RB bandwidth, but change independently over consecutive RBs. More-

over, it is assumed that users experience independent fading. For a Rayleigh fading chan-

nel, the distribution of the instantaneous received channel gain α follows the exponential

distribution [29]

p
(
αk,m

)
=

1

αk
e
−
αk,m
αk (2.28)
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Table 2.5: Simulation default parameters

Parameter Value Parameter Value
Coherence time 1 ms M 10
UE # 2 Iteration # 1e4
BW 15 kHz Cells interference Avoidance
δ 1 Dmarg 0.9
Pmax 23 dBm LPF 50
Channel fading Rayleigh L 8
Target BLER 10 % σ2 1

Table 2.6: Users’ data profile

Index Type λnk (Kbps) Dn
k (ms) Qnk (bits) q̂nk rnk (Kbps)

B1 NGBR 100 20 2000 511 0
B2 GBR - - - 50
B3 NGBR 75 20 1500 383 0
B4 GBR - - - - 30

where αk is the expected value of αk,m and denotes the average channel gain (ACG).

Table 2.6 presents bearers profiles. NGBR bearers serve non real-time applications.

It is assumed that the data arrivals for non real-time traffic follow a Poisson distribution as

it has been used in related works [22, 26, 30].

GBR bearers serve real time applications which require minimum guaranteed bit

rates. Transmission resources are reserved for GBR bearers in the admission control func-

tion. Therefore, an eNB establishes GBR bearers “on demand” for users [31]. In this chap-

ter, the virtual token queue (VTQ) is adopted to model the GBR buffers as used in [32, 33].

Each bearer is modelled as a VTQ, where tokens arrive at a constant rate equal to the guar-

anteed bit rate of the bearer. In other words, for each TTI a token of size rnk is added to

the VTQ corresponding to queue n of user k. The number of tokens is reduced according

to the actual amount of data transmitted for the bearer. The minimum number of bits that

satisfies a GBR bearer is determined by the number of tokens in the virtual queue. For

example, assume the virtual queue has qnk [t] tokens, the minimum bit rate that satisfies the

bit rate requirements of the bearer n of user k is rnk q
n
k [t] bits.
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2.9.1 Experiment 1: Two Users with Identical Conditions

In this experiment, a two-user scenario with an identical traffic load and channel profile

is considered. Because the users experience identical conditions in terms of channel and

traffic load, it is sufficient to show results for only one user. Each user is assumed to have

two bearers, namely B1 and B2.

Fig. 2.7 compares the transmit power for the three schedulers. The BIP consumes

slightly less power than the iterative scheduler, and both of them consume approximately

43% less power than the PF scheduler. To better visualize the efficiency of the schedulers,

consider the following scenario: users transmit data until the total power consumption

reaches 80 Watt. Note that 80 Watt is equivalent to transmitting at the maximum power

threshold (200 mW) for 400 TTIs. Fig. 2.8 shows that the BIP and iterative schedulers

prolong the battery life considerably compared with the PF scheduler for the same QoS

requirements.

Fig. 2.9 compares the average queue length of the two bearers for the three sched-

ulers. All the schedulers succeed in maintaining average queue lengths of the NGBR data

less than the threshold. As the intra-scheduling serves the GBR bearers before the NGBR

bearers, the queue lengths of the GBR bearers are shorter than the queue lengths of the

NGBR for all schedulers. The PF scheduler tends to transmit aggressively, i.e., the max-

imum achievable data rate. Therefore, the average queue lengths of the PF scheduler are

lower than those for the other two schedulers. The queue lengths of the BIP scheduler are

slightly shorter than the queue lengths of the iterative scheduler.

Fig. 2.10 shows the probability density function (PDF) of the delay for the NGBR

bearer at average channel gain of 10. Note that delay violations occur when the number

of buffered data bits in the queue is greater than 20 ms. The queue length PDF of the BIP

and iterative schedulers are almost identical but are more spread out than the PDF of the

PF scheduler. However, maximum queue lengths are less than half of the maximum al-

lowed delay (20 ms) for the BIP and iterative schedulers, and less than one-tenth for the PF

scheduler. Fig. 2.11 shows the average transmission rate for all bearers and schedulers. All

the rates converge to the arrival rates and satisfy the rate requirements, which also implies

that the data queues are stable. The increase in time complexity of the three schedulers
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Figure 2.7: Experiment 1: Average transmitted power per user per TTI (Watt).

are compared in Fig. 2.12. The MATLAB functions tic and toc were used to measure the

running time. As expected, the running time of the iterative scheduler is significantly less

than that for BIP and PF. Increasing ACG has no effect on the iterative and BIP running

times. However, it is directly proportional to the PF time complexity. As ACG increases,

more MCSs are considered in each RB chunks, which increases the size of the search space

evolved in each iteration.

2.9.2 Experiment 2: Two Users with Identical Conditions but

Different ACG

TTo illustrate the behavior of the PF scheduler, two users with different ACGs are consid-

ered. The ACG of user one is fixed to 10, whereas the ACG for user two varies from 10 to

30 (10 dB to 14.8 dB). The transmission power for user one and user two are shown in Fig.

2.13 and Fig. 2.14, respectively. Increasing the ACG of user two reduces transmit power

consumption. However, this increase has no effect on the power consumption of user one

who experiences a constant average channel fading.

Fig. 2.15 shows the queue length in bits for all users and bearers. Successfully, the
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Figure 2.8: Experiment 1: Battery life comparison.

three schedulers maintain average queue lengths of the NGBR bearers less than the maxi-

mum allowed average queue length (q̄nk < q̂nk ). As user two ACG increases, shorter queue

lengths are observed. However, user one queue length remains unchanged. In summary, the

proposed schedulers isolate the users from each other. Users who experience good channel

conditions consume less power than users who experience severe fading conditions. Fig.

2.16 shows that the transmission rates are equal to the data arrival rates, which implies that

all the data arrived has been transmitted.

2.9.3 Experiment 3: The Iterative Algorithm Evaluation

This experiment evaluates the scheduling performance on a relatively large-scale scenario.

Due to the fact that the BIP and PF schedulers are computationally heavy, and their time

complexity increases exponentially with the number of users as discussed in Sections 2.5.2

and 2.7, simulation experiments are performed only for the iterative scheduler. The pro-

posed algorithm is compared with the EARA scheduler reported in [20]. Note that EARA

does not consider the maximum transmit power threshold nor the dynamic traffic behavior.

Similar to the proposed algorithm, it is assumed that the EARA allocates Ek[t] bits to UE
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Figure 2.9: Experiment 1: Average queue length per bearer per user.
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Figure 2.10: Experiment 1: Probability density function of the delay of the NGBR bearers
at ACG=10.
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Figure 2.11: Experiment 1: Average transmission rate per bearer per user.
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Figure 2.12: Experiment 1: Time complexity comparison.



Chapter 2: QoS-Aware Power-Efficient Scheduler for LTE Uplink 37

10 12 14 16 18 20 22 24 26 28 30
0.09

0.1

0.11

0.12

0.13

0.14

0.15

Average channel gain of user 2

P
ow

er
 c

on
su

m
pt

io
n 

of
 u

se
r 

1

 

 

Iterative
BIP
PF

Figure 2.13: Experiment 2: Average transmitted power per TTI for user 1 (Watt).
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Figure 2.14: Experiment 2: Average transmitted power per TTI for user 2 (Watt).
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Figure 2.15: Experiment 2: Average queue length for the NGBR bearers in bits.

10 12 14 16 18 20 22 24 26 28 30

50

60

70

80

90

100

110

Average channel gain of user 2

A
ve

ra
ge

 r
at

e 
pe

r 
be

ar
er

  (
K

bp
s)

 

 

Iterative−B1
BIP−B1
PF−B1
Iterative−B2
BIP−B2
PF−B2

Figure 2.16: Experiment 2: Average transmission rate per bearer per user.
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Figure 2.17: Experiment 3: Average transmitted power per user per TTI (Watt).

k at TTI t. The simulation setup is similar to the one given in Table 2.5, but the number of

RBs grows to 40.

Each user has four bearers as described in Table 2.6. All users are assumed to ex-

perience ACG of 10. Fig. 2.17 exhibits the average transmit power per user. For both

algorithms, the number of users is proportional to the average transmission power as a

result of the increased competition for resources. Although the EARA is not practical be-

cause it does not consider the maximum transmit power threshold, it consumes more power

than the proposed algorithm. Fig. 2.18 shows the delay of the four bearers averaged over

all users. The delay of the EARA is slightly lower than the delay of the proposed algorithm.

As the number of users increases, the delay becomes longer and approaches their thresh-

olds. However, both algorithms succeed to maintain the delay less than the threshold. The

average data rates are shown in Fig. 2.19. The algorithms manage to transmit average data

rates equal to the average data arrival rates.
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Figure 2.18: Experiment 3: Delay per bearer averaged on all users.
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Figure 2.19: Experiment 3: Average transmission rate per bearer averaged on all users.
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2.10 Chapter Summary

In this chapter, a framework for power-efficient scheduling in LTE uplink systems is pre-

sented. Both the QoS requirements and the channel fading parameters were considered.

The scheduling problem was formulated and presented as a multi-stage problem. Then, it

was simplified into a single point binary integer programming problem. Subsequently, a

low-complexity iterative scheduler was proposed to solve the binary integer programming

problem. The iterative scheduler proved to consume slightly more power compared to the

binary integer programming scheduling approach, but it has considerably lower computa-

tional complexity. Simulation results were used to compare the proposed schedulers with

the Proportional Fair scheduler in terms of power efficiency, delay, transmission rate, and

complexity. The results show that the proposed schedulers maintained the required QoS

and reduced the total transmit power under different practical scenarios. These power sav-

ings were achieved because of the schedulers’ attribute of transmitting data at low rates

while maintaining the required QoS.
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Chapter 3

Low-Complexity Power-Efficient Schedulers for

LTE Uplink with Delay-Sensitive Traffic

3.1 Introduction

The recent years have witnessed unremitting advances in the wireless technology domain,

which served to grow the mobile data market. New wireless applications and services have

emerged, and accessing data services via mobile devices has increased considerably. To

keep up with the increase in mobile data traffic, long term evolution (LTE) technology has

been developed to support high performance radio-access technology.

LTE supports high data rate links and enables users to run multiple concurrent appli-

cations with heterogeneous quality of service (QoS) requirements, such as live streaming

of audio, video, and social media applications. However, to maintain a fixed error perfor-

mance, increasing the transmitted data rate is accompanied with a power increase to keep

the energy per bit unchanged. Furthermore, as the total number of bits transmitted per

unit time grows, the total transmission power per unit time becomes substantially higher as

well. Unfortunately, the increasing demand for transmission power is quite higher than the

improvement in batteries’ capacity. As most end-user devices are powered from small size

batteries, high data rate transmission would reduce the average operation time-per-charge

of battery-powered devices. Consequently, the development of power-efficient transmis-

sion techniques has become an important design consideration to improve the battery life

of mobile devices.

A version of this chapter has been published in [34].
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In the literature, there has been increasing interest to better understand and model the

power consumption of smartphones. For example, Zhangt et al. [35] designed an online

power model that estimates the power consumption of different components in Android

smartphones including central processing unit (CPU), liquid-crystal display (LCD), global

positioning system (GPS), audio, Wi-Fi and cellular interfaces. The work reported in [36]

models the impact of wireless signal strength on smartphone energy by analysing traces

collected from 3785 smartphones. A power model of a commercial LTE network is pre-

sented in [37], where an application is designed and installed on Android smartphones to

collect traces of the power consumption. The study suggests that the power consumption

of LTE is 23 times higher than the power consumption of WiFi interfaces.

In LTE systems, the LTE uplink is based on single carrier frequency division multiple

access (SC-FDMA). Compared to orthogonal frequency division multiple access (OFDMA),

SC-FDMA has lower peak-to-average power ratio (PAPR). The Low PAPR advantage of

SC-FDMA is achieved by localized-mapping of the resource blocks (RBs), where each user

should be mapped to a subset of contiguous RBs.

Resource scheduling in OFDMA-based systems has been widely investigated in the

literature [38]. Many schedulers have been developed to optimize different allocation met-

rics such as the sum rate maximization [39], total transmit power minimization [40], and

fairness [41]. Several solutions have been presented based on game theory [41], convex

optimization and dual decomposition [42, 43, 44], dynamic backpressure policies [45],

and interior point methods [46]. However, the contiguity constraint of the SC-FDMA

changes the scheduling problem into a non-convex optimization problem [13, 47], and

prevents the direct application of power-efficient transmission techniques that are derived

for OFDMA systems [38]. Due to the contiguity constraint, the resource allocation in

SC-FDMA systems is typically formulated as a binary integer programming (BIP) prob-

lem [8, 13, 20, 25, 47].

In the literature, the resource allocation for SC-FDMA systems can be divided into

two groups. The first group considers a static data traffic model. The main objective in

such scenarios is either to maximize the aggregated cell throughput subject to a maximum

transmit power threshold, or to minimize the total transmit power for all users subject to

a constant data rate. For example, Wong et al. [47] considered weighted sum-rate max-
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imization in the LTE uplink. The problem is formulated and solved as a BIP. A reduced

complexity technique that solves the same problem is reported in [13], where the BIP is

transformed into a continuous space canonical dual problem, which is solved using algo-

rithms with polynomial complexity. Heuristic algorithms were also proposed to solve the

BIP problem with lower complexity [48, 49, 50].

It is worth noting that the schemes described in [13, 47, 48, 49, 50] aim at maximizing

the system capacity regardless of the power consumption of user equipments (UEs). The

schemes assume that UEs transmit at their maximum transmit power, which degrades the

power efficiency of the scheduler. Moreover, the schemes do not consider the dynamic

nature of the traffic and assumes full-buffer occupancy, which is not necessarily true in

practical systems.

The second group considers dynamic traffic models and QoS requirements as the

optimal scheduler presented in Chapter 2. However, the proposed scheduler is complex

and not globally optimal. In addition, it requires that the average arrival rates of all user

traffic bearers to be known at the evolved node-B (eNB).

In this chapter, the global optimal scheduler for the LTE uplink is derived. The sched-

uler minimizes the total transmit power of all users while satisfying the delay requirements.

The scheduling problem is formulated as a dynamic programming (DP) problem, and the

scheduler considers the dynamic nature of the traffic load, maximum transmit power thresh-

old, contiguous allocation, and the time-varying fading channel. Moreover, to reduce the

complexity, two power-efficient heuristic schedulers are proposed to solve the scheduling

problem.

The rest of this chapter is organized as follows. Section 3.2 presents the system

model. Section 3.3 discusses the scheduling constraints. The DP problem is formulated

and discussed in Section 3.4. The heuristic algorithms are described in Section 3.5. The

numerical results are presented in Section 3.6, and finally Section 3.7 concludes the chapter.

3.2 System Model Description and Assumptions

An uplink SC-FDMA multiuser system is considered, where K UEs communicate with

an eNB. The uplink bandwidth is divided into M RBs. Each RB consists of 12 adjacent
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Table 3.1: Summary of the most significant notation used in this chapter.

Symbol Meaning
K, k Number of UEs / UE Index
M,m Number of RBs / RB index
N,n Number of subcarriers / Subcarrier index
t Subframe index
pk,n Power allocated to subcarrier n of user k
Pk Total transmit power of user k
Pmax Transmit power threshold
αk,m Channel-gain-to-noise ratio of user k on the RB m
qk The queue length of user k (DUs)
qmaxk Queue length threshold of user k (DUs)
Tk Transport block size (bits per subframe)
Lk User k DU length (in bits)
ck Transmitted DUs from buffer k
cmaxk Max. number of DUs/subframe user k can transmit
bi The contiguous allocation number i
b Set of all contiguous RB allocations
c Joint actions of all users
s Joint state of all users
β Binary number indicator
a All users’ arrival DUs

subcarriers. Therefore, the number of subcarriers available for the uplink transmission

is N = 12 M . The available RBs are assigned to users by the eNB. Each user can be

assigned one or more RBs. To facilitate the readability, Table 3.1 summarizes the notations

frequently used throughout the chapter.

