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Abstract— Change detection of Synthetic Aperture Radar 

(SAR) data is a challenge for high resolution applications. This 

study presents a new non-local averaging approach (STATSAR) 

to reduce the speckle of single Sentinel-1 SAR images and 

statistical parameters derived from the image. The similarity of 

SAR pixels is based on the statistics of 3 x 3 window as represented 

by the mean, standard deviation, median, minimum, and 

maximum. K-means clustering is used to divide the SAR image in 

30 similarity clusters. The non-local averaging is carried out 

within each cluster separately in magnitude order of the 3x3 

window averages. The non-local filtering is applicable not only to 

the original pixel backscattering values, but also to statistical 

parameters, such as standard deviation. The statistical parameters 

to be filtered can represent any window size, according to the need 

of the application. 

The non-locally averaged standard deviation derived in two 

spatial resolutions,  3 x 3 and 7 x 7 windows, are demonstrated here 

for improving the resolution in which the forest damages can be 

detected using the VH polarized backscattering spatial variation 

change.    

 
Index Terms— SAR Data, Vegetation and Land Surface. 

I. INTRODUCTION 

HANGE detection using Synthetic Aperture Radar (SAR) 

images has been actively studied since the availability of 

SAR images. The launch of the Sentinel-1 (S1) satellites 

provides a possibility to observe abrupt changes, especially in 

northern latitudes, where the coverage of the open access 

imagery is almost daily.  

The main strategy of change detection has consisted of 1) 

preprocessing, 2) taking the difference and 3) post-processing 

[1] of the backscattered intensity. The important step has been 

the denoising of the images to be compared. High-resolution 

SAR image analysis is typically based on non-local mean 

filtering, if multitemporal averaging is not possible 

[2][3][4][5][6][7][8][9][10][11][12][13]. Recently also deep 

learning algorithms have been developed for change detection 

[14][15]. 

When the change detection information is not needed 

quickly, it is possible to use multitemporal image analysis to 
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observe the changes. However, in many cases, such as forest 

damages, the information is needed as soon as possible. Then it 

is desirable to use a change detection method that can handle 

images bitemporally. In this study we demonstrate detection of 

forest damages using S1 data, but instead of despeckling the 

backscattered intensity, its statistical parameters are non-locally 

filtered to reduce the speckle. 

C-band is challenging in observing changes in forests, due to 

the small wavelength that is to a large extent attenuated by the 

forest. In a recent study [16][17] it was noticed that the stand 

level standard deviation of the VH polarized backscattering 

changes when the forest is damaged. If all trees of a stand are 

fallen due to strong wind, the mean VH standard deviation of 

the stand is markedly smaller than before the storm.  

However, forest damages caused by winds do not follow the 

boundaries of the management units, such as stands.  The storm 

areas vary by size, from smaller than one hectare to several 

hundreds or thousands of hectares. Thus, a method sensitive to 

small areas, such as a group of pixels would also be needed. 

 Detection of forest damage in high resolution consists of two 

problems: 1) deriving an indicator that is sensitive enough and 

2) deriving a method that finds substand level damage areas. 

This study tackles the first problem. 

Since observed forest damages [17] did not show marked 

change in the stand level mean backscattering of VH or VV 

polarization of S1 images, it is not probable that non-local mean 

backscattering coefficient values would improve the forest 

damage detection either. On the other hand, applying a window 

filter based on the standard deviations to the non-locally 

averaged backscattering would result in an image with a box 

pattern texture. In this study a non-local averaging method 

(STATSAR) is developed for retrieval of statistical parameters, 

such as mean, standard deviation, median, minimum, and 

maximum, in high resolution, such as 3 x 3 and 7 x 7 windows 

without the box pattern caused by speckle and the box-car filter.  

STATSAR resembles the previously developed 

multitemporal non-local filtering method PIMSAR [13], but 

needs only one SAR image. In STATSAR 1) no assumptions 

about the scattering characteristics of the scenery are made in 
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advance, 2) the non-local averaging is guided using only one 

dual polarization SAR image and 3) the similarity of pixels is 

sought using the 3 x 3 pixel window statistics. The method 

combines spatial statistics with k-means clustering to derive the 

guidance for the non-local averaging of diverse statistical 

parameters. In each cluster in the area of interest the pixels are 

averaged with the pixels that have the most similar 3 x 3 mean 

intensity.  

