676 research outputs found

    Real-Time Full Color Multiband Night Vision

    Get PDF

    Statistical Feature Selection and Extraction for Video and Image Segmentation

    Get PDF
    The purpose of this study was to develop statistical feature selection and extraction methods for video and image segmentation, which partition a video or image into non-overlap and meaningful objects or regions. It is a fundamental step towards content-based visual information analysis. Visual data segmentation is a difficult task due to the various definitions of meaningful entities, as well as their complex properties and behaviors. Generally, visual data segmentation is a pattern recognition problem, where feature selection/extraction and data classifier design are two key components. Pixel intensity, color, time, texture, spatial location, shape, motion information, etc., are most frequently used features for visual data representation. Since not all of features are representative regarding visual data, and have significant contribution to the data classification, feature selection and/or extraction are necessary to select or generate salient features for data classifier. Statistical machine learning methods play important roles in developing data classifiers. In this report, both parametric and nonparametric machine learning methods are studied under three specific applications: video and image segmentation, as well as remote sensing data analysis. For various visual data segmentation tasks, key-frame extraction in video segmentation, WDHMM likelihood computation, decision tree training, and support vector learning are studied for feature selection and/or extraction and segmentation. Simulations on both synthetic and real data show that the proposed methods can provide accurate and robust segmentation results, as well as representative and discriminative features sets. This work can further inspire our studies towards the real applications. In these applications, we are able to obtain state-of-the-art or promising results as well as efficient algorithmsElectrical Engineering Technolog

    Spatio-Temporal Analysis of Spontaneous Speech with Microphone Arrays

    Get PDF
    Accurate detection, localization and tracking of multiple moving speakers permits a wide spectrum of applications. Techniques are required that are versatile, robust to environmental variations, and not constraining for non-technical end-users. Based on distant recording of spontaneous multiparty conversations, this thesis focuses on the use of microphone arrays to address the question Who spoke where and when?. The speed, the versatility and the robustness of the proposed techniques are tested on a variety of real indoor recordings, including multiple moving speakers as well as seated speakers in meetings. Optimized implementations are provided in most cases. We propose to discretize the physical space into a few sectors, and for each time frame, to determine which sectors contain active acoustic sources (Where? When?). A topological interpretation of beamforming is proposed, which permits both to evaluate the average acoustic energy in a sector for a negligible cost, and to locate precisely a speaker within an active sector. One additional contribution that goes beyond the eld of microphone arrays is a generic, automatic threshold selection method, which does not require any training data. On the speaker detection task, the new approach is dramatically superior to the more classical approach where a threshold is set on training data. We use the new approach into an integrated system for multispeaker detection-localization. Another generic contribution is a principled, threshold-free, framework for short-term clustering of multispeaker location estimates, which also permits to detect where and when multiple trajectories intersect. On multi-party meeting recordings, using distant microphones only, short-term clustering yields a speaker segmentation performance similar to that of close-talking microphones. The resulting short speech segments are then grouped into speaker clusters (Who?), through an extension of the Bayesian Information Criterion to merge multiple modalities. On meeting recordings, the speaker clustering performance is signicantly improved by merging the classical mel-cepstrum information with the short-term speaker location information. Finally, a close analysis of the speaker clustering results suggests that future research should investigate the effect of human acoustic radiation characteristics on the overall transmission channel, when a speaker is a few meters away from a microphone

    Mathematical modelling ano optimization strategies for acoustic source localization in reverberant environments