The SC-FDMA transmission process is shown in Fig. 3.1. Without loss of gener-

ality, suppose that user k is allocated RBs {1, 2, ...,Mk}. In other words, the subcarriers

{1, 2, ..., Nk} are allocated to user k, where Nk = 12 Mk. In this section, the temporal

index ts is omitted for brevity. The transmitted signal of user k, without cyclic prefix, can

be expressed as

sk = GZkFkPkxk (3.1)

where G ∈ CN×N is the inverse Discrete Fourier Transform (IDFT) matrix, Zk ∈ RN×Nk

represents the mapping matrix for subcarrier assignment, Fk ∈ CNk×Nk is Discrete Fourier

Transform (DFT) matrix, Pk is diagonal power matrix Pk = diag{√pk,n : n = 1, 2, ..., Nk},
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Figure 3.1: A block diagram of a SC-FDMA system.

with pk,n represents the power allocation to the subcarrier n, and xk is theNk×1 data vec-

tor, which represents the time-domain symbols sent by user k. It is worth noting that the

mapping matrix Zk changes the size of vector FkPkxk fromNk×1 toN×1. The mapping
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matrix of user k is defined as follows

Zk =



1 0 · · · 0 0

0 1 · · · 0 0
. . .

0 0 · · · 0 1

0 0 · · · 0 0
...

...
...

...
...

0 0 0 0 0


. (3.2)

To reduce the signalling overhead, the LTE standard specifies that when a user is as-

signed more than one RB, one power level should be used for all RBs [9, 15, 51]. Therefore,

the transmit power is equally divided over all subcarriers

pk,n =
Pk
Nk

, n = 1, 2, ..., Nk (3.3)

where Pk is the total transmit power of user k. Consequently, the power matrix can be

expressed as

Pk =
Pk
Nk

I (3.4)

where I ∈ RN×N is an identity matrix. The cyclic prefix length is assumed to be longer

than the maximum excess delay of the channel. Therefore, the inter-symbol interference

can be eliminated by removing the cyclic prefix.

In LTE systems, fractional frequency reuse (FFR) techniques are used to control

the intercell interference of the cell-edge users by exchanging interference-coordination

information between eNBs over the X2 interface. With FFR, users are assigned different

parts of wireless resources based on their location in the cell. Users who are close to the

center of the cell are subject to low intercell interference from neighbouring cells and are

allowed to use the entire frequency band (frequency reuse factor of one). However, users

at cell-edges are subject to high intercell interference. Exclusive frequency bands, that

are not used in neighbouring cells, are assigned to cell-edge users to reduce the intercell

interference. In this chapter, it is assumed that the scheduling is performed independently
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at each base station because the interference at the edges is generally limited due to FFR

techniques [52].

At the eNB, the received signal for all users, after removing the cyclic prefix and

performing the N-point DFT, can be expressed as

y =
K∑
k=1

HkZkFkPkxk + w. (3.5)

Assuming that the channel remains unchanged over one SC-FDMA subframe, then the

channel matrix Hk ∈ CN×N = diag{Hk,n : n = 1, 2, ..., N} is the diagonal channel

matrix between user k and the eNB, Hk,n is the channel gain of the nth subcarrier seen

by user k includes path loss, shadowing, and multipath fading, and w is the additive white

Gaussian noise vector with variance No.

In LTE, the eNB manages the resource allocation in both downlink and uplink [9].

The allocation of subcarrier and power is determined for each user by the eNB based on

the scheduling policy. In other words, the eNB determines the matrices Zk and Pk for each

user. Users are assumed to experience independent Rayleigh block-fading channels. Each

channel is assumed to be fixed during one subframe in time domain and over one RB in

frequency domain
(
Hk,12(m−1)+v = Hk,12(m−1)+u, [v, u] ∈ {1 : 12}

)
, but changes in-

dependently over different subframes and different RBs. Assuming that the eNB applies

the zero-forcing equalizer, the post-processing time-varying effective SNR for the received

signal of user k can be expressed as [53]

γk = Pk

 Mk∑
m=1

1

αk,m

−1

(3.6)

where αk,m is the channel-gain-to-noise ratio (CNR) of user k on the RB M , which is

defined as

αk,m =
|Hk,12(m−1)+v|2

No
, v ∈ {1 : 12}. (3.7)

The granularity of the scheduler decisions is one RB in the frequency domain and one

LTE subframe in the time domain, which is also called a transmission time interval (TTI).

Fig. 3.2 illustrates the LTE subframe structure. Each LTE subframe contains 14 symbols,
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each of which has a duration of Ts = 66.67µs. Suppose that Tctrl symbols are used for

signalling, the number of data symbols per subframe over an RB is equal to 12(14−Tctrl).

The total number of bits per subframe that user k can transmit is

Tk = Rk 12 (14− Tctrl) Ts (3.8)

where Rk is the maximum instantaneous data rate (bits/second) that user k can achieve

using the assigned RBs {1, 2, ...,Mk}, which can be calculated as [29, 54]

Rk = Ws Nk log2 (1 + γk) (3.9)

where Ws is the subcarrier bandwidth. Using (3.6), (3.8), and (3.9) the required power to

transmit Tk bits for user k over the assigned subcarriers {1, 2, ...,Mk} is

Pk = (2κ − 1)

Mk∑
m=1

1

αk,m
(3.10)

where

κ =
Tk

12 (14− Tctrl) TsWsNk
. (3.11)

Uplink synchronization is needed to avoid overlapping transmissions from different

users. In LTE systems, the uplink transmission timing between different users is achieved

by using the timing advance mechanism [9]. The eNB keeps measuring the timing of the

user uplink signal, and sends timing advance commands to the user who needs a timing

adjustment. The timing advance commands update the uplink transmission timing and

offset the differing propagation delays of users. In this chapter, it is assumed that the eNB

provides perfect timing and frequency synchronization [55].
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Figure 3.2: The structure of the LTE frame.

3.3 Allocation Constraints and Problem Definition

3.3.1 Delay Constraint

DUs arrive randomly to users’ buffers where each user is assumed to have one finite-length

first-input-first-output buffer to store the unserved DUs.

Each buffer is assumed to be large enough to accommodate all unserved DUs.

Let ak[t] denote the number of DUs that arrive to the user buffer k at the end of

subframe t. The distribution of the DUs arrival follows Poisson distribution with associated

parameter λk [30]. User k buffer updates its status over any two successive subframes as

qk[t+ 1] = qk[t] + ak[t]− ck[t] (3.12)

where qk[t] denotes the number of DUs in buffer k at the beginning of subframe t, and ck[t]

is the transmitted DUs from buffer k during [t, t+ 1).

The LTE standard defines a packet delay budget (PDB) for each bearer, which defines

the maximum acceptable time that a packet may be delayed between the UE and the PCEF
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(Policy and Charging Enforcement Function) [56]. For example, conversational voice has

PDB of 100 ms. However, the buffer status reporting (BSR) mechanism in LTE informs

the eNB the data size (in bytes) in the user buffer [9]. In the downlink, the delay of each

packet is known by the eNB. In the uplink, BSR mechanism is responsible for updating the

eNB the current status of users’ buffers. However, the BSR reports contain only the queue

length information, which is used to perform the scheduling.

Network operators can determine the upper bound on the user delay based on statis-

tical measurements of the queue length, if the queue length exceeds the upper bound, delay

violation is declared.

In this chapter, it is assumed that the delay requirements for the data delivery of user

k is satisfied if

qk[t] ≤ qmaxk , ∀t (3.13)

where qmaxk is an integer number associated with the PDB. However, once the number of

DUs exceeds qmaxk , the delay violation is declared, but no DU is discarded.

3.3.2 System Constraints

Three types of constraints restrict the scheduling in the LTE uplink: 1) Contiguity con-

straint: SC-FDMA restricts the RB allocation to only contiguous ones, meaning that if a

user is assigned more than one RB, the assigned RBs should be adjacent to each other.

The set that contains all possible contiguous allocations is denoted as b = {b1, b2, ..., btot},
where bi is the contiguous allocation number i, and btot is the total number of possible

contiguous allocations that can be constructed from x RBs, which can be calculated as [47]

btot =
1

2
x(x+ 1) + 1. (3.14)

Fig. 3.3 shows an example of the set b for three RBs. The contiguity constraint can

be maintained by allocating adjacent RBs to every user. 2) Exclusivity constraint where

each RB should not be assigned to more than one user. 3) Power constraint that limits the

the maximum transmit power per user to a threshold specified by the LTE standard. This

restriction is required to ensure that the transmitter power amplifier is operating in the linear
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Figure 3.3: Contiguous allocations possible from three RBs.

region. The power constraint is satisfied by maintaining the following inequality

Pk[t] ≤ Pmax,∀t (3.15)

where Pmax is the transmit power threshold.

3.3.3 Problem Definition

This chapter aims at minimizing the total power transmitted by all users while satisfying

the delay constraints. This optimization problem can be formulated as

min lim
τ→∞

1

τ

K∑
k=1

τ∑
t=1

Pk[t] (3.16a)

subject to:

qk[t] ≤ qmaxk ,∀k (3.16b)

Ik[t] ∈ b,∀k (3.16c)

Iu[t] ∩ Iv[t] = φ,∀u 6= v (3.16d)

Pk[t] ≤ Pmax,∀k (3.16e)

where Ik[t] represents the contiguous allocation assigned to user k at subframe t. The con-

straints in (3.16b-3.16e) assure that the delay, exclusive allocation, contiguity allocation,

and maximum allowable power transmit constraints are satisfied.
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In this chapter, it is assumed that the system can maintain the delay requirements of

all users, and feasible solutions exist. However, if the data arrival rates are high, the opti-

mization in (3.16) could be infeasible, and hence, an admission control policy is needed [12].

3.4 Optimal Offline Scheduling

In this section, an offline optimal solution for (3.16) is obtained using DP. The problem in

(3.16) is optimally structured, i.e., it is divided into stages each of which has a duration

of one subframe. By assuming that the scheduler has perfect knowledge of both future

DU arrivals and future channel realizations before scheduling, the problem in (3.16) can

be expressed as a deterministic DP problem. Although this assumption makes the system

non-causal, it provides the optimal solution which can be used to as a reference for other

sub-optimal algorithms.

Having said that, it is worth noting that such assumptions are not always over op-

timistic because DU arrivals can be predicted for certain applications such as voice over

IP (VoIP), and future channel state information can be accurately estimated in slow time

varying channels [57, 58].

In this chapter, it is assumed that the system is observed over a finite number of sub-

frames (stages) τ . Three main elements define the DP, namely stages, states, and actions,

which are described as follows.

• Stages: DP breaks up the entire problem into stages, and each stage forms a new sub-

problem. The new sub-problems are smaller, and consequently, less computationally-

expensive to solve compared to the entire problem. The optimal solution of the entire

problem can be achieved by solving all sub-problems individually. For the problem

considered in this chapter, the stage is defined as one subframe in time.

• States: every stage has a number of possible states. Information about the states at

each stage is essential to solve the sub-problems. To avoid confusion, two types of

states, user states and joint states are defined. At subframe t, the state of user k is

denoted by qk[t] and defined as the number of DUs that exist in the buffer of user k.

The joint state at stage t is defined as the joint states of all users at subframe t, which
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can be expressed as

s[t] = [q1[t], q2[t], ..., qK [t]]. (3.17)

Given that the the maximum allowable delay of user k is qmaxk DUs, the possible

states of user k are [0, 1, ..., qmaxk ]. User k has qk[t] + 1 possible states at stage t.

Therefore, the total number of joint states at stage t is

N js[t] =
K∏
k=1

(1 + qk[t]). (3.18)

• Actions: are defined as the number of DUs a user transmits at a stage. Actions

are taken at every stage for all users and update their states. As users compete for

the same radio resources, the actions for each user depend on the action taken for the

other users. As a result, the joint actions should be taken into account by the dynamic

algorithm. The joint actions are defined as number of transmit DUs per subframe for

each user. Fig. 3.5 illustrates the components and the optimal action path of the DP

problem.

To simplify the DP analysis, it is assumed that users can only send a finite number

of DUs during any TTI. The action set that user k can take at stage t is denoted by

ck[t] ∈ {0, 1, 2, ...,min(qk[t], cmaxk )},∀k (3.19)

where cmaxk is the maximum number of DUs that user k is allowed to transmit per

subframe. Note that (3.19) implies that user k cannot take any action at stage t that

transmits data more than its buffer length.

The joint action at stage t is described as joint transmission decisions for all users,

and it is denoted by

c[t] = [c1[t], c2[t], ..., cK [t]]. (3.20)

Therefore, the number of joint actions at stage t is

N ja[t] =
K∏
k=1

(1 +min(qk[t], cmaxk )). (3.21)
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In fact, different possible distributions of the RBs between users may exist for one

joint action. Consequently, different RB allocations may result in different costs with the

same joint action. For example, assume a system of two users who share three RBs. All

possible RB allocations for the two users for each action are shown in Fig. 3.4. As channel

gain varies over RBs, each RB allocation is associated with a cost which can be calculated

using (3.10). As a result, each joint action in this example may be related to nine different

joint costs depending on how the RBs are assigned to the users.

As our objective is to minimize the total transmit power, finding the minimum joint

cost for each action results in minimizing the total transmit power. Therefore, for each ac-

tion, the RBs should be allocated to the users such that the cost is minimized. Nevertheless,

finding the actions’ minimum joint costs is not trivial, particularly for systems with large

number of users and RBs.

Joint Action Cost Minimization: finding the minimum cost for each joint action

is a combinatorial problem, which can be formulated as a binary integer programming

problem as follows. Assume the current subframe is t, the minimum cost for the joint

action c[t] = [c1[t], c2[t], ..., cK [t]] can be found by solving the following optimization

problem

P (c, t) = min
K∑
k=1

B∑
b=1

Pk[t] β(k, bi) (3.22a)

subject to:

K⋂
k=1

β(k, bi) = φ, ∀i (3.22b)

Pk[t] ≤ Pmax (3.22c)

Tk[t] = ck[t] Lk, ∀k (3.22d)

where Lk is user k DU length (in bits), c is a generic value of c[t], and β(k, bi) is a binary

number defined as
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β(k, bi) =

{
1, if the allocation bi is assigned to user k.

0, otherwise.
(3.23)

Although data is delivered in packets of several sizes, they may be split into several

DUs or may be combined into a single DU. Here, it is assumed that Lk is a fixed value for

each user; but a user can transmit one or more DUs in each TTI. For example, if Lk = 100

bits and cmaxk = 3, user k can transmit 100, 200, or 300 bits in each TTI.

The constraint in (3.22b) maintains exclusive RB allocations, and prevents overlap-

ping allocations. It is worth noting that feasible solutions for (3.22) are not guaranteed. If

no feasible solutions exists, the cost of the joint action is assigned as∞.

A main limitation for the DP is that the complexity of such algorithms increases

exponentially as a function of the number of possible actions at each stage. Although

solving BIP for each joint action is computationally expensive, it results in reducing the

computational complexity of the DP algorithm. Instead of considering all RB allocation

possibilities for one joint action as new joint actions, they reduce to only one joint action.

The Basic DP Algorithm: the joint state updates as follows

s[t+ 1] = s[t]− c[t] + a[t], t ≥ 1 (3.24)

where s[1] is the initial state and a[t] presents all users’ arrival DUs at subframe t

a[t] = [a1[t], a2[t], ..., aK [t]]. (3.25)

The problem in (3.16) can be presented as an optimal control problem as follows

min
c

1

τ

τ∑
t=1

P (c, s, t) (3.26)

where P (c, s, t) = P (c, t)+PI(s, t), and PI(s, t) is a penalty cost of infeasible states which

is defined as

PI(s, t) =

{
∞, if s is infeasible

0, if s is feasible.
(3.27)
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Figure 3.4: An example of all possible RB allocations for a system consisting of three
RBs shared between two users.

User k reaches an infeasible state at subframe t if the number of the unserved bits in the

user’s buffer exceeds the maximum allowed queue length, qk[t] > qmaxk .

Initial and final state settings: assume that all users’ buffers are empty at both the

initial subframe (t = 1) and final subframe (t = τ ). Also, no data arrives for any users at

time t ≥ τ is assumed. In other words, a[t] = 0K |t ≥ τ, where 0K is a vector of zeros with

a length of K. Therefore, the first and the τ + 1 joint states can be presented, respectively,

as s[1] = 0K and s[τ + 1] = 0K .

