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Chapter 1

INTRODUCTION

1.1 Motivation

Along with the rapid development of the visual media and digital technologies,

it is more and more pressing to provide efficient approaches that can index, store,

retrieve, analyze, and transmit visual data, which usually require large mounts of

computational and storage sources. Visual data segmentation, including image/video

segmentation, is to partition the data into distinct volumes or regions of similar be-

haviors or properties. For example, video object segmentation separates a sequence

of scene into meaningful components, such as moving objects, face, human body,

etc. However, due to the natural complexities of colors, intensities, textures, as well

as motion properties, visual data segmentation is still a challenging task, especially

when there are no or very limited prior knowledge about regions or objects of interest.

Generally, visual data segmentation is a pattern recognition problem, where feature

selection/extraction and data classifier design are two indispensable steps. Specifi-

cally, the feature set is expected to be representative, discriminative, compact, and

easy to extract or select. The data classifier should effectively capture the disparity

between different regions/objects by exploiting the underlying feature characteris-

tics. Our goal is to study and develop feature selection and extraction approaches

for visual data segmentation in three application areas, including video and image

segmentation, as well as remote sensing data analysis.

Particularly, five fundamental issues related to feature selection and extraction

for visual data segmentation are studied in this research:
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1. How to select salient features to support efficient data segmentation via numer-

ical and/or analytical approaches?

2. How to select and/or extract lower dimensional features that are discriminative

and capture major information from much higher dimensional features.

3. How to select reliable training samples to convert unsupervised learning to self-

supervised learning?

4. How to select proper feature characterizations for supervised and unsupervised

learning?

5. How to evaluate and predict the segmentation performance based on training

data, and how to adjust the trade-off between different segmentation criteria,

e.g., precision and recall?

1.2 Methodology

Feature selection is to select a best subset of the input features set regarding

certain criteria. Feature extraction is to create new features based on transforma-

tion or combinations of the original input feature set. Before constructing a data

classifier, feature extraction is used to generate new discriminative features to facil-

itate data classification. After constructing a feature set with both extracted and

original features, feature selection is applied to select most discriminative features so

that the computational load of the following process can be reduced. In this work,

the concepts of feature extraction and selection are generalized to any process that

generating or selecting features for classification purpose. Moreover, feature selection

not only reduces feature dimension, but also feature size.

The methodology of this work is shown in Fig. 1.1. Statistical methods are

widely involved when selecting/extracting features and designing a data classifier,

which are usually explicitly or implicitly related to a problem of density estimation.

When we study visual feature selection and extraction for segmentation, due to dif-

ferent characteristics of visual data, different feature sets and selection/extractiom

methods have to be considered. For example, for video segmentation, both spatial
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Figure 1.1: Methodology.

and temporal features should be considered because a video sequence records object

behaviors in space and time domain. If we study the segmentation of textured im-

age, features that can efficiently characterize spatial texture patterns are the focus.

For complex remote sensing image segmentation, single source features might not be

enough for to model different cover types, and multisource geospatial features can

facilitate such task in most cases.

After determining a representative feature set, feature characterization is an-

other important issue. Parametric and nonparametric methods are two major ap-

proaches for feature modeling. Parametric classifier assumes mathematical forms

for density or discriminant function. For example, a mixture of Gaussian func-

tions can be used to model spatial and/or temporal features in video data [69, 70],

and tree-structured Markov chain model is often used for multiscale image analysis

[13, 165, 37]. Nonparametric data classifier does not impose any parametric structure
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for the density function. Parzen and k-nearest neighbor methods are two frequently

used nonparametric approaches for density estimation. For instance, nonparametric

methods cause more and more attentions for multisource remote sensing data analy-

sis because a single structure parametric model usually cannot efficiently capture the

multi-modality of multisource features. Parametric methods have simple forms and

are usually computational efficient, but parametric models are not sufficient enough

to describe complex densities in most cases. Nonparametric methods can character-

ize very irregular densities, while they are computationally expensive and need more

storage space.

Based on feature modeling, various classification/segmentation methods can

be developed. In this research, we study Gaussian Mixture model (GMM)-based

maximum likelihood (ML) video segmentation, maximum a posteriori (MAP) image

segmentation based upon wavelet-domain hidden Markov models (WDHMM), and

nonparametric decision tree classifier (DTC) and support vector machines (SVM) for

remote sensing image segmentation. It is worth mentioning that feature selection

and extraction are not independent to feature modeling and classification. On the

contrary, they are integrated into modeling and classification processes. Generally,

modeling and classification criteria guide feature selection and extraction because

only those that lead to efficient modeling and accurate classification are preferred

features. For example, we want to select features that can maximize model likeli-

hood, or maximize divergence between model components, each of which is usually

associated with a meaningful object or region, or result in the highest classification

accuracy according to test data.

1.3 Applications

1.3.1 Video Segmentation

Content-based video analysis exploits important structures and events based

on which efficient and powerful tools can be developed for video access and transmis-

sion. Video segmentation is a fundamental step towards content-based video analysis.

It often refers to as temporal and object segmentations. Temporal video segmentation
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partitions a video sequence into a set of shots, and extracts one or a set of key-frames

to represent each shot. Object segmentation partitions video data into meaningful

regions or objects for content-based analysis to support various object-oriented video

applications. Due to different applications on different semantic levels, key-frame

extraction and object segmentation are usually implemented independently and sep-

arately based on different feature sets. In order to support more efficient and flexible

content-based video analysis, it is helpful to exploit the inherent relationship be-

tween key-frame extraction and object segmentation. In addition, the new MPEG-7

standard provides a generic segment-based representation model for video data [116],

and both key-frame extraction and object segmentations could be grouped into an

integrated framework. Therefore, we study how to coherently perform key-frame ex-

traction and object segmentation, where a unified feature space is first constructed to

represent video frames and visual objects together in a joint spatio-temporal domain,

and key-frame extraction is formulated as a feature selection process for object seg-

mentation. The Gaussian mixture model (GMM) is used to characterize video data

in the unified feature space. Issues (1) in Section 1.1 will be studied.

1.3.2 Bayesian Image Segmentation

It is well known that image pixel intensity is not a representative for the

segmentation of textured images, and features extracted in transformed domain are

more helpful. Wavelet coefficients obtained by wavelet transform are such features.

However, the values, or low order statistical information of wavelet coefficients are not

robust features for segmentation purpose because they cannot characterize texture

behaviors sufficiently. Wavelet-domain hidden Markov models (WDHMM), which

capture high order interscale dependencies of wavelet coefficients [37, 137, 60], have

shown impressive performances in supervised image segmentation [32, 58] and image

retrieval [45]. Nevertheless, existing WDHMMs are not suitable to be directly applied

to unsupervised image segmentation because they implement supervised algorithms

based on known or pure texture prototypes. In this work, we study how to efficiently

implement WDHMMs for unsupervised image segmentation. A new hybrid soft-

hard decision approach is suggested to generate discriminative features that contain
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high order statistical information of wavelet coefficients for unsupervised clustering,

and two new clustering method sare developed to convert the unsupervised problem

into a self-supervised one. Two different WDHMMs are used at the unsupervised

learning and self-supervised learning steps in order to utilize advantages of different

WDHMMs. Issues (2), (3), and (4) in Section 1.1 will be addressed.

1.3.3 Remote Sensing Data Analysis

In remote sensing data analysis, we study two practical problems related to

Unite State Department of Agriculture (USDA)’s Conservation Reserve Program

(CRP), i.e., CRP mapping and compliance monitoring. CRP is a nationwide pro-

gram that encourages farmers to plant long-term, resource conserving covers to im-

prove soil, water, and wildlife resources. With recent payments of nearly $1.8 billion

for new enrollments (2003 signup), it is imperative to obtain accurate digital CRP

maps for management and evaluation purposes. In this work, CRP mapping is for-

mulated a supervised two-class segmentation problem. Since multispectral Landsat

image data cannot provide discriminative features for the classification of some land

cover types, multisource geospatial data, including multispectral Landsat imagery

and geographic information system (GIS) data are used as the original input fea-

tures. Because it may not be appropriate to model multisource data by traditional

multivariate statistical models [85, 82, 14, 105, 10], we apply nonparametric DTC

and SVM to CRP mapping, and study how to increase the system sensitivity (recall

rate). When implementing DTC, a entropy-based criterion is used to selection helpful

features. When using SVM, principal component anlaysis (PCA) is used to extract

new features based on the input feature, and the support vector learning further se-

lects a set of representative samples in a projected high dimensional feature space to

construct the data classifier. CRP compliance monitoring checks whether each CRP

tract complies with its contract stipulations, and is formulated as an unsupervised

segmentation. A newly developed one-class SVM (OCSVM) is used to detect false

CRP regions in a CRP tract, and a heuristic method is used to select a feature subset

based on the CRP reference data [54]. This method measures the contribution of

each feature layer by approximately estimating its effect on the hyperplane. Issues
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(2), (3) and (5) in Section 1.1 will be discussed.

1.4 Outline

This dissertation composes seven chapters, and the outline is shown in Fig. 1.2.

In Chapter 2, we study video segmentation, where a coherent framework for

video key-frame extraction and object segmentation is proposed. A unified feature

space is first constructed to represent video frames and objects simultaneously in the

spatial-temporal domain, and key-frame extraction is formulated as a feature selec-

tion process that aims to maximize the cluster divergence of distinct video objects by

selecting a set of key-frames. Specifically, two divergence-based criteria are applied to

achieve joint key-frame extraction and object segmentation with numerical solutions.

One criterion recommends the key-frame extraction that leads to the maximum pair-

wise interclass divergence between objects in the feature space. The other aims at
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maximizing the marginal divergence. Simulations with both synthetic and real video

data manifest the efficiency and robustness of the proposed methods.

In Chapter 3, we discuss a new analytical approach to jointly formulate key-

frame extraction and object segmentation in a statistical mixture model where the

concept of frame/pixel saliency is introduced. A modified Expectation Maximization

algorithm is developed for model estimation that leads to the most salient key-frames

for object segmentation. Based on the coherent segmentation methods, a unified video

representation and description framework is also suggested to support content-based

video analysis. Simulations on both synthetic and real videos show the effectiveness

of the proposed method.

In Chapter 4, a new unsupervised image segmentation method is proposed by

exploiting the fitness disparity of local textured behaviors with respect to a global

statistical model. A hybrid soft-hard decision approach is first developed to generate

the fitness disparity, which is measured by the difference of model likelihoods gen-

erated from WDHMMs. Additionally, two new clustering approach are suggested to

capture the likelihood disparity efficiently so that an initial segmentation map can be

obtained. Moreover, a dual-model segmentation framework is suggested in order to

fully utilize the capability of different WDHMMs. The simulation results on synthetic

mosaics indicate that the proposed unsupervised segmentation algorithm can achieve

high segmentation accuracy that is close to the supervised case, and the simulation

on real images also show its applicability to real applications.

In Chapter 5, the CRP mapping problem is studied, which is formulated as an

uneven two-class supervised segmentation of land covers. CRP mapping is a complex

classification problem where both CRP and non-CRP areas are composed of various

cover types. Therefore, multisource geospatial data, including Landsat imagery and

GIS data, are used to increase the separability of different land cover types in the

feature space. DTC and SVM are implemented with different feature selection and

extraction approaches. Considering the importance of CRP mapping sensitivity, a

new DTC pruning method is proposed to increase the recall rate. We also study two

post relaxation methods to increase the recall rate of SVM. Moreover, a localized and
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highly parallel framework is suggested to perform the large scale CRP mapping.

In Chapter 6, we study CRP compliance monitoring by using SVM approaches.

CRP compliance monitoring checks each CRP tract regarding its contract stipula-

tions, and is formulated as an unsupervised classification of Landsat imageries given

the CRP reference data. Assuming that the majority of a CRP tract is compliant,

we want to locate the non-CRP outliers. A one-class SVM (OCSVM) is used to sepa-

rate minor outliers (non-CRP) from the majority (CRP). ν is an important OCSVM

parameter that controls the percentage of outliers and is unknown here. Usually, ν

estimation may be complicated or computationally expensive. We propose a novel

ν-insensitive approach by incorporating both OCSVM and two-class SVM (TCSVM)

sequentially. Specifically, a SVM-based heuristic method is used to select a feature

subset for data classification. SVM scores obtained from the OCSVM, which indicate

the distance between a data sample and the classification hyperplane in the feature

space, is used to select sufficient and reliable training samples for TCSVM. Finally,

the CRP tract is reclassified by the trained TCSVM.

Chapter 7 is the conclusions and future research. Based on the results from

Chapter 2 to Chapter 6, it can be concluded that statistical feature selection and

extraction approaches are effective with various data classification methods for three

applications. Both Nonparametric and parametric methods are capable of uncovering

the intrinsic data characteristics and structures, proving effective feedback for feature

selection and extraction, and supporting accurate and robust visual data segmenta-

tion. Future research is also predicted in this chapter.

1.5 Original Contributions

The original contributions of this work are listed as follows:

• Video segmentation with numerical methods: A framework for coherent

video key-frame extraction and object segmentation is proposed, where video

frames and objects are represented in a unified spatio-temporal feature space,
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and key-frame extraction is formulated as a feature selection process for ob-

ject segmentation. Two numerical methods are developed associated with two

cluster divergence-based criteria. By building a synergistic interaction between

key-frame extraction and object segmentation, the proposed methods can pro-

vide not only robust and accurate object segmentation, but also compact and

semantically meaningful key-frames to support content-based video analysis.

• Video segmentation with an analytical method: The contribution of

video key-frame to object modeling and segmentation is quantized and inte-

grated into the estimation of a new generative model derived from GMM, and

the key-frame extraction and object modeling/segmentation are performed an-

alytically during the model estimation without any combinatorial search, which

could be time consuming if there are many frames.

• Unsupervised Bayesian image segmentation: Likelihood Principle is used

to theoretically guide the segmentation process based on WDHMMs, where a

hybrid soft-hard decision approach is proposed to extract discriminative and low

dimensional features. Two new clustering methods are developed to obtain ini-

tial segmentation maps so that the unsupervised segmentation can be changed

to the self-supervised segmentation. Moreover, two different WDHMMs are

applied to the segmentation algorithm, where one is for obtaining the largest

likelihood disparity with respect to the global model, and the other is used to

train each texture type after the clustering.

• CRP mapping: In order to increase the separability between different land

cover types, multisource geospatial data are used for the selection and extrac-

tion of discriminative features. A new DTC pruning method and two SVM

post relaxation methods are proposed to increase the classification sensitivity.

Additionally, a localized and parallel framework is suggested for the high speed

computation with the large data source. Simulation results demonstrate that

the suggested approaches can achieve very high recall rates, which might not

be achievable by others.

• CRP compliance monitoring: OCSVM parameter ν considerably affects the

segmentation results. Due to the complexity of the ν estimation, we propose
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a novel ν-insensitive approach by incorporating both OCSVM and two-class

support vector machine (TCSVM), where OCSVM results are used to select

representative land cover samples for TCSVM training. Simulations on real

data validate the applicability of the suggested method.
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Chapter 2

VIDEO SEGMENTATION: NUMERICAL METHODS

Video segmentation is a fundamental step to support the interpretability and

manipulability of visual data for many video applications. According to various needs

of video analysis tasks at different semantic levels, such as video parsing or video in-

dexing, video segmentation often refers to as two categories, i.e., temporal video

segmentation and object-based segmentation. On one hand, temporal video segmen-

tation usually has two steps. It first partitions a video sequence into a set of shots,

each of which is an unbroken sequence of frames captured from one camera perspec-

tive. Then each shot can be represented by some key-frames. Temporal segmentation

can provide compact video representation for video indexing and browsing. On the

other hand, object-based video segmentation extracts objects of interest from a video

sequence to support more structured and semantically meaningful representation for

many object-oriented video applications, such as object tracking and recognition.

Generally, when there is no prior information about video content, temporal

and object segmentation can be formulated as clustering processes in different feature

spaces. Specifically, temporal segmentation in this work refers to key-frame extrac-

tion within a video shot. Since a frame is usually considered as the basic unit of a

video shot, frame-wise features, such as color, texture, and motion information, are

first extracted. Then key-frame extraction can be carried out by a clustering process

that searches for cluster centers within a video shot, and the frames that are closest

to the cluster centers are extracted as key-frames. During this process, similarity

measurements [166, 77] or statistical modeling processes [74] are often used based on

color histograms, which are invariant to image orientation and insensitive to noise.

Moreover, color-based key-frame extraction is usually computationally efficient and
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applicable to many online or real-time applications. However, since frame-wise fea-

tures contain no spatial information about object location, shape, etc., key-frame

extraction provides limited semantic meaning.

Compared with temporal segmentation, object segmentation is more semanti-

cally meaningful and technically more challenging. According to [117], current video

object segmentation methods can be classified into three types: segmentation with

spatial priority, segmentation with temporal priority, and joint spatio-temporal seg-

mentation. Recently, more interests are brought to joint spatio-temporal segmenta-

tion of video objects [42, 69, 70, 144, 63] due to the nature of human vision that

recognizes salient video structures in space and time jointly [67]. The work in [42]

uses a modified nonparametric mean shift clustering in the spatio-temporal feature

space, and the works in [69, 70] apply the Gaussian mixture model (GMM) to model

video objects in a joint spatio-temporal domain, where the Expectation Maximization

(EM) algorithm and the minimum description length (MDL) criterion are used for

model estimation. Methods based on the graph partition theory are also suggested

in [144, 63]. In these approaches, spatio-temporal pixel-wise features are extracted to

construct a multi-dimensional feature space for object characterization and segmenta-

tion. Video object segmentation is a difficult issue due to the ambiguity of the object

definition, as well as the heavy computational load. Feature extraction, selection and

characterization play very important roles in current research on object-based video

segmentation.

Key-frame extraction and object segmentation are usually implemented inde-

pendently and separately due to different semantic levels. The work in [61] presents a

universal framework where key-frame extraction and object segmentation are imple-

mented independently and then used together to support content-based video analy-

sis, and their outputs can be unified via a high-level description. The new MPEG-7

standard provides a generic segment-based representation model for video data [116].

This motivates us to combine key-frame extraction and object segmentations into

a unified paradigm, supporting the universal video description scheme proposed in

[61]. Recently, a combined key-frame extraction and object segmentation method

was proposed in [111], where the extracted key-frames are used to estimate GMM for
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model-based object segmentation, and object segmentation results are used to further

refine the initially extracted key-frames via the GMM. Compared with [69, 70], this

approach significantly reduces the computational load and improves object segmenta-

tion results. However, the underlying relationship between key-frame extraction and

object segmentation was not explicitly indicated.

In this work, we propose a coherent framework for key-frame extraction and

objet segmentation by exploiting an explicit relationship between key-frame extrac-

tion and object segmentation. First, a unified feature space is constructed to represent

video frames and objects together in the joint spatio-temporal domain. Then video

objects are represented by different clusters in the feature space. If a set of prob-

ability density functions are used to model the clusters, then model-based cluster

divergence measurements can evaluate the separability of the clusters. Therefore,

key-frame extraction is formulated as a feature selection problem that aims at maxi-

mizing the cluster divergence in the feature space. Specifically, two numerical criteria

are suggested to extract key-frames for optimal object segmentation. One is the maxi-

mum average interclass Kullback Leibler distance (MAIKLD). The other is maximum

marginal divergence (MMD) [156, 157, 158]. MAIKLD considers both temporal and

spatial correlations between frames, and requires a greedy combinatorial search of key-

frames. In this work, we use Sequential Forward Floating Selection (SFFS) feature

selection method [130]. Marginal divergence is defined as the average distance between

each of the marginal class-conditional densities and their mean in [156]. Instead of

trying different combinations of video frames in MAIKLD, MMD tries to maximize

the cluster divergence in each frame individually, so that it can be implemented more

efficiently than MAIKLD. According to [156], when the mutual information between

key-frames is not affected by the class label, the summation of key-frames that have

the largest marginal diversity could lead to minimum Bayes classification error. Com-

pared with MAIKLD, MMD might generate less representative key-frames for object

segmentation due to the neglect of inter-frame relations. The proposed methods are

tested on both synthetic and real video sequences. It is shown that two methods can

provide different key-frames sets to support robust and accurate object segmentation.

The rest parts of this chapter are organized as follows. Section 2.1 introduces
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some preliminaries about this work. Sections 2.2 discusses the proposed segmentation

methods based on MAIKLD and MMD criteria. Section 5.5 shows the experiment

setup, the simulations results and discussions. Final conclusions are drawn in Section

6.4.

2.1 Preliminaries

Video key-frame extraction and object segmentation are two major compo-

nents covered in this paper. Correspondingly, we will first briefly review a color

histogram-based key-frame extraction method, a statistical model-based object seg-

mentation method, and a combined key-frame extraction and object segmentation

approach. Then we will introduce a unified feature space, which forms the basis of

the proposed segmentation framework, to represent video frames and objects simul-

taneously.

2.1.1 Color-based Key-Frame Extraction

Color information is quite often used for video key-frame extraction. In [166],

a clustering-based key-frame extraction is proposed. In this method, a similarity

measurement based on the frame-wise 16 × 8 2-D Hue and Saturation (HS) color

histogram in the Hue-Saturation (HS) color space is used to measure the difference

between frames Xi and Xj:

Sim(Xi,Xj) =
16
∑

h=1

8
∑

s=1

min[HXi
(h, s), HXj

(h, s)], (2.1)

where H(h, s) is the HS color histogram value. A large value of (2.1) means strong

similarity between two frames with respect to their HS color histograms. Begin from

the first frame, based on the similarity values and a predefined threshold of similarity,

a set of clusters are formed. A large threshold could result in more than enough

extracted key-frames for video shot representation. After the clustering, the frames

that are closest to each cluster center are extracted as the key-frames. Since the color

histogram is easy to compute, this method is applicable to real-time systems.
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2.1.2 Statistical Model-based Object Segmentation

In [69, 70], the Gaussian mixture model (GMM) is used to model video objects

coherently in the joint spatio-temporal domain. If a video shot contains M objects,

the probability density of a pixel xi is a mixture of M Gaussian components:

p(xi|θ) =
M
∑

m=1

αmp(xi|θm), (2.2)

where αm is the weight of the mth Gaussian component p(xi|θm) defined by a set

of parameters denoted by θm. If there are N pixels in the video shot, a maximum

likelihood (ML) approach to estimate θ is:

θML = arg max
θ

N
∑

i=1

log p(xi|θ) (2.3)

The iterative Expectation Maximization (EM) algorithm is often used to solve (3.3)

[43]. The E step is to compute a so-called Q-function given the current estimation

θ̂(t) and X = {xi, i = 1, · · · , N}:

Q(θ, θ̂t) = E[log p(X,Y|θ)|X, θ̂t], (2.4)

where Y = {yi, i = 1, · · · , N} is the class label of X, and the posterior probability

that xi belongs to the mth component of GMM is estimated as:

w(i)
m =

α̂mp(x(i)|θ̂m(t))
∑M

j=1 α̂jp(x(i)|θ̂j(t))
. (2.5)

The M step is to update the parameters by solving:

θ̂(t + 1) = arg max
θ

Q(θ, θ̂(t)). (2.6)

The EM algorithm can be used together with the minimum description length (MDL)

which will determine the order of GMM, i.e., M [136]. After the model estimation,

each grouped video object is characterized by a Gaussian density, and video object

can be segmented out via the maximum a posteriori (MAP) estimation.

