15 research outputs found

    Communications and sensing of illumination contributions in a power led lighting system

    Get PDF
    Abstract — In recent years, LED technology emerged as a prime candidate for the future illumination light source, due to high energy efficiency and long life time. In addition, LEDs offer a superior flexibility in terms of colors and shapes, which leads to a potentially infinite variety of available light patterns. In order to create these patterns via easy user interaction, we need to sense the local light contribution of each LED. This measurement could be enabled through tagging of the light of each LED with unique embedded IDs. To this end, we propose a new modulation and multiple access scheme, named as codetime division multiple access- pulse position modulation (CTDMA-PPM): a form of PPM which is keyed according to a spreading sequence, and in which the duty cycle is subject to pulse width modulation (PWM) according to the required lighting setting. Our scheme considers illumination constraints in addition to the communication requirements and, to our best knowledge, it has not been addressed by other optical modulation methods. Based on the proposed modulation method and multiple access schemes, we develop a system structure, which includes illumination sources, a sensor receiver and a control system. Illumination sources illuminate the environment and transmit information, simultaneously. According to our theoretical analysis, this system structure could support a number of luminaries equal to the size of the CDMA codebook times the dimming range. I

    Code Division-Based Sensing of Illumination Contributions in Solid-State Lighting Systems

    Full text link

    The DarkLight Rises: Visible Light Communication in the Dark

    Get PDF
    Visible Light Communication (VLC) emerges as a new wireless communication technology with appealing benefits not present in radio communication. However, current VLC designs commonly require LED lights to emit shining light beams, which greatly limits the applicable scenarios of VLC (e.g., in a sunny day when indoor lighting is not needed). It also entails high energy overhead and unpleasant visual experiences for mobile devices to transmit data using VLC. We design and develop DarkLight, a new VLC primitive that allows light-based communication to be sustained even when LEDs emit extremely-low luminance. The key idea is to encode data into ultra-short, imperceptible light pulses. We tackle challenges in circuit designs, data encoding/decoding schemes, and DarkLight networking, to efficiently generate and reliably detect ultra-short light pulses using off-the-shelf, low-cost LEDs and photodiodes. Our DarkLight prototype supports 1.3-m distance with 1.6-Kbps data rate. By loosening up VLC\u27s reliance on visible light beams, DarkLight presents an unconventional direction of VLC design and fundamentally broadens VLC\u27s application scenarios

    MIMO MC-CDMA systems over indoor optical wireless communication channels

    Get PDF
    Optical wireless communication systems offer a number of advantages over their radio frequency counterparts. The advantages include freedom from fading, freedom from spectrum regulations and abundant bandwidth. The main limitations of optical wireless systems include background noise attributed to natural and artificial light sources and multipath propagation. The former degrades the signal to noise ratio while the latter limits the maximum achievable data rate. This thesis investigates the use of transmit power adaptation in the design of optical wireless spot-diffusing systems to increase the power associated with the main impulse response components, resulting in a compact impulse response and a system that is able to achieve higher data rates. The work also investigates the use of imaging diversity receivers that can reject the background noise components received in directions not associated with the signal. The two techniques help improve the optical wireless system performance. The multibeam transmitter and the multi-detector angle diversity receiver or imaging receiver form a multiple input multiple output (MIMO) system. The work also investigates additional methods that can improve the performance such as transmitter beam angle adaptation, and improved modulation and coding in the form of multi-carrier code division multiple access (MC-CDMA). Furthermore, the work investigates the robustness of a link design that adopts the combination of these methods in a realistic environment with full mobility.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Performances de l'optique sans fil pour les réseaux de capteurs corporels