Let F (s, t) be the minimum future cost obtained by optimising the problem over

subframes t, t+ 1, ..., τ + 1, where s is a generic value of s[t]. The dynamic programming
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Figure 3.5: The components and the optimal action path of the DP problem.

equation, also known as Bellman equation, can be written as

F (s, t) =

 min
c
{P (c, s, t) + F (s− c + a, t+ 1)}, t ≤ τ

0, t > τ.
(3.28)

Note that the optimization in (3.28) is unconstrained because all the constraints are

considered in P (c, s, t) = P (c, t)+PI(s, t). The exclusive allocation, contiguity allocation,

and maximum allowable transmit power constraints are considered in P (c, t) as illustrated

in (3.16). The delay constraint is considered in PI(s, t) as discussed in (3.27).

Let c∗t be the optimal action at subframe t given that the joint state of subframe t

is s∗t . The optimal scheduling policy for DP is denoted as Θ∗ = {c∗1, c
∗
2, ..., c

∗
τ}, and it is

defined as a set of joint actions that should be taken across all the stages such that the total

cost function is the minimized.

The DP equation presented in (3.28) is a recursive loop. At each subframe, the

optimal action ct is only a function of the joint state st. And thus, the optimal action at
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the current time does not depend on the past actions taken. Furthermore, the DP equation

is backward in time, meaning that the sequence of optimal actions is determined starting

from the final stage and ending at the initial stage. The solution of the DP equation works

in reverse as follows. The value of F (s, τ + 1) is known and equal to zero. Using (3.28),

F (s, τ) can be calculated as

F (s, τ) = min
c
{P (c, s, τ) + 0}. (3.29)

As a result, F (s, τ − 1) can be calculated iteratively until F (s, 1) is reached, which is the

minimum total power transmitted during [1, τ ]. Thus, the optimization in (3.26) can be

presented as

min
c

1

τ

τ∑
t=1

P (c, s, t) = min
s∈s[1]

F (s, 1)

τ
. (3.30)

3.5 Sub-Optimal Power-Efficient Schedulers

Although DP provides global optimal solutions, it is non-causal and computationally ex-

pensive.

The BSR mechanism is responsible for informing the eNB about the current size

of users’ queues. The BSR is trigged when new data arrives in an empty buffer, a new

data arrives that has higher priority than the one in the buffer, or when the timer for BSR

(periodicBSR-Timer) expires [9]. The LTE standard defines the minimum value of the

timer for BSR reporting to be five subframes [59], which is assumed in this chapter.

The DP is computationally complex for two reasons. First, it has a large number of

states and actions, and second, it solves a BIP problem for each joint action. As a result,

low-complexity solutions are needed for practical systems. To minimize the total transmit

power and satisfy the delay constraints, three main elements should be considered while

scheduling the system resources. First, data transmission at high data rates is convenient

for satisfying the delay constraints. However, high data rate transmission is less power-

efficient than transmitting at low data rates [8, 25]. Second, the total transmit power can be

reduced by efficiently allocating the radio resources between users. As seen from (3.10), the

transmit power decreases as the channel conditions improve. Third, the scheduler should
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be agile to accommodate for the channel variations. For example, the scheduler may allow

users to transmit high data rates when the channel is good, while transmitting low data

rates in poor channel conditions. Based on the aforementioned three observations, two

heuristic algorithms that solve the scheduling problem for the LTE uplink are proposed.

The proposed algorithms depend on the channel quality and users’ buffers lengths.

3.5.1 Maximum Transmit Power Controlling (MTPC) Scheduler

MTPC scheduler minimizes the total transmit power by preventing users from transmitting

at the maximum power levels, unless it is necessary to meet the delay constraints. The

objective is to maximize the total transmit DUs for all users subject to maximum allowable

transmit power (MATP) levels pmaxk < Pmax. The principal idea of the MTPC scheduler is

to adapt the users’ MATP levels based on their data queue lengths. The algorithm increases

MATP levels for users who experience increase in their data queue length. On the other

hand, MATP levels can be decreased for users who experience a decreasing queue length.

In other words, the scheduler allows users who are demanding high QoS to increase their

MATP, and accordingly transmit using higher rates to meet their QoS requirement. In

contrast, to save power, MATPs are decreased for users who have low traffic load.

The pseudo-code in Table 3.2 describes the MTPC scheduler. The maximum num-

ber of DUs that can be transmitted over RB chunk RBk while pk ≤ pmaxk is denoted

by Ω(RBk, pmaxk ). For each iteration, a single RB is allocated to the winning user who

maximizes Gain(k∗), where Gain(k∗) is the gain user k∗ achieves after granting the RB.

The function Λ(pmaxk , qk[t]) dynamically updates the MATP level for the next subframes,

which is discuss in Section 3.5.4. The MTPC pseudo-code can be illustrated as follows

• Lines 4-9 find the best feasible RB for each user considering the contiguous alloca-

tion constraint. If a user has no allocation, the scheduler chooses the feasible RB

with the highest channel gain (line 5). In case a user has been assigned one or more

RBs, the scheduler chooses the feasible RB with the highest channel gain that is next

to the allocated RB chunk to that user (lines 7-9). The two operations max|RBk|
and min|RBk| find the highest RB number as well as the lowest RB number that
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Table 3.2: MTPC scheduler.

1: RB = {1, 2, . . . ,M}, RBk = ∅, ∀k ∈ K
2: while |RB 6= ∅| do
3: for k ∈ K do
4: ifRBk = ∅ then
5: Vk = arg max

m∈RB
{αk,m}

6: else
7: m∗U = {max|RBk|+ 1} ∩ RB
8: m∗L = {min|RBk| − 1} ∩ RB
9: Vk = max{m∗L,m

∗
U}

10: end if
11: if Vk = ∅ then
12: Gain(k) = −1
13: else
14: Gain(k) = Ω(RBk ∪ Vk, pmaxk )− Ω(RBk, pmaxk )
15: end if
16: end for
17: if max

k
Gain(k) < 0 then

18: break
19: else
20: k∗ = max

k
{Gain(k)}

21: RB∗k = RBk ∪ V∗k , RB = RB \ V∗k
22: end if
23: end while
24: qk[t+ 1] = ak[t]− Ω(RBk, pmaxk [t]), ∀k
25: pmaxk [t+ 1] = Λ(pmaxk [t], qk[t]), ∀k

are assigned to user k. Consequently, max|RBk|+ 1 and min|RBk| − 1 denote the

number of the positional RBs that are adjacent to the RB chunkRBk.

• Lines 11-15 compute Gain(k), which denotes the potential increase in number of

transmit DUs by adding the best feasible RB found in lines 4-9. If the potential new

allocation adds no positive gain to the user, the Gain(k) is set to -1.

• Lines 17-22 determine the winning user (k∗) who achieved the maximum Gain(k∗),

then assign the associated Vk∗ to the winning user, and take Vk∗ from the unallocated

RBs setRB.

• Lines 24-25 update the MATP level for all users based on their queue lengths.
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Table 3.3: BWC scheduler.

1: RB = {1, 2, . . . ,M}, RBk = ∅, ∀k ∈ K
2: while |RB 6= ∅| do
3: for k ∈ K do
4: ifRBk = ∅ then
5: Vk = arg max

m∈RB
{αk,m}

6: else
7: m∗U = {max|RBk|+ 1} ∩ RB
8: m∗L = {min|RBk| − 1} ∩ RB
9: Vk = max{m∗L,m

∗
U}

10: end if
11: if Vk = ∅ then
12: Gain(k) = −1
13: else
14: Gain(k) = Γ(RBk ∪ Vk,Wmin

k )− Γ(RBk,Wmin
k )

15: end if
16: end for
17: if max

k
Gain(k) < 0 then

18: break
19: else
20: k∗ = max

k
{Gain(k)}

21: RB∗k = RBk ∪ V∗k , RB = RB \ V∗k
22: end if
23: end while
24: qk[t+ 1] = ak[t]− Γ(RBk,Wmin

k [t]), ∀k
25: Wmin

k [t+ 1] = Ξ(Wmin
k [t], qk[t]), ∀k
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3.5.2 Bit per Watt Controlling (BWC) Scheduler

The BWC scheduler controls the minimum acceptable Bit per Watt ratio (BPWR) for each

user. Consequently, the users do not waste their power on transmission when the channel

conditions are poor, and certain level of transmit power efficiency is maintained. However,

when the users’ queue lengths increase, the scheduler decreases the BPWR assigned to

them. As a result, the scheduler pushes the users to transmit more DUs and satisfy the

delay requirement at high power consumption expense.

The BPWR at subframe t is denoted by Wk[t], which is defined as the number of bits

transmitted per watt,

Wk[t] =
Tk[t]

Pk[t]
.

Denote Γ(RBk,Wmin
k [t]) as the maximum number of DUs that can be transmit-

ted over the RB chuck RBk such as Wk[t] ≥ Wmin
k [t], where Wmin

k [t] is the minimum

acceptable BPWR at subframe t. The function Ξ(Wmin
k , qk[t]) dynamically updates the

minimum acceptable BPWR, which is discussed in Section 3.5.4.

The minimum acceptable BPWR is updated based on the users queue lengths. For

users who experience reduction in their queue length, the minimum acceptable BPWR is

increased, otherwise, it will be decreased.

The BWC scheduler allocates RBs to users iteratively similar to the MTPC scheduler.

At each iteration, one RB is allocated to the winning user k∗ who maximizes Gain(k∗),

where Gain(k∗) is the difference between the number of DUs that can be transmitted after

and before assigning the potential RB to user k∗ and satisfies Wk∗ [t] ≥ Wmin
k∗ [t]. The

pseudo-code in Table 3.3 describes the BWC scheduler. In lines 4-9, the scheduler finds the

best RB for every user, which has the highest CNR and maintains the contiguous allocation

constraint. The potential gains Gain(k),∀k that are resulted from assigning the potential

best RBs that are found in lines 4-9 are computed in lines 11-15. If user k has a negative

gain,Gain(k) is set to -1. Lines 17-19 stop the algorithm ifGain(k) < 0,∀k. The winning

user (k∗) is defined as the user who achieves the maximum Gain(k∗) and is determined by

line 20, while in line 21 the RB is assigned and the unallocated RBs set is updated. Based

on the queue length, BPWRs are updated for all users in lines 24-25.
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3.5.3 Complexity of the Heuristic Algorithms

The first iteration of both algorithms should find the best RB for each user. Finding the

best RB, that has the maximum SNR, for a user requires M operations. Therefore, the

first iteration requires K ×M operations. Finding the maximum number of DUs that can

be transmitted over the best RB of user k requires at most cmaxk operations. As constants

and low-order terms don’t determine the complexity order, the first iteration complexity is

O(K ×M). The first iteration assigns an RB to a user. In the second iteration, the number

of the remaining RBs is M − 1. The best-case scenario is when the assigned RB in the

first iteration is not a best RB for any other users. In other words, each user has a distinct

best RB. In this case, no more operations are required for the next iteration because users

know their best RBs, which are the same as in the previous iteration. Therefore, the best-

case scenario complexity is O(K × M). Nevertheless, the worst-case scenario is when

the assigned RB in the first iteration is the best RB for all users. This requires finding the

second best RB for every user, which requires O((K − 1)× (M − 1)) operations. For all

M iterations, the complexity of worst-case scenario is O(K ×M2).

The heuristics algorithms can be implemented more efficiently using sorting algo-

rithms, such as Merge sort. The SNR of the RBs are sorted for each user. Sorting M RBs

requires M × log(M) operations. Consequently, K ×Mlog(M) operations are required

in order to sort the RBs for K UEs. Finding the best RB of a sorted array is O(1). The

second iteration requires only K operations to delete the assigned RB form the sorted SNR

values array of every user. Thus, the complexity of iterations 2, 3, ...,M is O(K ×M).

Therefore, the algorithms complexity is determined by the first iteration which has a com-

plexity of K ×Mlog(M). As the maximum number of RBs in LTE systems is 100 [9], the

worst-case complexity is O(100K × log(100)) ≈ O(K) if K �M . For a scenario of low

number of active users (M � K), the worst-case complexity is O(M × log(M)).

3.5.4 The Controllers

For the two proposed algorithms, controllers are needed to control the MATP and BPWR

in accordance with buffers’ queue lengths. The MATP and BPWR are updated every l LTE

subframes. Let ϑH and ϑL be positive real numbers between [0, 1] such that ϑH > ϑL.
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When the queue length of a user’s buffer is greater than ϑHqmaxk , the user experiences high

queue length. However, when the queue length of the user’s buffer is less than ϑLqmaxk ,

the user experiences low queue length.

Tables 3.4 presents a low-complexity controller for the MATP scheduler. The MATP

is set to its maximum Pmax when the queue length of the user’s buffer is greater than

ϑHq
max
k . Setting MATP to the maximum means that the data is transmitted at the highest

possible data rates regardless of the power consumption. Therefore, the controller checks

if a user experiences a critical queue length, the user is allowed to transmit using the maxi-

mum possible transmit power. If the queue length of the user’s buffer is less than ϑLqmaxk ,

the MATP decreases by δR. However, if the user queue length is between ϑHqmaxk and

ϑLq
max
k , MATP is controlled using sign(∆k), which is the sign of difference between

q̄k,t−l:t−l and q̄k,t−l:t, where q̄k,u:v is the average queue length over the TTI u : v. If

sign(∆k) is positive, the queue length is increased and the MATP should increase to allow

the user to transmit more data and vice versa.

Tables 3.5 presents a low-complexity controller for the BPWR scheduler. The BPWR

controller is similar to the MATP controller. When the queue length of the user buffers is

greater than ϑHqmaxk , the BPWR is set to zero. If the queue length of the user’s buffer is

less than ϑLqmaxk , the BPWR decreases by δ2. However, if the user queue length is between

ϑHq
max
k and ϑLqmaxk , the BPWR is controlled based on sign(∆k). The positive sign(∆k)

values implies that the queue length increased and the BPWR level should decrease to allow

the users to transmit more DUs at the expense of low bit per watt metric values. On the

other hand, when the queue length decreases, sign(∆k) value is negative, and BPWR level

decreases to force transmission at high bit per watt metric values.

3.6 Simulation Results

The performance of the proposed schedulers is evaluated using MATLAB system-level

simulation based on the uplink LTE model. The DP results are solved using the solver

reported in [60].

The simulated model consists of two users with different QoS requirements and ar-

rival rates. It is assumed that both users experience identical channel conditions in terms of
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Table 3.4: MATP controller.

1: if qk[l] ≥ ϑHq
max
k then

2: pmaxk [l] = Pmax

3: else if qk[t] < ϑLq
max
k then

4: pmaxk [l] = {pmaxk [l − 1]− δ1, Pmax},
5: else
6: ∆k = q̄

k,t−l′ :t−l − q̄k,t−l:t
7: pmaxk [l] = min {pmaxk [l − 1] + sign(∆k)× δ1, Pmax},
8: end if

Table 3.5: BPWR controller.

1: if qk[t] ≥ ϑHq
max
k then

2: Wmin
k [t] = 0

3: else if qk[t] < ϑLq
max
k then

4: Wmin
k [t] = 0

5: else
6: ∆k = q̄

k,t−l′ :t−l − q̄k,t−l:t
7: Wmin

k [t] = Wmin
k [t− 1]− sign(∆k)× δ2

8: end if

the received average CNR.

Table 3.6 summarizes the considered simulation parameters. The performance of

the proposed DP and heuristic schedulers is compared with each other as well as with an

non-adaptive scheduler and with the greedy algorithm presented in [25]. The non-adaptive

scheduler is similar to the MTPC scheduler but the MATP levels are fixed to Pmax. The

non-adaptive scheduler transmits at the maximum possible data rate regardless of the chan-

nel condition or the buffer queue length. As a matter of fact, the non-adaptive scheduler

can be seen as the BWCA scheduler with Wmin
k [t] = 0, ∀t, and ∀k.

Fig. 3.6 shows the average user transmit power per TTI. As the average channel gain

increases, the average transmit power decreases for all the considered schedulers and users

scenarios. As shown in (3.10), the transmit power is inversely proportional to the channel

gain. Therefore, increasing the average channel gain reduces the transmit power. The

DP consumes the least average transmit power compared to the other schedulers. The DP

scheduler provides the optimal solution, in which both the channel gains and the data arrival
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Table 3.6: Parameter settings of the uplink LTE model.