    Get PDF
    La presente Tesis se centra en el uso de técnicas modernas de optimización y de procesamiento de audio para la localización precisa y robusta de personas dentro de un entorno reverberante dotado con agrupaciones (arrays) de micrófonos. En esta tesis se han estudiado diversos aspectos de la localización sonora, incluyendo el modelado, la algoritmia, así como el calibrado previo que permite usar los algoritmos de localización incluso cuando la geometría de los sensores (micrófonos) es desconocida a priori. Las técnicas existentes hasta ahora requerían de un número elevado de micrófonos para obtener una alta precisión en la localización. Sin embargo, durante esta tesis se ha desarrollado un nuevo método que permite una mejora de más del 30\% en la precisión de la localización con un número reducido de micrófonos. La reducción en el número de micrófonos es importante ya que se traduce directamente en una disminución drástica del coste y en un aumento de la versatilidad del sistema final. Adicionalmente, se ha realizado un estudio exhaustivo de los fenómenos que afectan al sistema de adquisición y procesado de la señal, con el objetivo de mejorar el modelo propuesto anteriormente. Dicho estudio profundiza en el conocimiento y modelado del filtrado PHAT (ampliamente utilizado en localización acústica) y de los aspectos que lo hacen especialmente adecuado para localización. Fruto del anterior estudio, y en colaboración con investigadores del instituto IDIAP (Suiza), se ha desarrollado un sistema de auto-calibración de las posiciones de los micrófonos a partir del ruido difuso presente en una sala en silencio. Esta aportación relacionada con los métodos previos basados en la coherencia. Sin embargo es capaz de reducir el ruido atendiendo a parámetros físicos previamente conocidos (distancia máxima entre los micrófonos). Gracias a ello se consigue una mejor precisión utilizando un menor tiempo de cómputo. El conocimiento de los efectos del filtro PHAT ha permitido crear un nuevo modelo que permite la representación 'sparse' del típico escenario de localización. Este tipo de representación se ha demostrado ser muy conveniente para localización, permitiendo un enfoque sencillo del caso en el que existen múltiples fuentes simultáneas. La última aportación de esta tesis, es el de la caracterización de las Matrices TDOA (Time difference of arrival -Diferencia de tiempos de llegada, en castellano-). Este tipo de matrices son especialmente útiles en audio pero no están limitadas a él. Además, este estudio transciende a la localización con sonido ya que propone métodos de reducción de ruido de las medias TDOA basados en una representación matricial 'low-rank', siendo útil, además de en localización, en técnicas tales como el beamforming o el autocalibrado

    Multisource Data Integration in Remote Sensing

    Get PDF
    Papers presented at the workshop on Multisource Data Integration in Remote Sensing are compiled. The full text of these papers is included. New instruments and new sensors are discussed that can provide us with a large variety of new views of the real world. This huge amount of data has to be combined and integrated in a (computer-) model of this world. Multiple sources may give complimentary views of the world - consistent observations from different (and independent) data sources support each other and increase their credibility, while contradictions may be caused by noise, errors during processing, or misinterpretations, and can be identified as such. As a consequence, integration results are very reliable and represent a valid source of information for any geographical information system