    Get PDF
    This thesis deals with the performance of optical girelles communications for body area networks (BAN) as an alternative solution to the radiofrequency one, in the context of mobile healthcare monitoring. After presenting the main characteristics of a BAN using the radiofrequency technology, specifically in the UWB band, we explain the advantages of the optical wireless technology. Diffuse propagation based on infrared technology is then considered for BAN, exploiting optical reflections from environment surfaces. Several optical wireless channel modeling methods are introduced, and we consider two solutions for the link between two on-body nodes: a classical method named “one reflection model”, used to estimate performance variations, and a ray-launching method, used to take into account a great amount of optical reflections. Considering several scenarios, we determine the outage probability, and show that the diffuse optical wireless technology is able to achieve an on-body link, with the data rates and the quality of service required by health monitoring applications, for a transmitted power far lower than the limit defined in standards. Then, we evaluate the theoretical performance, in terms of error probability, of an optical wireless BAN, considering the optical code division multiple access technique. Finally, we show that a BAN using optical wireless technology is theoretically feasible, regarding a health monitoring application, and considering the mobility of the patient in indoor environment.Cette thèse aborde les performances d’un réseau corporel utilisant la technologie optique sans fil, comme alternative aux radiofréquences. L’application visée concerne la télésurveillance de patients mobiles, en milieu hospitalier. Après avoir défini les principales caractéristiques des réseaux corporels radiofréquences, notamment dans le cas de l’ultra large bande, nous présentons les avantages à utiliser la technologie optique sans fil. Nous considérons ensuite cette technologie en infrarouge, avec une méthode de propagation dite diffuse, exploitant les réflexions des rayons optiques dans l’environnement du réseau corporel. Les différentes méthodes de modélisation d’un canal optique diffus sont introduites, et nous utilisons deux types de méthodes pour modéliser le canal entre deux noeuds portés : un modèle classique dit « à une réflexion », permettant d’évaluer rapidement des variations de performances, et une méthode de lancer de rayon pour considérer un grand nombre de réflexions. En utilisant différents scénarios, ainsi que la notion de probabilité de rupture, nous montrons que l’optique diffuse permet de réaliser un lien corporel, pour les débits et la qualité de service requise par une application de télésurveillance médicale, et pour une puissance de transmission très inférieure à la limite imposée par la sécurité oculaire. Finalement, nous étudions les performances théoriques d’un réseau corporel en optique diffuse en termes de probabilité d’erreur, avec une gestion de l’accès multiple réalisé par répartition de codes optiques. Nous concluons qu’un réseau de capteurs corporels en optique diffuse est théoriquement réalisable, pour une application médicale de surveillance de patients mobiles dans l’environnement

    Adaptation techniques in optical wireless communications

    Get PDF
    The need for high-speed local area networks to meet the recent developments in multimedia and video transmission applications has recently focused interest on optical wireless communication. Optical wireless systems boast some advantages over radio frequency (RF) systems, including a large unregulated spectrum, freedom from fading, confidentiality and immunity against interference from electrical devices. They can satisfy the dual need for mobility and broadband networking. However, optical wireless links are not without flaws. They are affected by background noise (artificial and natural light sources) and suffer from multipath dispersion. The former can degrade the signal-to-noise ratio, while the latter restricts the maximum transmission rate available. The aim of this thesis is to investigate a number of techniques to overcome these drawbacks and design a robust high-speed indoor optical wireless system with full mobility. Beam delay and power adaptation in a multi-spot diffusing system is proposed in order to increase the received optical signal, reduce the delay spread and enable the system to operate at higher data rates. The thesis proposes employing angle diversity receivers and imaging diversity receivers as in order to reduce background noise components. Moreover, the work introduces and designs a high-speed fully adaptive optical wireless system that employs beam delay, angle and power adaptation in a multi-spot diffusing configuration and investigates the robustness of the link design in a realistic indoor office. Furthermore, a new adaptive optical wireless system based on a finite vocabulary of stored holograms is introduced. This method can effectively optimise the spots’ locations and reduce the design complexity of an adaptive optical wireless system. A fast adaptation approach based on a divide-andconquer methodology is proposed and integrated with the system to reduce the time required to identify the optimum hologram. The trade-off between complexity and performance enhancement of the adaptive finite holograms methods compared with the original beam power and angle adaptation is investigated

    Otimização do fronthaul ótico para redes de acesso de rádio (baseadas) em computação em nuvem (CC-RANs)