Parameter Setting Parameter Setting
Number of RBs (M ) 4 Number of users (K) 2
Pmax 23 dBm (200mw) λ1 1.5
cmax 5 λ2 2.5
ϑL 0.15 ϑH 0.75
δ1 150 δ2 0.02
qmax1 60 qmax2 80
l 5 τ 1000

rates are known for the whole scheduling time before the scheduling begins. Since it has

higher arrival rate, UE2 transmits more DUs and consumes higher power than UE1. Since

λ2 > λ1, the average transmitted data of UE2 is higher than that of UE1. Consequently,

UE2 consumes more power than UE1. The performance of MTPC scheduler outperforms

the performance of BWC. The non-adaptive scheduler consumes the highest power among

the schedulers. On average, MTPC and BWC schedulers consume 0.6 % and 0.70 % of the

power consumed by the non-adaptive scheduler, respectively.

Fig. 3.7 and Fig. 3.8 present the average queue length of UE1 and UE2, respectively.

Although the DP scheduler experiences the highest average queue length, it guarantees

that no delay violation occurs. On average, for the MTPC and BWC schedulers, the user

queue lengths are 57% and 80% less than the queue length resulting by the DP solution,

respectively. The non-adaptive scheduler experiences average queue length 7.5 times less

than the DP scheduler. The non-adaptive scheduler tends to transmit data at the possible

maximum rates, which reduces the average queue lengths at the expense of higher transmit

power.

Fig. 3.9 and Fig. 3.10 show the PDFs of the queue length of UE1 and UE2, re-

spectively. The PDFs of the non-adaptive and the BWC schedulers are similar and almost

confined between 0 and 0.3 qmaxk . The queue length PDFs for the MTPC are similar to the

PDF for the optimal solution. The PDFs for the MTPC and BWC schedulers drop when

the queue lengths approach to ϑHqmaxk , until they reach zero for queue length over than

qmaxk . When a queue length reaches ϑHqmaxk , both schedulers allow the user to transmit

at the highest rate possible, which results in zeroing the queue length PDFs for values over
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Figure 3.6: Average transmit power per TTI.

than ϑHqmaxk .

However, the DP scheduler knows the arrival rate and the channel gain before schedul-

ing, and it manages the delay to be less than the maximum allowed delay and reduces the

total power transmit. Therefore, the queue length PDFs for the DP scheduler show the

highest values among the schedulers between around the maximum allowed delay value.

It is worth mentioning that unstressed system is considered and more investigations on the

utilization of the system is kept for future work.

3.6.1 Large-Scale Scenario

In this subsection, the iterative algorithms are evaluated for a large-scale scenario. As the

DP complexity increases exponentially with the problem size, the optimal solution is not

included for the large-scale scenario. Table 3.7 summarizes the simulation parameters for

the large-scale scenario.

Fig. 3.11 and Fig. 3.12 show the average user transmit power per TTI and the average

queue length (DU), respectively. As the number of users increases, the competition for the
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Figure 3.7: Average queue length for UE1.
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Figure 3.8: Average queue length for UE2.
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Figure 3.9: Probability density function of the queue length for UE1 (average CNR=13
dB).
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Figure 3.10: Probability density function of the queue length for UE2 (average CNR=13
dB).
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Table 3.7: Parameter settings of the large-scale scenario.

Parameter Setting Parameter Setting
Number of RBs (M ) 100 Average CNR 15 dB

λk, ∀k 5 qmaxk , ∀k 200
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Figure 3.11: Average transmit power per TTI for the large-scale scenario.
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Figure 3.12: Average queue length for all users for the large-scale scenario.
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Figure 3.13: Probability density function of the queue length for number of users 70.
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radio resources increases leading to transmitting more power and growth in queue lengths

for all schedulers.

The average queue length is inverse proportional to the power consumed. By us-

ing MTPC scheduler, users consume the least power compared to using BWC, greedy [25],

and non-adaptive schedulers. However, users experience the highest average queue lengths.

However, by using the non-adaptive scheduler, users have the least queue length but con-

sume the most power among the schedulers.

Fig. 3.13 shows the PDFs of the queue lengths averaged on all users. For all sched-

ulers, the average queue length is lower than the maximum allowed (200 DUs), which

means no delay violation has is occurred.

Fig. 3.14 and Fig. 3.15 show the average transmit power and queue length for

the MTPC and BWC schedulers across different values of l. As l increases, the power

consumption slightly increases and the average queue length decreases for both schedulers.

Note that the MATP and BPWR are updated once every l subframes. Updating the MATP

and BPWR at higher rates allows the schedulers to save more power. However, updating

the MATP and BPWR at lower rates decreases the delay as a result of transmitting at higher

data rate at the expense of the power consumption.

3.7 Chapter Summary

In this chapter the problem of minimizing transmit power subject to delay constraints for

the LTE uplink systems is considered. The optimal solution based on a dynamic program-

ming approach is derived. The scheduling problem is divided into stages, each stage has

a number of states based on the queue length of the users’ buffers. Actions are taken at

each stage based on the channel quality and the queue length. Binary integer programming

is invoked to find the minimum cost for each action. The minimum action costs results

from optimally allocating the resource blocks to the users. After finding the minimum cost

for each action, the optimal actions are derived by solving the dynamic equation back-

ward starting from the last stage until the first stage. Consequently, two online schedulers

that solve the scheduling problem with comparable power consumption are proposed. The
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Figure 3.14: Average transmit power for all users per TTI for different l.
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schedulers are based on low computational complexity heuristic algorithm. The first sched-

uler adapts the maximum allowable transmit power for every user according to the queue

length of the user’s buffer. The scheduler prevents user to transmit at high power levels

when the buffer queue length is low. Whereas, the second scheduler controls the mini-

mum acceptable bit per watt ratio (BPWR) for each user. Users can only transmit if they

experience BPWR greater than a minimum acceptable BPWR. For the online schedulers,

controllers are derived to adapt the MATP and BPWR levels for users based on the queue

length of their buffers. The online schedulers performances are compared with the optimal

and existing schedulers in terms of transmit power and delay.
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Chapter 4

Wireless Resource Virtualization: Opportunities,

Challenges, and Solutions

4.1 Introduction

In the last decade, the demand for mobile data services has experienced a substantial growth

that provoked the mobile network operators (MNOs) to search for novel solutions to satisfy

the surging demand while increasing the average revenue per user. Mobile data traffic

forecasts provided by companies such as Cisco, estimated 11-fold increase in the global

mobile data traffic between 2013 and 2018 [4]. Thus, MNOs need to stretch the capacity of

their mobile networks into a new horizon to satisfy the expected demand. As the revenues

generated do not commensurate with the traffic growth, operators should increase their

capacity while being extremely cautious with their investment. They must efficiently utilize

the scarce and highly expensive wireless resources. For example, in 2011, the FCC held

Auction 92 in order to sell spectrum licenses in the 700 MHz band. The seven winners paid

$19.8 billion for 16 licenses. On the other hand, recent spectrum utilization measurements

have shown that wireless resources are underutilized in many cases, which urges the call

for action to create innovative solutions for the problem of underutilized wireless resources.

Wireless resource virtualization (WRV) is gaining a remarkable interest by the in-

dustry as a promising solution to address the problems of spectrum scarcity and resources

utilization inefficiency. WRV enables network operators to create multiple logical networks

on a single physical substrate, thus yielding better efficiency in terms of energy consump-

tion and hardware utilization as shown in Fig. 4.1, where a single base station (BS) is shared

among three MNOs. Sharing BS hardware components as well as spectrum resources are

of great interest to MNOs. A recent study from ABI Research [61] shows that a worldwide
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active infrastructure sharing over a period of five years can save up to $60 billion in capital

expenditure (CAPEX) and operating expenditure (OPEX).

Virtualized	  BSs	  

The	  physical	  	  
BS	  

HYPERVISOR	  	  

Core	  network	  
MNO1	  

	  

Core	  network	  
MNO2	  

	  

Core	  network	  
MNO3	  

	  

Figure 4.1: Base station virtualization.

While virtualization of wireless networks has recently received an increased atten-

tion, virtualization in wired networks began over twenty years ago. Although general con-

cepts of network virtualization remain the same, solutions from wired networks cannot be

directly applied to wireless networks. The main reason is that links in wired networks are

reliable, physically isolated from each other, and have a constant bandwidth. Hence, the

physical layer can often be ignored without major impact on the network performance.

The same approach cannot be applied to wireless networks. Wireless links are less reli-

able, suffer from interference, and have a fluctuating capacity depending on the channel

quality. Therefore, the physical layer of wireless networks profoundly affects the network

performance and should be taken into consideration during the virtualization process. Fur-

thermore, the resources allocation process in wireless networks faces additional challenges

as a result of the dynamic nature of the wireless channel, wireless network topologies,

mobility of users and fast variation of Quality of Service (QoS) requirements of on-the-

go applications. These challenges mandate the presence of a hypervisor that is capable

of monitoring the resources allocation to different networks, coping with the rapid varia-
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tions of the wireless channel and users’ demands, and assuring the adherence to the sharing

agreement between the MNOs.

The remaining part of the chapter is organized as follows. Sections 4.2 and 4.3 dis-

cuss the main benefits and challenges of adopting WRV. In Section 4.4, possible solutions

for WRV are investigated. Section 4.5 proposes efficient fair low-complexity solution for

wireless resource virtualization in LTE networks, and Section 4.6 concludes the chapter.

4.2 Main Benefits of WRV

WRV offers pivotal benefits to the wireless market as well as the environment. The main

benefits of WRV can be divided into three groups as follows.

4.2.1 Economic Sharing of Investment and Cost Reduction

The most immediate benefit of WRV is the considerable reduction of the CAPEX and

OPEX. By consolidating their equipments and spectrum licenses, MNOs are able to en-

hance their network coverage and to alleviate the capital investment needed for launching

new services, which minimizes the time-to-market of new innovations. For example, an

MNO does not have to solely own a certain band through expensive and uncertain bedding

systems. It needs simply to get into a sharing agreement with an existing MNO who owns

the required band.

When multiple network operators jointly construct a network, hardware equipment

such as antennas, cooling systems, and towers can be shared, which reduces the opera-

tional costs and power consumption. Moreover, resources sharing overcomes the capital

shortage related to new infrastructure investments, resulting in shorter network deployment

periods and expedited time-to-market process. Additionally, WRV enables the incorpora-

tion of spectrum pooling techniques to improve the spectrum utilization and increase the

total network capacity [62]. Therefore, a great economic potential is created for reaping

the benefits of the growing wireless market, and it enables business innovation in mobile

services and applications.
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4.2.2 Collaborative Business Models

Governments assign spectrum licenses through competitive mechanisms such as spectrum

auctions or competitive tender, which is commonly referred to as beauty contests. Because

the spectrum available for transmission is limited, a small number of MNOs are usually

dominating the wireless market, which increases the cost of services provided to the end

users. Wireless virtualization enables the creation of a virtual MNO (vMNO) that pur-

chases the spectrum usage rights from an MNO and provides wireless services to the end

customers under its own brand-name. vMNO is a new business model that enables fair

competition that benefits the end customers. Furthermore, it improves resource utilization

by selling underutilized network capacity.

4.2.3 Environmental Benefits

Energy consumption in wireless networks is a growing concern for MNOs due to the in-

creasing energy prices and the environmental consequences. The information and commu-

nication technology industry currently consumes about 3% of the global energy and emits

2% of the global Carbon dioxide (CO2) [63]. Such numbers may rise sharply if each new

MNO has to install new infrastructure for each new network.

While many works focus on virtualizing the core network [64], a significant portion

of the energy consumed by cellular networks is used by the radio access network (RAN)

subsystem. Thus, WRV can increase the energy efficiency of cellular networks because

sharing equipment and sites between multiple MNOs reduces the number of new access

nodes required by new market players, or by existing operators who want to extend the cov-

erage of their networks. Therefore, the energy consumed and the expansion of the wireless

communications sector will not be growing at the same rates. Or, the current MNOs can

utilize the WRV to reduce the current energy consumption and the CO2 emissions, which

promotes the green radio communication. Recently, energy consumption has become a key

element in designing wireless systems and building green networks. Although most pre-

vious work has focused on power consumption at the user equipment (UE) end to extend

the mobile battery life, more recent efforts have been concentrated on the wireless network

energy consumption due to its economic and environmental benefits [65].
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4.3 Operational and Business Challenges of WRV

Deployment

In spite of the potential benefits and cost-savings of WRV, two main operational and busi-

ness challenges prevent widespread deployment of WRV:

4.3.1 The Risk of Market Share Loss and Anti-Competitive Practices

While WRV facilitates network deployment, accelerates the penetration of start-up oper-

ators and boosts the market competition, it exposes the well-established large operators,

to the risk of market share loss. The large operators hope to achieve cost savings through

infrastructure sharing with competitors. However, it raises the fear that relaxing the re-

quirements for new players to enter the mobile market may dilute their market shares.

Consequently, large network operators will attempt to outline the WRV process to empower

themselves to control the market and reduce the success chances of smaller operators.

4.3.2 Independence of Services with RAN-Sharing

The operators’ ability to control the network entities is essential for innovation and provi-

sion of new services. While WRV consolidates hardware and resources of multiple MNOs,

it limits the operators’ independence and slows down services deployment since other op-

erators might be influenced by particular decisions. Therefore, deducing new strategies to

enable the deployment of particular services for some operators in the context of WRV is

still required and remains a challenging aspect for the WRV process.

4.4 Scope of Virtualization and Depth of Sharing

Wireless resource sharing can be achieved at different levels. Two main scopes can charac-

terize the depth of sharing, namely, passive sharing and active sharing.
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4.4.1 Passive Sharing

In passive sharing, operators share passive infrastructure entities such as radio masts and

towers, power supply, air conditioning sites and building premises. Passive sharing has

become popular since 2000 because it reduces initial investment and saves operating costs.

Since no active operational coordination between operators is required, passive sharing is

straightforward to apply, which makes it the most widespread sharing scope, particularly in

low-density areas. For example, 40% of Orange sites in the rural areas of France are subject

to passive sharing. Another example of passive sharing is the agreement between Vodafone

and Telefonica in 2009 where they announced a wide-ranging agreement to share mobile

networks’ infrastructure in the UK, Spain, Ireland, and Germany to cope with the demand

for mobile broadband data services and to save millions of Pounds in costs [66]. However,

the limitation of passive sharing is that no network capacity improvement is expected.
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Figure 4.2: Scope of virtualization.
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4.4.2 Active Sharing

In active sharing, network active elements are included such as electronic infrastructure,

transceivers, antennas, spectrum, and fiber optic networks. Furthermore, the sharing can be

extended to reach core network components such as mobility management entity (MME).

Active infrastructure sharing provides more savings in CAPEX and OPEX as compared to

passive sharing. Therefore, it is receiving a proliferating attention by wireless operators and

standards development organizations. The 3GPP LTE standard supports two active sharing

configurations as depicted in Fig. 4.3, multi-operator core network (MOCN) and gateway

core network (GWCN). In MOCN configuration, each MNO has its own core network.

However, GWCN extends the sharing to the core network, where MNOs can also share the

MME of the core network, which enables additional cost savings but reduces the level of

isolation and dependency between MNOs. Each core network operator is identified by a

distinguished public land mobile network identification (PLMN-ID). Shared cells broadcast

the PLMN-IDs of the MNOs that share the network. Each UE access the shared network

by selecting one of available PLMN-IDs. Active sharing can be achieved at different levels.

Deeper level of sharing results in higher CAPEX and OPEX reduction, but increases the

deployment complexity and limits the freedom of operators to manage and operate the

network. Active sharing solutions can be classified into two groups based on the level of

sharing, which are outlined in the following two subsections; Gateway-Level solution and

MAC-Level solution.

4.4.2.1 Gateway-Level Solution

The work reported in [61] proposes a gateway-level solution that enables multiple MNOs

to share one single physical BS without modifying its MAC schedulers. The main advan-

tage of such solution is the facilitation of immediate deployment of RAN sharing since no

major modifications are required to existing BSs. However, the resource allocation deci-

sions are invisible to the gateway, which degrades the performance of the sharing process.

