6 research outputs found

    Fast strategies for multi-temporal speckle reduction of Sentinel-1 GRD images

    Full text link
    Reducing speckle and limiting the variations of the physical parameters in Synthetic Aperture Radar (SAR) images is often a key-step to fully exploit the potential of such data. Nowadays, deep learning approaches produce state of the art results in single-image SAR restoration. Nevertheless, huge multi-temporal stacks are now often available and could be efficiently exploited to further improve image quality. This paper explores two fast strategies employing a single-image despeckling algorithm, namely SAR2SAR, in a multi-temporal framework. The first one is based on Quegan filter and replaces the local reflectivity pre-estimation by SAR2SAR. The second one uses SAR2SAR to suppress speckle from a ratio image encoding the multi-temporal information under the form of a "super-image", i.e. the temporal arithmetic mean of a time series. Experimental results on Sentinel-1 GRD data show that these two multi-temporal strategies provide improved filtering results while adding a limited computational cost

    Nonlocal Multiscale Single Image Statistics From Sentinel-1 SAR Data for High Resolution Bitemporal Forest Wind Damage Detection

    Get PDF
    Change detection of synthetic aperture radar (SAR) data is a challenge for high-resolution applications. This study presents a new nonlocal averaging approach (STAl'SAR) to reduce the speckle of single Sentinel-1 SAR images and statistical parameters derived from the image. The similarity of SAR pixels is based on the statistics of 3 x 3 window as represented by the mean, standard deviation, median, minimum, and maximum. K-means clustering is used to divide the SAR image in 30 similarity clusters. The nonlocal averaging is carried out within each cluster separately in magnitude order of the 3 x 3 window averages. The nonlocal filtering is applicable not only to the original pixel backscattering values but also to statistical parameters, such as standard deviation. The statistical parameters to be filtered can represent any window size, according to the need of the application. The nonlocally averaged standard deviation derived in two spatial resolutions, 3 x 3 and 7 x 7 windows, are demonstrated here for improving the resolution in which the forest damages can be detected using the VH polarized backscattering spatial variation change.Peer reviewe

    Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data

    Get PDF
    A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination (R-2) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes.Peer reviewe

    Very High Spatial Resolution Soil Moisture Observation of Heterogeneous Subarctic Catchment Using Nonlocal Averaging and Multitemporal SAR Data

    Get PDF
    A soil moisture estimation method was developed for Sentinel-1 synthetic aperture radar (SAR) ground range detected high resolution (GRDH) data to analyze moisture conditions in a gently undulating and heterogeneous subarctic area containing forests, wetlands, and open orographic tundra. In order to preserve the original 10-m pixel spacing, PIMSAR (pixel-based multitemporal nonlocal averaging) nonlocal mean filtering was applied. It was guided by multitemporal statistics of SAR images in the area. The gradient boosted trees (GBT) machine learning method was used for the soil moisture algorithm development. Discrete and continuous in situ soil moisture values were used for training and validation of the algorithm. For surface soil moisture, the root mean square error (RMSE) of the method was 6.5% and 8.8% for morning and evening images, respectively. The corresponding maximum errors were 34.1% and 33.8%. The pixelwise sensitivity to the training set and method choice was estimated as the variance of the soil moisture values derived using the algorithms for the three best methods with respect to the criteria: the smallest maximum error, the smallest RMSE value, and the highest coefficient of determination (R-2) value. It was, on average, 6.3% with a standard deviation of 5.7%. Our approach successfully produced instantaneous high-resolution soil moisture estimates on daily basis for the subarctic landscape and can further be applied to various hydrological, biogeochemical, and management purposes.Peer reviewe

    Multitemporal SAR Image Despeckling Based on Block-Matching and Collaborative Filtering

    No full text
    International audienceWe propose a despeckling algorithm for multitemporal synthetic aperture radar (SAR) images based on the concepts of block-matching and collaborative filtering. It relies on the nonlocal approach, and it is the extension of SAR-BM3D for dealing with multitemporal data. The technique comprises two passes, each one performing grouping, collaborative filtering, and aggregation. In particular, the first pass performs both the spatial and temporal filtering, while the second pass only the spatial one. To avoid increasing the computational cost of the technique, we resort to lookup tables for the distance computation in the block-matching phases. The experiments show that the proposed algorithm compares favorably with respect to state-of-the-art reference techniques, with better results both on simulated speckled images and on real multitemporal SAR images

    Multitemporal SAR Image Despeckling based on Block-Matching and Collaborative Filtering

    No full text
    We propose a despeckling algorithm for multitemporal synthetic aperture radar (SAR) images based on the concepts of block-matching and collaborative filtering. It relies on the nonlocal approach, and it is the extension of SAR-BM3D for dealing with multitemporal data. The technique comprises two passes, each one performing grouping, collaborative filtering, and aggregation. In particular, the first pass performs both the spatial and temporal filtering, while the second pass only the spatial one. To avoid increasing the computational cost of the technique, we resort to lookup tables for the distance computation in the block-matching phases. The experiments show that the proposed algorithm compares favorably with respect to state-of-the-art reference techniques, with better results both on simulated speckled images and on real multitemporal SAR images
    corecore