    Sound Event Localization, Detection, and Tracking by Deep Neural Networks

    Get PDF
    In this thesis, we present novel sound representations and classification methods for the task of sound event localization, detection, and tracking (SELDT). The human auditory system has evolved to localize multiple sound events, recognize and further track their motion individually in an acoustic environment. This ability of humans makes them context-aware and enables them to interact with their surroundings naturally. Developing similar methods for machines will provide an automatic description of social and human activities around them and enable machines to be context-aware similar to humans. Such methods can be employed to assist the hearing impaired to visualize sounds, for robot navigation, and to monitor biodiversity, the home, and cities. A real-life acoustic scene is complex in nature, with multiple sound events that are temporally and spatially overlapping, including stationary and moving events with varying angular velocities. Additionally, each individual sound event class, for example, a car horn can have a lot of variabilities, i.e., different cars have different horns, and within the same model of the car, the duration and the temporal structure of the horn sound is driver dependent. Performing SELDT in such overlapping and dynamic sound scenes while being robust is challenging for machines. Hence we propose to investigate the SELDT task in this thesis and use a data-driven approach using deep neural networks (DNNs). The sound event detection (SED) task requires the detection of onset and offset time for individual sound events and their corresponding labels. In this regard, we propose to use spatial and perceptual features extracted from multichannel audio for SED using two different DNNs, recurrent neural networks (RNNs) and convolutional recurrent neural networks (CRNNs). We show that using multichannel audio features improves the SED performance for overlapping sound events in comparison to traditional single-channel audio features. The proposed novel features and methods produced state-of-the-art performance for the real-life SED task and won the IEEE AASP DCASE challenge consecutively in 2016 and 2017. Sound event localization is the task of spatially locating the position of individual sound events. Traditionally, this has been approached using parametric methods. In this thesis, we propose a CRNN for detecting the azimuth and elevation angles of multiple temporally overlapping sound events. This is the first DNN-based method performing localization in complete azimuth and elevation space. In comparison to parametric methods which require the information of the number of active sources, the proposed method learns this information directly from the input data and estimates their respective spatial locations. Further, the proposed CRNN is shown to be more robust than parametric methods in reverberant scenarios. Finally, the detection and localization tasks are performed jointly using a CRNN. This method additionally tracks the spatial location with time, thus producing the SELDT results. This is the first DNN-based SELDT method and is shown to perform equally with stand-alone baselines for SED, localization, and tracking. The proposed SELDT method is evaluated on nine datasets that represent anechoic and reverberant sound scenes, stationary and moving sources with varying velocities, a different number of overlapping sound events and different microphone array formats. The results show that the SELDT method can track multiple overlapping sound events that are both spatially stationary and moving

    Vision Sensors and Edge Detection

    Get PDF
    Vision Sensors and Edge Detection book reflects a selection of recent developments within the area of vision sensors and edge detection. There are two sections in this book. The first section presents vision sensors with applications to panoramic vision sensors, wireless vision sensors, and automated vision sensor inspection, and the second one shows image processing techniques, such as, image measurements, image transformations, filtering, and parallel computing

    Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced Methods

    Get PDF
    This Special Issue is a book composed by collecting documents published through peer review on the research of various advanced technologies related to applications and theories of signal processing for multimedia systems using ML or advanced methods. Multimedia signals include image, video, audio, character recognition and optimization of communication channels for networks. The specific contents included in this book are data hiding, encryption, object detection, image classification, and character recognition. Academics and colleagues who are interested in these topics will find it interesting to read

    Exploiting Spatio-Temporal Coherence for Video Object Detection in Robotics

    Get PDF
    This paper proposes a method to enhance video object detection for indoor environments in robotics. Concretely, it exploits knowledge about the camera motion between frames to propagate previously detected objects to successive frames. The proposal is rooted in the concepts of planar homography to propose regions of interest where to find objects, and recursive Bayesian filtering to integrate observations over time. The proposal is evaluated on six virtual, indoor environments, accounting for the detection of nine object classes over a total of ∼ 7k frames. Results show that our proposal improves the recall and the F1-score by a factor of 1.41 and 1.27, respectively, as well as it achieves a significant reduction of the object categorization entropy (58.8%) when compared to a two-stage video object detection method used as baseline, at the cost of small time overheads (120 ms) and precision loss (0.92).</p

    Adaptive detection and tracking using multimodal information

    Get PDF
    This thesis describes work on fusing data from multiple sources of information, and focuses on two main areas: adaptive detection and adaptive object tracking in automated vision scenarios. The work on adaptive object detection explores a new paradigm in dynamic parameter selection, by selecting thresholds for object detection to maximise agreement between pairs of sources. Object tracking, a complementary technique to object detection, is also explored in a multi-source context and an efficient framework for robust tracking, termed the Spatiogram Bank tracker, is proposed as a means to overcome the difficulties of traditional histogram tracking. As well as performing theoretical analysis of the proposed methods, specific example applications are given for both the detection and the tracking aspects, using thermal infrared and visible spectrum video data, as well as other multi-modal information sources
    corecore