In such solutions, the virtualization happens by reshaping the traffic at the gateway level.

For the downlink, the gateway controls the number of packets sent to the BS for each oper-

ator. While sending the traffic to the BS, the gateway considers sharing requirements such
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Figure 4.3: LTE sharing configuration options.

as efficient resource utilization and isolation between different operators. For the uplink,

controlling the resource allocation is not straight-forward because the traffic is generated

by the end users, which cannot be directly controlled by the gateway. This can be solved by

creating a feedback channel between the BS and the gateway. The gateway sets an upper-

bound for the average data rate for each data flow. The gateway controls the uplink sharing

by tuning the flows’ upper bound values.

4.4.2.2 MAC-Level Solution

virtualizing an LTE BS at the MAC level is tackled in [62] where full control of the in-

ternal scheduler of the BS is accessible. The main motivation is to provide the most effi-

cient sharing of the wireless resources between users who belong to different MNOs. The

scheduler considers various perspectives while assigning the resources to users such as the

quality variation of the wireless channel, satisfying the MNOs’ service-level agreements

(SLAs), efficient utilization of the wireless resources, providing tight isolation between

MNOs who are sharing the same physical substrate, and enabling MNOs to implement
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their own custom scheduling policies that fit their service requirements and business mod-

els. This solution gives the maximum efficiency of resource utilization as the resource

allocation decisions are fully controlled at the BS level. Another LTE air interface virtu-

alization scheme is proposed in [67], where a hypervisor is added on top of the physical

resources. This hypervisor is responsible of virtualizing the evolved node-B (eNB) into a

number of virtual eNBs that are then used by different MNOs. It was shown that the ca-

pacity gains can be achieved by sharing the spectrum resources between different MNOs.

More practical scenarios are studied in [68] where MNOs share multiple eNBs, with the

sharing process managed by the hypervisor. Enhancements such as load balancing and

safety margins were investigated. A flow-level virtualization scheme of wireless resources

on BSs in WiMAX network was proposed and evaluated in [69]. The BS radio resources

are sliced between different flow groups, and the solution of [69] enables customized flow

scheduling per slice, where each slice can be treated as a virtual MNO that supports a set

of flows.

Resources in MAC-Level solution can be even more efficiently utilized if we use

Non-Orthogonal sharing where a certain frequency can be used more than once in the same

cell.

Orthogonal Sharing: multiple operators share their spectrum without introducing

mutual interference. Therefore, a radio block is assigned only to one operator in any given

time slot. Sharing can be (a) full: where the MNOs aggregate and share their entire spec-

tra, or (b) partial: where MNOs prefer to have sole ownership on a certain band in order to

satisfy QoS guarantees for their customers. The authors of [70] show that the overall theo-

retical throughput gain of orthogonal sharing is about 12%. Although it is not a substantial

gain, it comes almost at no cost. It is just a matter of taking advantage of the asymmetry of

the loads between the MNOs. Orthogonal sharing might require BS with extra capabilities

to be able to accommodate a larger spectrum and a high data backbone connection in order

to convey the increased traffic.

Non-orthogonal Sharing: in this scenario, a frequency band can be allocated simul-

taneously to two operators. This model offers much higher spectrum efficiency gains, yet it

increases the complexity of the system due to the fact that interference reduction or cancel-

lation techniques should be incorporated. The enablers to manage the interference between
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different BSs to improve the overall system performance are discussed in [70]. The main

enabler is called transmit beamforming where a BS with multiple antennas can steer the

transmission power towards a certain destination using the appropriate scaling of the trans-

mitted signal in each antenna. Hence, interference is managed by spatial separation rather

than time or frequency separation as in TDMA or FDMA. In order to take advantage of

beamforming, the MNOs have to exchange channel state information via an appropriate

feedback interface.

4.5 Efficient Fair Low-Complexity Scheduler for WRV

A low-complexity scheduler that virtualizes the wireless resource blocks (RBs) at a single

eNB and shares them between users of different MNOs is presented in this section. It is

worth mentioning that network-wide virtualization will be discussed in Chapter 5. The

scheduler’s target is to maximize the throughput of all users while maintaining average

RB access probabilities (RAPs) between different MNOs and access proportional fairness

(APF) between users of each MNO. To facilitate readability, Table 4.1 summarizes the

notations frequently used throughout the chapter.

Table 4.1: Summary of the most significant notation.

Symbol Meaning
K, k Total number of UEs, UE index
B, b Total number of RBs, RB index
M,m Total number of MNOs, MNO index
Km Number of users who subscribe to MNO m
Km Set of users who belong to MNO m
rm RAP of MNO m for one RB
γk Instantaneous received SNR of user k
Bk Set of RBs allocated to user k
Ā1 Average number of RBs accessed by MNO m
ηk,b Normalized instantaneous SNR on RB b seen by user k
β Binary number indicator
Sk,b Transport block size of user k over RB b
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4.5.1 System and Channel models

Consider an LTE downlink system where B RBs are shared between M MNOs each of

which serves Km,m = {1, 2, ..M} active users who have backlogged data at an eNB. A

sharing agreement specifies the RB access probabilities (RAPs) for MNOs. The RAPs are

assumed to be identical for all RBs. Define rm as the RAP of MNO m for one RB, the

RAPs for MNO m can be expressed as

Am = B × rm. (4.1)

The finest resource granularity for transmission in LTE is one subframe in time and

one RB in frequency. The LTE subframe has a duration of 1 ms. Each RB consists of 12

successive subcarriers and has a bandwidth of 180 kHz. The channel is modeled as a quasi-

static frequency-flat Rayleigh fading channel. The channel gain is constant over one RB

bandwidth and one subframe time interval, but changes independently over successive RBs

and subframe time intervals. Furthermore, users are assumed to experience independent

fading. Equal power allocation is assumed where the total transmit power at the eNB

is equally divided between all RBs [71]. Furthermore, perfect channel state information

is assumed to be available at the eNB for all users. At the receiver side of user k, the

instantaneous received SNR γk is assumed to be exponentially distributed with average γ̄k.

As assumed in Section 2.3, three symbols in each frame are assigned to uplink phys-

ical control signalling. Therefore the transport block size at time slot t of user k over RB b

can be expressed as

Sk,b[t] = b132 Φ(γb[t])c (4.2)

where Φ(γb[t]) is the modulation and coding schemes (MCS) efficiency used over RB b,

and b.c denotes the floor function. The selection of MCS is performed using tables that

map the received SNR to a MCS as described in Section 2.3.

By denoting the set of RBs allocated to user k by Bk[t], the total transport block size
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of user k can be calculated as

Sk[t] =
∑

b∈Bk[t]

b132 Φ(γb[t])c . (4.3)

4.5.2 Problem Formulation

The scheduler’s objective is to maximize the transmission rate of all users subject to long-

term APF between users and MNOs. The scheduling problem can be formulated as

max
l+T∑
t=l

M∑
m=1

B∑
b=1

∑
k∈Km

Sk,b[t] βk,b[t] (4.4a)

subject to
K∑
k=1

βk,b[t] ≤ 1, ∀ b = 1, 2, ..., B (4.4b)

Ā1 = B A1, Ā2 = B A2, · · · , ĀM = B AM (4.4c)

au = av = Ām/Km,∀ (u, v) ∈ Km,∀m = 1, 2, ...,M (4.4d)

where Km is the set of users who belong to MNO m, K is the total number of users,

Ā1 = Et

[∑
k∈Km

∑B
b=1 βk,b[t]

]
is the average number of RBs accessed by MNO m,

Et[.] is the expectation with respect to t, and βk,b[t], is a binary number indicator which

is set to one if user k is granted RB b at time slot t, and zero otherwise. Constraint (4.4b)

prevents allocating RBs to more than one user. Constraint (4.4c) maintains APF between

MNOs while constraint (4.4d) maintains APF between users by forcing them to have equal

long-term average RAP.

Finding the global optimal solution for (4.4) is computationally expensive due to

the large size of the search space. In addition, it may require the knowledge of future

channel gains for all users. To reduce the complexity, the weighted normalized SNR based

scheduler is proposed as a practical solution that offers guaranteed performance gain and

convergence. Consequently, the optimal weights that maximize the cell throughput and

maintain APF are computed. APF between users of each MNO can be attained using
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normalized SNR selection criterion [72]

max
∑
k∈Km

B∑
b=1

ηk,b βk,b (4.5a)

subject to
K∑
k=1

βk,b ≤ 1, ∀ b = 1, 2, ..., B (4.5b)

where ηk,b = γk,b/γ̄k is the normalized instantaneous SNR on RB b seen by user k. How-

ever, normalizing the SNR for all users imposes APF between all MNOs users, but it does

not necessarily satisfy (4.4c). To maintain (4.4c), the normalized SNR of each MNOs

users should be weighted differently. Thus, the weighted normalized SNR scheduler can

be formulated as

max
M∑
m=1

B∑
b=1

∑
k∈Km

αmηk,b βk,b (4.6a)

subject to
K∑
k=1

βk,b ≤ 1, ∀ b = 1, 2, ..., B (4.6b)

where αm is the weighting factor of MNOm, and
∑M
m=1 αm = 1. Therefore, user k ∈ Km

is assigned RB b if the following equation holds

k = arg max
k∈Km

αmηk,b (4.7)

where αmηk, , ζk,b is the weighted normalized SNR of RB b seen by user k ∈ Km. For

independent and identically distributed Rayleigh-faded users, the PDF of ζk,b given that

user k is assigned RB b (ζk,b > ζi,b,∀i ∈ K, i 6= k) is given by [72]

fζk,b(x) =
1

ζ̄k,b
e−x/ζ̄k,b

K∏
i=1,i6=k

1− e−x/ζ̄i,b , (4.8)

where ζ̄k,b = E[ζk,b]. By assuming that ζ̄k,b is equal for all users who belong to the same
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MNO, then (4.8) can be written as

fζk,b(x) =
1

ζ̄k,b
e−x/ζ̄k,bΘKm−1

k,b (x)
M∏

i=1,i 6=m
Θ
Ki
k,b(x) (4.9)

where ΘKm
k,b (x) = (1− e−x/ζ̄k,b)Km . Thus, user k average RAP to a single RB is given

by

ak,b =

∞∫
0

fζk,b(x)dx (4.10)

using the binomial expansion, ΘKm
k,b (x) can be expressed as

ΘKm
k,b (x) =

Km∑
nm=0

(
Km
nm

)
(−1)nm

(
e−nmx/ζ̄k,b

)
. (4.11)

By substituting (4.11) and (4.9) in (4.10), ak,b can be written as

ak,b =
1

ζ̄k,b

K1∑
n1=0

K2∑
n2=0

· · ·
Km−1∑
nm=0

· · ·
KM∑
nM=0

Ψn

∞∫
0

e−xΦndx (4.12)

where n = [n1, · · · , nM ],

Φn =
1

ζ̄k,b

1 +
M∑
i=1

ni

 (4.13)

and

Ψn =

(
Km − 1

nm

)
(−1)K−1

M∏
i=1,i6=m

(
Ki
ni

)
. (4.14)

Finally, ak,b can be written as

ak,b =
1

ζ̄k,b

K1∑
n1=0

K2∑
n2=0

· · ·
KM∑
nM=0

Ψn

Φn
. (4.15)

Consequently, user k of MNO m is assigned ak = ak,b × B RBs on average. Therefore,
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the RAP for MNO m is

Am = Km × ak. (4.16)

It is worth noting that for fixed number of users, the RAPs for the MNOs only depend

on ζ̄k,b = E[ζk,b] = αm,∀k ∈ Km. Therefore, finding the proper weights can maintain

(4.4c).

Although it is assumed that all users subscribed to a particular MNO are equally

weighted to maintain (4.4d), users of a single MNO may have different priorities. There-

fore, they should have different ζ̄k,b to access different average number of RBs. In such

scenarios, the MNO, denoted as parent-MNO (PMNO), is segmented into a number of

groups denoted as child-MNO (CMNO). Each CMNO segmentation is assigned different

weight based on the users’ priorities. By treating the CMNOs as regular MNOs, the same

approach can be used to find the optimum weights except that the number of MNOs be-

comes larger.

The complexity order of the proposed scheduler is O(BK). As seen in (4.7), RB b is

assigned to the user who has the highest metric value αmηk,b. Finding the maximum metric

value among K users requires K operations. Consequently, assigning B RBs requires BK

operations.

4.5.3 Computing the Optimal Weights for MNOs

Algorithm 4.2 presents an offline iterative search method that finds the optimal weights

for all MNOs such that constraint (4.4c) is maintained. At each iteration, the mean squared

error e is found between the agreed upon value rm and the actual one Λm achieved using the

current weights. The algorithm terminates either if the change in error ∆emse falls below

a threshold emin or the maximum number of iterations Nmax is reached. Two groups of

MNOs are defined, G+ which contains indices of MNOs with higher RAPs than the agreed

upon values, and G− which contains indices of MNOs that have RAPs less than the agreed

upon values. At each iteration, δ is taken from the weights of MNOs that belong to G+ and

given to the weights of MNOs that belong to G−. The weights of MNOs who belong to

G+/G− decrease/increase proportional to their error em as seen in lines 13 and 15 of Table

4.2.
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Table 4.2: Iterative search method to find MNOs’ weights

1: while ∆emse < emin and n < Nmax do
2: G+ = ∅, G− = ∅
3: for m ∈M do
4: find e∗m = Λ∗m − rm
5: if e∗m > 0 then
6: G+ ← m
7: else
8: G− ← m
9: end if
10: end for
11: for m ∈M do
12: if em > 0 then
13: α∗m = αm + δ em/

∑
m∈G+

em

14: else
15: α∗m = αm + δ em/

∑
m∈G−

em

16: end if
17: end for
18: e∗mse = 1

M

∑
m e2

m
19: end while
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4.5.4 Numerical Results

In this section we study the performance of the proposed WRV scheme, with is denoted by

“WRV LT”. The performance of the proposed scheme is compared with two schemes. The

first scheme is the static sharing (SS) scheme, which statically divides the spectrum into

blocks and assigns them to the different MNOs. The second scheme is WRV short-term

fairness scheme (denoted by “WRV ST”), which solves (4.4) for one time slot and allocates

fixed number of RBs to each users each time slot. Three performance metrics are evaluated,

the aggregate throughput, the RAPs of MNOs, and Jain’s fairness index of the users of each

MNO. The simulation assumes that there are 3 MNOs where the number of users for each

MNO changes between 5 and 50. The sharing ratios are r1 = 20%, r2 = 35%, and

r3 = 45%. Each user experiences a different average SNR in the range between 5 and 15

dB. The system bandwidth is assumed to be 20 MHz with 100 RBs available for allocation,

and the error threshold is emin = 1× 10−4.

Fig. 4.4 shows that WRV LT scheme provides a higher aggregate throughput for

all MNOs when compared to the SS scheme. The gain in aggregate throughput ranges

between 11% and 17%. This is due to the fact that the SNRs experienced by users are

considered in the scheduling decision rather than just statically assigning fixed blocks to

each MNO. Moreover, the multiuser diversity with respect to spectral efficiency is also

evident. For small number of users, the aggregated throughput improves as the number of

users increases due to the multiuser diversity gain. However, for large number of users,

multiuser diversity gain slightly increases with the number of users as the system reaches

its the maximum capacity. In addition, WRV LT scheme outperforms WRV ST.

Fig. 4.5 shows the average user throughput for different MNOs. It can be noted from

the figure that the average throughput per user decreases as the number of users increases.

Such behavior is expected because there will be more competition for RBs. Therefore,

users will receive fewer RBs and consequently have a lower average throughput.

Fig. 4.6 compares the analytical and simulated average RAP results. While the av-

erage SNR is changing, the proposed iterative scheme remains able to maintain the agreed

upon RAP for each MNO, thus satisfying their users’ requirements. The average percent-

age errors between the analytical and simulation results of the RAPs for different SNR
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Table 4.3: Number of iterations to converge

Nmax 10 20 30 50
δ = 2× 10−3 10 20 30 42
δ = 8× 10−3 10 13 13 13
δ = 16× 10−3 8 8 8 8
δ = 20× 10−3 10 20 30 50

values are less than 2%, which confirms the efficiency of the proposed scheme to satisfy

the service level agreement for all MNOs as the average simulation RAPs are almost equal

to the analytical results.