2.1.3 Combined Key-frame Extraction and Object Segmentation

In [111], a combined key-frame extraction and object segmentation approach

was proposed where the method in Section 2.1.1 is first applied to extract a set of
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key-frames to represent an input video shot. In the following, we call these initially

extracted key-frames as key-frame candidates. Then based on key-frame candidates,

the GMM is used to model video objects in the joint spatio-temporal feature space,

where the EM algorithm and the MDL criterion are applied to the GMM estimation.

After object segmentation, the segmented objects in each key-frame candidate can

be characterized by a GMM, and the Kullback Leibler distance (KLD) between each

pair of GMM is calculated to estimate the content change between two key-frame

candidates, so that the initially extracted key-frame candidates can be refined with

a more compact key-frame set. By only involving key-frame candidates to the model

estimation which is of a small portion of all video frames, this approach considerably

mitigates the computational load compared with the methods in [69, 70], and could

provide better segmentation performance due to the more efficient and effective model

estimation. Meanwhile, the GMM consisting of both spatial and temporal informa-

tion can support more salient and representative key-frame extraction after object

segmentation.

2.1.4 Unified Feature Space for Video Segmentation

However, the inherent relationship between key-frames and video objects was

not explicitly revealed in [111], which will be the focus of this work. Key-frame

extraction and object segmentation are usually implemented based on different fea-

ture subsets. A unified feature subset is necessary for coherent key-frame extraction

and video object segmentation. This feature subset should contain both spatial and

temporal information that is capable of characterizing video objects and key-frames

simultaneously, and easy to extract. In this work we use a pixel-wise 7-D feature vec-

tor suggested in [111], which is an extended version of the one in [69, 70], including

(Y, u, v) color features, x− y spatial location, time T , as well as the intensity change

over time dy to provide additional motion information.

For example, as shown in Fig. 2.1, a video shot of N frames contains three ob-

jects. Outliers, including noise and insignificant objects that might randomly appear,

usually increase the overlapping between the objects/clusters in the feature space.

The outliers degrade the accuracy and effectiveness of statistical modeling of major
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video objects in the feature space. Usually, the overlapping problem could be miti-

gated by two different ways. One is to add more discriminative features to construct a

higher dimensional feature space where the divergence between objects/clusters could

be increased. The other is to extract data samples with less outliers. Since we fix the

feature dimension in this work, we attempt to reduce the overlapping phenomenon

by extracting a set of key-frames that can effectively support object representation in

the feature space. Therefore, key-frame extraction in this work is treated as a feature

selection process where salient and representative key-frames are extracted so that

the overlapping among objects/clusters in the feature space can be minimized. Then

the model estimation and object segmentation can be efficiently accomplished based

on these key-frames.

We begin from the fundamentals of feature selection in pattern recognition.

Given a candidate feature set X = {xi|i = 1, 2, · · · , n}, where i is the feature index,

feature selection aims at selecting a subset X̃ from X so that an objective function

F (X̃) related to classification performance can be optimized:

X̃ = arg max
Z⊆X

F (Z). (2.7)

Generally, the goal of feature selection is to reduce the feature dimension. According

to [39], the frames within a video shot represent a spatially and temporally continuous

action, and they share the common visual and often semantic-related characteristics.

Since a video shot is characterized both spatially and temporally, a set of key-frames

could be sufficient to model the object behavior in a video shot. In this work, we

apply feature selection methods to extract video key-frames rather than reducing the
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feature dimension. Moreover, by extracting a set of representative key-frames that

supports salient and condensed object representation in the feature space, we can

obtain a compact set of key-frames and accurate object segmentation simultaneously.

2.2 Coherent Key-frame Extraction and Object Segmentation

With the unified feature space, we will consider cluster divergence measure-

ments, which are often used for feature selection. In this work, we study two different

criteria. One is to maximize the average pair wise cluster divergence of video objects

in the feature space, the other is to maximize the variance of the mean density of

the objects. The whole process can be performed as shown in Fig. 3.2. The input

EM Algorithm

Divergence computationKey-frame extractionGMM re-estimation
and segmentation

Combinatorial
search

MDL

Estimated GMM

Key-frame
candidates

GMM estimation

Figure 2.2: The flowchart of the proposed segmentation algorithm.

is a set of key-frame candidates that could be either all frames in a shot, or a set of

key-frames initially selected by the method discussed in Section 2.1.1. The GMM is

first used to model video objects in the unified feature space, where the EM algorithm

associated with the MDL criterion are applied to estimate model parameters. After

the GMM estimation, divergence measurements are maximized by searching for an

optimal set of key-frames. A combinatorial key-frame search might be used according

to the selected criterion where the inter-frame dependencies are considered. Finally,

the GMM estimation and object segmentation are performed based on the extracted

key-frames. In the next, we will discuss two different criteria for key-frame extraction.

The former one considers the dependency between frames, the latter one assumes the

independence between frames.
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2.2.1 Maximum Average Interclass Kullback Leibler Distance (MAIKLD)

2.2.1.1 Average Interclass Kullback Leibler Distance

Kullback Leibler distance (KLD) measures the distance between two proba-

bility density functions [99]. In feature selection, a frequently used criterion is to

minimize the KLD between the true density and the density estimated from feature

subsets. Nevertheless, this approach aims at minimizing the approximation error

rather than extracting the most discriminative feature subsets. Although it is often

desired that this criterion can lead to good discrimination among classes as well,

this assumption is not always valid [127]. For the purpose of robust classification,

divergence-based feature selection criteria are more preferred [127], and the KLD of

two densities can be used to measure the cluster divergence between two different

clusters in the feature space.

Given two probability density fi(x) and fj(x), the KLD between them is de-

fined as:

KL(fi, fj) =

∫

fi(x) ln
fi(x)

fj(x)
dx, (2.8)

KLD is usually not a symmetric distance measurement and is symmetrized by adding

KL(fi, fj) and KL(fj, fi) together:

D(fi, fj) =
KL(fi, fj) + KL(fj, fi)

2
. (2.9)

KLD is often used as the divergence measurement of different clusters in the feature

space. Ideally, the larger the KLD, the more separability between clusters. If there

are M clusters, the average interclass KLD (AIKLD) is defined as:

D̄ = C

M
∑

i=1

M
∑

j>i

D(fi, fj), (2.10)

where C = 2
M(M−1)

. Conventional approaches that reduce the feature dimension

based on the maximum AIKLD (MAIKLD) usually have D̄0 ≤ D̄, where D̄0 is the

AIKLD of clusters in the reduced feature space. As mentioned before, key-frame

extraction is formulated as a feature selection process, and we want to extract a set

of key-frames where the average pair wise cluster divergence is maximized. Let X be
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the original video shot with N frames and M objects, and be represented as a set of

frames X = {xi, 1 ≤ i ≤ N} with cardinality |X| = N . Let Z = {x∗
i , 1 ≤ i ≤ N ∗}

be any subset of X with cardinality |Z| = N ∗ ≤ N . The objective function is defined

as:

X̃ = arg max
Z⊆X,|Z|≤N

D̄Z, (2.11)

where X̃ is a subset of X that is optimal in the sense of MAIKLD, and D̄Z is the

AIKLD of M objects within Z in the 7-D feature space. We have D̄X̃ ≥ D̄X. By

extracting frames that contain less aforementioned outliers, it is expected that the

cluster overlapping problem can be mitigated.

According to [40], MAIKLD is optimal in the sense of minimum Bayes error.

If we use the zero-one classification cost function, then this leads to the maximum

a posteriori (MAP) estimation. Therefore an optimal solution to (2.11) will result

in an optimal subset of key-frames that can minimize the error probability of video

object segmentation. Nevertheless, it is usually not easy to find an optimal solution,

especially when N is large, and a suboptimal but computationally efficient solution

might be preferred in practice.

2.2.1.2 Combinatorial Key-frame Extraction

Feature selection methods have been well studied and some very good reviews

can be found in [86, 87]. It is well known that the exhaustive searching method can

guarantee the optimality of the feature subset according to the objective function.

Nevertheless, the exhaustive searching method is usually computationally expensive

and impractical for large feature sets. For example, if a video shot X has N frames,

then the exhaustive search needs to try 2N possible frame subsets. Various suboptimal

approaches are suggested and amongst them a deterministic feature selection method

called the Sequential Forward Floating Selection (SFFS) method shows impressive

performance [130]. When N is not very large, the SFFS method could even provide

optimal solutions for feature selection. In this work, we begin with N
′ ≤ N initially

key-frame candidates as shown in Fig. 3.2. After the GMM model estimation, key-

frame extraction is performed as follows, where the SFFS method is initialized by
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using sequential forward selection (SFS):

(1) Start with an empty set X̃ (no key-frame), and n is the cardinality of X̃, i.e.,

n = |X̃| and initially n = 0;

(2) Based on the MAIKLD criterion, first use SFS to generate a combination that

comprises 2 key-frame candidates, and |X̃| = 2;

(3) Search for one key-frame candidate that maximizes AIKLD when |X̃| = n + 1

, and add it to X̃, let n = n + 1;

(4) If n > 2, remove one key-frame candidate from X̃ and compute AIKLD based

on the remained key-frame candidates in X̃, and go to (5), otherwise go to (3);

(5) Determine if AIKLD increases or not after removing the selected key-frame

candidate. If the answer is yes, let n = n − 1, and go to (4), otherwise go to

(3).

There are a few possible stop criteria for the SFFS method, e.g., the iteration

number or the key-frame number. The MAIKLD-based method has several significant

advantages: (1) Since the GMM estimation is based on a small number of key-frames,

the segmentation is computationally efficient compared with those using all frames

[69]. (2) The optimal or near-optimal set of key-frames that maximize AIKLD can

be extracted for robust object segmentation. These key-frames could be more rep-

resentative than those extracted by the method in [111]. (3) The algorithm is very

flexible and effective and without significant data-dependent thresholds.

However, there still remains some problems that need further consideration.

First, the SFFS method is not efficient enough when N
′

is very large. Second, the

EM algorithm with the MDL criterion for model estimation is time consuming. An

alternative approach that makes the algorithm faster is to perform SFFS before the

model order estimation, or in other words, the SFFS method is performed based

on the estimated GMM using the largest possible number of classes. Then the rest

of model estimation can be done based on the extracted key-frames that maximize

AIKLD, reducing the computational load tremendously. Nevertheless, this approach
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might tend to select some “noisy” frames because within all object subclasses of the

largest possible number, some subclasses are from the same object and the MAIKLD

criterion could favor those frames with more outliers so that the divergence of these

subclasses could be increased. Another alternative approach is to extract key-frames

by using the SFS method, which is previously used to initialize SFFS and faster than

SFFS. However, it is unable to remove possible redundant key-frame candidates after

adding other key-frames. In order to simplify the feature selection process without

deteriorate the segmentation performance, we suggest another method that is based

on the assumption of frame independence.

2.2.2 Maximum Marginal Diversity

In a recent work [156], a maximum marginal diversity (MMD) criterion based

on the infomax principle [108] is proposed for efficient feature selection with very

simple computation. Under certain constraints, MMD is equivalent to infomax that

is also optimal in the sense of minimum Bayes error. In this work, we apply MMD for

coherent video key-frame extraction and object segmentation. The exhaustive search

or the SFFS approach needs to test different combinations of key-frame candidates,

while the MMD method only considers the interclass divergence in each key-frame

candidate by assuming the frame independence. This considerably reduces the com-

putational load compared with the MAIKLD approach.

The infomax principle was originally derived from a viewpoint of neural net-

work where the mutual information (MI) between input and output should be maxi-

mized [108]. This principle recommends a system that preserves maximum informa-

tion about input behavior while reduces the information redundancy to the minimum.

In the context of classification, any feature selection method should select certain fea-

tures that maximize the MI between the features and class labels [156]. When the

infomax principle is applied to this work, the objective function can be written as:

X̃ = arg max
Z⊆X,|Z|≤N

I(Z, Y ), (2.12)

where X̃, Z and X are the same as equation (2.11), and I(Z, Y ) is the MI between
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the key-frame subset Z and class label Y = {1, 2, · · · ,M} that is defined as:

I(Z, Y ) =
∑

xi∈X

∑

yj∈Y

p(xi, yj) ln[
p(xi, yj)

p(xi)p(yj)
] (2.13)

Considering I(Z, Y ) = H(Y )−H(Y |Z), where H(Y ) is the entropy of the class

label, and H(Y |Z) is the conditional entropy. The infomax principle is equivalent to

minimize the conditional entropy H(Y |Z). It is shown in [154] that the conditional

entropy is a lower bound on the probability of misclassification via Fano’s inequality.

A relation between the tightest lower bound on the probability of misclassification,

i.e., Bayes error, and H(Y |Z) is derived in [156]. This relation indicates that minimum

the conditional entropy H(Y |Z) (or the infomax principle) is to minimize a lower

bound on Bayes error.

From equation (2.13), we have

I(Z, Y ) =
∑

yj∈Y

p(yj)KL(p(Z|yj), p(Z))

= EY [KL(p(Z|Y = yj), p(Z))] (2.14)

It is derived in [157] that:

I(Z, Y ) = EY [KL(p(X|Y = yj), p(X))]

=
N∗
∑

i=1

MD(x∗
i ) +

N∗
∑

i=2

I(x∗
i ;x

∗
1,i−1|Y ) −

N∗
∑

i=2

I(x∗
i ;x

∗
1,i−1) (2.15)

where

MD(x∗
i ) = EY [KL(p(x∗

i |Y = yj), p(x∗
i ))] (2.16)

and x∗
1,i−1 = {x∗

1,x
∗
2, · · ·x∗

i−1}. MD(x∗
i ) is called the marginal diversity (MD) [156],

and indicates the variance of the mean density.

MMD only considers the cluster divergence in each frame, and recommends the

extraction of key-frame candidates that have the largest MD values. However, only

considering the marginal diversity takes a risk of overlooking the joint information

between key-frame candidates. The analysis in [157, 158] indicates that the solutions
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of MMD and infomax are equal when the mutual information between features is not

affected by class labels, i.e.:

N∗
∑

i=2

I(x∗
i ;x

∗
1,i−1|Y ) =

N∗
∑

i=2

I(x∗
i ;x

∗
1,i−1) (2.17)

As generalized in [158], this condition is originated from the recent research about im-

age statistics, which suggests that a rough structure of pattern dependencies between

some image features follow general statistical laws that are independent of class label.

These image features are extracted via various biologically plausible image transforms,

such as the wavelet transform. Although this condition is not always strictly held, at

least it proves that when the condition of equation (2.17) approximately holds, the

MMD approach is near optimal in the sense of minimum Bayes error.

2.2.3 MAIKLD vs MMD

Similar to MAIKLD, MMD key-frame extraction is performed after the GMM

estimation. During the key-frame extraction process, the MD of video objects in

each key-frame candidate is calculated first, then N ∗ key-frames that have the largest

MD are selected as final key-frames. Therefore MMD does not need a combinatorial

search in all frames. N ∗ could be predetermined, or be adaptively determined given a

threshold of the MD value. In this simulation, we use the average MD of all key-frame

candidates as the threshold. In other words, a key-frame candidate is selected as the

key-frame if its MD is greater than the average MD.

The MAIKLD criterion tries to maximize the pair wise inter-class divergence

and considers the inter-frame dependencies, while MMD criterion aims at maximizing

the variance of the divergence in each individual frame by assuming frame indepen-

dence. Accordingly, they lead to different key-frame extraction results, although both

of them could be lower bounded by the Bayes error. In the context of video object

segmentation, MAIKLD could extract more representative key-frames than MMD

because maximum divergence variance does not necessarily maximize the pair wise

divergence between any clusters, which is expected for object segmentation. Nev-

ertheless, MMD is much faster than MAIKLD because no combinatorial search is

necessary.
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Figure 2.3: Two clusters in the feature space. Axis-t is the time, Axes-x and -y are
spatial features. Two slices (frames) at time a and b split the space into
three regions, where the clusters in x − y subspace are more separable
in regions I and III, and the clusters are overlapped (the shaded area)
in region II.

Generally, the difference between MAIKLD and MMD can be illustrated via

Fig. 2.3. Axis-t is for time, Axes-x and -y are spatial features characterizing video

objects, e.g., spatial location of the objects. There are two clusters corresponding

to two video objects in spatio-temporal domain, and the slices (frames) A and B

capture the spatial distribution of the two objects at time t = a and t = b, splitting

the spatio-temporal feature space into three regions. Two clusters are closest to each

other with spatial overlapping (the shaded area) in region II. As mentioned before,

maximizing AIKLD is equivalent to minimize Bayes error, which is caused by the

cluster overlapping in the feature space. Since MAIKLD considers both space and

time information of the two objects, this overlapping is mainly characterized by the

frames in region II. Consequently, the majority of the extracted key-frames is expected

from this region for accurate GMM estimation. On the contrary, MMD does not

consider the temporal information between frames, and the frames where two object

are well separable in feature plane x− y could be extracted as key-frames, which are

mainly located in regions I and III. Therefore, the key-frames extracted by MAIKLD

could emphasize more on the inter-relationship between different objects, while those

extracted by MMD could mainly highlight the individual object behaviors.
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2.3 Performance Evaluation

Numerical criteria are used in this work to evaluate the segmentation perfor-

mance with respect to all moving objects. For synthetic videos, since the ground

truth of object segmentation is available, we calculate segmentation accuracy, pre-

cision, and recall. Accuracy means the overall segmentation accuracy regarding all

moving objects. Precision is the percentage that the segmented moving objects are

true moving objects. Recall shows the percentage that true moving objects can be

detected. For the real videos that no ground truth is available, a set of objective mea-

sures are used. According to the analysis in [34, 52], these measures include spatial

uniformity, temporal stability, and motion uniformity.

2.4 Spatial Uniformity

Spatial uniformity is measured by two methods. One is the texture variance

of objects [34]:

text var(O) =
3 · varY (O) + varU(O) + varV (O)

5
, (2.18)

where var ∗ (O) is the variance of ∗ channel of YUV color space. The other is to

measure the spatial color contrast along object boundaries. In this method, we first

use morphological dilation and erosion to obtain two video object planes (VOP) with

enlarged and diminished objects 1, respectively. After subtracting the VOP with

diminished objects from the VOP with enlarged objects, we can have regions E along

objects boundaries. Then YUV color histograms are calculated inside and outside

objects boundaries within E, and the color contrast is computed as:

color con(O) =
∑

B

|HINt(E) − HOUTt(E)|, (2.19)

where B indicates all bins of the color histograms, HINt(E) and HOUTt(E) are

color histograms inside and outside objects boundaries within E of the tth frame.

This approach uses a similar approach as the one suggested in [52], but is much more

easy to implement. Obviously, a good segmentation result will lead to a smaller

text var and larger color con compared with poor results.

1 In this work, we only consider moving objects in a video shot.
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2.5 Temporal Stability

Temporal stability is tested via three methods. The first two measure the

inter-frame difference of the object size and elongation [34]:

size diff = |area(Ot) − area(Ot−1)|,

elong diff = | area(Ot)

(2 · thickness(Ot))2
− area(Ot−1)

(2 · thickness(Ot−1))2
|, (2.20)

where Ot denotes the objects in the tth frame, and thickness(Ot) counts the number

of morphological erosion steps that remove the object Ot. The third method is the

temporal color histogram difference [52], where a χ2 metric is used:

χ2 = (Ht, Href ) =
1

NHt
+ NHref

B
∑

i=1

[r1Ht(i) − r2Href (i)]
2

Ht(i) + Href (i)
, (2.21)

where r1 =

√

NHref

NHt

, r2 = 1
r1

, NHt
=
∑B

i=1 Ht(i), NHref
=
∑B

i=1 Href (i), Ht is the

YUV color histogram of VOP at time t, Href is the color histogram of the reference

VOP, which is usually set as the VOP of the first frame in the video shot. If the two

histograms are identical, χ2 = (Ht, Href ) = 0, and it tends to be 1 if more differences

exist. Consequently, a good segmentation performance should correspond to small

size diff , elong diff and χ2 values.

2.6 Motion Uniformity

Motion uniformity is evaluated via the variance of motion vectors [34], i.e.,

motion var(O) = varXvec(O) + varY vec(O), (2.22)

where varXvec(O) and varY vec(O) are the variances of the motion vectors in x and y

direction at a given time. Given the segmentation map of each frame, motion vectors

are estimated by the conventional block-matching algorithm [109]. Obviously, a small

variance of motion vectors is preferred.

2.7 Simulations and Discussions

In this section, we will study three issues of the proposed methods: (1) the

characteristics of extracted key-frames, (2) the necessity and benefit of key-frame
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extraction for object segmentation, and (3) the compactness and saliency of the

extracted key-frames. In the following, the experimental set-up is introduced first

followed by the simulation results and discussions pertaining to the three issues.

2.7.1 Experiment Setup

Three synthetic videos (gray-level), Video-A, Video-B, and Video-C, and three

real videos (color), Face, Tachi, and People, are used as shown in Figs. 6.2 and 3.11.

When constructing the synthetic videos, we added some additive white Gaussian

noise (AWGN). The video frame size is 176 × 144. Video-A has a rectangular object

moving horizontally through two background objects. Video-B has a circular object

moves sigmoidally. There are two moving objects in Video-C. One is an elliptic object

that is moving diagonally with the size increasing simultaneously, and the other is a

rectangular object moving from right to left horizontally. Videos Face and Tachi have

some global motion introduced by the camera. Video People has two persons walking

toward each other from left and right. In the following, we compare the two suggested

methods with those in [69] and [111]. For convenience, we refer to the method in [69]

as Method-I with no key-frame extraction. Our previous method in [111] is referred

to as Method-II, and two new methods are referred as Method-III (MAIKLD) and

Method-IV (MMD), respectively. Simulations are performed on a PC computer with

the 3.2GHz Pentium-IV CPU and 1GB memory.

2.7.2 Key-frame Characteristics

We first study the key-frames extracted by Methods-III and IV using Video-

A. Each method is controlled to extract 12 key-frames. Specifically, all frames in

Video-A are involved as key-frame candidates. As shown in Fig. 2.6, most key-

frames extracted by Method-III are those that the objects move close to each other

spatially, and key-frames extracted by Method-IV are those that the objects are

spatially far away from each other. Since the pixel intensity of the synthetic video is

not discriminative enough after adding AWGN. The spatial location of video objects

are the major features for object segmentation. Method-III considers both space
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and time information of the objects equally. Consequently, in order to well separate

the objects, more attention has to be paid when the objects are spatially close to

each other. However, Method-IV only consider the cluster separation in each frame

by ignoring temporal dependency across frames, resulting in the key-frames where

objects are far away from each other spatially. These observations are consistent to

our discussion in Section 2.2.3. In addition, we also study the key-frame extracted by

Method-II. Since the frame-wise HS color histogram varies slightly across frames in

Video-A, Method-II cannot extract salient key-frames to represent significant change

of video content, leading to relatively poor object segmentation results, as shown in

Figs. 3.13 and 2.8, where Method-I uses all 36 frames, Method-II use 12 key-frames

as Methods-III and -IV.