II. MATERIALS 

This study is based on a set of S1 SAR Interferometric Wide 

(IW) Swath VV/VH images available in Ground Range 

Detected High (GRDH) resolution (10 m) format in the time 

range May – August, 2021 in Taivalkoski (65.6°N 28.8°E), 

northern Finland. Of special interest were the sub-swath IW2 

images on the ascending pass just preceding (June 20) and 

succeeding (June 26) a major forest damage event on June 22, 

2021. A digital elevation model of 2 m resolution (provided by 

National Land Surveying) was used for Doppler Range Terrain 

Correction of the SAR images.  

The damage was exceptionally heavy in the region with a 

forest area of about four million hectares. From that, an area of 

about 40,000 - 50,000 hectares was so heavily damaged that re-

planting was necessary, while a further 60,000 hectares would 

require sanitary cutting. In this study, a sub-area with a size of 

19 km x 24 km was used for method development. 

Five orthorectified airborne image of 0.5 m spatial resolution 

were available in 2018 and 2021 (after the forest damage) for 

comparison of the details of the filtered images [Fig. 1 and Fig. 

2]. They were used to derive polygons containing/not 

containing forest damage in 2021 [Fig. 1]. Those polygons were 

used to calculate plot level backscattering statistics of damaged 

and not damaged forested areas. In addition, 248 circles each 

covering roughly 81 SAR pixels were drawn to sample areas of 

damage (124 circles) or no damage (124 circles) according to 

the airborne photos. The statistics of the VH backscattering of 

the circles were analyzed to study the effect of resolution on the 

possibility to distinguish forest damage. The circles covered 

only forest land with growing stock. 

 

 

 

 
Fig. 1. An example of a complete forest damage of a plot from airborne 

photos of 2018 (top) and 2021 (bottom). National Land Survey of Finland 

Orthophoto Database 09/2021, Creative Commons Attribution 4.0 

International License. 

 

 
Fig. 2. An example of a subplot level limited forest damages  from airborne 

photos of 2018 (top) and 2021 (bottom). National Land Survey of Finland 

Orthophoto Database 09/2021, Creative Commons Attribution 4.0 

International License. 

The damaged circles represented areas were almost all trees 

had fallen. As forest damage is not a binary feature, detecting a 

sufficient number of undamaged circles was challenging. 

Besides complete fall down the damage can appear as broken 

treetops and branches and half-outrooted trees leaning on each 

other. Those features are difficult to detect from the airborne 

images, hence the undamaged circles were preferably picked far 

from damaged areas. Yet, the representativity of the undamaged 

circles may be of lower quality than that of the damaged circles. 

III. METHOD 

The basis of STATSAR [Fig. 3] is the same as for the  pixel 

based multitemporal non-local averaging method (PIMSAR) 

[13], namely k-means clustering [18][19][20][21] is used to 

divide the SAR image in 30 clusters of similar backscattering 

statistics within which the non-local mean is derived in the 

magnitude order of the average backscattering coefficient 

values. In PIMSAR the clustering was based on the 

multitemporal mean and standard deviation values of the 

backscattering coefficient of two polarizations, three swaths 

and two passes, whereas in STATSAR it is based on the mean, 

standard deviation, median, minimum, and maximum 

backscattering values derived in sliding 3 x 3 windows of VH 

and VV polarizations of a single S1 image. This window is 

called the base window and its size is chosen to be 3 x 3 pixels 

because the land cover is very heterogenous. In other kind of 

areas, a larger window size might produce more efficient 

speckle reduction without losing important small details. 

The number of iterations of the k-means clustering was here 

1000 and the number of individual samples (statistical 

parameter values) to be averaged non-locally is in this study 49, 

the same as when using PIMSAR. The construction of the 

guidance matrix used for deriving the non-local mean values of 

each cluster is explained explicitly in [13]. In STATSAR the 
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same kind of guidance matrix [Fig. 3] is used, but the criterion 

of the pixel ordering in each cluster is here the base window 

mean backscattering value (of the same polarization as the 

parameter to be filtered) instead of the multitemporal pixelwise 

mean used in PIMSAR.  

The statistical parameters to be non-locally filtered, such as 

standard deviation or median, are calculated in a sliding box-

car window of chosen size called the statistic window size. The 

non-locally filtered standard deviation of a certain window size 

is not identical to the standard deviation of the non-locally 

filtered backscattering coefficient of the same window size, as 

the latter alternative has an obvious box pattern, but their linear 

correlation is high. The coefficient of determination was for 3 x 

3 window R2 = 0.74 for the image of June 20, 2021. 