Simulation results indicate that the proposed scheme maintains a Jain’s fairness index

of ≥ 0.96. Jain’s fairness index is calculated for the users of MNO m as

J(x1, x2, ..., xKm) =

(
Km∑
i=1

xi

)2

Km
Km∑
i=1

x2
i

(4.17)

where xi is the rate of user i of MNO m.

Table 4.3 shows the number of iterations needed to converge for different step sizes

and values of Nmax. For δ = 2× 10−3, the algorithm takes 42 iterations to converge. For

larger step sizes of 8×10−3 and 1.6×10−2, the convergence rate is significantly reduced to

13 and 8 iterations respectively. However, Nmax iterations are executed for δ = 20× 10−3

because the algorithm overshoots the optimum weights. Therefore, an optimal step size is

needed to minimize the number of iterations for convergence.

4.6 Chapter Summary

This chapter demonstrates the concepts and benefits of the WRV. In addition, scope and

depth of WRV are tackled with different solutions. The obtained results revealed that deep

resource sharing enhances the resources utilization efficiency. However, the network be-

comes more complex and the isolation between the operators sharing the same network

decreases.
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Figure 4.6: Resource access probability analytical and simulation results.

Furthermore, a framework for wireless resource virtualization under users’ and MNOs

APF constraint on a single eNB is presented. Normalized SNR is used to maintain fairness

between users of a single MNO. To ensure fairness between different MNOs, the normal-

ized SNRs are optimally weighted. An iterative search method is applied offline to de-

termine the optimal weights. The iterative scheme has low-complexity and scales linearly

with the number of RBs and users. Simulation results show that the proposed WRV scheme

can improve throughput and maintain fairness between users and MNOs.



96

Chapter 5

Wireless Resources Virtualization for Cloud

Radio Access Networks (C-RAN)

5.1 Introduction

Mobile network operators (MNOs) are highly interested in devolving cost-effective, scal-

able, and innovative solutions in order to improve network capacity and coverage to handle

the ever-growing demand for mobile data transmission. Traditional solutions of deploying

more base stations (BSs) and acquiring new spectrum licenses are becoming economically

unsustainable. Therefore, cellular wireless networks need new techniques to enhance the

utilization of computing and wireless resources. Recent spectrum utilization measurements

show that the bandwidth licensed to MNOs is highly underutilized [73, 74]. According to

a recent study by Nokia [7], only 20% of the radio access network’s maximum capacity is

used at any given time while 80% is being idle and waiting for peak hour demand.

Typically, the average traffic load in cellular networks is considerably lower than the

peak load. In addition, the peak load time depends on the geographical location, because

different locations might have different peak load times. Conventionally, BSs consist of net-

work elements running purpose-built software and dedicated hardware. Therefore, efficient

network design becomes very challenging because the network must employ sophisticated

scalability techniques to handle a wide range of traffic loads at different times. Resource

over-provisioning is costly, while under-provisioning compromises service quality. More-

over, adding new services or modifying existing ones is not a trivial process because it

creates an impediment to network scalability, increases the time to market, and obstructs

efficient utilization of the infrastructure.

With the growth of cloud-hosted development platforms and services, new promising

solutions are on the horizon for MNOs. In 2010, China Mobile introduced the Cloud Radio
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Access Network (C-RAN) as a new platform for future mobile network infrastructure [75].

In C-RAN, the baseband processing resources are aggregated and virtualized in a cloud data

center, which allows better utilization of computing resources and more cooperative sharing

of radio resources across wireless nodes. C-RAN technology promises MNOs significant

reductions in capital expenditure (CAPEX) and operating expenditure (OPEX), as well as

reduced energy consumption. Using C-RAN is expected to reduce power consumption

by about 71% compared to traditional RAN [76]. However, to deployment of C-RAN

commercially, many challenges should be addressed such that the transport network needs

to be economical and supports high bandwidth, strict latency and jitter. More information

about C-RAN deployment challenges can be found in [76].

The main concept of C-RAN architecture is to decouple the radio function and pro-

cessing units of the RAN, as shown in Fig. 5.1, where a low-cost remote radio head (RRH)

replaces the radio function unit. The baseband processing functions and resource man-

agement are delegated to baseband processing units (BPUs), which are pooled on a cloud

in remote data centers. In traditional RAN architectures, the processing resources of BSs

cannot be shared or scaled based on the traffic load. Since the processing power in C-RAN

is centralized, innovative cloud-based solutions can be applied to improve the utilization of

processing resources. Consequently, C-RAN architecture requires fewer BPUs compared

to the traditional RAN architecture [77, 78].

Centralizing baseband processing and management enables better coordination across

RRHs because cell site information, such as traffic loads, user-channel conditions, and user-

traffic requirements, are available across the network. Such information can be effectively

exploited to optimize the allocation of radio resources across cell sites, manage intercell

interference (ICI), and improve coverage and handover procedures. In addition, sharing

information can enhance capacity by facilitating the implementation of new technologies

such as ICI coordination (ICIC), self-organizing networks (SON), and coordinated multi-

point (CoMP) transmission.

Similar to C-RAN, which centralizes the computing resources, wireless resource

virtualization (WRV) is a new paradigm aims at centralizing wireless spectrum resources

and sharing them between MNOs. WRV enables network operators to create multiple

logical networks on a single physical substrate yielding better efficiency in terms of energy
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consumption and resource utilization. A new study from ABI Research [79, 80] shows

that over a period of five years, deploying active infrastructure-sharing worldwide can save

up to 60 billion USD in OPEX and CAPEX.

As MNOs need to continually enhance the capacity of their mobile networks, shar-

ing radio resources between multiple MNOs facilitates carrier resource aggregation and

supports higher peak rates. It also introduces multi-MNO multiplexing gains as a result

of increasing the number of users per cell. For instance, in Rayleigh fading channels, the

aggregated capacity of a cell can increase by ln(K), where K is the number of users in

the cell [81]. Furthermore, network sharing facilitates new business models in the wireless

market. For example, operators without Long Term Evolution (LTE) licenses or network

resources will be able to provide LTE services by renting LTE radio resources from other

MNOs.

Combining C-RAN and WRV should help MNOs to overcome the challenges inher-

ent in current mobile networks. Therefore, the main objective of this chapter is to propose

a new model that virtualizes the spectrum resources of cloud-based RANs, then efficiently

share them between multiple MNOs’ users. An entity called hypervisor is added on top of

the physical network as shown in Fig. 5.1, which is responsible for allocating the available

wireless resources to users subscribed to different MNOs. The allocation of wireless re-

sources is determined by the sharing contract between MNOs, the traffic load at each RRH,

and the interference between different RRHs.

The rest of this chapter is organized as follows: Section 5.2 provides a comprehen-

sive literature review. Section 5.3 presents the system model, and problem formulation.

The optimal solution of the proposed model is presented in Section 5.4. Suboptimal low-

complexity schedulers are presented in Section 5.5. Section 5.6 presents and discusses

simulation results, and Section 5.7 concludes the chapter.

5.2 Related work

In the recent literature, it can be clearly noticed that there is a growing interest in virtu-

alizing networks’ wireless resources [80]. For example, a wireless resource virtualization

scheme for LTE evolved Node-B (eNB) is investigated in [62]. The scheme allows MNOs
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Figure 5.1: Virtualized C-RAN shared between two MNOs.

to implement different scheduling policies. However, the scheme did not consider network-

wide virtualization nor coordination between interfering cell zones to prevent ICI. In addi-

tion, the scheme suffers from high complexity because it requires solving two optimization

problems to maintain isolation between MNOs. In the first optimization process, the re-

sources of each MNO are allocated to their users. The allocation results of problem one are

then fed to the second problem as constraints such that the throughput each user obtains is

equal or greater than the throughput achieved when sharing is not considered.

An LTE air interface virtualization scheme is proposed in [67], where a hypervisor

is added on top of the physical resources. The hypervisor is responsible for virtualizing the

eNB into a number of virtual eNBs that can be used by different MNOs. It is shown that

more capacity can be achieved by sharing spectrum resources between different MNOs.

However, the scheme does not provide optimal solutions nor manage ICI. Furthermore, the

instantaneous channel quality of users is not considered in the scheduling decisions, which

limits multiuser diversity gain.

More practical scenarios that consider load balancing are studied in [68, 82], where
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the hypervisor manages the sharing process of multiple eNBs among multiple MNOs. Nev-

ertheless, only fixed resource allocation across BSs is considered. The load is balanced be-

tween multiple BSs by moving users from high-traffic cells to low-traffic cells. However,

transferring users across cells increases handover overhead, and may degrade the system

capacity since users may be transferred to BSs further away, which would reduce the qual-

ity of the wireless link.

Another framework for wireless network virtualization that separates service providers

from a network operator is reported in [83]. The service providers (SPs) are responsible

for QoS management, while the network operator is responsible for spectrum management.

The interaction between SPs and the network operator is modeled as a stochastic game reg-

ulated by the network operator. The role of the SPs is to compete for wireless resources for

each subscribed user.

Utility-based resource provisioning scheme for WRV with massive MIMO is inves-

tigated in [84]. A single BS equipped with a large number of antennas serves users of

different service providers. The problem is formulated as a combinatorial optimization

problem of high computational complexity. Consequently, a low-complexity solution for

the combinatorial problem is derived by linear programming relaxation.

In multi-cell systems, the same frequency bands can be assigned to users in different

cells, which is referred to as the frequency-reuse (FR) principle, which is used to increase

both coverage and capacity. However, to minimize ICI, cells that use the same frequency

bands should be separated by a sufficient distance. Several ICIC techniques have been

proposed for multi-cell systems as described in [85] and the references listed therein. The

most promising is the fractional FR (FFR), which is adopted by 3GPP LTE [86].

The performance of FFR has been extensively studied for traditional cellular net-

works [52, 87, 88]. For C-RAN architecture, a dynamic FR scheme based on FFR is pro-

posed in [89]. The wireless resources are assigned to cell zones using a graph-coloring

approach. Each color represents a certain segment of bandwidth. To minimize ICI, differ-

ent colors should be assigned to interfering zones.

A dynamic interference coordination scheme for downlink multi-cell systems is pre-

sented in [71]. The allocation problem is divided into two sub-problems, one at the BS

level and the other at the central controller. It is assumed that BSs are able to communicate
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with each other using an X2 interface. At the BS level, each sector potentially allocates

bandwidth chunks to its connected users. Then, each sector sends a request to the central

controller. The request specifies a list of bandwidth chunks to be restricted at the dominant

interfering zones. Conflicting requests are resolved by the central controller, which sends a

refined list of chunks that should be restricted to each sector.

Minimizing network power consumption of C-RAN is investigated in [90], where

the power consumption of the transport network and RRHs is considered. The authors as-

sume that transport links and RRHs can support sleep mode. The problem is formulated

as a joint RRH selection and power minimization beamforming problem. The network

power consumption is reduced by minimizing the number of active RRHs and reducing

their transmit power subject to QoS constraints. Through simulations, the authors show

that the network power consumption can be notably reduced. The performance of CoMP

transmission schemes in a C-RAN architecture for LTE-A Heterogeneous networks is stud-

ied in [91]. With C-RAN architecture, a larger number of RRH can be considered in CoMP

transmission, which improves the transmission performance.

5.3 System and Sharing Models

Consider the downlink of a cloud-based RAN architecture shared between M MNOs,

where N RRHs are distributed to cover a certain geographical area. The RRHs are con-

nected to a pool of BPUs in remote data centers via transport networks such as optical

transport networks. It is assumed that the wireless link quality and expected traffic load

are known for each user at the data center, which is responsible for resource allocation

decisions. It is assumed that orthogonal frequency-division multiple access (OFDMA) is

used for the downlink transmission. The total number of RBs available in the network is

R. Each RRH is assumed to be capable of transmitting over any RB. The total number of

user equipments (UEs) served by the network is K; each UE communicates with a single

RRH.

Without loss of generality, it is assumed that each UE connects to the nearest RRH,

and is labeled by a unique index k ∈ [1, 2, · · · , K]. A table that maps each UE to a
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particular MNO and an RRH is assumed to be available for BPUs. To facilitate readability,

Table 5.1 summarizes the notations frequently used throughout the chapter.

Table 5.1: Summary of the most significant notation.

Symbol Meaning
K, k Total number of UEs, UE index
R, r Total number of RBs, RB index
N,n Total number of RRHs, RRH index
M,m Total number of MNOs, MNO index
Pr,n Transmit power from RRH n over RB r
Rm Set of RBs assigned to MNO m
Rm Number of RBs assigned to MNO m
Rm,n Set of RBs assigned to MNO m at RRH n
Rm,n Number of RBs assigned to MNO m at RRH n
Rn Set of all RBs assigned to RRH n
Kn Set of all UEs that connect to RRH n
Km,n Set of UEs that subscribe to MNO m at RRH n
Km,n Number of UEs that subscribe to MNO m at RRH n
γr,k SINR of UE k over RB r
Hr,n,k Channel gain of the link between UE k and RRH n over RB r
Cn Set of RRH that interfere with RRH n

Φm,n Service status of MNO m at RRH n
Φth
m Service status threshold of MNO m
β Binary number indicator

Λm,n Number of RBs allocated to MNO m at RRH n

The number of bits that can be transmitted over one RB is determined by the signal-

to-interference plus noise ratio (SINR) at the receiver, which depends on the transmit

power, channel fading parameters, interference introduced by other RRHs, and thermal

noise. Therefore, the SINR of the link between UE k and RRH n over RB r can be ex-

pressed as

γr,k =
Pr,nHr,n,k∑

c∈Cn
Pr,cHr,c,k + σ2

(5.1)

where Pr,n is the transmit power of RRH n over RB r, Hr,n,k is the channel gain of

the wireless link between RRH n and UE k over RB r, which includes antenna gain and

directivity, path loss, small-scale fading, and shadowing, σ2 is the additive white Gaussian

noise (AWGN) variance, and Cn is the set of RRHs that interfere with RRH n.
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Although it is proven that power allocation schemes such as the water-filling al-

gorithm can improve the transmission efficiency, integrating such techniques in mobile

systems is challenging because they require tight tracking of the rapid channel variations

[92]. Moreover, it is shown that, equal power allocation is as efficient as the optimal

power allocation when the transmission power is high [93]. In this chapter, it is as-

sumed that equal power allocation similar to the 3GPP-LTE standard [47, 94] such that

Pu,n = Pv,n = Pn,∀{u, v} ∈ Rn, where Rn is the set of RBs assigned to RRH n.

In fact, equal power allocation is a common assumption in resource allocation problems

[71, 95, 96].

The indices of RRHs that interfere with each other can be described by an N × N
binary symmetric matrix C, where the element cu,v = 1 if RRH u interferes with RRH v;

otherwise, cu,v = 0. RRH u is assumed to interfere with RRH v if the distance between

RRH u and RRH v is less than a threshold.

In this chapter, the LTE physical layer model that supports various modulation and

coding schemes (MCSs) [1] is considered. The maximum number of bits that can be trans-

mitted to UE k over RB r can be calculated as

Qr,k =
⌊
ξ(γr,k)Tsym

⌋
(5.2)

where ξ(γr,k) is the spectrum efficiency of the selected MCS, Tsym is the total number of

symbols in a single RB, and bxc refers to the floor function.

As discussed in Section 2.3, the selection of a particular MCS is determined by using

a lookup table which maps the received SINR to a MCS for a certain BLER as shown in

Table 2.2.

5.3.1 Resource Blocks Sharing Model

RBs are assumed to be shared between MNOs based on a contract signed between them.