2.7.3 Necessity and Benefit of Key-frame Extraction for Object Segmen-

tation

As we can see from the above simulation, Method-II cannot well segment the

moving object based on the key-frames extracted from the color histogram. Methods-

I, -III and -IV have similar results while Methods-III and -IV only use 12 key-frames

(1/3 of all frames) for object segmentation. We will further manifest that object

segmentation using key-frames can have similar or even better performance compared

with Method-I if key-frames are appropriately extracted. In order to reduce the

computational load, Methods-III and -IV begin with a set of key-frame candidates

that are initially extracted via the color histogram. The object segmentation results

of the four methods on Videos-B and -C are shown in Figs. 2.10 and 6.4. It can be

seen that Methods-II, -III, and -IV outperform Method-I. Method-II still produces

good performance here because the spatial overlapping of video objects causes the

significant change of the color histogram, leading to a set of salient key-frames. All the

observations indicate that key-frame extraction is necessary and beneficial for accurate

statistical video modeling and object segmentation. Among three key-frame-based

methods, Methods-III and -IV can extract more compact and salient key-frames that

support effective object segmentation than Methods-II. In most cases, Method-III

outperforms Method-IV due to the consideration of dependency across frame.
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2.7.4 Results of Real Video Sequences

We now study Methods-II, -III, and -IV on the three real videos. The number

of initial key-frame candidates and finally extracted key-frames are listed in Tab. 3.3.

We can see that Methods-III and -IV further reduce the redundancy key-frames for

object segmentation. In order to further compare the three methods in terms of

the effectiveness of key-frame extraction for object segmentation, we fix the number

of extracted key-frames to be the same for the three methods. Specifically, some

objective criteria introduced in Appendix are used to evaluate the video segmentation

performance. The numerical segmentation results on the three videos are illustrated

from Fig. 3.15 to Fig. 2.14, and the mean and variance of each measurement are listed

from Tab. 3.4 to Tab. 2.4.

There are two major observations as follows. (1) Methods-III and -IV usu-

ally produce more representative and salient key-frame sets for object segmentation.

This is supported by both subject and object evaluations. As shown in Fig. 3.17

to Fig. 2.17, the moving objects are effectively segmented from the background with

better accuracy. From Fig. 3.15 to Fig. 2.14, as well as Tab. 3.4 to Tab. 2.4, we

see that the key-frames extracted by Methods-III and -IV can also lead to numer-

ically improved object segmentation results in terms of temporal stability (smaller

elong diff , size diff , χ2), motion uniformity (smaller motion var), and spatial uni-

formity (smaller text var and larger color con). (2) It is also interesting to notice that

if original data samples are clearly separable in the feature space where the temporal

information contributes little to key-frame extraction, e.g., video People, Methods-

III and -IV would produce the similar key-frames as well as segmentation results, as

shown in Fig. 2.14, Fig. 2.17, and Tab. 2.4. These observations are consistent with

our initial motivations and analysis of Methods -III and -IV.

2.8 Summary

This chapter presents a coherent framework for key-frame extraction and

object-based segmentation within a video shot. We first define a unified spatio-

temporal feature space where video frames and visual objects are represented jointly.
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(a) Video-A (36 frames)

(a) Video-B (88 frames)

(a) Video-C (36 frames)

Figure 2.4: A selection of frames in synthetic videos.

Then key-frame extraction is formulated as a feature selection process that aims

at maximizing the cluster divergence in the unified feature space. Specifically, two

divergence-based criteria, i.e., MAIKLD and MMD criteria, are used to implement

key-frame extraction. In the context of object segmentation, the proposed framework

explicitly reveals the inherent relationship between key-frames and objects in a video

shot. Compared with the previous methods with and without key-frame extraction,

the proposed approaches can provide more robust and accurate object segmentation

results, as well as more compact temporal representations of video shots using key-

frames. This work also provide a more integrated segmentation scheme to support

content-based video analysis.
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(a) Face (150 frames)

(a) Taichi (358 frames)

(a) People (215 frames)

Figure 2.5: A selection of frames in real videos.
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(a) Method-III.

(b) Method-IV.

Figure 2.6: Extracted key-frames (12 key-frames) of Video-A using Methods-III and
-IV.
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(a) Method-I (using all 36 frames)

(b) Method-II (using 12 key-frames)

(c) Method-III (using 12 key-frames)

(d) Method-IV (using 12 key-frames)

Figure 2.7: Segmented moving object of Video-A using different methods.
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Figure 2.8: Numerical results of Video-A. Dashed, solid, dotted, and dash-dot lines
indicate the results of Method-I, -II, -III, and -IV, respectively.
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(a) Method-I (using all 88 frames)

(b) Method-II (using 19 key-frames)

(c) Method-III (using 9 key-frames)

(d) Method-IV (using 9 key-frames)

Figure 2.9: Segmented moving object of Video-B.

Table 2.1: Computational loads. NF: The number of used frames; CT: Computa-
tional time (seconds); N/A: not available.

Video sequences Method-I Method-II Method-III Method-IV
NF CT NF CT NF CT NF CT

Video-B 88 851 19 215 9 278 9 217
Video-C 36 272 17 175 8 223 7 173

Face 150 N/A 16 201 8 261 9 213
Taichi 358 N/A 16 278 8 356 13 290
People 215 N/A 13 190 6 213 9 197
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(a) Method-I (using all 36 frames)

(b) Method-II (using 17 key-frames)

(c) Method-III (using 8 key-frames)

(c) Method-IV (using 7 key-frames)

Figure 2.10: Segmented moving objects of Video-C.
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(a) Video-B (b) Video-C

Figure 2.11: Numerical results. Dashed, solid, dotted, and dash-dot lines indicate
the results of Method-I, -II, -III, and -IV, respectively.
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Figure 2.12: Objective evaluation of video Face.

Table 2.2: Numerical performance of video Face.

Measurements Method-II Method-III Method-IV
Mean Var Mean Var Mean Var

Elong diff 1.16 1.34 1.0 1.6 1.04 1.67
Size diff 103.21 1.07e4 39.69 1.28e3 40.06 1.35e3

Texture var 729.57 6.36e3 552.84 1.04e3 553.29 1.03e3
χ2 0.11 9.95e-4 0.08 9.31e-4 0.08 9.27e-4

Color con 1.05 0.007 1.39 0.005 1.39 0.005
Motion var 214.01 9.12e3 188.13 1.13e4 188.2 1.19e4
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Figure 2.13: Objective evaluation of video Taichi.

Table 2.3: Numerical performance of video Taichi.

Measurements Method-II Method-III Method-IV
Mean Var Mean Var Mean Var

Elong diff 0.47 0.39 0.17 0.08 0.19 0.09
Size diff 63.89 5.25e3 24.91 703.44 25.37 720.81

Texture var 272.98 3.36e3 116.64 210.41 116.55 209.48
χ2 0.07 3.93e-4 0.05 2.93e-4 0.05 2.91e-4

Color con 1.18 0.003 1.36 0.006 1.37 0.007
Motion var 223.41 5.45e3 171.87 4.66e3 171.83 5.07e3
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Figure 2.14: Objective evaluation of video People.

Table 2.4: Numerical performance of video People.

Measurements Method-II Method-III Method-IV
Mean Var Mean Var Mean Var

Elong diff 0.76 1.01 0.66 0.88 0.66 0.88
Size diff 51.65 3.41e3 43.22 1.78e3 43.22 1.78e3

Texture var 1.26e3 1.39e4 1.32e3 2.72e4 1.32e3 2.72e4
χ2 0.036 5.04e-4 0.035 4.16e-4 0.035 4.16e-4

Color con 1.02 0.02 1.08 0.01 1.08 0.01
Motion var 87.52 4.67e3 55.51 1.63e3 55.51 1.63e3

41



(a) Method-I.

(b) Method-II.

(c) Method-III.

Figure 2.15: Segmentation results of Video-Face using the same number of key-
frames (8 key-frames).

(a) Method-I.

(b) Method-II.

(c) Method-III.

Figure 2.16: Segmentation results video Taichi using the same number of key-frames
(8 key-frames).
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(b) Method-II.

(c) Method-III.

(c) Method-IV.

Figure 2.17: Segmentation results of video People using the same number of key-
frames (6 key-frames).
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Chapter 3

VIDEO SEGMENTATION: AN ANALYTICAL METHOD

In Chapter 2, we discuss a novel framework for coherent video key-frame ex-

traction and object segmentation, where two numerical methods are proposed as-

sociated with two cluster divergence criteria. Within the numerical methods, the

key-frame extraction is performed based on estimated models, where any inaccuracy

in model estimation could lead to improper key-frames that could affect the following

model re-estimation. In this work, we suggest an analytical method where key-frame

extraction is integrated in model estimation. This approach is inspired by a re-

cent work of simultaneous feature selection and model estimation [104, 103], where

the contribution of feature subsets is parameterized and estimable during the model

estimation. Since key-frame extraction reduce the sample size rather than feature di-

mension, a different formulation to [104, 103] is derived by formulating the key-frame

contribution to model estimation, called frame saliency, as part of model parame-

ters. After model estimation, the frames with the highest saliency are extracted as

key-frames.

It has been shown that extracted key-frames could contain certain semantic

meaning if motion and/or object information are involved [159, 94, 124]. However,

key-frame selection is subjective. Due to various purpose and corresponding crite-

ria, different key-frames would be selected. For example, those of minimum motion

are identified as key-frames in [159, 47], while in [122], frames of intensive motion

are selected. By exploiting the inherent relationship between key-frames and video

objects, we have shown that the numerical methods can provide semantically mean-

ingful key-frames showing spatial interaction between video objects in [148]. In this

work, we will show that the estimated frame saliency is associated with object be-

haviors, resulting in semantically meaningful key-frames, too. Moreover, different
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saliency values are associated with different object behaviors, giving us the flexibility

to select different key-frames for video browsing. Generally, key-frames either capture

the scene of interest or summarize the content of entire video [77]. Particularly, the

capability of locating video segments of interest based on semantically meaningful

key-frames can facilitate content-based video retrieval and browsing. Based on the

both analytical and numerical approaches, a general analysis framework for video rep-

resentation and description is also suggested to support various description schemes

of MPEG-7, where video temporal and spatial analysis are unified from low to high

semantic level. Simulations are performed using both synthetic and real video data,

and subjectively and objectively evaluated.

The rest of this chapter is organized as follows. In Section 3.1, we introduce a

work of simultaneous feature selection and model learning, which inspired this part of

work, other preliminary information about GMM-based video object modeling, com-

bined key-frame extraction and object segmentation method, unified feature space,

and cluster divergence-based criteria and approaches can be found in Chapter 2. In

Section 2.1.4, we introduce the concept of frame/pixel saliency, and derive the ana-

lytical approach for coherent key-frame extraction and object segmentation. Section

5.5 shows the simulations and discussions. Final conclusions are made in Section 6.4.

3.1 Simultaneous Feature Selection and Model Learning

An integrated feature selection and GMM estimation method is proposed for

unsupervised object segmentation [104, 103], where an important term, i.e., feature

saliency, is introduced to describe the contribution of a feature to model estimation.

Given data samples represented by a set of d dimensional feature vector, where each

feature may have different contribution to model estimation, if redundant features

can be removed, the accuracy of model estimation could be improved whilst the com-

putational load will be reduced. In [104, 103], feature saliency is measured by the

probability of relevance. A feature is irrelevant if its distribution is independent to

class labels, or in other words, its distribution is another probability density rather

than the GMM. Within this approach, a component-wise EM (CEM) algorithm is
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suggested for model and feature saliency estimation [22, 62], and the minimum mes-

sage length (MML) criteria is used for model order estimation.

Inspired by the conception of feature saliency, we develop a new analytical

method for coherent video key-frame extraction and object segmentation by intro-

ducing a measurement of frame relevance to the GMM estimation, where we are not

going to reduce the feature dimension d but the sample size.

3.2 Proposed Analytical Method

It has been shown in [151, 150] that the proposed numerical methods can pro-

vide more accurate object segmentation results, as well as more salient and compact

key-frames compared with the segmentation methods that use all frames within a

shot [69] or initial key-frames extracted merely via color histogram. The numerical

methods perform key-frame extraction after GMM estimation using all key-frame can-

didates, and GMM estimation is performed again after final key-frames are extracted.

During this process, outliers in key-frame candidates could lead to inaccurate GMM

estimation, affecting the following key-frame extraction. In addition, the objective

function of MAIKLD and MMD do not have close-form solutions, thus numerical ap-

proaches have to be used in [151, 150] to obtain suboptimal or near-optimal solutions

via different search methods, which increase the computational load.

In this work, we develop an analytical approach to integrate key-frame extrac-

tion as a part of the model estimation. The proposed method is originally inspired

by the work in [104, 103], which integrate feature selection and GMM estimation into

one process as mentioned in Section 3.1. Since our objective is to reduce key-frame

amount rather than to remove redundant features (reduce feature dimension), we

have different formulations and solutions to [104, 103] as introduced in the following.

3.2.1 Video Object Modeling

Given a video shot contains N objects, the probability density function (PDF)

of video pixel xl is formulated as a GMM of N components, i.e., Θ = {θn, αn|n =
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1, ..., N}, as:

p(xl|Θ) =
N
∑

n=1

αnp(xl|θn), (3.1)

where αn is the weight of the nth Gaussian characterized by θn = {µn, Σn}. If there

are L pixels, i.e., {xl|l = 1, ..., L}, Θ can be estimated via maximum the model

likelihood:

ΘML = arg max
Θ

L
∑

l=1

log p(xl|Θ), (3.2)

The label of each video pixel is represented by a binary vector yl = [y
(1)
l , · · · , y(N)

l ].

If xl is from the mth component of the GMM, then y
(m)
l = 1, and y

(n)
l = 0, n 6= m.

The complete log-likelihood is:

log p(X, Y |Θ) =
L
∑

l=1

N
∑

n=1

y
(n)
l log[αnp(xl|θn)] (3.3)

Expectation Maximization (EM) algorithm is often used as a solution to max-

imum likelihood (ML) estimation of GMM parameters. The E step is to compute a

so-called Q-function given the current estimation Θ̂(t) and Y :

Q(Θ, Θ̂(t)) = E[log p(X, Y |Θ)|X, Θ̂(t)], (3.4)

and posterior probability of y
(m)
l = 1 is estimated as:

wl,m =
α̂mp(xl|θ̂m(t))

∑N

n=1 α̂np(xi|θ̂n(t))
. (3.5)

The M step is to update the parameters by solving:

Θ̂(t + 1) = arg max
Θ

Q(Θ, Θ̂(t)) (3.6)

in the case of ML estimation. After the model estimation, grouped feature vectors

are characterized by a Gaussian density, and class label of each feature vector can be

estimated via the maximum a posteriori (MAP) estimation using (3.5).

3.2.2 Frame/Pixel Saliency

Based on the GMM modeling of video objects in the joint spatial-temporal

domain, we develop the concept of frame/pixel saliency in this section. As introduced
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Video
frame/pixels

Salient

Not Salient

GMM model: each component is
corresponding to a video object

GMM model: each component is
corresponding to a video object

Outliers: Noise, Minor Objects, etc.

Figure 3.1: Video feature and modeling

in Section 2.1.4, representing video frames and objects in a unified feature space is the

first step towards coherent key-frame extraction and object segmentation. Fig. 3.1

(a) illustrates an example. An input shot has N frames with three major objects

denoted as objects 1, 2, and 3. The objective of the analytical method is to extract a

set of frames that are highly relevant to these three objects, so that accurate object

modeling can be achieved.

Given a video shot with N objects, M frames and K pixels in each frame,

we define the saliency of the jth frame as: φj ∈ {0, 1}, j = 1, · · · ,M , where φj =

1 means the jth frame is relevant to the GMM for the object segmentation, and

φj = 0 means this frame is relevant to a class-independent density rather than the

GMM as shown in Fig. 3.1. This class-independent model is suggested to characterize

aforementioned outliers, and useless data samples such as some background pixels.

Similarly, we also define pixel saliency as φi ∈ {0, 1}, i = 1, · · · ,MK, and let Φ =

(φ1, · · · , φMK) be a binary parameter set for all pixels. Then frame saliency can

be obtained by considering all pixels’ saliency within this frame. Therefore, given

Γ = {Θ, θη} consisting of GMM Θ and class-independent model θη, for pixel xi, we

have the conditional density function as:

p(xi|Φ,Γ) = [
N
∑

n=1

αnp(xi|θn)]φiq(xi|θη)
1−φi , (3.7)

where q(xi|θη) is the class-independent density, which is set as a Gaussian density of

very large variance in this work, i.e., θη = {µη, Ση}. If we let Pi = P (φi = 1), then:

p(xi, Φ|Γ) = p(xi|Φ,Γ) ∗ P (Φ)

= p(xi|Φ,Γ) ∗ P φi

i (1 − Pi)
1−φi
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= [Pi

N
∑

n=1

αnp(xi|θn)]φj [(1 − Pi)q(xi|θη)]
1−φi . (3.8)

After have all Pis in frame j, frame saliency Pj is determined by averaging all pixel

saliency of frame j. Since frame saliency indicated the frame relevancy to the GMM

that characterizes the major video objects, the frames with highest saliency values

will be finally selected as key-frames for object segmentation.

The GMM and class-independent model are proposed to characterize different

parts of the video shot. The GMM is expected to represent the major objects in the

feature space, while the class-independent model will capture outliers and insignif-

icant background information. Therefore, this modeling process is in fact a video

foreground/background modeling issue that has been widely studied for video object

extraction [106, 152, 160], and is extended to coherent key-frame extraction and ob-

ject segmentation in this work. Since each Gaussian component of the GMM could be

associated with a video object, the entry values of Σn are less than those of Ση, which

captures more “noisy” behavior. Therefore, when initializing the EM algorithm, we

set larger variance/covariance values for the class-independent density.

3.2.3 A Modified EM Algorithm

In this section we derive an EM algorithm to simultaneously estimate pixel

saliency and GMM parameters. Given a pixel xi and its class label yi = n, which

indicates that it belongs to the Gaussian component θn in Θ, its complete-data like-

lihood is:

p(xi, yi = n, φi) = [αnPip(xi|θn)]φi [(1 − Pi)q(xi|θη)]
1−φi . (3.9)

The Q-function is obtained by calculating the expectation of the logarithm of the

complete-data likelihood:

E[p(X,Y,Φ|Γ)]

=
∑

n,i,Φ

p(yi = n, Φ|xi)[φi log αn + φi log p(xi|θn)

+(1 − φi) log(1 − Pi) + (1 − φi) log q(xi|θη)]

=
∑

n,i

[p(yi = n, φi = 1|xi)(log αn + log Pi + log p(xi|θn))
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+p(yi = n, φi = 0|xi)(log(1 − Pi) + log q(xi|θη))]. (3.10)

Let wi,n = p(yi = n|xi), ui,n = p(yi = n, φi = 1|xi), and vi,n = p(yi = n, φi = 0|xi),

then we have:

E[p(X,Y,Φ)]

=
∑

n,i

ui,n log αn +
∑

n,i

(ui,n log Pi + vi,n log(1 − Pi))

+
∑

n,i

ui,n log p(xi|θn) +
∑

n,i

vi,n log q(xi|θη). (3.11)

The maximization of the expectation is to maximize the four parts in equation (3.11)

separately. Finally, the EM algorithm can be derived as:

E Step:

ai,n = p(φi = 1,xi|yi = n) = Pip(xi|θn)

bi,n = p(φi = 0,xi|yi = n) = (1 − Pi)q(xi|θη)

ci,n = p(xi|yi = n) = ai,n + bi,n

wi,n = p(yi = n|xi) =
αnci,n

∑N

m=1 αmci,m

ui,n = p(yi = n, φi = 1|xi) =
ai,n

ci,n

wi,n

vi,n = p(yi = n, φi = 0|xi) = wi,n − ui,n. (3.12)

and

M Step:

αn =

∑

i ui,n
∑

i Pi

µn =

∑

i xiui,n
∑

i ui,n

Σn =

∑

i ui,n(xi − µn(θn))(xi − µn(θn))T

∑

i ui,n

µη =

∑

i(
∑

n vi,n)xi
∑

i,n vi,n

Ση =

∑

i(
∑

n vi,n)(xi − µ(η))(xi − µ(η))T

∑

i,n vi,n

Pi =
∑

n

ui,n, (3.13)
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Figure 3.2: The flowchart of the algorithm.

3.2.4 Algorithm Implementation

Given a video shot with M frames, instead of beginning with all frames in this

shot, we apply the method in [166, 111] to extract M
′ ≤ M initial redundant key-

frame candidates, where a similarity measurement based on the frame-wise 2-D Hue

and Saturation (HS) color histogram is used. Pixel saliency and GMM parameters are

estimated via the derived EM algorithm, and the MDL criterion is used to estimate

model order N . Originated from [136], we have:

Θ̂ = arg min
Θ

L(Θ, N){1

2
{N [1 + d +

d(d + 1)

2
] − 1} log(MKd) − log p(x|Θ)},(3.14)

where d is the feature dimension. Given the largest N value, after the convergence of

the EM algorithm, key-frames can be extracted based on their frame saliency. Then

the whole process is repeated with N − 1 based on the extracted key-frames, which

considerably mitigate the computational load. During the simulation, we found that

most key-frames can be determined with the largest N value, and there is few more

frames that could be removed from the key-frame set during the EM iteration when

model order is reduced to N − 1. Therefore, in order to further reduce the compu-

tational load, we do not apply the above EM algorithm to all candidate N values.
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Instead, after extracting key-frames using the largest N value, we apply the conven-

tional EM algorithms to the following GMM estimation and object segmentation.

The flowchart of the whole algorithm is shown in Fig. 3.2.
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Figure 3.3: Framework.

Based on the coherent segmentation methods, a general analysis framework

for video representation and description is suggested as shown in Fig. 5.4 (b), where

video key-frame and object analysis are unified from low to high semantic level. As

a comparison, Fig. 5.4 (a) shows the conventional video analysis framework where

key-frame extraction and object segmentation are implemented separately with dif-

ferent feature sets. Within the unified framework, the unified feature space shown in

Fig. 2.1 is first constructed to represent video shot and object on low level of video

analysis. Key-frame extraction is performed as a feature selection process for object

segmentation on the middle level, and key-frames and objects are finally applied to

high level analysis. The unified framework has several advantages: (1). On the low

level, feature extraction and representation are efficient. (2). On the middle level, co-

herent segmentation methods are computationally efficient, providing accurate object

segmentation results, and compact, representative, as well as semantically meaningful

key-frames. (3). The advantages in (1) and (2) facilitate video representation and

description schemes of MPEG-4 and MPEG-7, respectively. The simulation is per-

formed on both synthetic and real videos, we expect the proposed analytical method

can achieve similar or better performance compared with the numerical methods.
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3.3 Semantically Meaningful Key-frames

3.3.1 Key-frame and Semantic Meaning

In the combined key-frame extraction and object segmentation method [111],

extracted key-frames contain very limited semantic meaning. There are two reasons.