 

 
Fig. 3. The processing steps of the STATSAR method of averaging statistical 

parameters non-locally. 

It should be noticed that although the STATSAR method is 

all the time based on the base window spatial statistics, the 

statistical parameters to be filtered can be calculated in a freely 

chosen window. As the standard deviation of natural targets 

typically  depends on the window size, the STATSAR method 

can then provide every pixel with a wide variety of statistical 

features of varying spatial scales. 

IV. RESULTS 

An example of a non-locally filtered standard deviation s 

representing a sliding 7 x 7 statistic window is compared to the 

standard deviation derived directly from the original image 

using the same sliding 7 x 7 window size in Fig. 4. The box 

pattern of the original standard deviation image does not appear 

in the non-locally filtered image. The same effect is seen in the 

images of the non-locally filtered mean, median, minimum, and 

standard deviation images: box pattern for box-car and no box 

pattern for non-locally filtered images. 

The plot level standard deviation values of the original VH 

polarized images, denoted as s(𝜎𝑉𝐻
0 ), before and after the storm 

are compared in Fig. 5. The size of the damaged plots varied in 

the range 1014 – 11614 pixels and the size of the undamaged 

 

 

     
Fig. 4. The sliding 7 x 7 window standard deviation of the original 

VH polarized SAR image (top) of June 20, 2021, and the non-locally 

filtered 7 x 7 statistic window standard deviation (middle) of the 

same VH image. The area is an extract of the whole analyzed area 

and covers an area of about 21.5 km x 24.5 km. Open water is 

masked black. Extracts of the original image (bottom left) and the 

non-locally filtered image (bottom right) texture marked with white 

rectangles cover an area of about 1 km x 1 km.  

plots varied in the range 1055 – 14883 pixels. The 

undamaged plots contained a mixture of forests and bogs. The 

corresponding comparison of the plot level averages of the non-

locally filtered (denoted by <>) standard deviation values of 7 

x 7 statistic window, denoted as <s7x7(𝜎𝑉𝐻
0 )>, is shown in Fig. 

6. Both alternatives show that the variation of the 

backscattering is reduced by the damage. This is related to the 

reduced 3D structure of fallen trees. Indeed, in the plots, where 

the standard deviation is closer to that of undamaged plots, there 

are still a fraction of trees that have not fallen. As the size of the 
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plots is so large, the original images produce almost as clear 

distinction between damaged and undamaged plots as the non-

locally filtered standard deviation. 

 

 
Fig. 5. The standard deviation of all VH polarized backscattering 

values within damaged and undamaged plot polygons in Taivalkoski 

before (June 20) and after (June 26) the storm.  

 
Fig. 6. The mean of the plot polygon texture of damaged and 

undamaged plots in Taivalkoski before (June 20) and after (June 26) 

the storm. The texture is described using the non-locally filtered 7 x 7 

statistic window standard deviation of the VH polarized 

backscattering. 

The effect of reducing the spatial averaging becomes obvious 

from the distributions. For the circles of 81 pixels, it is no more 

possible to use the standard deviation of the original VH 

polarized image backscattering coefficient to discriminate 

damaged plots from undamaged ones [Fig. 7], although also 

their backscattering characteristics are changed due to moisture 

conditions. However, for the circle average of the non-locally 

filtered 7 x 7 statistic window standard deviation the damaged 

and undamaged areas can still be distinguished. A nearest 

neighbor machine learning method [22][23] was employed to 

binary damage/no damage classification of the original circle 

level standard deviation s(𝜎𝑉𝐻
0 ) and circle level mean of the 

non-locally filtered standard deviation of 3 x 3 and 7 x 7 

statistical windows, < s3x3(𝜎𝑉𝐻
0 )> and < s7x7(𝜎𝑉𝐻

0 )>, respectively. 

The circles were divided in the independent training and 

validation data sets by random picking. The confusion matrices 

are shown for the independent half of the data points not used 

for deriving the classification method [TABLE I ⸻ TABLE III]. 

