10 research outputs found

    Fast protein superfamily classification using principal component null space analysis.

    Get PDF
    The protein family classification problem, which consists of determining the family memberships of given unknown protein sequences, is very important for a biologist for many practical reasons, such as drug discovery, prediction of molecular functions and medical diagnosis. Neural networks and Bayesian methods have performed well on the protein classification problem, achieving accuracy ranging from 90% to 98% while running relatively slowly in the learning stage. In this thesis, we present a principal component null space analysis (PCNSA) linear classifier to the problem and report excellent results compared to those of neural networks and support vector machines. The two main parameters of PCNSA are linked to the high dimensionality of the dataset used, and were optimized in an exhaustive manner to maximize accuracy. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2005 .F74. Source: Masters Abstracts International, Volume: 44-03, page: 1400. Thesis (M.Sc.)--University of Windsor (Canada), 2005

    Linear Manifold Approximation based on Differences of Tangents

    Get PDF
    In this paper, we consider the problem of manifold approximation with affine subspaces. Our objective is to discover a set of low dimensional affine subspaces that represents manifold data accurately while preserving the manifold’s structure. For this purpose, we employ a greedy technique that partitions manifold samples into groups that can be well approximated by low dimensional subspaces. We start with considering each manifold sample as a different group and we use the difference of tangents to determine advantageous group mergings. We repeat this procedure until we reach the desired number of significant groups. At the end, the best low dimensional affine subspaces corresponding to the final groups constitute the manifold representation. Our experiments verify the effectiveness of the proposed scheme and show its superior performance compared to stateof- the-art methods for manifold approximation

    A survey of fingerprint classification Part II: experimental analysis and ensemble proposal

    Get PDF
    In the first part of this paper we reviewed the fingerprint classification literature from two different perspectives: the feature extraction and the classifier learning. Aiming at answering the question of which among the reviewed methods would perform better in a real implementation we end up in a discussion which showed the difficulty in answering this question. No previous comparison exists in the literature and comparisons among papers are done with different experimental frameworks. Moreover, the difficulty in implementing published methods was stated due to the lack of details in their description, parameters and the fact that no source code is shared. For this reason, in this paper we will go through a deep experimental study following the proposed double perspective. In order to do so, we have carefully implemented some of the most relevant feature extraction methods according to the explanations found in the corresponding papers and we have tested their performance with different classifiers, including those specific proposals made by the authors. Our aim is to develop an objective experimental study in a common framework, which has not been done before and which can serve as a baseline for future works on the topic. This way, we will not only test their quality, but their reusability by other researchers and will be able to indicate which proposals could be considered for future developments. Furthermore, we will show that combining different feature extraction models in an ensemble can lead to a superior performance, significantly increasing the results obtained by individual models.This work was supported by the Research Projects CAB(CDTI), TIN2011-28488, and TIN2013-40765-P

    A Survey of Fingerprint Classification Part I: Taxonomies on Feature Extraction Methods and Learning Models

    Get PDF
    This paper reviews the fingerprint classification literature looking at the problem from a double perspective. We first deal with feature extraction methods, including the different models considered for singular point detection and for orientation map extraction. Then, we focus on the different learning models considered to build the classifiers used to label new fingerprints. Taxonomies and classifications for the feature extraction, singular point detection, orientation extraction and learning methods are presented. A critical view of the existing literature have led us to present a discussion on the existing methods and their drawbacks such as difficulty in their reimplementation, lack of details or major differences in their evaluations procedures. On this account, an experimental analysis of the most relevant methods is carried out in the second part of this paper, and a new method based on their combination is presented.Research Projects CAB(CDTI) TIN2011-28488 TIN2013-40765Spanish Government FPU12/0490

    A survey of fingerprint classification Part I: taxonomies on feature extraction methods and learning models

    Get PDF
    This paper reviews the fingerprint classification literature looking at the problem from a double perspective. We first deal with feature extraction methods, including the different models considered for singular point detection and for orientation map extraction. Then, we focus on the different learning models considered to build the classifiers used to label new fingerprints. Taxonomies and classifications for the feature extraction, singular point detection, orientation extraction and learning methods are presented. A critical view of the existing literature have led us to present a discussion on the existing methods and their drawbacks such as difficulty in their reimplementation, lack of details or major differences in their evaluations procedures. On this account, an experimental analysis of the most relevant methods is carried out in the second part of this paper, and a new method based on their combination is presented.This work was supported by the Research Projects CAB(CDTI), TIN2011-28488, and TIN2013-40765-P.