The first is that frame-wise color histogram provide little information about video

object location, motion, and interaction, which are absolutely necessary components

for high level video description. The second is that the key-frame refinement is based

on the frame-wise comparison of GMMs, where no more content information can be

added besides the objects similarity if the relationship between individual objects

are not involved. As mentioned in the introduction, key-frame extraction could has

semantically meaningful results if motion and/or object information are exploited. It

means that we can know certain information about video objects without inspecting

the extracted key-frames. Many quality works have been developed to extract key-

frames with different semantic meaning, and we only list part of them in Table 3.1.

It can be seen that if object-based features are involved, extracted key-frames would

contain more information about video content.

Table 3.1: Key-frame characteristics

Key-frame Definitions Feature Representation Semantic Meaning
The first frame of a shot
[142]

None Limited

Significant change of ceratin
feature [166, 77, 163]

Frame wise color, intensity,
texture, etc.

Limited

Significant change of frame
wise motion [159, 47, 124,
122]

Motion vector, frame wise
difference, etc.

Frame wise motion intensity,
irregularity, smoothness or
stillness

Appearance of certain ob-
ject [90, 138, 95, 102]

Object color, texture, shape,
motion

Appearance of objects, such
as face, skin, etc.

Appearance of certain ob-
ject behavior [47, 94]

Object position, motion,
etc.

Object motion, interaction,
etc.
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Figure 3.4: Object distribution and interaction in the feature space

3.3.2 Key-frames Extracted by Divergence-based Criteria

Both MAIKLD and MMD criteria measure object divergence based on the

characterization of spatial-temporal behavior of video objects, and extract key-frames

that contain high level semantic meaning. According to our assumption of video

shot in Section ??, the appearance of major object does not change with in a shot.

Consequently, there is no significant change of their color, and extracted key-frames

are associated with spatial location of video objects and motion. It has been shown

in [148] that MAIKLD extracts key-frames within which major objects are spatially

close to each other, while key-frames extracted via MMD are those where objects

are spatially far away from each other. In this work, we further exploit the possible

motion information contained in key-frames extracted via MAIKLD and MMD. If

there are two or more moving objects with nearly constant relative position, the

difference between their motion patterns would play more important role than other

factors. Therefore, we expect that both MAIKLD and MMD criteria extract key-

frames where objects have significant distinction in their motions.

3.3.3 Key-frames Extracted by the Analytical Method

In the analytical method, object modeling is based on the frames with the

highest saliency values. On the other hand, estimated frame saliencies not only show

the relevance to the GMM, but also imply certain object behaviors, giving us the
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flexibility to select different key-frames for video browsing and retrieval:

• Spatially close video objects cause or increase the cluster overlapping in the

feature space. If mapping the clusters to the x − y plane, the overlapping

regions are most probably located within Gaussian tails, and the probability

that they are characterized by the large variance class-independent probability

density is high. Therefore, frames with spatially close objects would have low

saliency values.

• Intensive/irregular object motion will increase the cluster volume of moving

object, causing or increasing cluster overlapping in the feature space. If the

relative object distances do not change, intensive/irregular motions could lead

to low saliency values.

• Contrary to the above two items, if the objects motion are smooth or spatially

far away from each other, high saliency values are expected.

We also illustrate these items in Fig. 3.4, where time (t)and spatial coordinate

(x and y) are used to represent the object. As we can see, both spatial closing or

intensive/irregular motion will increase the volume of object clusters in the feature

space, introducing or increasing the overlapping between clusters as shown in the

shaded area of Region II in Fig. 3.4. Simulations on both synthetic and real videos

will demonstrate above analysis. Besides these expectations, there exists more po-

tential semantic meaning that can be exploited within the key-frames extracted by

the coherent methods. It is worth to mentioning that if we use motion vector rather

than pixel-wise frame difference as motion feature, the extracted key-frames can pro-

vide more specific information about object behavior. However, this will increase the

computation expense.

Generally, key-frames either capture the scene of interest or summarize the

content of entire video [77]. Especially, efficiently locating video segments of interest

is more interesting and challenging. For example, it is relatively easy to find video

sequences of baseball game. However, it is not so effortless to locate clips showing

moments of batting. Key-frames implying the interaction between bat and ball will
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be very helpful in this case, and the numerical method with the MAIKLD criterion

can provide such key-frames. For content-based retrieval and indexing, MPEG-7

proposes approaches to describe and represent visual information by a set of stan-

dardized descriptors, which are obtained by video content analysis. After splitting

a video scene into shots, video content organization is an important step that helps

users group video shots of similar content to increase the efficiency of retrieval and

indexing [76, 161]. It is often implemented by content-based matching and classifi-

cation of shots based on their key-frame similarities regarding visual contents, which

are typically represented by color, motion, texture, etc. It is highly expected that

representative feature sets about visual content are involved to key-frame extraction

so that extracted key-frames are associated with salient/important points of video

content. Usually, frame-wise features, such as color histogram, cannot achieve this

goal satisfactorily. The coherent key-frame extraction and object segmentation meth-

ods represent frames and object in the same spatial-temporal feature space, which

characterizes object behaviors joint spatially and temporally. Therefore, extracted

key-frames are related to some salient points of video content described by object

behavior, facilitating the shot grouping process.

3.4 Simulations and Discussions

3.4.1 Experiment Setup

Simulations are performed on both gray-level synthetic and real video se-

quences based on a computer with 3.2GHz CPU and 1GB memory. We deliberately

add some Additive White Gaussian Noise (AWGN) to the synthetic videos. In the

simulation, we compare the proposed analytical approach with the previous methods.

Specifically, we denote the method in [111] as Method-I, and two numerical methods

as Method-II (MAIKLD) and Method-III (MMD), the proposed analytical method

as Method-IV, respectively. The frame size of all the video sequence is 176 × 144.
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3.4.2 Performance Evaluation

Both subjective and objective evaluations are applied to evaluate the seg-

mentation performance regarding moving objects. For synthetic videos, we compute

segmentation accuracy, precision, and recall based on the ground truth data. Ac-

curacy is the overall pixel-wise segmentation accuracy regarding all moving objects.

Precision shows the pixel percentage that the segmented moving objects are true

moving objects. Recall is the pixel percentage that true moving objects can be de-

tected. For the real videos without ground truth, we use a set of objective measures

derived from those in [34, 52]. These measures include spatial uniformity, temporal

stability, and motion uniformity. The YUV color variance of objects (text var) [34]

and the spatial color contrast along object boundaries (color con) [52, 148] are used

to measure spatial uniformity. A good segmentation result has a smaller text var

and larger color con compared with poor results. Temporal stability is measured by

the inter-frame difference of object size and elongation (size diff and elong diff)

[34], as well as a χ2 metric that shows the temporal color histogram difference [52].

A good segmentation performance should have small size diff , elong diff and χ2

values. The summation of motion vector variance in x and y directions is applied

to evaluate motion uniformity [34]. Usually, a small motion variance is related to a

smooth motion. More details of these measurements can be found in [34, 52, 148].

3.4.3 Study on Key-frames

Before studying object segmentation, we first demonstrate previous analysis in

Section 3.3. An example of object motions using MAIKLD and MMD are illustrated

in Fig. 3.5. Fig. 3.5 (a) shows a synthetic video with two moving objects, and Fig. 3.5

(b) is the motion trajectory of the objects. As we can see, there is more motion

pattern differences between two objects in the latter part of the video. The motion

pattern difference between two objects are increased in the latter part, resulting in

more distinction between object models. Therefore, both MAIKLD and MMD criteria

extract key-frames majorally located in the latter part of Video-A as shown in Fig 3.6.

Several examples of the analytical method are shown in Fig. 3.7. The columns
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from left to right refer to a frame in a synthetic video, object motion trajectory, and

average frame saliency, respectively. The first row show a synthetic video with a

moving ball, which has two different motion patterns. Compared with the motion

in the middle 1
3

part of the video, the motion in the first and last 1
3

parts are more

intensive and irregular. We calculate the average frame saliency of these three parts,

and find that a relatively low average frame saliency implies intensive or irregular

object motion, and vice versa. The second row of Fig. 3.7 shows an example of

object interaction, where a rectangular object is moving horizontally through two

background objects. When the moving object is close to either of two static objects,

average frame saliency is low. The last row of Fig. 3.7 illustrates another example of

object motion, which is more intensive and irregular in the latter half part of the video

than the former part. After calculating the average frame saliency of two different

parts, we get the same conclusion as the example in the first row of Fig. 3.7.

This issue is also studied on two real videos as shown in Fig. 3.8. The first

row of Fig. 3.8 shows a vehicle running away from the camera. Due to the camera

perspective, the vehicle seems to slow down when it is leaving. Therefore, the average

vehicle speed in the first half of the video is faster than the latter half. The second

row of Fig. 3.8 illustrates two people is walking close to each other with uniform

speeds. The average spatial distance between two people in the first half of the video

is less than that of the second half. The average frame saliency of these two real

videos are shown in Fig. 3.9. As we can see, fast object motion or small spatial object

separability is related to small saliency.

3.4.4 Synthetic Videos

Simulations on object segmentation are first performed on the synthetic videos

as shown in Figs. 6.2 In Fig. 6.2, Video-B shows a circular object moving sigmoidally.

There are two moving objects in Video-C, one is an elliptic object that is moving

diagonally from the top-left to the bottom-right, increasing size simultaneously. The

other is a rectangular object that is moving leftward. All methods begin with a set

of key-frame candidates that are initially extracted via the color histogram [166].

Fig. 6.4 and Table 3.2 show the numerical results of object segmentation, and Table
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3.3 shows the computational load, including original video frame number, and the

number of key-frames that are finally extracted for the model estimation and object

segmentation, and computation time. In order to show the significant decreasing of

computation time, we also show the computational load of the method in [69].

For Video-B, all four methods have similar performance regarding accuracy,

precision, and recall rate of moving object segmentation, and Method-IV (analytical

method) slightly outperform other three methods. Comparing their computational

load, Method-IV uses the least number of key-frames for object segmentation, and

the least computation time. For Video-C, Method-IV has the highest accuracy and

precision rate, but the lowest recall rate. This means that it under-detect the moving

object. It also use the least number of key-frames and the least computation time

compared with the others. The segmentation results are shown in Figs. 3.13 and 3.14.

Generally, even though less number of key-frames are used, by exploiting the

inherent relationship between key-frames and objects, Methods-II, -III, and -IV can

provide better segmentation results than Method-I. Moreover, simulation results also

show that the analytical method can have similar or better performance using less

key-frames compared to numerical methods. This implies that the analytical method

can provide compact and representative key-frames sets for object segmentation. This

also validates the introduction of frame/pixel saliency and the proposed model.

3.4.5 Real Videos

We also compare Methods-I, -II, -III, and -IV using two real video sequences

as shown in Fig. 3.11. In order to compare the four methods in terms of the effective-

ness of key-frame extraction for object segmentation, we fix the number of extracted

key-frames to be the same for all four methods. The aforementioned objective crite-

ria are used to evaluate the video segmentation performance. The numerical results

on the two videos are illustrated in Figs. 3.15 and 3.16, and the mean and variance

of each measurement are listed from Table 3.4 to Table 3.5. Final segmentation

results of the moving objects are illustrated in Figs. 3.17 and 3.18. As we can see,

Methods-II, -III, and -IV outperform Method-I in terms of temporal stability (smaller
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elong diff , size diff , χ2), motion uniformity (smaller motion var), and spatial uni-

formity (smaller text var and larger color con). Compared with Methods-II and -III,

Method-IV provides similar or even better performance. For example, in video Face,

Method-IV can correctly separate the bow tie from the moving face, which cannot

be done by all three other methods, leading to the significant improvement (much

smaller) with respect to text var. In video Taichi, three coherent methods have sim-

ilar performance with respect to the objective evaluations, and Method-IV slightly

outperforms Methods-II and -III in all evaluation items except for Elongdiff . These

results further indicate the affectivity of the proposed analytical method.

3.4.6 More Discussions

During the simulation, we found some issues that need further study.

• Motion features: In the spatial-temporal feature space, motion information

is very important to represent object behaviors. However, pixel-wise frame dif-

ference is not enough for accurate motion description because it cannot directly

show the motion intensity and direction. In addition, when using pixel-wise

frame difference, the newly revealed and concealed background regions around

the moving object boundaries within the adjacent pairs of frames would be easily

misclassified during the object segmentation. If we replace it by motion vector,

we can obtain better object representation, leading to better object segmen-

tation results, and richer semantic meaning within key-frames. The problem

is that the motion vector estimation is not so computationally efficient as the

calculation of frame difference. We are studying how to extract representative

motion feature with acceptable computational load.

• Intelligent initialization: How to properly initialize the class-independent

probability density is another interesting issue. Frame/pixel saliency is a prob-

ability measure and we hope that Pi ≥ 0.5 would be a proper implication for

a salient frame or pixel. However, In the simulation, with different initializa-

tion of the class-independent probability density, the same frame has different

salient value. In this situation, relative comparison of frame saliency is more
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reasonable. Consequently, we have to extract key-frames that have the largest

salience values rather than using Pi ≥ 0.5. Although the extracted key-frames

are most salient ones, this introduce an implicit threshold that is not expected

according to the modeling. We are trying to develop an adaptive way to solve

this problem.

• Piecewise video analysis: In order to reduce the computational load when

we are dealing with a long video shot, e.g., video Taichi, the frame-wise color-

histogram is used to initially extract a set of key-frame candidates, and the

coherent key-frame extraction and object segmentation are performed based on

these key-frame candidates. Since this initialization could ignore some frames

that could be significant for object segmentation, the finally extracted key-

frames might not be so representative as those extracted based on the whole

shot. Nevertheless, the processing of the whole long shot needs tremendous com-

putational source and time, and is not realistic for real applications. Moreover,

GMM may not be efficient enough to characterize video objects within a long

shot. Object occlusion, nonlinear and irregular motion patterns, and outliers

could affect the integrity and accuracy of object characterization in the spatial-

temporal feature space, resulting in inaccurate or fragmented segmentation re-

sults. The work in [70] propose a piecewise approach to approximate complex

object behaviors. We could also use a piecewise approach, where a video shot is

first splitted into much smaller segments, and the coherent key-frame extraction

and object segmentation could be implemented in each segments parallelly. This

would lead to more representative key-frames and robust object segmentation

with high computational efficiency. To split video and combine segmentation

results with certain criteria is another interesting research for this purpose.
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Figure 3.5: Synthetic Video-A

Figure 3.6: Extracted key-frames (11 key-frames) of Video-A using Methods-II
(MAIKLD, the first row) and -III (MMD, the second row).
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Figure 3.7: Frame Saliency and Object Behavior: synthetic videos
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(a) Speed (40 frames)

(b) Meet (40 frames)

Figure 3.8: A selection of frames in real videos.
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Figure 3.9: Frame Saliency and Object Behavior: real videos
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(a) Video-A (88 frames)

(a) Video-B (36 frames)

Figure 3.10: A selection of frames in synthetic videos.

(a) Face (150 frames)

(a) Taichi (356 frames)

Figure 3.11: A selection of frames in real videos.
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Figure 3.12: Numerical results of Videos-B and -C. Dashed, solid, dotted, and
dash-dot lines indicate the results of Method-I, -II, -III, and -IV, re-
spectively.

Table 3.2: The performance of video segmentation (%).

Video sequences Method-I Method-II Method-III Method-IV
Mean Stdv Mean Stdv Mean Stdv Mean Stdv

Accuracy 99.28 0.16 99.26 0.16 99.28 0.15 99.37 0.11
Video-B Precision 82.16 2.8 81.83 2.9 82.08 2.7 84.05 1.9

Recall 99.97 0.07 99.97 0.07 99.97 0.07 99.98 0.05
Accuracy 98.61 0.47 98.61 0.43 98.16 1.14 98.88 0.39

Video-C Precision 76.92 6.15 76.46 5.98 74.52 7.3 97.29 3.12
Recall 97.45 4.5 98.29 3.17 89.55 17.74 78.02 5.18

Table 3.3: Computational load. NF: The number of used key-frames. CT: Compu-
tation time (s)

Video sequences Greenspan Method-I Method-II Method-III Method-IV
NF CT NF CT NF CT NF CT NF CT

Video-A (88 frames) 88 851 19 215 9 278 9 217 4 184
Video-B (36 frames) 36 272 17 175 8 223 7 173 5 172
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(a) Method-I (using 19 key-frames)

(b) Method-II (using 9 key-frames)

(c) Method-III (using 9 key-frames)

(d) Method-IV (using 4 key-frames)

Figure 3.13: Segmented moving object of Video-A.

66



(a) Method-I (using 17 key-frames)

(b) Method-II (using 8 key-frames)

(c) Method-III (using 7 key-frames)

(c) Method-IV (using 5 key-frames)

Figure 3.14: Segmented moving objects of Video-B.
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Figure 3.15: Objective evaluation of video Face.

Table 3.4: Numerical performance of video Face.

Measurements Method-I Method-II Method-III Method-IV
Mean Stdv Mean Stdv Mean Stdv Mean Stdv

Elong diff 1.16 1.16 1.0 1.27 1.04 1.29 0.73 0.94
Size diff 103.21 103.37 39.69 35.73 40.06 36.69 35.26 29.39

Texture var 729.57 79.76 552.84 32.26 553.29 32.16 113.27 17.79
χ2 0.11 0.03 0.08 0.03 0.08 0.03 0.1 0.04

Color con 1.05 0.08 1.39 0.07 1.39 0.07 1.44 0.07
Motion var 214.01 95.51 188.13 106.38 188.2 109.36 158.06 58.44
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Figure 3.16: Objective evaluation of video Taichi.

Table 3.5: Numerical performance of video Taichi.

Measurements Method-I Method-II Method-III Method-IV
Mean Stdv Mean Stdv Mean Stdv Mean Stdv

Elong diff 0.47 0.63 0.17 0.28 0.19 0.29 0.23 0.36
Size diff 63.89 72.43 24.91 26.52 25.37 26.85 18.66 20.45

Texture var 272.98 57.98 116.64 14.51 116.55 14.47 104.64 15.26
χ2 0.07 0.02 0.05 0.02 0.05 0.02 0.04 0.01

Color con 1.18 0.06 1.36 0.08 1.37 0.08 1.73 0.06
Motion var 223.41 73.81 171.87 68.29 171.83 71.23 177.25 58.53
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(a) Method-I.

(b) Method-II.

(c) Method-III.

(c) Method-III.

Figure 3.17: Segmentation results of Video-Face using the same number of key-
frames (8 key-frames).
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(a) Method-I.

(b) Method-II.

(c) Method-III.

(c) Method-IV.

Figure 3.18: Segmentation results video Taichi using the same number of key-frames
(8 key-frames).

3.5 Summary

This chapter presents an analytical approach for coherent key-frame extraction

and object segmentation. Specifically, a video shot is characterized by a statistical

mixture model that is a weighted combination of a GMM and a class-independent

density model. The estimable weight, which is called frame/pixel saliency, shows the

contribution of a frame/pixel to GMM estimation. Simulation shows that the pro-

posed algorithm can extract compact and representative key-frames with semantic

meaning for effective object segmentation. Moreover, based on the proposed coher-

ent segmentation methods, a unified video representation/description framework is

suggest to support content-based video analysis by providing accurate object seg-

mentation, and semantically meaningful key-frames. The major contribution of this
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method is the joint formulation of key-frame extraction and object segmentation that

could lead to an optimal solution via the EM algorithm.
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Chapter 4

UNSUPERVISED BAYESIAN IMAGE SEGMENTATION

Segmentation of a textured image is to partition the image into distinct regions

of homogeneous behavior. In this chapter, we study the unsupervised parametric

image segmentation that is widely involved in a variety of computer vision tasks, such

as medical diagnosis, remote sensing, and automatic surveillance/detection systems,

etc. In spite of its paramount applications, unsupervised image segmentation has

been a challenging topic because of the complexity of natural texture behaviors in

real images. There is no general approach that works well everywhere.

Usually a textured image is composed of deterministic or random structure

patterns, and thus a structural pattern that consists of a group of pixels is of more

significance than a single pixel for texture modeling. Consequently, statistical mod-

eling based segmentation methods have drawn substantial attention because of their

efficiency in capturing local texture behavior and their prominent methodological ad-

vantages [5]. Specifically, texture features are assumed to be generated by an under-

lying 2-D stochastic model, and there exist closed forms or approximate approaches

for estimating model parameters used for segmentation. For example, Markov ran-

dom field (MRF) models have attracted considerable interest in characterizing the

pixel intensity distribution [66, 44, 11, 133], as well as the prior knowledge of labeling

processes when Bayesian inference is involved. Under the Bayesian framework, an

image can be segmented by computing a maximum a posteriori (MAP) estimation

of the pixel labels under zero-one loss. However, the solutions to MAP are usually

computationally expensive due to the non-causal neighborhood structure and conse-

quent iterative approximations [66, 44, 11]. In addition, MRF models are not capable

enough of describing large scale texture behaviors [13, 165], and the usage of more so-

phisticated models could deter the efficiency of model estimation. Therefore finding a
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tradeoff between computational efficiency and statistical modeling accuracy remains

essential for developing practical Bayesian image segmentation methods.

In order to develop high-performance segmentation approaches with moderate

computational loads, a number of methods have been proposed to model/estimate

class-conditional density of texture features and labeling process of texture classes

under the Bayesian framework. Instead of modeling texture intensity via a class-

conditional density in the spatial domain directly, the interest has been steadily

growing nowadays on modeling texture features in the wavelet domain, where the

spatial locality of texture information can be preserved and the image structure is

recomposed in a way that facilitates the statistical representation of images [114].

Especially, the Haar wavelet transform is suitable for texture segmentation due to

its best spatial locality. Usually there are two types of methods proposed to model

the statistics of wavelet coefficients. One is the independent model that only con-

siders the marginal distribution of wavelet coefficients, such as generalized Gaussian

function [114], which have been successfully used in image compression [7], denoising

[121] and retrieval [46], or mixture models [31, 128]. The other is the models that not

only consider the marginal distribution, but also capture high-order dependencies of

wavelet coefficients, such as interscale dependencies [37, 60, 45], intrascale dependen-

cies [56, 119], or both of them [36, 18, 165, 126, 25, 110, 57]. These models show

significant advantages in statistical image modeling and have been applied to image

denoising [37, 110, 56, 119, 25], segmentation [32, 60, 126], retrieval [45], compression

[18], texture analysis and synthesize [165, 146, 60]. Particularly, Wavelet-domain Hid-

den Markov Models (WDHMMs), such as hidden Markov tree (HMT) [37, 137], are

newly developed statistical models that impose a tree-structured Markov chain across

scales to capture interscale dependencies of wavelet coefficients. HMT was improved

by capturing dependencies across both wavelet subbands and scales in HMT-3S [60],

and/or using redundant wavelet transforms [45, 137]. In our work, WDHMMs are

applied to multiscale unsupervised segmentation because of their two salient advan-

tages: 1) They are efficient statistical models which have closed forms to calculate

model likelihoods via a fine-to-coarse recursion. 2) The embedded tree structure sup-

ports the multiscale texture characterization that is involved in multiscale Bayesian

segmentation [32, 28]. As mentioned before, the MAP estimation of labeling process
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based on the MRF model could be approximated by suboptimal solutions. However,

these solutions could be unstable regarding initial conditions and usually runs risks

of converging to local optima [13]. In order to reduce the possibility of converging to

local optima, and to characterize the large scale textured behaviors efficiently, mul-

tiscale statistical modeling was suggested for image segmentation [13, 97, 165]. One

specific model is the multiscale random field (MSRF) model, which was proposed to

characterize the labeling process by capturing interscale dependencies of class labels

across scales of a pyramid structure, and an efficient sequential MAP (SMAP) estima-

tor was developed as an approximation to MAP [13]. Compared with MAP, SMAP

is computational efficient and tends to minimize the spatial size of the classification

error due to its scale-dependent cost function, leading to more desirable segmentation

results. HMT was well integrated with SMAP for efficient supervised segmentation in

a recent work, where an interesting approach HMTseg was proposed [32]. The SMAP

was further studied by a joint multicontext and multiscale approach (JMCMS) for

exploiting robust contextual information via multiple context models for Bayesian

inference [58]. Moreover, HMT-3S was incorporated into JMCMS to further improve

the segmentation performance [60]. It was shown that both statistical texture char-

acterization and contextual modeling of multiscale class labels are important in the

context-based supervised Bayesian segmentation [59, 60, 55].