    Get PDF
    Doutoramento conjunto (MAP-Tele) em Engenharia Eletrotécnica/TelecomunicaçõesA proliferação de diversos tipos de dispositivos moveis, aplicações e serviços com grande necessidade de largura de banda têm contribuído para o aumento de ligações de banda larga e ao aumento do volume de trafego das redes de telecomunicações moveis. Este aumento exponencial tem posto uma enorme pressão nos mobile operadores de redes móveis (MNOs). Um dos aspetos principais deste recente desenvolvimento, é a necessidade que as redes têm de oferecer baixa complexidade nas ligações, como também baixo consumo energético, muito baixa latência e ao mesmo tempo uma grande capacidade por baixo usto. De maneira a resolver estas questões, os MNOs têm focado a sua atenção na redes de acesso por rádio em nuvem (C-RAN) principalmente devido aos seus benefícios em termos de otimização de performance e relação qualidade preço. O standard para a distribuição de sinais sem fios por um fronthaul C-RAN é o common public radio interface (CPRI). No entanto, ligações óticas baseadas em interfaces CPRI necessitam de uma grande largura de banda. Estes requerimentos podem também ser atingidos com uma implementação em ligação free space optical (FSO) que é um sistema ótico que usa comunicação sem fios. O FSO tem sido uma alternativa muito apelativa aos sistemas de comunicação rádio (RF) pois combinam a flexibilidade e mobilidade das redes RF ao mesmo tempo que permitem a elevada largura de banda permitida pelo sistema ótico. No entanto, as ligações FSO são suscetíveis a alterações atmosféricas que podem prejudicar o desempenho do sistema de comunicação. Estas limitações têm evitado o FSO de ser tornar uma excelente solução para o fronthaul. Uma caracterização precisa do canal e tecnologias mais avançadas são então necessárias para uma implementação pratica de ligações FSO. Nesta tese, vamos estudar uma implementação eficiente para fronthaul baseada em tecnologia á rádio-sobre-FSO (RoFSO). Propomos expressões em forma fechada para mitigação das perdas de propagação e para a estimação da capacidade do canal de maneira a aliviar a complexidade do sistema de comunicação. Simulações numéricas são também apresentadas para formatos de modulação adaptativas. São também considerados esquemas como um sistema hibrido RF/FSO e tecnologias de transmissão apoiadas por retransmissores que ajudam a alivar os requerimentos impostos por um backhaul/fronthaul de C-RAN. Os modelos propostos não só reduzem o esforço computacional, como também têm outros méritos, tais como, uma elevada precisão na estimação do canal e desempenho, baixo requisitos na capacidade de memória e uma rápida e estável operação comparativamente com o estado da arte em sistemas analíticos (PON)-FSO. Este sistema é implementado num recetor em tempo real que é emulado através de uma field-programmable gate array (FPGA) comercial. Permitindo assim um sistema aberto, interoperabilidade, portabilidade e também obedecer a standards de software aberto. Os esquemas híbridos têm a habilidade de suportar diferentes aplicações, serviços e múltiplos operadores a partilharem a mesma infraestrutura de fibra ótica.The proliferation of different mobile devices, bandwidth-intensive applications and services contribute to the increase in the broadband connections and the volume of traffic on the mobile networks. This exponential growth has put considerable pressure on the mobile network operators (MNOs). In principal, there is a need for networks that not only offer low-complexity, low-energy consumption, and extremely low-latency but also high-capacity at relatively low cost. In order to address the demand, MNOs have given significant attention to the cloud radio access network (C-RAN) due to its beneficial features in terms of performance optimization and cost-effectiveness. The de facto standard for distributing wireless signal over the C-RAN fronthaul is the common public radio interface (CPRI). However, optical links based on CPRI interfaces requires large bandwidth. Also, the aforementioned requirements can be realized with the implementation of free space optical (FSO) link, which is an optical wireless system. The FSO is an appealing alternative to the radio frequency (RF) communication system that combines the flexibility and mobility offered by the RF networks with the high-data rates provided by the optical systems. However, the FSO links are susceptible to atmospheric impairments which eventually hinder the system performance. Consequently, these limitations prevent FSO from being an efficient standalone fronthaul solution. So, precise channel characterizations and advanced technologies are required for practical FSO link deployment and operation. In this thesis, we study an efficient fronthaul implementation that is based on radio-on-FSO (RoFSO) technologies. We propose closedform expressions for fading-mitigation and for the estimation of channel capacity so as to alleviate the system complexity. Numerical simulations are presented for adaptive modulation scheme using advanced modulation formats. We also consider schemes like hybrid RF/FSO and relay-assisted transmission technologies that can help in alleviating the stringent requirements by the C-RAN backhaul/fronthaul. The propose models not only reduce the computational requirements/efforts, but also have a number of diverse merits such as high-accuracy, low-memory requirements, fast and stable operation compared to the current state-of-the-art analytical based approaches. In addition to the FSO channel characterization, we present a proof-of-concept experiment in which we study the transmission capabilities of a hybrid passive optical network (PON)-FSO system. This is implemented with the real-time receiver that is emulated by a commercial field-programmable gate array (FPGA). This helps in facilitating an open system and hence enables interoperability, portability, and open software standards. The hybrid schemes have the ability to support different applications, services, and multiple operators over a shared optical fiber infrastructure

    Radio Communications

    Get PDF
    In the last decades the restless evolution of information and communication technologies (ICT) brought to a deep transformation of our habits. The growth of the Internet and the advances in hardware and software implementations modified our way to communicate and to share information. In this book, an overview of the major issues faced today by researchers in the field of radio communications is given through 35 high quality chapters written by specialists working in universities and research centers all over the world. Various aspects will be deeply discussed: channel modeling, beamforming, multiple antennas, cooperative networks, opportunistic scheduling, advanced admission control, handover management, systems performance assessment, routing issues in mobility conditions, localization, web security. Advanced techniques for the radio resource management will be discussed both in single and multiple radio technologies; either in infrastructure, mesh or ad hoc networks

    Advanced Trends in Wireless Communications

    Get PDF
    Physical limitations on wireless communication channels impose huge challenges to reliable communication. Bandwidth limitations, propagation loss, noise and interference make the wireless channel a narrow pipe that does not readily accommodate rapid flow of data. Thus, researches aim to design systems that are suitable to operate in such channels, in order to have high performance quality of service. Also, the mobility of the communication systems requires further investigations to reduce the complexity and the power consumption of the receiver. This book aims to provide highlights of the current research in the field of wireless communications. The subjects discussed are very valuable to communication researchers rather than researchers in the wireless related areas. The book chapters cover a wide range of wireless communication topics
    corecore