RBs either shared statically, where each MNO accesses only its share of the resources, or

dynamically, where MNOs can access the entire set of RBs. As wireless resource virtual-

ization is still in its infancy stage, no well-defined sharing models exist yet [80]. Therefore,

a general sharing model is assumed based on the following three conditions:



Chapter 5: Wireless Resources Virtualization for Cloud Radio Access Networks (C-RAN) 104

1. In the case of static sharing of RBs, MNOs are assumed to distribute their resources

among cells such that the frequency reuse factor is maximized while maintaining a

proportional fairness criterion such that

max
∑
n

Λm,n (5.3a)

subject to

Λm,n +
∑
c∈Cn

Λm,c ≤ Ψm,∀n (5.3b)

Λm,1 : · · · : Λm,Nm = (1± α)(Lm,1 : · · · : Lm,Nm) (5.3c)

where Λm,n is number of RBs allocated to MNO m at RRH n, Lm,n is the load

of MNO m at RRH n, and Nm is the set of RRHs that serves the UEs subscribed

to MNO m. The load can be considered as the number of users or a number of

packets queued in buffers for the users. As the fluctuation rate of the load in RRHs

is slow compared with the transmission time interval (TTI), which is 1 ms in LTE

systems for the finest scheduling granularity, the optimization problem in (5.3) can

be solved at a coarser granularity than TTI. Other sharing models can be applied

here, however, maximizing the frequency reuse factor while considering a fairness

criterion is an intuitive target that MNOs are looking to achieve.

2. In case of dynamic sharing of the RBs, the service status of MNO m at RRH n

should be higher than a certain threshold or, if it is not the case, MNO m should

access at least Λm,n RBs. This condition ensures isolation between MNOs such

that all MNOs are either satisfied, or can access at least the same number of RBs

that they would access in case of static sharing. The service status of an MNO can

be related to aspects such as queue length of users’ buffers, spectral efficiency, or

energy efficiency.

5.4 Problem Formulation

It is assumed that each MNO aims at maximizing its sum weighted data rates, which is a

very common optimization problem in wireless systems [11, 26, 71, 97]. The weights are
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selected by MNOs according to their scheduling policies. Assume that user k is connected

to RRH n, the scheduling problem can be formulated as

max
M∑
m=1

∑
n

 ∑
k∈Km,n

R∑
r=1

ŵkur,k βr,k

 (5.4a)

subject to ∑
c∈Cn

∑
k∈Kc

βr,k +
∑
k∈Kn

βr,k ≤ 1,∀n, r (5.4b)

∑
r∈Rk

Tr,k ≤ qk,∀k (5.4c)

(Φm,n > Φthm) or (Ψm,n ≥ Λm,n) must hold, ∀(m,n) (5.4d)

where ur,k is the data rate achieved by assigning RB r to UE k, ŵk is the normalized weight

for UE k, Kn =
⋃
m
Km,n is the set of UEs connected to RRH n, Km,n is the set of UEs

subscribed to MNO m and connect to RRH n, Ψm,n is the number of RBs accessed by

MNO m at RRH n, Rk is the set of RBs assigned to UE k, Φm,n and Φthm are the service

status and service status threshold of MNO m at RRH n, and βr,k is a binary number

indicator defined as

βr,k =

{
1, if RB r is assigned to UE k

0, otherwise.

Constraint (5.4b) represents the exclusive constraint which ensures that (i) each RB

is assigned to one UE (at most) at each RRH, and (ii) orthogonal sets of RBs are allocated

to RRHs that may interfere with each other. It is assumed that the interference is avoided

if interfering RRHs are granted orthogonal sets of RBs. Constraint (5.4c) ensures that the

transport block size for every UE is less than its unserved data size, whereRk is the RB set

that is assigned to user k. Constraint (5.4d) specifies whether the service status of MNO m

at RRH n is higher than a certain threshold or, if that is not the case, MNO m should access

at least Λm,n RBs. This constraint ensures isolation between MNOs such that MNOs are

either satisfied, or can access at least the same number of RBs in case of static sharing. It is

noteworthy that constraint (5.4d) can be split into two constraints by introducing a binary
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variable ym,n and a sufficiently large upper bound Bm so that

Φm,n > Φthm −Bmym,n (5.5a)

Ψm,n ≥ Λm,n −Bm(1− ym,n). (5.5b)

When ym,n = 0, constraint (5.5a) holds, whereas constraint (5.5b) becomes Ψm,n ≥
Λm,n − Bm, which is always satisfied if Bm is large enough. Note that the constraint

Ψm,n ≥ Λm,n may still be satisfied. When ym,n = 1, only constraint (5.5b) holds. Conse-

quently, one constraint holds, and the other one may be satisfied.

The formulation in (5.4) allows MNOs to apply different scheduling policies by

weighting their UEs differently. In addition, it guarantees that MNOs use their share of

RBs at the overloaded RRH. However, if an MNO is underloaded at a specific RRH, its

share of RBs can be granted to other MNOs that are overloaded.

5.4.1 Special Case: Backlogged Traffic Model

In this subsection, a low-complexity formulation of (5.4) is presented for backlogged traffic

model, where users always have data to transmit. Although such model might not occur

all the time in the network, it reduces the complexity of the optimal solution. Therefore,

the backlogged traffic model is assumed for optimal solution comparisons. Backlogged

traffic model assumption relaxes the constraints (5.4c) because the data in users’ buffers are

assumed to be larger than the transmitted data. Therefore, if RB r is assigned to MNO m

at RRH n, the RB should assigned to the user at RRH n who maximizes the weighted sum

data rates and belongs to MNO m. Consequently, the scheduling problem for backlogged

traffic model can be formulated as

max
M∑
m=1

∑
n

R∑
r=1

umaxr,m,n βr,m,n (5.6a)

subject to ∑
c∈Cn

βr,m,c + βr,m,n ≤ 1,∀r, n,m (5.6b)
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(Φm,n > Φthm) or (Ψm,n ≥ Λm,n) must hold, ∀(m,n) (5.6c)

where umaxr,m,n = max
∑

k∈Km,n
ŵkur,k and βr,m,c is a binary number indicator defined as

βr,m,n =

{
1, if RB r is assigned to MNO m at RRH n

0, otherwise.

5.4.2 Radio Resource Scheduling Polices

In wireless networks, radio resource scheduling plays a vital role in achieving maximum

spectrum utilization, QoS satisfaction, and fairness between UEs. To achieve such goals,

users are weighted according to the UEs service status and the scheduling policy. The

service status of a user can be related to aspects such as queue length, traffic priority, and

past performance levels achieved. The product of the weight and the data rate achieved

using a specific RB interprets the users priority of using the RB. It is worth mentioning that

the users’ weights may vary with time.

Various scheduling policies are proposed for LTE networks [2], including channel-

aware policies, such as Maximum Throughput (MT), Proportional Fair (PF), and General-

ized PF (GPF); channel-aware and QoS-aware policies, such as Modified Largest Weighted

Delay First (M-LWDF) and LOG rule; and energy-aware policies [8]. Table 5.2 illustrates

examples of scheduling policies along with their types, targets, and weight definitions.

5.4.3 Complexity of Optimal Solution

The scheduling problem in (5.4) is a BIP optimization problem, which is NP-hard. The

complexity of solving such optimization problems is considerably high and it increases

exponentially with the number of users, MNOs, and RBs. Therefore, obtaining the optimal

solution is computationally prohibitive even for a single MNO [71, 96].

In order to give a glimpse of the complexity of the BIP problem, one part of the

problem is considered, which involves assigning RBs to RRHs. Consider a simple scenario

where two MNOs share three RRHs that interfere with each other. Assume that the total

number of RBs in the network is 60. As the RRHs interfere with each other, orthogonal
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Table 5.2: Examples of different schedulers [2]

Scheduler Type Target Weight
MT channel-aware,

QoS-unaware
throughput wk = 1

PF channel-aware,
QoS-unaware

fairness &
throughput

wk = 1/T̄k, where T̄k is the past average
throughput for UE k.

GPF channel-aware,
QoS-unaware

fairness &
throughput

wk = (uk)
η1/(T̄k)

η2 , where η2, η2 are con-
stants tune the scheduler.

M-LWDF channel-aware,
QoS-aware

queue
stability

wk = −Dklog(αk)/D
max
k , where αk is the

acceptable delay violation probability, Dmax
k

is delay threshold, and Dk is the head-of-line
packet delay.

LOG rule channel-aware,
QoS-aware

queue
stability

wk = bklog(ck + akDk), where ak, bk, and
ck are constants tune the scheduler.

sets of RBs should be assigned to RRHs. If each RRH receives 20 RBs, the number of

combinations of 20 RBs chosen from 60 RBs for one MNO is

60!

20!(60− 20)!
= 4.1918× 1015.

If the finest scheduling granularity is chosen, which is one subframe (1 ms) for LTE

systems, then the optimization problem should be solved in less than 1 ms; which is practi-

cally infeasible. Therefore, deducing low-complexity algorithms is crucial for solving the

problem using reasonable computational power.

5.5 Low-Complexity Solutions

The optimal solution in (5.4) is achieved by jointly allocating RBs to users subscribed to

different MNOs across all the available RRHs. However, it is computationally expensive to

take all RBs in the scheduling problem into consideration, as described in Section 5.4.3. A

possible approach to reduce the complexity is to allocate RBs sequentially. In this section,

two iterative low-complexity solutions are proposed, each of which allocates a single RB

at each iteration. The basic concept is that, if RB r is assigned to RRH n, it should be

assigned to a user who is subscribed to the least satisfied MNO (LSM). As the objective is

to maximize weighted sum utility, the assigned RB to the RRH is granted to the user who



Chapter 5: Wireless Resources Virtualization for Cloud Radio Access Networks (C-RAN) 109

can maximize the sum-utility. To allocate RB r, the set of LSM at every RRH is denoted

by 1 × N vector sr = [s1,r, · · · , sN,r], where sn,r is the index of the LSM at RRH n.

The vectors zr = [z1, · · · , zN,r] and jr = [j1,r, · · · , jN,r] denote the utilities and indices,

respectively, of the UEs subscribed to sr and who have maximum utility, where

zn,r = max
k∈Ksn,n

ŵkuk,r

jn,r = arg max
k∈Ksn,n

ŵkuk,r

The optimization problem per RB can be seen as the maximum weighted independent

set (MWIS) of a graph path. Each RRH represents a vertex; an edge (line) is drawn between

two vertices if they interfere with each other. A graph can be described by the pair G =

(V,E), where the set V is the vertices of G, and the set E is the edges of G. The MWIS

is the subset of vertices that has maximum weighted sum such that no two vertices are

connected with an edge. Fig. 5.2 shows an example of a graphG = (V,E) of five weighted

vertices (RRHs), where V = {1, 2, 3, 4, 5}, and E = {(1, 4), (1, 5), (2, 4), (3, 5)}. The

independent sets are = {1}, {2}, {3}, {4}, {5}, {1, 2}, {1, 3}, {1, 2, 3}, {2, 3}, {2, 5},
{2, 3, 4}, {2, 4, 5}, {3, 4}, {4, 5}. The MWIS is {1, 2, 3}.

For each RB, the MWIS IS can be found by solving the following optimization

problem

IS = max
N∑
n=1

vn βn (5.7a)

subject to ∑
c∈Cn

βc ≤ 1,∀n (5.7b)

where βn is a binary variable, equal to one if n ∈ IS and zero otherwise, and vn is the

weight of vertex (RRH) n. In order to bias the scheduler towards allocating RBs in favour

of highly loaded RRHs, the weights are chosen such that

vn =

{
zn,r (Λm,n −Ψm,n), if Φsn,n < Φthsn

zn,r, otherwise.
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Figure 5.2: Example of interference graph G = (V,E) of five weighted vertices (RRHs).

Table (5.3) shows the pseudo code of an iterative low-complexity algorithm that solves

(5.7) by using a BIP solver. At each iteration, one RB is assigned to the MWIS of RRHs

that maximizes the sum-weighted utility. Lines 5-8 find the LSM (sn) at every RRH. To

avoid assigning RBs to MNOs that have no data to transmit, the service status of the LSM

has to be lower than the threshold Φm,n < Φthm . Lines 9-10 find the index and the utility

value of the user who subscribes to MNO sn and maximizes the sum utility. In line 12, the

algorithm solves the MWIS optimization problem (5.7) and finds the subset IS . The RB

is assigned to users in line 14. The number of RBs requited is decremented for each RRH

that belongs to IS in line 13, whereas Ω̄sn,n,Φsn,n are updated in line 20. The algorithm

runs until all RBs have been assigned.

Although the algorithm solves the BIP problem R times each TTI, the complexity of

the algorithm is relatively low as compared to (5.4) because the size of the BIP optimiza-
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Table 5.3: Per RB optimal allocation algorithm

1: input: Λm,n, Ω̄m,n,∀m,n
2: Rn = R,∀n
3: for r = 1 : R do
4: for n = 1 : N do
5: vn,r = 0
6: ∆Ωm,n = Λm,n − Ω̄m,n,∀m
7: Ωm,n = Λm,n + ∆Ωm,n,∀m
8: sn = arg max

m
Ωm,n,∀m such that Φm,n < Φthm

9: zn,r = max
k∈Ksn,n

uk,r

10: jn,r = arg max
k∈Ksn,n

uk,r

11: end for
12: solve the BIP problem in (5.7)
13: assign RB r to UE jn,r,∀n ∈ IS
14: Ωsn,n = Ωsn,n − 1,∀n ∈ IS
15: update Ω̄sn,n & Φsn,n,∀n ∈ IS
16: end for

tion problem is significantly smaller that the problem in (5.4). In particular, the BIP has

N decision variables. However, for a large number of RRHs, it might be computationally

expensive to solve the BIP problem shown in (5.7) R times every TTI. Therefore, a low-

complexity heuristic algorithm that solves the BIP is presented in Table 5.4. The heuristic

algorithm is greedy in the sense that it assigns an RB to the RRH that has the maximum

weight vn, then excludes its interfering RRHs from the allocation process. The first 11

lines in the heuristic algorithm are similar to those in Table 5.3, where the LSMs and their

users who maximize the sum utility are specified. The RRH index that has the maximum

weighted utility n∗ is found in line 14 and is added to the subset IS in line 15. The RRH n∗

and its interfering RRHs indices are deleted from the potential set of RRHs Sind. Conse-

quently, interfering RRHs are not assigned the same RBs, thereby eliminating interference.

An RB is assigned to jn,r,∀n ∈ IS in line 18, and Ωsn,n, Ω̄sn,n,Φsn,n are updated in lines

19-20.
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Table 5.4: Heuristic algorithm

1: input: Λm,n, Ω̄m,n,∀m,n
2: Rn = R,∀n
3: for r = 1 : R do
4: for n = 1 : N do
5: vn,r = 0
6: ∆Ωm,n = Λm,n − Ω̄m,n,∀m
7: Ωm,n = Λm,n + ∆Ωm,n,∀m
8: sn = arg max

m
Ωm,n,∀m such that Φm,n < Φthm

9: zn,r = max
k∈Ksn,n

uk,r

10: jn,r = arg max
k∈Ksn,n

uk,r

11: end for
12: Sind = {1, 2, · · · , N}
13: while Sind 6= φ do
14: n∗ = arg max

n
vn,r

15: IS ← n∗

16: S∗ind = Sind \ c ∈ {Cn ∪ n∗}
17: end while
18: assign RB r to UE jn,r,∀n ∈ IS
19: Ωsn,n = Ωsn,n − 1,∀n ∈ IS
20: update Ω̄sn,n & Φsn,n,∀n ∈ IS
21: end for
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5.5.1 The Complexity of the Heuristic Algorithm

For every TTI, the heuristic algorithm runs R major iterations (lines 3-21). Each major

iteration finds the LSM and a candidate user jn,r for each RRH. Finding the LSM at RRH

requires M operations, whereas finding the user (jn,r) requires Ksn,n operations. The

number of UEs is usually much larger than the number of MNOs, which makes finding

jn,r is the dominating operation. Assigning each RB to the subset IS requires at most N

operations, assuming that no RRHs interfere with each other. Therefore, the worst-case

complexity is O(R × (N + Kmax)), where Kmax = max
n,m

Km,n is the maximum number

of users that connect to an RRH and subscribe to one MNO.

5.6 Simulation Model and Numerical Results

In this chapter, a layout that comprises of 22 hexagonal cells as shown in Fig. 5.3 is

considered. The number of users for each MNO at each cell is assumed to be uniform

random variable with a mean of K̄. UEs are assumed to be uniformly distributed across

each cell and have average SINR of 5 to 10 dB. All channels are assumed to be independent

and frequency-flat with Rayleigh fading. Each channel is assumed to be fixed during one

subframe in time domain and over one RB in frequency domain, but changes independently

over different subframes, different RBs, and different users which corresponds to a quasi-

static channels.