The significant advantages of WDHMMs and MSRF previously mentioned in

supervised image segmentation have motivated us to extend them to the unsuper-

vised case [149], which was applied to the sea floor sonar image segmentation [49]. In

supervised segmentation methods using WDHMMs, given a textured image, the es-

timation of its WDHMM parameters is a model estimation process. Then it is worth

pointing out that these segmentation methods are realized by mapping the image into

a set of model estimations of WDHMM to explore the disparities of different textures,

where each estimation corresponds to a specific texture in the image. According to

the Likelihood Principle [50], the disparities amongst different textures can be shown

as the likelihood disparities in each model estimation. Nevertheless, this mapping

process is not so straightforward in unsupervised segmentation because there is no

information a priori about model estimations. In such case, the model estimation is
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usually approximated by an iterative hard or soft-decision approach [164]. In hard -

decision, an image is divided into non-overlapping homogeneous textured windows.

Each window provides a model estimation, and a raw segmentation map can be ob-

tained by clustering of the model estimations [115, 125]. In soft-decision [164, 101],

the segmentation is performed by repeating an estimation/segmentation iteration af-

ter initializing model parameters, such as Expectation Maximization (EM) algorithm.

Both two approaches need accurate model estimations for all textures to achieve a

good segmentation performance. However, some problems arise when WDHMMs

are applied to unsupervised segmentation. In hard -decision, despite the fact that

the accurate texture characterization could be achieved via WDHMMs, the following

clustering could be cumbersome because a WDHMM is a high-dimensional Gaussian

mixture model with many model parameters [32], resulting in expensive computation

and running a risk of the “curse of dimensionality” when the number of data samples

does not significantly outnumber the feature dimension [83]. Existing WDHMMs are

not suitable to be directly applied to soft-decision either because they implement

supervised algorithms based on known or pure texture prototypes. In a recent work

[141], a mean shift clustering in a 7-dimensional feature space was used to obtain

an initial segmentation map, and the WDHMM was applied to estimate model pa-

rameters for each texture. This approach is basically a hard -decision approach where

WDHMM was used after the raw segmentation is obtained by the clustering.

In this work, a hybrid soft-hard decision approach, which consists of both soft-

and hard -decision approaches, is proposed where WDHMMs are efficiently integrated

into the entire process of unsupervised image segmentation. This approach is also

applicable to other statistical modeling frameworks where a closed form of likelihood

computation is available. Within this hybrid approach, the soft-decision step maps

an input image to a WDHMM estimated by the EM algorithm, where the model

likelihood can be computed for all image blocks in a multiscale representation. Then

the hard -decision step generates a raw segmentation by a clustering of the likelihood

values, each of which is associated with an image block in the original image and

shows the goodness of fit between this area and the estimated WDHMM. Therefore,

the problem of unsupervised segmentation is converted to a self-supervised segmen-

tation process. Both the soft- and hard -decision steps are significant to the final
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segmentation performance. The soft-decision step implicitly determines feature sep-

arability/cluster divergence in a WDHMM, which could be measured by likelihood

disparity. Numerical experiments are developed to search for a proper WDHMM

where the separability of different clusters are maximized. The soft-decision step es-

sentially determines whether the clusters of likelihood values can be well separated by

clustering in the hard -decision step. In the hard -decision step, the K-mean and EM

clustering are first briefly discussed, and two new clustering approaches are suggested.

One is the context-based multiscale clustering (CMSC) involving local context and

multiscale information, and the other is multiple model clustering (MMC) where the

likelihood values regarding multiple WDHMMs are used to construct a multidimen-

sional feature space for clustering. Simulations show that higher clustering accuracies

could be obtained by CMSC and/or MMC compared with the K-mean and EM ap-

proaches. The numerical analysis of the cluster separability in the soft-decision step

also inspire us to propose a dual-model unsupervised segmentation framework where

two WDHMMs are utilized in different parts of the segmentation. Particularly, simu-

lation results on a set of synthetic mosaics show that the unsupervised segmentation

performance comes close to the supervised case.

The rest of the paper is organized as follows: Section 4.1 reviews the supervised

Bayesian image segmentation approaches using SMAP and WDHMMs. In Section

4.2 we address the model specification and identification by investigating the cluster

divergence measured by the likelihood disparity of WDHMMs. Two new clustering

methods are developed based on the K-mean and EM clustering in Section 4.4. In

Section 4.5 we propose a dual-model unsupervised segmentation framework, and the

simulations on both synthetic mosaics and real images are shown in Section 5.5.

Finally conclusions are presented in Section 4.7.

4.1 Supervised Bayesian Image Segmentation

4.1.1 Multiscale Random Field Model

Under the Bayesian segmentation framework where both image features and

prior knowledge are incorporated, maximum a posteriori (MAP) estimation is usually
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involved to estimate the class label of image pixels:

x̂ = arg max
x

E[CMAP (X, x|Y = y] (4.1)

where Y is an image observation with an unseen class label field X 1, and CMAP (X, x)

is the zero-one cost function. It is well known that the MAP estimation, which aims

at maximizing the probability that all pixels are correctly classified, is excessively

conservative and computationally expensive. In the statistical modeling based image

segmentation, an ideal modeling scheme should characterize both large and small

scale behaviors in textured images effectively and efficiently [13, 32]. However, the

modeling of large homogeneous texture behavior with MRF models needs complicated

neighborhood systems and estimation algorithms. In order to efficiently model the

large scale texture behavior, a multiscale random field (MSRF) model was suggested

[13, 28]. The MSRF model is composed of a set of random fields with different

resolutions. Assume Y (j) is an image observation at scale j with its unseen label

field X(j), the principal assumption of the MSRF model is that the distribution of

class label X(j) is conditional independent on others given X (j+1) at the coarser scale.

This assumption forms a Markov chain across scales from coarse to fine that captures

interscale dependencies of class labels, resulting in a causal contextual structure that

simplifies the model estimation. This one-order Markov chain is formulated as:

P (X(j)|X(j+1), X(j+2), · · ·) = P (X (j)|X(j+1)). (4.2)

Based on the MSRF model, a sequential MAP (SMAP) estimator was developed with

an alternative weighted cost function CSMAP (X, x) [13]. Compared with the MAP

estimation, the SMAP method is computational efficient and can minimize the spatial

size of errors, leading to more desirable segmentation results. The SMAP estimator

can be reformulated as [13]:

x̂(j) = arg maxx(j){log py(j)|x(j)(y|x(j))

+ log px(j)|x(j+1)(x(j)|x̂(j+1))}, (4.3)

The two terms in (4.3) are related to the texture representation and the modeling

of the contextual information from the next coarser scale. It was shown that both

1 Upper case letters denote random variables, whereas low case letters denote their
realizations
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image features and multiscale contextual modeling are important in the multiscale

Bayesian image segmentation [59, 60, 55].

4.1.2 Wavelet-domain Hidden Markov Models

Wavelet-domain hidden Markov models (WDHMMs) capture high-order de-

pendencies of wavelet coefficients. As the first WDHMM, hidden Markov tree (HMT)

model is a multidimensional Gaussian mixture model that applies tree-structured

Markov chains across scales to capture interscale dependencies of wavelet coefficients

[37, 137]. It is parameterized by:

θHMT = {pB
J (m), εB

j,j−1(m,n), σ2
B,j,m|B ∈ B; j = 1, ..., J ; m,n = 0, 1}. (4.4)

In (4.4), pB
J (m) is the probability of state m at the coarsest scale J in subband

B ∈ B, B = {LH,HL,HH} is the set of three subbands with different orientations,

εB
j,j−1(m,n) is the state transition probability of the Markov chain from scale j to

scale j−1 in subband B, and σ2
B,j,m is the variance of the wavelet coefficients at scale

j in subband B given state m. Given wavelet coefficients w of a N × N image, the

model parameters can be estimated by the EM algorithm that maximizes the model

likelihood f(w|θHMT ):

θ̂HMT = argθHMT
max f(w|θHMT ), (4.5)

f(w|θHMT ) =
∑

B∈B

NJ−1
∑

k,i=0

log

(

1
∑

m=0

f(T B
J,k,i|θHMT ,m)

)

,

where NJ = N/2J , T B
j,k,i denotes the wavelet subtree rooted at the wavelet coefficient

(k, i) at scale j, i.e., wB
j,k,i, and wB

j,k,i with its state variable form the root node of the

HMT subtree T B
j,k,i. The model likelihood of the subtree T B

j,k,i with respect to θHMT

is calculated in a recursive fine-to-coarse fashion as follows [37]:

f(T B
j,k,i|θHMT ,m) = pB

j (m)g(wB
j,k,i|0, σ2

B,j,m)

(

2k+1
∏

s=2k

2i+1
∏

t=2i

1
∑

n=0

(

εB
j,j−1(m,n)f(T B

j−1,s,t|θHMT , n)
)

)

,

(4.6)

and in the finest scale, i.e., j = 1, we have

f(T B
1,k,i|θHMT , n) = pB

1 (n)g(wB
1,k,i|0, σ2

B,1,n), (4.7)
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where g(wB
j,k,i|0, σ2

B,j,m) is the Gaussian density. Equation (4.5) implies the subband

independency of wavelet coefficients. Usually the regular spatial structures in natural

images may result in significant statistical dependencies across wavelet subbands B

[18]. An improved HMT model, called HMT-3S, was developed to capture these de-

pendencies by grouping three subbands into one quad-tree structure, and the number

of states in each node is changed from two to eight, while the marginal distribu-

tion of wavelet coefficients is still a two states Gaussian mixture [60]. The likelihood

computation of HMT-3S has a similar recursive fine-to-coarse fashion as HMT. The

improvement of HMT-3S on texture characterization is demonstrated by the perfor-

mance of texture analysis and synthesis [60]. Another notable improvement of HMT

model was suggested as a vector WDHMM using the redundant steerable wavelet

transform [45], where multivariate Gaussian density is incorporated. The statistical

dependencies across wavelet subbands are captured by the variance-covariance matrix

of the multivariate Gaussian density, and has shown impressive capability in rotation

invariant texture retrieval [45]. In our work, only the WDHMMs based on the or-

thogonal DWT, i.e., HMT and HMT-3S, are studied for unsupervised segmentation.

If the redundant wavelet transform is used, such as the vector WDHMM suggested

in [45], it is expected that a comparable or better segmentation performance could

be achieved, especially in the aspect of the rotation invariance.

4.1.3 SMAP, HMTseg, and JMCMS

As shown in (4.3), the SMAP estimation indicates that the estimation of pixel

classes is determined by image features and multiscale context information. Based on

the framework of SMAP, a context-based Bayesian segmentation algorithm, HMTseg,

was developed in [32]. In HMTseg, the HMT model is used to characterize textures in

the wavelet domain and an efficient context model is applied for the interscale context

fusion. Specifically, the contextual information is modeled as a context vector v(j)

and a contextual prior px(j)|v(j)(c|u) is involved in SMAP as the second part of (4.3).

Assume there are N different textures and the SMAP estimation can be obtained by

x̂(j) = arg max
x(j)

px(j)|v(j),y(j)(x(j)|v̂(j), y(j)), (4.8)

80



where

px(j)|v(j),y(j)(x(j)|v̂(j), y(j)) =
px(j)(x(j))pv(j)|x(j)(v̂(j)|x(j))f(y(j)|x(j))

∑N

c=1 px(j)(c)pv(j)|x(j)(v̂(j)|x(j) = c)f(y(j)|x(j) = c)
,

px(j)(c) is the probability mass function of class c at scale j, and f(y(j)|x(j) = c) is

the HMT likelihood function of image block y(j) with respect to class c.

The simulation results in [13, 32] show that the segmentation results in ho-

mogeneous regions are usually better than those around boundaries because the se-

lected context model favors the formation of large uniformly classified areas with less

consideration on texture boundaries. In order to improve the segmentation perfor-

mance around boundaries, a joint multi-context and multiscale approach (JMCMS)

was proposed to capture robust contextual information with multiple context models

[58]. JMCMS is a multi-objective optimization problem associated with multi-context

models that favor either forming homogeneous classified regions or having high sensi-

tivity to boundaries. Since the optimal solution is too hard to obtain, the sub-optimal

solution can be acquired by converting the multi-objective optimization to multiple

single objective optimizations [38]. That means the SMAP estimation in JMCMS is

performed based on the multiple context models individually and sequentially, and

the decision is only made at the final step. JMCMS was further combined with HMT-

3S where even better segmentation results can be obtained [60]. In view of significant

advantages of WDHMMs in characterizing texture behaviors, as well as the capabil-

ity of MSRF to model the labeling process, we want to extend them to unsupervised

image segmentation which is more practical in real applications.

4.2 A Hybrid Soft-hard Decision Approach

In order to implement efficient unsupervised texture segmentation using WDHMMs,

we propose a new hybrid soft-hard approach based on the Likelihood Principle [50].

As we discussed before, the supervised segmentation of an image I of N different

textures can be explained as capturing the disparity of model likelihoods at a set of

model estimations of N textures: θk, k = 1, 2, ..., N . We define that a mapping of

image I into θk is a model fitting process between I and θk, and the goodness of fit

is quantified by the model likelihood f(I|θ). If there exists N different textures in I,
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then after mapping I into θk, the obtained model likelihood preserves the disparities

of N textures that can be captured by θk.

An insightful understanding of this mapping can be explicated by the Likeli-

hood Principle that is stated as [6]: All of the relevant information about the param-

eter(s) provided by the sample data is completely captured by the likelihood function

alone. The Likelihood Principle asserts that the evidential meaning of any data with

respect to a hypothetical model is contained completely in the likelihood function

determined by the data [123]. Thus given image I comprising N different textures

x1, x2, . . . , xN , if there is only one hypothesis of model θ, which could be either asso-

ciated with I by treating I as a mixed texture, or associated with any other texture

or image, different model likelihoods can be shown due to the different goodness of fit

between θ and local texture behaviors, and the model likelihood disparities preserves

the disparities of the N textures captured by θ. For instance, if image blocks yi and

yk in I are from two textures xi and xk, respectively, then their model likelihoods

f(yi|θ) and f(yk|θ) should be distinct from each other. This can be represented by a

cluster divergence measurement div(.) between two different textures as:

if div(yi, yk|θ) < β, then f(yi|θ) ≈ f(yk|θ) and xi = xk,

else f(yi|θ) <> f(yk|θ) and xi 6= xk, (4.9)

where β is a relatively small constant.

Previous discussion implies that different textures could be roughly segmented

out by capturing the likelihood disparities. Hence given image I, after mapping it

into a certain model θ, a raw segmentation could be obtained by a clustering on

likelihood values of image blocks. In this process, mapping I into θ is a soft-decision

approach, where θ is estimated by the EM algorithm, and image I is considered as

one mixed class. After calculating the model likelihood of all image blocks, the clus-

tering on likelihood values is a hard -decision approach that provides a blockwise raw

segmentation of image I. In hard -decision, the estimation of β in (4.9) is circum-

vented by clustering. The combination of the hard - and soft-decision steps generates

a hybrid soft-hard decision, which eventually converts the unsupervised segmentation

into self-supervised segmentation.
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The suggested hybrid soft-hard decision possesses two major advantages. First,

the segmentation problem is simplified via capturing the likelihood disparity of dif-

ferent textures because we do not have to find a model that best describes the image,

which is usually the goal of the traditional segmentation approaches and computa-

tional demanding. Second, both large scale and small scale texture behaviors are

well captured by likelihood values at different scales. This will facilitate the clus-

tering process by changing the complicated texture modeling problem to a simpler

low-dimensional feature modeling problem, namely, the modeling of likelihood values.

j=1

j=3

j=2

j=4

4-scale image
pyramid

3-scale 2-D
HMT

Figure 4.1: Multiscale image representation and 2-D HMT model, where the white
node represents the discrete hidden state variable and the black node
denotes a continuous coefficient variable [37]. The interscale dependen-
cies are captured by tree-structured Markov chains connecting hidden
state variables across scales.

When WDHMMs are applied to the hybrid approach, model θ of any single or

mixed texture can be estimated by the EM algorithm with a tying operation across

wavelet subtrees [37]. Because there is a closed form to calculate the WDHMMs model

likelihood at any scale, the likelihood value can be easily obtained at the coarsest scale

of WDHMMs, where each node covers the largest spatial area with robust likelihood

computation as shown in Fig. 4.1. In Fig. 4.1, the left part is a 4-scale image pyramid

and scale j = 1 is the pixel level image. The right part of Fig. 4.1 is the corresponding

3-scale 2-D HMT of the Haar wavelet subtree in one subband B ∈ {LH,HL,HH},
where the white node represents the discrete hidden state variable and the black node

denotes a continuous wavelet coefficient variable [37]. The interscale dependencies are

captured by tree-structured Markov chains connecting hidden state variables across

scales. A subtree rooted at a node (white or black) at the coarsest scale of the 3-scale

83



Mosaic-1 (6 classes) Mosaic-2 (5 classes) Mosaic-3 (5 classes) Mosaic-4 (5 classes)

Mosaic-5 (4 classes) Mosaic-6 (3 classes) Mosaic-7 (3 classes) Mosaic-8 (2 classes)

Figure 4.2: Eight synthetic mosaics for the study of cluster divergence and segmen-
tation

2-D HMT is associated with an image block at the coarsest scale of the 4-scale image

pyramid. This block covers 8 × 8 pixels in the image. In the following two sections,

we will discuss in detail what roles the soft- and hard -decisions play in unsupervised

segmentation.

4.3 Soft-decision Step: Cluster Divergence

In the hybrid soft-hard decision approach, the cluster divergence of different

textures, which is measured by the likelihood disparity, is determined during the

soft-decision step. For studying cluster divergence, it is necessary to select proper

divergence measurements, and to explore a proper model θ to which image I is mapped

so that different textures in image I are as separable as possible before clustering.

This is equivalent to find a θ̂:

θ̂ = arg max
θ

DIV (θ, I), (4.10)

where DIV (θ, I) measures the cluster divergence of multiple textures in image I

regarding θ, and it is not the same as the pairwise divergence measurement div(.) in

(4.9). We address this problem by studying two key issues: model specification, or
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D9 D12 D15 D16 D19

D24 D29 D38 D68 D84

D92 D94 D112 Sand Mixture

Figure 4.3: 13 Brodatz and 2 other textures from USC database [3].

equivalently, how to estimate θ, and model identification, i.e., which model should be

chosen, e.g., HMT or HMT-3S?

4.3.1 Experimental Setup

In this work, numerical experiments are implemented to study the two issues

based on eight synthetic mosaics as shown in Fig. 6.2, and 15 textures in Fig. 4.3.

All images are of size 512 × 512, and the synthetic mosaics are composed of 2 to 6

different textures. In the experiment, after a 4-scale Haar DWT, image I (a mosaic

in Fig. 6.2) is mapped into 16 different model specifications of HMT, as well as 16

specifications of HMT-3S. These model specifications are estimated from image I

itself and 15 textures in Fig. 4.3, and we use notation θname to represent them (HMT

or HMT-3S): θI
2, θD9, θD12, θD15, θD16, θD19, θD24, θD29, θD38, θD68, θD84, θD92, θD94,

2 In the following sections, θI is used to represent the WDHMM model specification
of the image to be segmented.
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Table 4.1: Numerical measurements of cluster divergence

Blind Evaluation
Criteria Definition Explanations

Shannon
Entropy

IShannon = −
∑N

i=1 pi ln(pi) Shannon entropy is used to evaluate the histogram of the WDHMM
likelihood values. If most likelihood values concentrate to a small
region, which means that different classes in image I are not separable
after being mapped to certain θ, the entropy value should be small.
On the other hand, if the likelihood values are uniformly distributed
or concentrate to several ranges which are associated with different
textures in image I, the entropy value should be large.

Renyi
Quadratic
Entropy

IRenyi = 1
1−α

ln(
∑N

i=1 pα
i ),

when α = 2, it is called Renyi
Quadratic entropy: IRenyi =

− ln(
∑N

i=1 p2
i )

Renyi entropy is a more general entropy measure developed by Renyi
[135]. It relates to Shannon entropy as: limα→1 IRenyi = IShannon.
When 0 < α < 1, IRenyi > IShannon; when α > 1, IRenyi <

IShannon [8]. It was suggested as an easier nonparametric estimator
for entropy in [129]. Renyi entropy and its derivation were used as
cluster divergence/similarity measurements [68, 75]. In this work,
Renyi entropy is directly computed on the WDHMMs likelihood val-
ues, which is not the same as Shannon entropy. After mapping an
image to a model θ, if likelihood values are centralized around several
centers with small variance, the Renyi entropy value is smaller than
those nearly uniformly distributed (large variance).

Supervised Evaluation

Kullback-
Leibler
distance

D(f, g) =
∫

f(x) ln
f(x)
g(x)

dx.

Symmetrized KLD: D̃(f, g) =
D(f, g) + D(g, f). If both
f and g are Gaussian den-
sities: f ∼ N(µf , σ2

f
), g ∼

N(µg , σ2
g), then D̃(f, g) =

σ2

f

σ2
g
+

σ2

g

σ2

f

+(µf−µg)2( 1
σ2

f

+ 1
σ2

g
)

The Kullback-Leibler distance (KLD) is a widely used divergence
measurement between two probability density functions f(x) and
g(x) [98]. The KLD is usually not a symmetric measurement and
can be symmetrized by adding D(f, g) and D(g, f) together. In this
work, the average inter-class KLD (AKLD) and minimum inter-class
KLD (MKLD) are used, where the former is the average of KLD of
all class pairs, and the latter shows minimum divergence between two
clusters. The Gaussian mixture is used to approximately model the
HMT likelihood value, where each component is related to a texture
in the image. Ideally the larger the KLD, more distinction between
clusters.

Cluster
Separation

CS = rmin
σmax

, where rmin =
1
2

mini6=j |µi − µj |, σmax =
maxi σi, µi and σi are the
mean and standard deviation
of the ith Gaussian density,
and µj and σj are the param-
eters of the jth density.