Also, the combination of < s3x3(𝜎𝑉𝐻
0 )>  and < s7x7(𝜎𝑉𝐻

0 )> was 

tested [TABLE IV]. The quality of the classification can be 

described with the critical success index CSI, which is 

calculated from the true positive (TP), false positive (FP) and 

false negative (FN) classification numbers 

 

                               𝐶𝑆𝐼 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
    .    (1) 

 

In this context TP refers to damaged circles classified as 

damaged, FP refers to undamaged circles classified as damaged 

and FN to damaged circles classified as undamaged. The 

undamaged circles classified as undamaged represent the true 

negative cases (TN). The CSI values were 0.45, 0.57, 0.61 and 

0.66 for s(𝜎𝑉𝐻
0 ), < s3x3(𝜎𝑉𝐻

0 )> , < s7x7(𝜎𝑉𝐻
0 )> and (< s3x3(𝜎𝑉𝐻

0 )> & 

< s7x7(𝜎𝑉𝐻
0 )>), respectively. The reason for FP being higher than 

FN may result from the undamaged samples being in reality 

partly damaged. As after damage taken airborne photos existed 

only in a limited area, some of the undamaged circles were 

picked rather close to the major damaged zone in order to get a 

statistically meaningful data set. Unfortunately, from the 

airborne image it is possible to detect only the trunk level 

damage, not broken branches and twigs, which the radar 

detects. However, using the non-local filtering of the standard 

deviation enables analysis in higher resolution than when using 

the standard deviation derived from the original image. It also 

provides the possibility to benefit from variation of the 

backscattering in diverse scales, i.e., statistic window sizes. 

The results demonstrated in this limited study are derived 

without paying attention to the effect of incidence angle 

variation (global or local) on the radiometry in the study region. 

When developing an operational method for forest damage 

detection, naturally those aspects have to be taken into account. 

 

 
Fig. 7. The distributions of the ratio of standard deviation of the 

damaged and undamaged 81 pixel circles (s(𝜎𝑉𝐻
0 ))  after and before 

the storm are shown as dotted lines. The distributions of the mean of 

the non-locally filtered texture of the circles, as represented by 

<s7x7(𝜎𝑉𝐻
0 )>, are shown as solid lines. 

V. DISCUSSION AND CONCLUSIONS 

A new method to derive non-locally averaged statistical 

parameters STATSAR is presented for single dual polarization 

SAR images. The end result can be presented in original 

resolution, but it is recommended to be averaged in the base 
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TABLE I 

CONFUSION MATRIX FOR CLASSIFICATION BASED ON S(𝜎𝑉𝐻
0 ) 

Total 124 Classified damage Classified no damage 

Damage TP = 42 FN = 20 

No damage FP = 31 TN = 31 

 
TABLE II 

CONFUSION MATRIX FOR CLASSIFICATION BASED ON < S3X3(𝜎𝑉𝐻
0 )> 

Total 124 Classified damage Classified no damage 

Damage TP = 48 FN = 14 
No damage FP = 22 TN = 40 

 
TABLE III 

CONFUSION MATRIX FOR CLASSIFICATION BASED ON < S7X7(𝜎𝑉𝐻
0 )> 

Total 124 Classified damage Classified no damage 

Damage TP = 50 FN = 12 

No damage FP = 20 TN = 42 

 
TABLE IV 

CONFUSION MATRIX FOR CLASSIFICATION BASED ON BOTH < S3X3(𝜎𝑉𝐻
0 )>  AND 

< S7X7(𝜎𝑉𝐻
0 )> 

Total 124 Classified damage Classified no damage 

Damage TP = 53 FN = 9 
No damage FP = 18 TN = 44 

 

window, here 3 x 3 pixels, when using it for pixel basis 

operations. Statistical analyses should be carried out in sliding 

windows using the original resolution. The method offers a 

possibility to provide each pixel with a large versatility of 

statistical descriptors in several statistic window sizes without 

dominating speckle. STATSAR preserves the filtered image 

mean value. 

When the change information is not required urgently, the 

previously developed multi-temporal PIMSAR method [13] 

should be applied similarly as STATSAR to filter the statistical 

parameters of interest, not only the intensity, into pixel 

resolution. PIMSAR based on single pixels of 6 images of the 

same swath and pass reduced speckle more efficiently than 

STATSAR based on 3x3 statistics: The mean, median and 

standard deviation values for the relative difference 

((STATSAR – PIMSAR)/PIMSAR) of the non-locally filtered 

VH intensity of June 20 in original resolution were 0.005, -0.04 

and 0.34, respectively.   

The possibility to filter statistical parameters rather than the 

original intensity is useful in applications, where the texture of 

the image, not the intensity, reveals the changes. Naturally, both 

the intensity and texture changes can be taken into account 

using STATSAR. 
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