For benchmarking purposes, the proposed schemes are compared to static sharing

scheme and the heuristic algorithm presented in [62], which is which is referred to as

heuristic-RRH. In the static sharing, each MNO at each RRH receives its share of RBs

(Λm,n) and allocates them to its users according to the MNO scheduling policy. In the

heuristic-RRH scheme, the spectrum resources assigned to all MNOs at a single RRH are

virtualized and shared between all UEs connected to the RRH.

In the following two subsections, numerical results are presented for two different

scenarios. The first scenario considers the optimal solution, and thus only RRHs 1-6 are

considered and the backlogged traffic model is assumed. In the second scenario, the entire

layout of the 22 cells is considered and dynamic traffic model is assumed. Therefore,



Chapter 5: Wireless Resources Virtualization for Cloud Radio Access Networks (C-RAN) 114

the optimal solution is excluded due to its high complexity while the proposed BIP and

heuristic schemes are considered and compared to static sharing and the heuristic scheme

presented in [62].
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Figure 5.3: Simulated network layout. For the first scenraio, only the red RRHs 1-6 are
considered. For the second scenario, all RRHs are considered.

5.6.1 Scenario 1: Backlogged Traffic Model

In this case, throughput of the limited-size layout is evaluated and compared for various

schemes. The MT scheduling policy and the backlogged traffic model are adopted for both

MNOs. The backlogged traffic model implies that each MNO is fully loaded and operates

at full capacity. Therefore, the sharing gain is minimal and it is only due to the multiplexing

gain of the resources. To demonstrate the benefit of sharing the resources between MNOs,

users of MNO2 may hibernate for a random period of time with an average value of Tsleep.

Fig. 5.4 compares the average throughput per UE for different average number of

UEs per cell per MNO. As it can be noted from the figure, the general trend for all schemes

is that increasing the average number of UEs per cell per MNO decreases the average num-

ber of RBs assigned to each UE, which decreases the average throughput per UE. However,
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each scheme provides its own average throughput based on the adopted resource allocation

scheme. As expected, all the results are upper bounded by the optimal scheme and lower

bounded by the static sharing scheme. Moreover, the proposed BIP and Heuristic schemes

outperform the heuristic-RRH scheme and they are only 9% less than the optimal. The

throughput advantage of the proposed BIP and heuristic approaches is due to the fact that

UEs in [62] may access only an RBs that is assigned to their RRH. However, the heuristic-

RRH scheme outperforms the performance of the static sharing scheme as it virtualizes the

resources of both MNOs at each RRH. Static sharing offers the lowest throughput because

the EUs of each MNO can access their dedicated RBs. And hence, UEs loose the chance

to use underutilized RBs that belong to other MNOs or other RRHs. Although MNO1 and

MNO2 own same number of RBs, the average throughput per user is lower for MNO2’s

users because they were forced to hibernate Tsleep of the time. The throughput of the

considered schemes for MNO2’s UEs follows their performance for MNO1’s UEs, where

the optimal scheme outperforms all other schemes. The average throughput per user for the

proposed BIP and heuristic are slightly lower than the average throughput per user achieved

by the optimal scheme. The heuristic-RRH scheme slightly outperforms the static sharing

scheme. However, the gain achieved by the WRV schemes for MNO2’s UEs is less than

that for MNO1’s UEs for the following reason. WRV offers two type of gains: 1) multi-

MNO multiplexing gains as a result of increasing the number of users per cell, and 2) gain

results form sharing RBs of underloaded MNOs with overload MNOs. As MNO1 is fully

loaded, WRV only offers multi-MNO multiplexing gains to MNO2’s users. On the other

hand, MNO2 is assumed to be underloaded and MNO1’s users benefit from both gains.

Fig. 5.5 shows the average aggregate throughput per cell for the five schemes. As

number of UEs increases, the average aggregate throughput increases as a result of the

multi-MNO multiplexing gain.

The average user throughput for different values of Tsleep for users of MNO1 and

MNO2 are shown in Figs. 5.6 and 5.7, respectively. It is worth noting that Tsleep indicates

the load of MNO2. As value of Tsleep becomes longer, the load on MNO2 becomes lighter.

In case of static sharing, MNO1 and MNO2 are fully isolated from each other. Therefore,

lightening the load on MNO2 has no impact on MNO1, and the average throughput of

MNO1 users is constant for any Tsleep value. On the contrary, for WRV schemes the av-
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Figure 5.4: Average throughput per UE for Tsleep = 40%.
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Figure 5.5: Average aggregate throughput per cell for Tsleep = 40%.
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Figure 5.6: Average throughput per UE for MNO1’s users for different vales of Tsleep.

erage throughput of MNO1’s users build up as the MNO2 load drops. As Tsleep increases,

the users of MNO2 access less RBs, and therefore their average throughput decreases or

the benefit of MNO1’s users.

5.6.2 Scenario 2: Dynamic Traffic Model

In this scenario, the average throughput and head-of-line (HoL) packet delay are evaluated.

The simulation variables are similar to the first scenario in terms of the number of MNOs,

and RBs. The assumptions and the system model of this scenario are more realistic because

the entire layout which consists of 22 RRHs is considered. Moreover, MNOs may apply

different scheduling polices. In this chapter, it is assumed that MNO1 applies the M-

LWDF scheduling policy, while MNO2 applies the MT scheduling policy. UEs are active

if they have data to transmit. The data traffic for UEs subscribed to MNO1 are modelled

by Poisson traffic model with an average packet arrival rate λ [34, 71, 97], and fixed-size

packet of 1 KB. UEs subscribed to MNO2 are assumed to be greedy and always have data

to transmit.
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Figure 5.7: Average throughput per UE for MNO2’s users for different vales of Tsleep.

The performance of the proposed, heuristic-RRH, and static sharing schemes is com-

pared for different packet arrival rates λ, which is defined as the average rate at which

packets arrive to the users’ buffers. For example, λ = 50 implies that, on average, a 1 KB

packet arrives every 50 ms. Since both MNOs have similar profiles in terms of the number

of RBs, scheduling policy, number of UEs, and average SINR, an average result for both

MNOs is shown.

The average aggregate throughput per cell for users of MNO1 and MNO2 is shown

in Figs. 5.8 and 5.9, respectively. As the value of λ increases, the average data arrivals de-

ceases. Consequently, MNO1 becomes further underloaded and the average cell through-

put decreases. In the static sharing scenario, RBs assigned to MNO1 are not accessible by

MNO2. Therefore, average aggregate throughput of MNO2 is not affected by the variation

in the traffic load of MNO1. For WRV schemes, the throughput of MNO2 grows as the load

of MNO1 becomes lighter. Reducing the load of MNO1 allows MNO2 to access more RBs

that would be granted to MNO1 if it is overloaded. The BIP scheme slightly outperforms

the proposed heuristic scheme. The performance of the proposed schemes is higher than

the performance of the heuristic-RRH and static sharing schemes.
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Fig. 5.10 shows the average HoL packet delay for different values of λ. The average

HoL delay for the BIP and the heuristic schemes are similar, but much less than that for the

heuristic-RRH and static sharing schemes for small value of λ. For large value of λ, the

load on MNO2 is relatively low and average HoL delay for all schemes converge to low

values.

The average running time of the schemes is measured and pointed out in Table 5.5.

The static sharing scheme is the least complex solution, since the RB allocation is inde-

pendent for each RRH. The heuristic solutions are solved considerably slower than static

sharing but faster than the BIP scheme.

Table 5.5: Normalized average running time of the BIP, heuristic, heuristic-RRH and
static sharing solutions.

BIP Heuristic heuristic-RRH Static sharing
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Figure 5.8: Average aggregate throughput of MNO1’s users.
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Figure 5.9: Average head-of-line packet delay of MNO2’s users.
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Figure 5.10: Average aggregate throughput of MNO1’s users.
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5.7 Chapter Summary

In this chapter, wireless resource virtualization schemes for cloud-based radio access net-

works (C-RANs) is presented. The proposed schemes dynamically share wireless resources

between multiple mobile network operators (MNOs). Optimal and suboptimal solutions

are provided and compared with each other as well as with a static sharing scheme, where

each MNO is assigned a fixed set of radio RBs. The optimal solution is formulated as a

binary integer programming optimization problem, which is known to be computationally

expensive. Consequently, to reduce the complexity of the optimal formulation, two low-

complexity suboptimal schemes are derived. The performance of the suboptimal solutions

is slightly lower than the optimal solution at the benefit of a significant lower running time.

The performance of the proposed schemes are compared in terms of throughput, delay, and

time complexity. The simulation results show that the proposed schemes outperform static

sharing in terms of both aggregate throughput and delay.
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Chapter 6

Conclusion
The ever-increasing demand for high data rate transmission over mobile networks results in

a new set of challenges for wireless systems and device designers such as improving spec-

trum efficiency and extending battery life-per-charge of the wireless devices. The main

objective of this thesis is to provide efficient solutions for such challenges using optimiza-

tion techniques. The thesis is divided into two parts. The first part is motivated by the

fundamental requirements for extending time-per-charge utilization for battery-powered

wireless devices. The second part of the thesis is motivated by the fundamental require-

ments for cost-efficient solutions to improve the wireless network capacity and maximize

average revenue per user. In this section, the work presented in the thesis is summarized

and recommendations for extending the research are proposed.

6.1 Thesis Summary

Chapter 2 and 3 focus on designing power-efficient packet schedulers that are able to min-

imize the total transmission power for users while maintaining QoS requirements. Two

power-efficient schedulers for mixed streaming services in Long Term Evolution (LTE)

uplink systems are presented in Chapter 2. The proposed schedulers are subject to rate, de-

lay, contiguous allocation, and maximum transmission power constraints. We first derive

an optimal scheduler that uses binary integer programming (BIP). Then, a low-complexity

iterative scheduler that solves the BIP problem is presented. It is shown that the proposed

schedulers maintained the required QoS and reduced the total transmit power under dif-

ferent practical scenarios. These power savings were achieved because of the schedulers

transmit data at low rates while maintaining the required QoS.
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For benchmarking purposes, we further find the global optimal solution using dy-

namic programming (DP), which requires the knowledge of future arrival rates and fu-

ture channel gains for all users. Although the global optimal solution is non-causal and

computationally expensive, it can be used as a reference for other sub-optimal algorithms.

Analysing the optimal solution guides us to propose another two low complexity heuristic

schedulers to solve the optimization problem. The first scheduler controls the maximum

allowable transmit power (MATP) for each user based on the queue length. In particular, if

the queue length of a user is relatively small, the scheduler reduces the users transmission

rate as well as the MATP to minimize the total transmit power. On the other hand, when the

queue length is large, the scheduler increases both the transmission rate and the MATP to

satisfy the delay requirements. The second scheduler controls the minimum acceptable bit

per Watt ratio (BPWR) for each user. Users can only transmit if their BPWRs are greater

than an acceptable level, which allows only high power efficient transmission.

Chapter 4 and 5 present wireless resource virtualization (WRV) as a key technology

to overcome the major challenges facing the mobile network operators (MNOs) such as

reducing the capital, minimizing the operating expenses, improving the quality of service

(QoS), and satisfying the growing demand for mobile services. In Chapter 4, the most

dominant WRV frameworks are discussed, where different levels of network infrastructure

and spectrum resources are shared between multiple MNOs. Moreover, the major benefits

and most pressing business challenges of deploying WRV are summarized. Furthermore,

an optimal low-complexity scheduler is proposed to virtualize the wireless resource blocks

(RBs) and share them between users of MNOs. The scheduler aims at maximizing through-

put while maintaining access proportional fairness among users as well as MNOs.

Solutions for virtualizing wireless resources of C-RANs and sharing them between

multiple MNOs are presented in Chapter 5. The proposed solutions dynamically allocate

wireless resources to users who subscribe to MNOs across the network. In addition, the

proposed solutions maintain a high level of isolation between different MNOs, provide

efficient resource utilization, enable different scheduling polices, and manage intercell in-

terference.

Overall, the primary argument made in this thesis is that the proposed resource al-

location and virtualization techniques can serve as basis for effective solutions to mitigate
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the modern challenges faced by wireless system designers and users pertaining to energy

efficiency, spectrum scarcity, and resources utilization.

6.2 Future Work

As the demand for mobile access and services is expected to rapidly grow [4], wireless

network technologies will continue to develop, and become more sophisticated. Evidently

there is much work to be done in the area of resource allocation and virtualization in next

generation wireless networks (NGNs). The most direct extension of this work is to consider

future technologies and network architectures while allocating and virtualizing wireless

resources. This section proposes a variety of research directions for future work.

6.2.1 Power-Efficient Schedulers for LTE-A Uplink

The International Mobile Telecommunications-Advanced (IMT-Advanced) requirements

motivate further development of LTE towards LTE-Advanced (LTE-A). IMT-Advanced re-

quirements expect a data rate of 1Gbps in downlink and 500Mbps in uplink. New radio

features specified in LTE-A such as multi-user multiple-input and multiple-output (MU-

MIMO), Coordinated Multipoint (CoMP), and Carrier Aggregation (CA) aim to meet the

IMT-Advanced requirements, and further improve cell coverage, throughput, and system

efficiency. However, deploying such features adds degrees of freedom and extended di-

mensions to the resource allocation problems. Scheduling and resource allocation for high

dimensional spaces is challenging (known as the curse of dimensionality). In this section,

two LTE-A radio features are discussed from a scheduling point of view as a logical exten-

sions of the previous works.

6.2.1.1 MU-MIMO

MU-MIMO is one of the key enablers for achieving high spectral efficiency in LTE-A.

MU-MIMO achieves additional multiuser diversity gain by grouping users together such

that they simultaneously transmit over the same time-frequency resources. Each group

of users can be seen as one user with multiple antennas. However, the performance of
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MU-MIMO depends closely on the method of grouping users. Designing power-efficient

schedulers that jointly allocate wireless resources and group users in MU-MIMO systems

can be a potential topic for future research in this area.

6.2.1.2 Carrier Aggregation

LTE-Advanced introduces the CA technology to meet the IMT Advanced requirements.

With the CA feature, it is possible to aggregate two or more component carriers (CCs) to-

gether. The aggregated CCs have wider transmission bandwidth (up to 100 MHz) and con-

vey higher data rates. From scheduling point of view, CA enables users to share resource

over multiple CCs. Uplink scheduling with CA should consider the following issues:

1. How to assign and share CCs between users, which performs a critical role of

the system performance, considering that different users have different aggregation

abilities, depending on the EU type (LTE or LTE-Advance).

2. CC load balancing is needed for optimal system performance.

3. Users who transmit over multiple CCs might break the contiguous allocation con-

straints of SC-FDMA, and increase PAPR. One way to solve the issue of increased

PAPR is to reduce the maximum transmission power, so the power amplifier oper-

ates in the linear region. On the other hand, transmission power reduction limits the

users’ throughput. The trade off between PAPR and users’ throughput should be

considered in the schedule design.

6.2.2 Virtualization in Next Generation Radio Access Network

A key enabler of the NGNs such as 5G is the integration of multiple radio access tech-

nologies (RATs) including 4G, 3G (UMTS/HSPA), GPRS/EDGE and Wi-Fi. Multi-RAT

network performance can be improved by smartly utilizing the wireless resources avail-

able among each RAT [98]. Moreover, exploiting heterogeneous networks (HetNets) has

emerged as a new network planning drift and as a promising solution to satisfy the growing

demand for broadband wireless access networks. HetNets consist of a mix of technolo-

gies, frequencies, cell sizes, and network architectures to enhance capacity and coverage of
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wireless networks. Chapter 4 and 5 investigate virtualizing wireless RANs that apply sin-

gle radio access technology and single network architecture. Future work, therefore, should

focus on providing solutions that are able to abstract and share the spectrum resources in

NGN.

6.2.3 Spectrum and Computing Resources Virtualization in C-RAN

Chapter 5 focuses on virtualizing only the spectrum resources in cloud RANs (C-RANs).

However, C-RAN architecture allows computing resources virtualization, where baseband

processing units (BPUs) can be dynamically shared among remote radio heads (RRHs),

yielding better computing resource utilization and power efficiency. Virtualizing both the

spectrum and the compute resource between multiple operators is another interesting di-

rection to extend this work.
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