Cluster Separation (CS) is a specific and efficient divergence mea-
surement if each cluster are Gaussian distributed [91]. According to
its definition, CS explicitly considers not only the inter-cluster (be-
tween clusters) variability by the mean difference |µi − µj |, but also
intra-cluster (within a cluster) variability by variance σi. Apparently
a large CS value is relate to more cluster divergence.

θD112, θSand, and θMixture. Based on these mosaics and textures, we want to find a

model where the cluster divergence of image I could be maximized.

4.3.2 Numerical Criteria

To quantify the cluster divergence, two types of numerical criteria are involved:

one is the blind evaluation criteria without ground truth information of the label

field, including Shannon entropy of the likelihood histogram and Renyi entropy of the

likelihood values. The other is the supervised criteria that can only be obtained based

on the ground truth of the label field, including average inter-class KLD (AKLD),

minimum inter-class KLD, and Cluster Separation (CS) [91]. The definition and

description of these criteria are listed in Table. 4.1. In the experiment, the numerical

criteria are studied associated with the K-mean clustering accuracy at the coarsest
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Figure 4.4: Cluster divergence in different model specifications and spaces, where
model indices from 1 to 16 are corresponding to: mosaic image (Mosaics-
1 to -4 from top to bottom), D9, D12, D15, D16, D19, D24, D29, D38,
D68, D84, D92, D94, D112, Sand, and Mix. (a) Average KLD. (b)
Minimum KLD. (c) Renyi entropy. (d) Shannon entropy. (e) Cluster
separation. (f) K-mean clustering accuracy.

scale of WDHMMs.

Amongst these numerical criteria, the blind evaluation is more practical be-

cause ground truth information is not available in real segmentation cases. According

to the analysis in Table. 4.1, a large Shannon entropy indicates more cluster diver-

gence. However, the largest value appears when the likelihood values are uniform

distributed, which is not preferred in this case. In line with the analysis in Section

4.2, the desirable distribution is that the likelihood values are concentrated to several

cluster centers with small variances, where each cluster center is expected to be as-

sociated with a texture in image I. Clearly, only Shannon entropy is not enough to

provide reliable evaluation to cluster divergence. Therefore, we use Renyi quadratic
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Figure 4.5: Cluster divergence in different model specifications and spaces, where
model indices from 1 to 16 are corresponding to: mosaic image (Mosaics
5 to 8 from top to bottom), D9, D12, D15, D16, D19, D24, D29, D38,
D68, D84, D92, D94, D112, Sand, and Mix. (a) Average KLD. (b)
Minimum KLD. (c) Renyi entropy. (d) Shannon entropy. (e) Cluster
separation. (f) K-mean clustering accuracy.

entropy to explore additional information about intra-cluster variation of the likeli-

hood values. When Renyi quadratic entropy is computed directly on the WDHMM

likelihood values, less variation of the likelihood values leads to smaller entropy. It

is worth pointing out that only Renyi quadratic entropy still cannot give a trust-

worthy evaluation, either. If all the likelihood values are concentrated to one center

with small variance, which means the clusters are not separable, the Renyi quadratic

entropy might be also smaller. Generally, a preferred model specification should be

the one with a relatively larger Shannon entropy of the likelihood histogram and a

relatively smaller Renyi entropy of the likelihood values.

Besides the blind evaluation, supervised evaluation is also helpful to select

proper models in the experimental study. Table 4.1 lists the details of KLD and CS
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measurements. Here we would like to mention that it was justified that maximum

AKLD is equivalent to minimize the Bayes error (probability of misclassification)

[40], and consequently the MAP estimation. Therefore, if the Gaussian assumption

of the cluster distribution holds true, the model specification with the largest AKLD

provides nearly the best cluster separability in the sense of minimizing the Bayes

error.

4.3.3 Model Specification and Identification

In the experiment, each of the eight mosaics is mapped into 16 model specifica-

tions of HMT and HMT-3S as mentioned in Section 4.3.1. Both blind and supervised

cluster divergence measurements are calculated with respect to these models, and

Figs. 4.4 and 4.5 show all numerical results. Some model specifications are ignored

because they can barely fit the test image with extremely small likelihood values. Ex-

periments reveal that typically the mapping to θI leads to a large Shannon entropy,

a small Renyi entropy, and large KLD and CS values, which means the model of the

image to be segmented itself could be a choice for model specification. Although some

mappings to some other θ could also result in better cluster separability according to

the divergence measurements and K-mean clustering accuracy, other model specifica-

tions could not be always available in real applications, and mapping image I to its

own model θI is more practical. Furthermore, experimental results implicitly shows

that the goal of traditional unsupervised segmentation approaches, i.e., achieving a

good fitness between a model and data, is not always desirable in the soft-decision

step of the hybrid approach. The new goal is to find θ to maximize the separability

of different textures.

The cluster divergence in terms of both HMT and HMT-3S are also studied

in the experiment. Interestingly when image I is mapped to θI , quite often, larger

or similar cluster divergence can be obtained from HMT than that from HMT-3S.

Although HMT-3S characterizes texture behavior more completely by considering

dependencies across both wavelet subbands and scales, HMT provides more cluster

distinctions for different textures in an image. This is not unexpected. Recall that

HMT and HMT-3S are high dimensional Gaussian mixture, and their parameters
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are estimated by maximizing the model likelihoods via the EM algorithm. Since

a ML estimator is equivalent to a least square error estimator under the Gaussian

assumption of feature distribution, the ML estimation of a more complete character-

ization (HMT-3S) reduces the fitness disparities between different textures in image

I, resulting in less cluster divergence, i.e., likelihood disparities.

4.3.4 Summarization
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Figure 4.6: First row: histogram of likelihood values at the coarsest scale of HMT
model. Second row: histogram of likelihood values at the second coars-
est scale of HMT model. (a) Mosaic-2 (5 classes). (b) Mosaic-5 (4
classes). (c) Mosaic-6 (3 classes). (d) Mosaic-7 (3 classes)

To summarize, when segmenting image I, we suggest to map it into a HMT

model θI that is estimated from I itself via the EM algorithm. Four examples about

this mapping are illustrated in Fig. 4.6 by their resultant likelihood histograms ob-

tained at the two coarsest scales of HMT, where Mosaic-2, Mosaic-5, Mosaic-6, and

Mosaic-7 in Fig. 6.2 are used. In Fig. 4.6, the first row shows the likelihood his-

tograms obtained from 32× 32 likelihood values at the coarsest scale of HMT, where

each likelihood value is associated with a 16 × 16 image block. The second row is

the likelihood histograms of 64 × 64 likelihood values at the second coarsest scale of

HMT, and each likelihood value corresponds to an 8×8 image block. It is obvious that

more cluster separability could be achieved at the coarsest scale of HMT where the

computation of the likelihood values is more robust due to the larger spatial coverage
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of each node than those at finer scales. As we can see from the first row of Fig. 4.6, 4

clusters in Mosaic-5, and 3 clusters in Mosaic-6 and Mosaic-7 are well separated, and

a simple clustering is capable enough to obtain a raw segmentation map. 2 clusters in

Mosaic-2 are moderately overlapped, requiring more powerful clustering approaches

to separate them.

4.4 Hard-decision Step: Clustering

The cluster divergence of different textures in an image is determined as the

likelihood disparity in the soft-decision step. Accordingly, the goal of the hard -

decision step is to yield a raw segmentation map of the image by capturing the

likelihood disparity. This is realized by the clustering on HMT likelihood values. The

raw segmentation map provides training samples to estimate the WDHMMs for each

texture in the image so that the unsupervised segmentation can be converted into a

self-supervised one. Therefore the clustering result is essential to the segmentation

performance. In this section, we first review two frequently used clustering methods:

K-mean and the EM algorithm, then two new efficient clustering approaches are sug-

gested. The first is a context-based multiscale clustering (CMSC) method involving

local context and multiscale information, and the second is a multiple model cluster-

ing (MMC) approach where the cluster separability can be increased by introducing

multiple models to construct a multi-dimensional feature (likelihood values) space.

4.4.1 K-mean Clustering

In our previous work [149], K-mean clustering was used to identify training

samples for each class at the coarsest scale of WDHMMs. Assume there are N

different textures in an image, the goal of K-mean clustering is to minimize the

square error Je:

Je = min
N

N
∑

k=1

∑

z
(J)
l

∈Γk

‖z(J)
l − mk,J‖2, (4.11)

where z
(J)
l = f(yJ

l |θ) is the likelihood value of node l corresponding to class k at the

coarsest scale J of a WDHMM, and mk,J is the likelihood mean of class k at scale J .
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K-mean clustering is efficient when it is performed at the coarsest scale of WDHMM

with a small number of nodes. However, K-mean is a hard clustering approach, and

only works well if the clusters are hyperspherically distributed and well separated in

the feature space. In addition, if a node at the coarsest scale of a WDHMM is related

to an area consisting of different textures, it could be misclassified because K-mean

algorithm considers the distance between each likelihood value and cluster centers

without taking into account the weight of each cluster. In such cases, soft clustering

is more desirable.

4.4.2 EM Algorithm

The EM algorithm is a widely used soft clustering approach for finite mixture

distribution. When the HMT likelihood values are modeled as a finite Gaussian

mixture of N components, the EM algorithm aims at finding:

Θ̂j = arg max
Θj

p(z(j)|Θj), (4.12)

p(z(j)|Θj) =
N
∑

k=1

αk,jg(z(j)|Θk,j),

where z(j) is all likelihood values at scale j, αk,j is the weight of the kth class at scale

j, Θk,j is the parameters defining the kth component g(z(j)|Θk,j) of the Gaussian

mixture, and Θj = {αk,j,Θk,j , k = 1, ..., N} is the set of parameters defining the whole

mixture. The soft clustering process is composed of an assignment (Expectation) and

an update (Maximization) step:

〈1〉 Assignment Step: the probability that likelihood z
(j)
l is of class k can be calcu-

lated as follows:

pk(z
(j)
l ) =

αk,jg(z
(j)
l |Θk,j)

∑

i αi,jg(z
(j)
l |Θi,j)

,

g(z
(j)
l |Θk,j) =

1√
2πσk,j

exp[
−(z

(j)
l − mk,j)

2

2σ2
k,j

]. (4.13)

〈2〉 Update Step: the model parameters are estimated as:

αk,j =

∑

l pk(z
(j)
l )

∑

i

∑

l pi(z
(j)
l )

, i = 1, ..., N,
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mk,j =

∑

l pk(z
(j)
l )z

(j)
l

∑

l pk(z
(j)
l )

,

σ2
k,j =

∑

l pk(z
(j)
l )(z

(j)
l − mk,j)

2

∑

l pk(z
(j)
l )

, (4.14)

where z
(j)
l is the likelihood value of node l at scale j as defined in (4.6), mk,j is the

likelihood mean of class k at scale j, and σ2
k,j is the likelihood variance of class k. In

each iteration, the class probability is estimated based on a set of model parameters

by (4.13), and the model parameters are updated using (4.14). The EM algorithm can

efficiently handle the hyperellipsoidal distributed clusters if they are well separated,

and the K-mean clustering could be used as the initialization of the EM algorithm.

4.4.3 Context-based Multiscale Clustering

In the model based soft clustering, the estimation of cluster models consider-

ably depends on two factors. One is the feature representativeness, and the other is

the available feature number. Since each node at the coarsest scale of a HMT model

is associated with the largest area (2J × 2J pixels) of the original image compared

with other nodes at finer scales, the likelihood value of the node is more representa-

tive than those at finer scales, and consequently the clustering on them is considered

to be reliable in terms of the likelihood computation. Whereas, the limited number

of trainable nodes (N/2J × N/2J) may lead to inaccurate model estimation for each

component of the Gaussian mixture. Although each node at scale J − 1 is less repre-

sentative than those at scale J , resulting in less robust feature extraction (likelihood

computation), more trainable nodes (N/2J−1×N/2J−1) are available for each class at

scale J − 1. Hence we could improve the clustering accuracy by incorporating nodes

at both scale J and J − 1. Moreover, based on the Bayesian framework, the local

context information of the class label in the MSRF framework can be involved to fur-

ther improve the estimation accuracy of cluster models by encouraging the formation

of large homogeneous regions. In this work, a context-based multiscale clustering is

proposed by involving local context and clustering results at the two coarsest scales

of HMT.
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As illustrated in Fig. 4.1, the two coarsest scale of the MSRF model are asso-

ciated with the two coarsest scales of HMT. In order to simplify the multiscale fusion

process, we make two assumptions based on the MSRF framework: 1) given the class

label, an observation (likelihood value) is independent to others; 2) a parent block zJ
l

at scale J and its four children at scale J−1 have the same class label denoted by x
(J)
l

3.

If we use z
(J)
l to represent z

(J)
l and its four children: z

(J)
l = {z(J)

l , z
(J−1)
l,c |c = 1, 2, 3, 4},

a joint conditional density of them is:

h(z
(J)
l |x(J)

l ) = g(z
(J)
l , z

(J−1)
l,c |x(J)

l )

= g(z
(J)
l |x(J)

l )
4
∏

c=1

g(z
(J−1)
l,c |x(J)

l ), (4.15)

where z
(J−1)
l,c is the cth child of z

(J)
l at the finer scale J − 1, and g(.) is the class

conditional density defined as (4.13). The posterior class probability of z
(J)
l can be

estimated given its local context v
(J)
l at the same scale [58]. In this work, the local

2-order neighborhood system Nl are adopted to estimate the local context variable

v̂
(J)
l , which is initialized using an soft voting method:

v̂
(J)
l = arg max

k∈{1,...,N}

∑

t∈Nl

px(J)|z(J)(k|z(J)
t ), (4.16)

v̂
(J)
l is an approximation to the local non-causal neighborhood system and applied to

the context fusion as a causal prior. The contextual prior px(J)|v(J)(k|u) is the solution

that maximize the conditional density function:

pz(J)|v(J)(z(J)|v(J)) =
∏

l∈S(J)

N
∑

k=1

h(z
(J)
l |k)px(J)|v(J)(k|v(J)

l = u), (4.17)

where S(J) is the 2-D lattice that contains all individual samples z
(J)
l at the coarsest

scale. Equation (4.17) can be estimated by the Bayesian rule. The final estimation

of x
(J)
l is obtained by:

x̂
(J)
l = arg max

x
(J)
l

px(J)|v(J),z(J)(x
(J)
l |v̂(J)

l , z
(J)
l ),

px(J)|v(J),z(J)(x
(J)
l |v̂(J)

l , z
(J)
l ) =

px(J)(x
(J)
l )pv(J)|x(J)(v̂

(J)
l |x(J)

l )h(z
(J)
l |x(n)

l )
∑N

k=1 px(J)(k)pv(J)|x(J)(v̂
(J)
l |x(J)

l = k)h(z
(J)
l |x(J)

l = k)
,(4.18)

3 This assumption does not hold true around boundaries or within small textured
area, but a majority of the blocks around boundaries will not be involved to the
following texture model estimation after the training sample selection [149].
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Equation (4.18) has the same form as (4.8) except for two things. First, the cluster

density h(.) differs from the HMT density f(.). Second, in the clustering h(.) needs

to be updated in each iteration of the context fusion, while f(.) is fixed after it is

estimated in the supervised segmentation [32, 58]. The density h(z
(J)
l , v̂

(J)
l |x(J)

l ) =

pv(J)|x(J)(v̂
(J)
l |x(J)

l )h(z
(J)
l |x(J)

l ) is used to update h(z
(J)
l |x(J)

l ) during the context-based

fusion because it incorporates the multiscale and neighboring information that even-

tually amends the cluster models.

Overall, the proposed CMSC consists of two steps. In step 1, soft clustering

is performed independently at the two coarsest scales of the MSRF, then (4.15) is

computed for a ML classification at the coarsest scale of HMT. In step 2, the local

context at the coarsest scale of the MSRF is first initialized using (4.16), and the

ML classification results at the coarsest scale is fused with the context prior via an

iterative process. In this step, the conditional density function (4.17) is computed in

each iteration of context fusion, and is also used as stop criterion when it converges.

Special attention should be paid to the usage of the local context because small objects

could be removed during the fusion.

4.4.4 Multiple Model Clustering

In practice, it is found that the 1-D likelihood histogram is usually enough

for clustering. However, the distinction among some textures may not be effectively

manifested by WDHMMs. Two examples are shown in Fig. 4.7. Fig. 4.7 (a) is the

1-D HMT likelihood histogram generated by mapping Mosaic-3 (5 classes) into θI .

It can be seen that three clusters are well separated, whereas two are overlapped.

When the likelihood disparity of different textures is too small to be captured, the

above 1-D clustering methods could not work well. In clustering research, one of the

most frequently used approaches to increase the cluster separability is to construct a

higher-dimensional feature space. In this work, we propose a multiple model clustering

method as shown in Fig. 4.8. By constructing a multidimensional feature (likelihood

values) space by mapping image I into different HMT model specifications θi, i ∈
{D16, D19, . . . ,Mixture}, better cluster separability is expected. For instance, after
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Figure 4.7: First row: Mosaic-3. Second row: Mosaic-8. (a) One dimensional
likelihood histogram. (b) Two dimensional likelihood distribution.

adding one dimension of HMT likelihood value that is obtained by mapping Mosaic-

3 into θD84, two overlapped clusters in Fig. 4.7 (a) are more separable as shown in

Fig. 4.7 (b). Another example of Mosaic-8 is shown in the second row of Fig. 4.7. It

can be seen that two clusters overlaps significantly in the 1-D likelihood histogram.

Although K-mean clustering can split two clusters partially, considerable samples are

misclassified. After incorporating the likelihood value that is obtained by mapping

Mosaic-8 into θD84, the higher clustering accuracy is achieved by simply using K-

mean clustering even though K-mean cannot well handle cigar-shaped clusters [113].

A comparison of MMC accuracy to other mentioned clustering methods is shown in

Table 4.6.1 of Section 4.6.1.

How to choose additional model specifications to construct 2-D or higher di-

mensional likelihood spaces is another interesting issue. Experiments show the mod-

els that have large cluster divergence measurements could be helpful to increase the

cluster separability in higher dimensional feature (likelihood) spaces. In practice, the
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selection of model specification can be only based on the blind evaluation results of

the cluster divergence, namely, Shannon and Renyi entropy. Although MMC is not

always necessary if 1-D likelihood histograms show enough cluster divergence, it pro-

vides an alternative approach that could further improve the clustering accuracy. Our

studies show that the textures in Fig. 6.2 usually show hyperellipsoidal distributed

clusters, and some of them are very close to each other in the feature space. If we

want to fully explore the cluster separability from multiple model specifications, more

complicated clustering methods should be considered.

4.5 Dual-model Segmentation Framework

After the study of the soft-hard hybrid decision approach, we now discuss the

whole unsupervised segmentation framework. Since HMT model most often provides

more cluster divergence, as well as its faster training process than HMT-3S, it is

used in the hybrid decision to generate a raw segmentation map. Whereas, since

each texture should be modeled more completely for the following self-supervised

segmentation based on the raw segmentation map, HMT-3S is taken into account

at this time. Therefore, a joint utilization of both HMT and HMT-3S results in a

dual-model unsupervised segmentation framework, where the cluster divergence of

textures is captured by HMT models, and each texture is remodeled using HMT-3S

after the clustering step. The structure of the framework is shown in Fig. 4.9. It can

be seen that the the hybrid soft-hard approach is well embedded into the dual-model

97



segmentation framework.
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Figure 4.9: The proposed dual-model unsupervised segmentation framework.

In this segmentation framework, selecting reliable training samples (nodes) at

the coarsest scale of HMT is another important step. It ensures that the training

samples are only selected from the large homogeneous regions because the misclassi-

fied samples or those around texture boundaries will cause inaccurate texture model

estimation. A sample is selected if a majority of its 2-order neighborhood have the

same class label as it. As shown in Fig. 4.9, the iteration process could be repeated

several times until no obvious change appears in final segmentation results.

4.6 Simulation Results and Discussion

The synthetic mosaics in Fig. 6.2 and some real images are used in the simu-

lation, where each image is decomposed into 4 scales by the Haar wavelet transform.

After building a HMT model for each image, each node at the coarsest scale of HMT

corresponds to an image block of 16 × 16 pixels. Only the coarsest and the second

coarsest scale of HMT are involved in the EM algorithm and CMSC. All these clus-

tering methods are computational efficient due to the small number of nodes at the

two coarsest scales of HMT (32 × 32 at the coarsest scale and 64 × 64 at the second

coarsest scale). The overall processing time of a test image is typically less than one

minute on a computer of Pentium-4 CPU (2.2GHz).
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4.6.1 Synthetic Mosaics

The synthetic mosaics are shown in Fig. 6.2. Three numerical criteria are used

to evaluate the segmentation performance [58]: Pa is the percentage of pixels that

are correctly classified, showing the overall segmentation accuracy, Pb the percentage

of boundaries that coincide with the true ones, showing boundary specificity, and

Pc the percentage of boundaries that can be detected, showing boundary sensitivity.

The blockwise clustering accuracy at the coarsest scale of HMT is denoted by P̃a.

A comparison of the clustering accuracy of the K-mean algorithm, EM clustering,

CMSC and MMC (2 model specifications) methods is shown in Table 4.6.1 based

on the synthetic mosaics. The percentage in parentheses is the increasing (+) or

decreasing (-) in P̃a benchmarked against the K-mean clustering accuracy, and the

highlighted bold fonts indicate the highest value in each test set.

Table 4.2: Overall clustering accuracy (P̃a) at the coarsest scale of HMT (%).

Accuracy(%) K-mean Soft Clustering CMSC MMC (K-mean)
Mosaic-1 78.71 78.81(+0.10) 84.38(+5.67) 80.37(+1.66/Sand)
Mosaic-2 78.71 79.69(+0.98) 90.33(+11.62) 79.88(+1.17/D112)
Mosaic-3 64.36 71.58(+7.22) 73.63(+9.27) 85.74(+23.53/D84)
Mosaic-4 88.38 87.30(-1.08) 91.60(+3.22) 89.65(+1.27/Mix)
Mosaic-5 92.29 92.38(+0.09) 94.14(+1.85) 92.09(-0.2/Sand)
Mosaic-6 93.16 90.43(-2.73) 90.63(-2.53) 94.04(+0.88/D112)
Mosaic-7 92.29 93.26(+0.97) 95.02(+2.73) 93.36(+1.07/Sand)
Mosaic-8 73.92 73.63(-0.29) 80.08(+6.16) 77.83(+3.91/D84)

Table 4.3: Segmentation performance comparison (I: K-mean, II: CMSC, III:MMC).