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Signal structure: from manifolds to molecules and structured sparsity

    Get PDF
    Effective representation methods and proper signal priors are crucial in most signal processing applications. In this thesis we focus on different structured models and we design appropriate schemes that allow the discovery of low dimensional latent structures that characterise and identify the signals. Motivated by the highly non-linear structure of most datasets, we firstly investigate the geometry of manifolds. Manifolds are low dimensional, non-linear structures that are naturally employed to describe sets of strongly related signals such as the images of a 3-D object captured from different viewpoints. However, the use of manifolds in applications is not straightforward due to their usually non-analytic and non-linear form. We propose here a way to `disassemble' a manifold into simpler components by approximating it with affine subspaces. Our objective is to discover a set of low dimensional affine subspaces that can represent manifold data accurately while preserving the manifold's structure. To this end, we employ a greedy technique that iteratively merges manifold samples into groups based on the difference of local tangents. We use our algorithm to approximate synthetic and real manifolds and to demonstrate that it is competitive to state-of-the-art techniques. Then, we consider structured sparse representations of signals and we propose a new sparsity model, where signals are essentially composed of a small number of structured {\it molecules }. We define the molecules to be linear combinations of a small number of atoms in a redundant dictionary. Our multi-level model takes into account the energy distribution of the significant signal components in addition to their support. It permits to define typical visual patterns and recognise them in prototypical or deformed form. We define a new structural difference measure between molecules and their deformed versions, which is based on their sparse codes and we create an algorithm for decomposing signals into molecules that can account for different deviations in the internal molecule structure. Our experiments verify the benefits of the new image model in various restoration tasks and they confirm that the development of proper models that extend the mere notion of sparsity can be very useful for various inverse problems in imaging. Finally, we investigate the problem of learning molecule representations directly in the sparse code domain. We constrain sparse codes to be linear combinations of a few, possibly deformed, molecules and we design an algorithm that can learn the structure from the codes without transforming them back into the signal domain. To this end, we take advantage of our structural difference which is based on the sparse codes and we devise a scheme for representing the codes with molecules and learn the molecules at the same time. To illustrate the effectiveness of our proposed algorithm we apply it to various synthetic and real datasets and we compare the results with traditional sparse coding and dictionary learning techniques. From the experiments, we verify the superior performance of our scheme in interpreting and recognising correctly the underlying structure. In short, in this thesis we are interested in low-dimensional, structured models. Among the various choices, we focus on manifolds and sparse representations and we propose schemes that enhance their structural properties and highlight their effectiveness in signal representations

    Assembly Line

    Get PDF
    An assembly line is a manufacturing process in which parts are added to a product in a sequential manner using optimally planned logistics to create a finished product in the fastest possible way. It is a flow-oriented production system where the productive units performing the operations, referred to as stations, are aligned in a serial manner. The present edited book is a collection of 12 chapters written by experts and well-known professionals of the field. The volume is organized in three parts according to the last research works in assembly line subject. The first part of the book is devoted to the assembly line balancing problem. It includes chapters dealing with different problems of ALBP. In the second part of the book some optimization problems in assembly line structure are considered. In many situations there are several contradictory goals that have to be satisfied simultaneously. The third part of the book deals with testing problems in assembly line. This section gives an overview on new trends, techniques and methodologies for testing the quality of a product at the end of the assembling line

    Ridge orientation modeling and feature analysis for fingerprint identification

    Get PDF
    This thesis systematically derives an innovative approach, called FOMFE, for fingerprint ridge orientation modeling based on 2D Fourier expansions, and explores possible applications of FOMFE to various aspects of a fingerprint identification system. Compared with existing proposals, FOMFE does not require prior knowledge of the landmark singular points (SP) at any stage of the modeling process. This salient feature makes it immune from false SP detections and robust in terms of modeling ridge topology patterns from different typological classes. The thesis provides the motivation of this work, thoroughly reviews the relevant literature, and carefully lays out the theoretical basis of the proposed modeling approach. This is followed by a detailed exposition of how FOMFE can benefit fingerprint feature analysis including ridge orientation estimation, singularity analysis, global feature characterization for a wide variety of fingerprint categories, and partial fingerprint identification. The proposed methods are based on the insightful use of theory from areas such as Fourier analysis of nonlinear dynamic systems, analytical operators from differential calculus in vector fields, and fluid dynamics. The thesis has conducted extensive experimental evaluation of the proposed methods on benchmark data sets, and drawn conclusions about strengths and limitations of these new techniques in comparison with state-of-the-art approaches. FOMFE and the resulting model-based methods can significantly improve the computational efficiency and reliability of fingerprint identification systems, which is important for indexing and matching fingerprints at a large scale
    corecore