Numerical Results Pa (Accuracy%) Pb (Boundary Specificity%) Pc (Boundary Sensitivity%)
Mosaics I II III I II III I II III
Mosaic-1 96.50 96.46 96.71 39.03 32.25 42.21 62.79 57.61 63.51
Mosaic-2 98.28 98.87 98.72 40.39 49.38 45.55 52.64 58.10 56.20
Mosaic-3 86.78 89.49 94.56 8.06 35.29 35.33 43.59 44.81 67.39
Mosaic-4 96.59 98.31 97.74 21.28 30.72 25.77 47.77 54.58 55.09
Mosaic-5 99.06 99.17 99.08 46.07 52.27 49.05 62.26 63.73 62.23
Mosaic-6 98.61 94.51 98.65 32.28 21.29 32.69 37.22 43.61 39.01
Mosaic-7 98.72 98.81 98.80 39.05 44.47 40.16 59.78 60.85 61.58
Mosaic-8 98.18 98.35 98.46 16.59 8.78 21.73 25.02 16.83 32.14

As illustrated in Table 4.6.1, the EM clustering yields similar performances or

slight improvements compared with K-mean. Since most textures in the test images

are hyperellipsoidally distributed in feature (likelihood) spaces, the EM algorithm

should learn the cluster model better if clusters are not very close to each other. The

EM algorithm is also used to initialize the CMSC approach. The iteration times of

context-based fusion in CMSC is adaptively controlled by the convergence of (4.17).

CMSC outperforms K-mean on 8 synthetic mosaics except for Mosaic-6. This indi-

cates that the effectiveness of context information as denoted in (4.18). MMC usually
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(a) (b) (c) (d) (e) (f)

Figure 4.10: Synthetic mosaics and simulation results. (a) Mosaics. (b) Ground
truth. (c) K-mean clustering results. (d) CMSC results. (e) MMC
results. (f) Final pixel level segmentation results.

can improve clustering accuracy by increasing the dimension of feature (likelihood)

spaces. An example of Mosaic-3 is shown in Fig. 4.7 (a). There are 5 textures in

this synthetic mosaic, and textures D9 and D24 are highly overlapped in the 1-D

HMT likelihood histogram. K-mean and EM algorithm merely classify them as one

cluster, resulting in four clusters. CMSC cannot classify these two textures either

because the initial EM algorithm cannot identify their disparity. By adding a dimen-

sion of likelihood values obtained by mapping Mosaic-3 into θD84, all five textures

can be well segmented. Moreover, we would like to mention that sometimes the 4-

scale DWT may not be sufficient to capture large scale texture behaviors, resulting

in inadequate model representation. Accordingly, increasing the DWT scale could be

necessary when significantly large scale texture behaviors exist.

Table 4.6.1 compares the final pixel level segmentation performances in terms

of different clustering methods. It can be seen that sometimes the improvement in

P̃a cannot increase the final segmentation accuracy. There are three possible reasons:
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(a) (b) (c) (d) (e) (f)

Figure 4.11: Synthetic mosaics and simulation results. (a) Mosaics. (b) Ground
truth. (c) K-mean clustering results. (d) CMSC results. (e) MMC
results. (f) Pixel level segmentation results.

(1) The total number of nodes at the coarsest scale of HMT is small. A 2% im-

provement of P̃a means about 20 more correctly classified nodes. If the number

of classes is more than 4, the average increasing of correctly classified training

nodes for each class is less than 5, which might be negligible, contributing little

to the following HMT-3S model estimation and the final pixel level segmenta-

tion.

(2) If the nodes at the coarsest scale of HMT are not representative enough, they

could contribute differently to the HMT-3S model estimation that is related to

the final pixel level segmentation accuracy. Accordingly, although more nodes

could be correctly classified by CMSC or MMC, the final segmentation accuracy

could be improved little or even be worse. This deficiency could be mitigated

by increasing the DWT scales, making each node more representative, or by

developing new criteria to select training samples, which might be an interesting

topic in the future.
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(3) CMSC tends to generate large homogeneous regions, where the location of the

texture boundary might not be accurate. Training sample selection approach

may not remove all the misclassifications located on the boundaries, and the

accuracy of pixel-level segmentation will be affected by those remained misclas-

sifications.

The clustering results and the final pixel level segmentation results of 8 syn-

thetic mosaics are shown in Figs. 4.10 and 4.11. The five columns refer to, respectively,

the original synthetic mosaics, the ground truth of class label, the K-mean clustering

results, the CMSC results, the MMC results, and the pixel level segmentation results.

All results in Table 4.6.1 and Figs. 4.10 and 4.11 are obtained with one iteration only.

It is shown that a good clustering result is essential to the segmentation performance.

Better results could be obtained with more iterations. Because some images do not

have much dependency among their neighborhoods at the coarsest scale of the image

pyramid, especially the multispectral satellite imagery or Synthetic Aperture Radar

(SAR) imagery, the local context fusion may not be helpful. However, if there ex-

ist homogeneous textures, the improvement from the local context fusion could be

prominent.

4.6.2 Real Images

The proposed segmentation algorithm is also tested on five real images of

three types: aerial photo, indoor, and outdoor pictures as shown in Fig. 4.12. The

rows refer to the original real images, the clustering results at the coarsest scale of

the HMT model using K-mean, CMSC or MMC approach, and the unsupervised

segmentation results, respectively. The number of clusters in each image is fixed to 3

classes. Although the texture distribution in these images are not very homogeneous

and non-uniform, the proposed method still yields good performance.

Vehicle and Peninsula are aerial photo. Both K-mean and CMSC performs

well on them. We test MMC on Vehicle to demonstrate its applicability to real

images. After mapping Vehicle into the 16 HMT model specifications mentioned
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(a) (b) (c) (d) (e)

Figure 4.12: Unsupervised segmentation of real images. (a) The clustering (MMC)
and segmentation results of Vehicle image. (b) The clustering
(CMSC) and segmentation results of Bridge image. (c) The clus-
tering (CMSC) and segmentation results of Sofa image. (d) The clus-
tering (K-mean) and segmentation results of Zebra image. (e) The
clustering (CMSC) and segmentation results of Peninsula image.

in Section 4.3.1, the likelihood values obtained in θI and θMixture are chosen to con-

struct a 2-D feature space. The clustering and final segmentation results indicate the

usefulness of MMC. Bridge and Zebra are outdoor pictures, and Sofa is an indoor

picture. The man-made structures, natural plants and animals in these pictures can

all be well segmented out. In the simulation, we found that all mentioned clustering

approaches mentioned can produce semantically correct segmentation maps. Usually

for those with large homogeneous regions, such as Sofa, the CMSC could perform

better. For the images with small homogeneous regions, such as Zebra, K-mean is

preferred to preserve more details.

4.7 Summary

In this chapter we proposed a new unsupervised texture segmentation method

based on the WDHMMs. First a hybrid soft-hard decision approach is suggested to
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obtain an initial blockwise segmentation map at the coarsest scale of a WDHMM.

This map is used to identify training samples for the following self-supervised seg-

mentation. In this hybrid approach, the soft-decision step determines the cluster

divergence measured by the likelihood disparity, and the hard -decision step captures

the likelihood disparity to generate the raw segmentation map via clustering. Specifi-

cally, in the soft-decision step, the image to be segmented is mapped into a WDHMM,

and the experimental study show that the model generated from the image itself usu-

ally provides better cluster separability. In the hard -decision step, two new clustering

methods are developed and show better performance compared with K-mean and EM

algorithm in the simulation. Furthermore, the study of the cluster divergence shows

that HMT has comparable or better cluster separability than HMT-3S with respect

to a given image. Therefore a dual-model unsupervised segmentation framework is

suggested, where the raw segmentation is obtained based on the HMT model, and

each unknown texture in the image is modeled by HMT-3S for the self-supervised seg-

mentation. Simulation results show that the proposed segmentation method performs

well on complex synthetic mosaics and real images, and the segmentation results of

the synthetic mosaics are close to the supervised case.

Given the framework of the unsupervised segmentation algorithm, there are

two more interesting issues that might deserve further pursuing. First, Although the

orthogonal Haar DWT is used in this work and show very good performance, it is

expected that the implementation of redundant wavelets would allow for a better

segmentation performance. Second, besides WDHMMs, the proposed hybrid soft-

hard decision is also applicable to other statistical models if there is a closed form for

likelihood computation.
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Chapter 5

NONPARAMETRIC SUPERVISED SEGMENTATION OF

SATELLITE IMAGERY

The classification of remotely sensed imagery into different areas for Land Use

Land Cover (LULC) analysis has been an important topic in past decades. Con-

ventional parametric statistical model-based methods show their efficiency in such

problems [48, 93]. In recent years, a variety of works have used multisource geospa-

tial data to facilitate the classification of multispectral imagery [85, 82, 147, 17].

Correspondingly, people found that it may not be appropriate to model multisource

data by traditional multivariate statistical models [85, 82, 14, 105, 10]. Therefore,

nonparametric methods should be considered. In this work, we study nonparametric

machine learning approaches for mapping United States Department of Agriculture

(USDA)’s Conservation Reserve Program (CRP) tracts based on satellite imagery,

which is a special and complex problem of LULC analysis. CRP is a program that

encourages farmers to plant long-term resource conserving covers to improve soil, wa-

ter and wildlife resources [1]. Very little work has been done for CRP mapping so far,

and recent work in [51] requires considerable human interpretation and intervention.

Compared with the traditional LULC applications, CRP mapping has several

major characteristics that make it a complicated problem. (1) CRP mapping is a

2-class classification problem (CRP and non-CRP) of complex rural area where each

class is a mixture of many different land cover types, resulting in highly overlapped

clusters in the spectral spaces of satellite imagery. Therefore, representative feature

sets and powerful data classifiers are necessary. (2) Existing CRP reference data

provided by Natural Resources Conservation Service (NRCS) is not very accurate

or up-to-date, and we need a specific way to select reliable training samples and to
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evaluate the mapping performance from the present reference data. Moreover, based

on the mapping results, we can also correct some errors in the present reference data.

(3) CRP mapping is an uneven classification task where CRP tracts usually consist of

less than 10% over all study areas. Accordingly, methods that favor high recall rates

should be considered. (4) Since CRP mapping is a nationwide program, any CRP

mapping tools developed should be computationally efficient with minimum human

involvement.

Basically, CRP is a man-made program that possesses strong correlation with

geographic information system (GIS) data, such as slope, elevation, and distance-

to-waterbody, therefore the importance of multisource GIS data is prominent in the

CRP mapping application. For example, if a significant number of training samples

are available, the cluster separability of different classes can be increased in a higher

dimensional feature space constructed from multisource data. The work in [17] shows

the advantages of using neural networks for the classification of complex rural areas.

In this work, we study the decision tree classifier (DTC) and support vector machine

(SVM) [155] for CRP mapping. The principle of the DTC is to break up a complex

classification problem into a union of several simpler classification issues. The SVM

constructs a linear classification hyperplane that maximizes the margin between two

different training patterns in the original feature space or a high dimensional feature

space generated by kernel methods [155, 15, 35, 19]. In our recent work [149], both the

DTC and SVM were used to implement CRP mapping based on multisource geospa-

tial data, where the CRP reference data was used as ground truth for performance

evaluation. However, there is usually no significant mis-location of CRP tracts in the

reference data; therefore, some locality error around CRP boundaries could deterio-

rate the purity of training sample, and invalidate the performance evaluation. In this

work, we use a specific approach to refine the classifier training and to evaluate the

performance of CRP mapping.

Since the CRP mapping is an uneven 2-class unsupervised classification prob-

lem, besides the overall classification accuracy, precision (user’s accuracy) and recall

(producer’s accuracy) are used to evaluate the overall CRP mapping performance. In

our previous work [149], we found that pruned DTCs and SVMs favor high precision,
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leading to low recall if the classification accuracy cannot be increased significantly.

However, failing to detect existing CRP tracts is more undesirable than false CRP

tracts when we deal with problems related to CRP mapping, e.g., compliance monitor-

ing; thus, high recall outweighes high precision in practical CRP mapping. Therefore,

we propose a new DTC pruning method to increase recall. We also study two relax-

ation approaches for the SVM to improve recall specifically. Moreover, we propose a

localized and parallel classification framework to implement CRP mapping for large

areas efficiently and effectively.

More details of the above issues will be discussed in the following sections.

In Section 5.1, USDA’s CRP program and the study area will be introduced. The

DTC and the SVM are briefly described in Section 5.2. In Section 5.3, the localized

framework is proposed based on the multisource geospatial data. Section 5.4 studies

how to improve the sensitivity of the DTC and the SVM for CRP mapping. Section

5.5 shows and discusses simulation results. Conclusions are drawn in Section 6.4.

5.1 The CRP Program and Study Area

This work is originally motivated by the need for mapping USDA’s CRP tracts

from remotely sensed data. The CRP is a provision of the 1985 Farm Bill that

seeks to convert highly erodible lands with active crop production to permanent

vegetative cover [23]. It is a voluntary program that uses financial incentives to

encourage farmers to enroll in contracts of 10-15 years in duration to remove lands

from agricultural production. Enrolled lands must be highly erodible, contribute

to a serious water quality problem, or provide substantial environmental benefits if

devoted to certain conservation uses. USDA’s Farm Service Agency (FSA), in-charge

of administering the CRP signups and enrollments, evaluates the fields submitted by

the producers based on the Environmental Benefit Index (EBI) score accumulated by

each farm applicant (FSA 2003). This process implicitly associates CRP enrollments

with multisource GIS information. Depending on the overall applicants, a cutoff

EBI is identified, above which farms get selected for long-term retirement with rental

benefits. Starting in 1998, with the initial CRP contracts beginning to expire and a

nearly $1.6 billion new enrollment in 2003, it is imperative for FSA to evaluate and
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(a) (b)

Figure 5.1: The study area in Texas County, Oklahoma (February, 2000): (a) Land-
sat TM image band 4, which is of size 552 × 523 pixels, corresponding
to an area of 260km2. (b) CRP reference data.

manage this program based on accurate and detailed digital CRP maps, which are

usually not available or need to be updated.

Currently, there is no standardized approach to keeping track of existing CRP

tracts. FSA relies on aerial photography to manually delineate CRP tracts on a

county level basis. These aerial photographs are at the section level, and provide little

information about the CRP from a landscape perspective. Furthermore, when NRCS

drafts the CRP reference data, the possible mis-locality and spatial misalignment

of CRP tracts deteriorate the reliability and usability of these reference data [51].

Therefore, the goal of this work is to develop an automatic tool for accurate CRP

mapping based on the existing CRP reference data provided by NRCS.

The study area of this work is located in Texas County, Oklahoma as shown

in Fig. 5.1 (a). This area (552 × 523 pixels) is about 260km2, where the accurate

CRP mapping framework is being developed and tested. Fig. 5.1 (b) illustrates the

imperfect CRP reference data of this area. Texas County is one of the most intensively

farmed counties in Oklahoma. Because of the underlying water-rich Ogallala Aquifer,

irrigated farming is extensively practiced in the area for corn, sorghum, cotton, and

soybeans cultivation. Due to the large scale of agriculture for many years, Texas

County also ranks first in the state for CRP enrollments. Therefore, it is a salient

region for the study of CRP mapping.
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5.2 Machine Learning Approaches

Machine learning is the ability of a machine to recognize patterns that have

occurred repeatedly and to improve its performance based on past experiences. It is

a typical machine learning problem to acquire general concepts for two different land

covers, i.e., CRP and non-CRP, from given training samples. The target function of

CRP mapping is defined as:

Y = f(X), Y ∈ {0, 1}, (5.1)

where X is the multisource geospatial data, f(·) is the target concept to be learned,

and Y is an indicator where 1 can be defined as CRP and 0 as non-CRP. Both DTC

and SVM are inductive inference methods, and their learning goal is to determine

a hypothesis of the target concept that best fits the training data. The DTC has

shown advantages in real remote sensing (RS) applications for more than ten years

[82, 9, 145, 64, 41, 78]; however, considering that the overfitting problem is met by the

DTC with poor generalization performance, the SVM is suggested as an alternative

to the DTC. Recent research on the SVM in RS applications have shown impressive

classification results [73, 72, 71, 80, 118, 16]. In this work, both the DTC and SVM are

used for CRP mapping as a semi-supervised classification issue involving multisource

geospatial data. Particularly, the generalization performance of the two machine

learning approaches is carefully studied to produce accurate CPR maps with high

recall rates.

5.2.1 Decision Tree Classifier (DTC)

The DTC is a tree-structured classifier built from a training data set, rep-

resenting rules underlying training data with hierarchical and sequential structures

that recursively partition the data. In this work, the C4.5 DTC is applied to CRP

mapping [132]. It is constructed based on the information gain ratio criterion, which

measures the increase in class purity. Assuming a set of samples S that contains k

classes with probability p1, ..., pk, if S is partitioned into n classes based on a test, the
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information gain ratio is defined as:

Gain-ratio(S) =
Gain(S)

−∑n

i=1
|Si|
|S|

log( |Si|
|S|

)
, (5.2)

where

Gain(S) = Info(S) −
n
∑

i=1

|Si|
|S| Info(Si),

and

Info(S) = −
k
∑

i=1

pi log(pi).

In equation (5.2), |Si| is the number of samples in subset i and |S| is the number of

samples in the set S. Gain(S) is the gained information of the target function that

is obtained from the test with selected features, and Gain-ratio(S) is a normalized

information gain so that the bias of trivial partition could be avoided [131]. Beginning

from the root node, the C4.5 performs a top-down greedy search through the complete

hypothesis space until the stop criterion is met. In this work, the tree stops growing

if there are less than five samples in a node.

5.2.2 Support Vector Machine (SVM)

SVMs are newly developed learning methods [155]. Given a set of training

samples from two classes: {(x1, y1), · · · , (xl, yl)}, x ∈ Rn, y ∈ {1,−1}, the goal of

SVM learning is to determine a classification hyperplane induced from the training

samples that maximally separates classes, or equivalently, to minimize ‖w‖2

2
, subject

to

yi(w · xi + b) − 1 ≥ 0, yi ∈ {1,−1}, ∀i. (5.3)

where w and b are parameters of the hyperplane. If the training data are linearly

nonseparable, the hyperplane can be obtained by minimizing:

C

l
∑

i=1

ξi +
1

2
‖w‖2, (5.4)

subject to :

yi[(w · xi) + b] ≥ 1 − ξi, (5.5)

110



where ξi ≥ 0, i = 1, ..., l are called slack variables, and C indicates the tradeoff

between the complexity of classification hyperplane and the ratio of nonseparable

data samples.

In SVM learning, kernel methods are often used to map the data vectors in

the input space into a higher dimension feature space, then the construction of a

linear classification hyperplane in this high dimension feature space is equivalent to a

nonlinear decision hyperplane in the input lower dimension space [15, 19]. There are

several often used kernel functions, such as the radial basis function (RBF):

K(x,xi) = exp(−|x − xi|2/2σ2), (5.6)

where σ is related to the function width. In this work, we use a nonlinear SVM

with a RBF kernel, and a SVM software SVMlight [88] is used to perform training

and classification of geospatial database. SVM parameters, i.e., σ in RBF kernel

and regularization factor C, are usually determined by cross validation or experience

[30, 139].

5.2.3 Performance Measurements

The generalization performance is one of the most important issues of machine

learning approaches because it shows how well the learned hypothesis approximates

the true target concept. Regarding the CRP mapping performance, three measure-

ments are used in this work: classification accuracy (Pa) is defined as the percentage

of pixels that are correctly classified in terms of CRP and non-CRP. Precision (Pb)

indicates the percentage of detected CRP pixels that are true ones. Recall (Pc) is

the percentage of true CRP pixels that can be detected. Recent research reveals

that any classification system that performs better than a random decision exhibits a

tradeoff between precision and recall if classification accuracy is a constant [4]. This

implicates that if we cannot further increase classification accuracy, we could only

improve precision by sacrificing recall, and vice versa. A further increase of precision

and recall could not happen simultaneously unless classification accuracy could be

increased, which is difficult and costly. Therefore, searching for a proper tradeoff
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is more realistic in the case of CRP mapping. According to [4], a tradeoff between

precision and recall is formulated as:

λPc + (λ + Pa − 1)Pb = 2λPbPc, (5.7)

where λ indicates the probability that a randomly selected sample belongs to the

class of interest. Since CRP mapping is an uneven classification problem, where CRP

tracts might cover less than 10% of a whole study area, i.e., λ ≈ 0.1 in most cases, it

is necessary that the trained classifiers can achieve high Pc for testing data. We will

discuss how to increase Pc for DTC and SVM in Section 5.4.

5.3 Classification Framework

5.3.1 Geospatial Database

The geospatial database is composed of the Landsat TM satellite imagery,

vegetation indices, texture information, and GIS data, which are all in raster format.

Combined with LULC GAP data and CRP reference data, there are a total of 40

layers as shown in Fig. 5.2. During CRP mapping, layer sets A and D are original

inputs, and layer sets B and C are automatically generated by the system during run

time.

CRP Reference Map

Land Cover/Land Use Map

GIS Data

Texture Information of Imagery

Derived Features from Imagery

Multi-spectral Satellite ImageryA

B

C

D

E

Figure 5.2: Multisource geospatial database.

Layer set A consists of the Landsat TM multispectral images obtained in

February and June of year 2000 with a resolution of 30m × 30m. Since Band 1

is prone to scattering, we do not use it in the database. Bands 2, 3, 4, 5, and 7 for the

two seasons are used in the study, resulting in the first 10 layers of the database from

top to bottom. All layers were geometrically and radiometrically corrected before
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being applied to the classification. The accuracy of the geometric correction is 0.5

pixels, and the technique outlined in [26] is used to perform radiometric correction.

Layer set B contains vegetation indices that include the Normalized Vegetation

Difference Index (NDVI), and band ratios TM4/TM3, TM5/TM2, TM5/TM4. The

NDVI for Landsat TM is computed as:

NDV I =
TM4 − TM3

TM4 + TM3
, (5.8)

where TM3 and TM4 are spectral values in bands 3 and 4, respectively. The NDVI

is calculated from the imagery in each season and the largest one is chosen as the

final value. It can be used to discriminate different vegetation cover types. Band

ratio TM4/TM3 (Ratio vegetation index) is widely used for vegetation discrimina-

tion. Ratio TM5/TM2 is helpful to discriminate different vegetation types [107].

TM5/TM4 (Ratio drought index) can provide more information of plant water con-

tent [33], which is useful to discriminate irrigated crops from relatively dry CRP

grasses. Totally, there are 7 layers in Layer set B that are composed of NDVI (1

layer), and three band ratios of two seasons (6 layers).

Layer set C consists of 20 layers of texture information, including local mean

and local variance of each band in each season. The local mean and local variance

are computed on the spectral value within a 3 × 3 window. The texture layers are

followed by GIS data of Layer set D, including elevation that ranges from 881 to 986

feet, slope that is from 0 to 30, and distance-to-waterbody with the extent from 0 to

3230 feet. The LULC GAP data could be used for more robust image analysis with

respect to different cover types. The bottom layer is the reference data for training

and/or evaluation purposes.

5.3.2 Feature Extraction

The geospatial database is directly applied to the DTC that generates a set

of rules that are easy to interpret and understand. On the other hand, the database

needs to be pre-processed before implementing SVM. First, it is necessary to normalize

each data layer to be zero-mean and unit variance. This normalization can balance
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Figure 5.3: (a) 3-D feature spaces of CRP and non-CRP regions. (b). Overlap of
CRP species in 3-D feature spaces, where species type 1 is Old World
Bluestem, type 2 is Plains Bluestem, type 3 is WW Spar, type 4 is
Ganada, type 5 is Plains Bluestem (1986), type 6 is Ganada (1986),
type 7 is Old World Bluestem (1987), type 8 is Caucasian (1987), type
9 is Plains Bluestem (1987), type 10 is Plains (1988), type 11 is Plains
(1989), type 12 is WW Spar (1989), type 13 is Old World Bluestem
(1990), and type 14 is Native Mixture (1990).

the relative importance between different layers. Second, since the Landsat TM

spectral channels and the derived features contain highly redundant information, it is

necessary to reduce the feature redundance via feature selection or extraction. In this

work, we use discriminant analysis feature extraction (DAFE) [65] to extract feature

subsets from 5 multispectral image bands, 5 layers of local mean, as well as 5 layers of

local variance for each season separately. In each set of 5-layer data, the three layers

of extracted features with the largest eigenvalues are preserved. As the result, there

are 9 layers for each season and totally 18 layers for two seasons. Including 7 layers

of vegetation indices and 3 GIS layers, there are totally 28 layers for SVM-based

CRP mapping. Since DAFE only works well when CRP and non-CRP are normally

distributed, it might not be able to produce the most discriminative features. It is

expected that more effective features could be obtained by using advanced feature

extraction methods [65, 100].

5.3.3 Localized Data Classification

When selecting training samples, a straightforward way is to select samples

from the whole study area. Nevertheless, it is worth pointing out that there are more
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than 30 different CRP species in Texas County, Oklahoma, and there are 14 CRP

species in the study area shown in Fig. 5.1. On the other hand, there exist many

other cover types in non-CRP regions as well, such as crop, urban, and pasture, etc.

For example, the 3-D spectral feature distributions of both CRP and non-CRP in the

study area are illustrated in Fig. 5.3 (a). It can be easily observed that the spectral

features of CRP and non-CRP highly overlap in bands 3, 4, and 7.

Hence, CRP mapping is actually a multi-class classification problem, where

CRP and non-CRP areas are composed of many cover types. Both DTC and SVM

approaches can be applied to multi-class problems. Specifically, in the case of CRP

mapping, multi-class DTC or SVM approaches would involve the training and clas-

sification of each CRP species individually. However, since CRP mapping is a large

scale problem, multi-class DTC training could lead to a complex and inefficient tree

structure with very large size even after pruning. There are two typical multi-class

SVM methods. One is the “one-against-one” [139], where the SVM training and clas-

sification are based on each pair of cover types individually. This approach has some

problems: (1) Detailed cover types are not available. (2) Certain CRP species are

mixed grasses, which also overlap in the feature space as shown in Fig. 5.3 (b). (3)

The number of training samples is very large because they should cover all possible

ranges of elevation, slope and distance-to-waterbody. This will increase the computa-

tional load tremendously. The other multi-class SVM method is the “one-against-all”

[12], where a SVM is trained with samples from a CRP species as the positive class,

and with samples of all other cover types as the negative class. Still its practical ap-

plication is also limited by above three problems. More detailed discussions of these

methods can be found in [81].

Generally, a multi-class DTC or SVM is not efficient enough to deal with the

large scale data sets. In this work, we suggest a localized block-based technique to

achieve automatic CRP mapping efficiently. The proposed technique splits the study

area into small blocks, and the DTC or SVM training and classification are performed

within each block independently. Then the outputs of all blocks are combined to

rebuild the whole CRP map. The classification framework is shown in Fig. 5.4.
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Figure 5.4: Block-based (Localized) Classification framework.

We have four major arguments to support the proposed block-based operation.

(1) Less cover types exist in each block and the overlap between CRP and non-CRP

areas in the feature space could be reduced. (2) Reliable training samples (above 50%

of the true CRP areas) are usually available from the reference data in each block if

the block size is sufficiently large. (3) Since CRP mapping is performed in each block

individually, training and classification processes are very efficient. Furthermore, the

block-based operation leads to a parallel classification structure. For example, when

20% of CRP and non-CRP areas are used for training and the remaining areas are

are used for testing, it takes more than half an hour (Pentium IV 2.2GHz CPU, 1GB

memory) on the whole study area. If the study area is split into 25 blocks of size

around 100 × 100 pixels, the time for SVM training and classification in each block

is about 10 seconds, and 30 seconds for the DTC. If we have a parallel computing

architecture, the whole area can be processed efficiently.

The proposed block-based technique assumes independence across all local

blocks. In reality, each block is not completely independent to other blocks. We

manifest this fact by randomly selecting five blocks. Three different block sizes are

studied: 50 × 50, 100 × 100, and 150 × 150 pixels. The SVM is trained from each of

five blocks, and it is used to classify all five blocks. Simulation results are listed in

Table 5.1, where NA denotes no sample is detected as CRP. It is shown that a trained

SVM only performs well in the block where it is trained. Since CRP mapping is an

uneven classification problem, Pa = 90% does not mean a good performance without

high Pb and Pc.
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Table 5.1: The study of inter-block dependency via training-classification process
at 20% sampling rate.

50 1 2 3 4 5
Pa Pb Pc Pa Pb Pc Pa Pb Pc Pa Pb Pc Pa Pb Pc

1 96.95 94.47 98.81 74.75 0.0 0.0 71.32 45.07 36.36 44.69 52.0 1.56 80.91 7.52 4.78
2 56.42 66.67 0.59 97.55 84.08 94.91 73.43 NA 0.0 44.89 100.0 0.48 87.61 NA 0.0
3 56.68 51.92 12.02 87.93 3.33 0.56 98.07 95.74 97.05 44.16 23.08 0.36 87.2 0.0 0.0
4 61.22 53.27 91.84 51.02 14.12 72.63 64.01 40.10 71.82 98.41 97.65 99.52 36.34 3.54 15.79
5 56.29 NA 0.0 89.56 NA 0.0 73.43 NA 0.0 44.63 NA 0.0 95.73 79.91 87.56

100 1 2 3 4 5
Pa Pb Pc Pa Pb Pc Pa Pb Pc Pa Pb Pc Pa Pb Pc

1 96.96 93.79 96.38 79.68 4.00 0.48 77.16 22.11 12.69 90.40 1.72 1.12 90.66 28.87 28.63
2 69.24 37.50 1.66 98.42 95.91 95.45 82.06 25.00 1.85 93.48 3.92 0.45 91.77 9.52 2.95
3 69.10 44.71 6.58 80.63 13.86 1.12 97.98 92.34 96.30 91.61 1.04 0.45 92.16 15.79 4.42
4 69.57 NA 0.0 81.70 NA 0.0 82.65 0.0 0.0 99.55 98.14 94.18 93.42 NA 0.0
5 69.57 NA 0.0 81.71 100.0 0.08 82.71 100.0 0.08 94.10 NA 0.0 98.93 90.45 93.68

150 1 2 3 4 5
Pa Pb Pc Pa Pb Pc Pa Pb Pc Pa Pb Pc Pa Pb Pc

1 96.56 92.38 98.22 88.89 0.68 5.45 88.22 72.07 12.62 92.68 0.81 0.77 93.99 7.48 1.03
2 65.18 NA 0.0 99.65 82.11 91.82 87.23 NA 0.0 96.20 NA 0.0 94.62 NA 0.0
3 73.16 93.94 24.51 85.06 0.21 2.27 96.63 84.78 89.76 92.92 0.53 0.46 88.85 25.16 54.38
4 65.11 0.0 0.0 98.74 0.0 0.0 87.07 0.0 0.0 98.47 77.46 84.36 94.59 10.0 0.06
5 65.18 NA 0.0 98.75 NA 0.0 87.23 NA 0.0 96.2 NA 0.0 99.29 91.92 95.23

When the block size is smaller, the CRP and non-CRP cover types in one

block tend to be purer and more distinct compared with other blocks. Then the

locally trained SVM may not be applicable to other areas. Moreover, if block size is

larger, due to more complex cover types in each block, the applicability of a locally

trained SVM to other areas is not good yet. Therefore, this result validates the

assumption of block independence.

CRP training samples indicated by the reference data are usually available for

each block if the block size is large enough. In the case of an unknown block without

training samples, we still could perform CRP mapping using the aforementioned “one-

against-all” method, where CRP training samples can be selected from the known

areas and non-CRP training samples could be selected by manual inspection within

the unknown block.

5.4 CRP Mapping Implementation

5.4.1 Sample Selection for Training and Evaluation

Considering the error in the existing CRP reference data provided by NRCS,

we develop a specific method to select reliable samples for classifier training and
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evaluation. The majority of errors in the present CRP reference data are the mis-

location of CRP tracts and/or CRP boundaries. If this mis-location is not significant

(usually true in most cases), we may still get reliable training and testing samples by

sampling away from CRP boundaries. In other words, all data samples are selected

from the center areas of CRP tracts. A more reliable way to get data samples is

to perform field study of the CRP tracts in question. Based on reliable training

samples, the CRP mapping results can even correct some locality errors and spatial

misalignment of CRP tracts in the reference data.

5.4.2 CRP Mapping using DTC

In the C4.5 DTC, the classification hyperplane consists of a set of local split-

ting operations without guaranteeing global optimality. Moreover, the DTC training

process often faces the overfitting problem, i.e., the learned concept is too specified

for the training data, which leads to poor generalization performance. Therefore,

some pruning methods have been developed to mitigate the overfitting problem. We

use a post-pruning approach suggested in C4.5 [132], which is also called error-based

pruning (EBP) [53]. For this approach, we assume there are N training samples

covered by a node and E samples are misclassified. If this node is pruned, the error

rate is R = E/N . For a given confidence level α, the upper bound of the estimated

error for the future test can be computed as R
′

= R + Uα(E,N) with the assump-

tion that errors in the training set are binomially distributed, where Uα(E,N) is the

confidence limit for the binomial distribution. This method conservatively estimates

the misclassification rate when pruned trees are applied to the test data.

The EBP method favors higher Pa and Pb, while decreasing Pc, especially

when α is small. In this work, based on the same assumption of the EBP method,

we develop a recall -based pruning (RBP) approach in favor of higher recall. When

splitting a node, the data samples in this node are divided into two parts: {a+, a−}
and {b+, b−}, where a+ is called true positive, a− is false positive, b+ is false negative,

and b− is true negative. Then the recall of this splitting is defined as:

Pc =
a+

a+ + b+
. (5.9)
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Contrast to EBP, RBP begins from the parent node of each leaf node in the DTC

because Pc is only associated with those nodes that are not leaves, and the error

that needs to be reduced is b+. Therefore, each pruning removes a subtree from the

constructed tree. If a subtree is pruned, given confidence level α, the upper bound

of b+ is estimated as B+ = b+ + Uα(b+, b+ + b−). Since RBP cannot guarantee small

a−, it should be used in conjunction with EBP, i.e., when deciding whether to prune

a node or not, we compare both R
′

and B+ calculated at the current node with those

nodes of a subtree.

5.4.3 CRP Mapping using SVM

Although the overfitting problem of DTC could be mitigated by pruning, the

generalization performance still cannot achieve the optimal solution. Moreover, the

curse of dimension could arise if training samples do not significantly outnumber the

feature dimension. SVM methods avoid these limitations by optimizing a margin-

based criterion, resulting in a better generalization than DTC. However, when dealing

with the uneven classification problem, SVM usually leads to good Pb but poor Pc.

This usually happens in text classification [21, 113, 143], as well as in CRP mapping

[149]. Various relaxation approaches have been developed to address this problem

[143]. The principle of these methods is to adjust either or both of the position and

orientation of the classification hyperplane to achieve a better performance. We study

two relaxation methods in this work. One is the SVM based embedded relaxation

(SVM-ER) method that assigns uneven costs to the misclassification of positive and

negative samples during the SVM training [155, 120], leading to the change of both

position and orientation of the hyperplane. The other is an efficient SVM based

post-learning relaxation (SVM-PLR) approach suggested in [143], where an adaptive

beta-gamma filtering method [162] is used to adjust the position of the hyperplane.

The SVMlight outputs indicate both the distance of each sample to the decision

hyperplane and the class type with the appropriate sign. After ranking these distances

from the positive to the negative, we can build a utility model U by assigning equal

or various weights w1 and w2 to the true positive and false positive according to the
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class label of training data:

U = w1a
+ − w2a

−, (5.10)

where a+ and a− are defined in Section 5.4.2. In this work, we set w1 = w2 = 1. Based

on the utility model, we search for the distance threshold that has the maximum U ,

denoted by θopt, as well as the threshold of the first zero U , called θzero. Then the

final decision threshold is calculated as:

θ̂ = πθzero + (1 − π)θopt, (5.11)

π = β + (1 − β)e−Nγ , (5.12)

where N denotes the number of positive class training samples, and β and γ deter-

mine the extent of threshold relaxation from the threshold’s optimal value. β and

γ can be determined by cross validation or experience [84]. Furthermore, given the

training data, we want to study how SVM and RBF kernel parameters affect Pa, Pb,

and Pc via the ξα − estimator suggested in [89]. The ξα − estimator is a highly effi-

cient approximation to the time-consuming Leave-one-out (LOO) estimator proposed

in [112]. Given training data, the LOO estimator can provide an nearly unbiased

estimation of the true generalization performance, and the ξα − estimator provides

lower bounds of Pa, Pb, and Pc, which is more conservative than the LOO estimator.

5.5 Simulation Results

In this section, we investigate the CRP mapping performance in the study area

as shown in Fig. 5.1. After removing CRP boundary areas, the remaining 60% of the

CRP area is considered as reliable CRP sites, where training and testing samples for

the data classifier will be selected and used, respectively. Given a sampling rate x, the

equivalent sampling rate (ESR) for CRP areas is computed as 0.6 · x. For example,

if x = 1/3, the ESR is about 20%, and if x = 1/6, the ESR for CRP is about 10%.

The selection of non-CRP training samples is done in the same way. CRP mapping is

studied based on the block-based operation, where the block size is around 100× 100

pixels.
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5.5.1 Simulation of DTC

When the C4.5 DTC is used for CRP mapping, the confidence level α is set

as 0.05. We first compare the DTC that is not pruned, the one pruned using EBP,

and the one pruned using RBP. Given a sampling rate, we first select CRP and non-

CRP samples for DTC training, and we use the remaining samples for testing 1. The

numerical results via cross validation are listed in Table 5.2 with two different ESRs.

Table 5.2: Classification performance of DTC at two different ESRs (I: not pruned,
II: pruned using EBP, III: pruned using RBP.

ESR 20% 10%
I II III I II III

Pa 97.12 97.56 97.37 96.16 96.85 96.52
Pb 75.72 80.29 77.93 71.29 77.76 74.30
Pc 87.17 86.92 87.68 84.83 83.39 84.67

From Table 5.2, we can see that when α = 0.05, EBP results in higher Pb, while

Pc is decreased. After using RBP in conjunction with EBP, Pc can be increased with

the sacrifice of Pb. This is expected because when we try to increase the recall rate

(Pc), misclassification of non-CRP samples as CRP samples will occur. The tradeoff

between Pb and Pc can be predicted via equation (5.7). For example, in the training

and testing data, CRP samples consist of about 8% of all samples. Therefore, at

ESR 20%, given λ = 0.08, Pa = 97.37%, and Pc = 87.68%, we predict that Pb =

80.84% according to (5.7), which is close to the true value, i.e., 77.93%. Moreover,

we can further improve the mapping performance by using Bayesian context fusion

or morphological operation to remove the isolated misclassified pixels.

We also study the contributions from different combinations of multisource

data to the mapping performance. Given 20% ESR, simulation results are shown

in Table 5.3, where the numbers in parentheses are the increases compared with

the mapping result using the satellite imagery (layer set A in Fig. 5.2) only. It is

shown that all multisource data can improve classification performance in terms of

Pa, Pb, and Pc. (1) Vegetation indices (Layer set B) provide helpful information to

discriminate healthy green vegetation from dead vegetation, bare soil, and urban

1 Removed CRP regions are not considered for both training and numerical testing.
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Table 5.3: Classification performance of DTC at 20% ESR with different data sets
(A-D are defined in Fig. 5.2.).

Pa Pb Pc

A 95.14 62.60 77.63
A+B 95.43(+0.29) 64.28(+1.68) 79.54(+1.91)
A+C 96.12(+0.98) 68.36(+5.76) 84.01(+6.38)
A+D 97.05(+1.91) 75.33(+12.73) 86.52(+8.89)

A+B+C 96.28(+1.14) 69.39(+6.79) 84.40(+6.77)
A+B+D 96.78(+1.64) 73.27(+10.67) 85.75(+8.12)
A+C+D 97.24(+2.10) 76.42(+13.82) 88.19(+10.56)

areas, as well as limited disparity information among different green vegetation. The

difficult part of CRP mapping is the discrimination of different vegetation types,

and layer set B provides only slight improvements. (2) From LULC GAP data we

know that more than half of this region is covered by crops, which usually show

relatively smooth texture behavior, while CRP areas are unmanaged areas covered

by different grass species that tend to show less smooth texture behavior. The texture

smoothness/roughness can be efficiently captured by a window-based local mean and

variance (Layer set C), which contribute more to classification accuracy than layer set

B. (3) The improvement from GIS data (Layer set D) is most significant when there are

only three GIS layers. This indicates that GIS data has certain correlations with CRP

tracts with respect to elevation, distance-to-waterbody and slope. This observation

is consistent with the CRP enrollment policy of FSA, justifying the usefulness of

multisource GIS data for CRP mapping.

5.5.2 Simulation of SVM

From the cross validation, it was found that SVM performs well when C is

between 10 to 1000, while σ significantly affects precision (Pb) and recall (Pc). We

need to estimate an appropriate σ value that leads to high Pc with acceptable Pb.

Therefore, given the training data, the ξα−estimator can be used to select a proper σ

by plotting Pa, Pb, and Pc against σ in a certain range, as shown in Fig. 5.5. As we can

see, Pa varies slightly. Pb and Pc vary in opposite directions when σ is small, which

verifies the existence of a tradeoff between them if Pa remains approximately constant.
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Figure 5.5: SVM classification performance vs. σ at sampling rate 0.2.

Then both Pb and Pc decrease after σ = 2.13 where Pb = 92% and Pc = 88.05%. At

this point, Pc achieves its highest lower bound. Considering the importance of high Pc,

we set σ = 2.13 in this work. Specifically, we use two relaxation methods introduced

in Section 5.4.3 to increase Pc. Simulation results using cross validation are listed in

Table 5.4 at two different ESRs.

Table 5.4: Classification performance of SVM at different ESRs (I: No relaxation,
II: SVM-ER, III: SVM-PLR )

ESR 20% 10%
I II III I II III

Pa 99.26 99.26 98.47 98.72 98.72 95.29
Pb 94.58 94.59 83.97 91.79 91.84 62.74
Pc 94.94 94.93 96.89 91.76 91.77 97.61

It is shown above that both Pb and Pc are more than 90% without the relax-

ation. At 10% ESR, the mapping results of four clips in the study area are illustrated

in Fig. 5.6. Fig. 5.6 (a) shows the original CRP tracts in the reference data, and

Fig. 5.6 (b) depicts the mapping results using SVM where all data samples in a

block are classified. Since the original Pb and Pc are quite high, significant improve-

ment of them could be very difficult. When implementing SVM-ER, we first use the

ξα − estimator to determine a proper relative weight (RW) of CRP and non-CRP

samples in the cost function based on the training data, so that Pc could be maxi-

mized. We found that RW=0.5 is a preferred value. However, as shown in Table 5.4,

SVM-ER can slightly improve Pb and/or Pc. SVM-PLR can increase Pc considerably,

but Pb usually suffers. As mentioned before, Pb can also be estimated by equation
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(5.7). For instance, at 20% ESR, when Pa = 98.47% and Pc = 96.89%, we have

Pb = 85.8% near to the true value, i.e., 83.97%.

The contributions from different combinations of multisource data are also

studied and listed in Table 5.5 at 20% ESR. The simulation results in Tables 5.3

and 5.5 demonstrate that the C4.5 and SVM are consistent regarding the feature

contribution, where texture information and GIS data are the most important features

used to improve CRP mapping accuracy. It is also shown that SVM works better

than DTC under the same sampling rate. This demonstrates that SVM has better

generalization performance than DTC.

Table 5.5: Classification performance of DTC at 20% ESR with different data sets
(A-D are defined in Fig. 5.2.).

Pa Pb Pc

A 96.47 73.91 81.76
A+B 97.64(+1.17) 79.63(+5.72) 89.48(+7.72)
A+C 98.26(+1.79) 84.60(+10.69) 92.09(+10.33)
A+D 98.68(+2.21) 87.57(+13.66) 94.81(+13.05)

A+B+C 98.55(+2.08) 87.61(+13.70) 92.51(+10.75)
A+B+D 98.92(+2.45) 90.09(+16.18) 95.12(+13.36)
A+C+D 99.18(+2.71) 93.41(+19.50) 95.13(+13.37)

We also study the prediction error of SVM via LOO and ξα − estimators. At

10% ESR, different training and testing samples are selected to estimate the mean and

standard deviation of the prediction error. Simulation results are shown as error bars

in Fig. 5.7. In the study area, there are 19 out of 25 blocks that have significant CRP

tracts. The dashed and dotted lines indicate LOO and ξα estimations, respectively.

Since ξα− estimator provides lower bounds of the estimation, the prediction is more

conservative but more efficient than LOO estimation. Both estimators can be used

to predict the CRP mapping performance. Furthermore, the estimators could also

be used to measure the effectiveness of given training samples. If predicted errors are

significant, we might want to select more representative training samples or add more

training samples.

124



5.6 Summary

We have studied the application of DTC and SVM for automatic CRP map-

ping, which is a classification problem of complex rural areas. Particularly, a parallel

localized classification framework is suggested and validated based on a study area.

Considering the importance of classification sensitivity, a new DTC pruning method

is proposed to enhance the recall rate. Two relaxation methods are also studied for

SVM to improve recall. Simulation results indicates that SVM-ER cannot improve

recall significantly, while SVM-PLR can enhance recall with acceptable precision if we

properly choose the relaxation parameters. In addition, the individual contribution

of multisource geospatial data is manifested by its improvements on CRP mapping

accuracy. Overall, SVM shows a better generalization performance than DTC in this

work. Our future research will focus on CRP compliance monitoring based on the

proposed CRP mapping approaches.
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(a) (b)

Figure 5.6: CRP mapping results (145 × 145 pixels): (a) Original CRP reference
data, (b) Mapping results.
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Figure 5.7: Predication errors of LOO and ξα − estimators. (a) Classification ac-
curacy (Pa). (b) Precision (Pb) (c) Recall (Pc).
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Chapter 6

NONPARAMETRIC UNSUPERVISED SEGMENTATION

OF SATELLITE IMAGERY

As discussed in the previous chapter, nonparametric machine learning ap-

proach such as support vector machine (SVM), referred to as the two-class SVM

(TCSVM) in this chapter [155, 15, 35, 20], has shown superior performance in the

classification of remotely sensed data [73, 72, 80, 118, 16]. SVM searches a linear sep-

aration plane that maximizes the distance between two patterns in a feature space,

and a good generalization performance can be obtained via a tradeoff between the

training error and the capacity of a chosen classification function. In addition, the

efficient algorithm implementation makes SVM practical in many applications. Re-

cently, a one-class SVM (OCSVM) algorithm was proposed for outlier or novelty

detection [140, 153]. OCSVM is an unsupervised approach that separates outliers

from the majority. It was shown that OCSVM can produce comparable or superior

classification results over traditional unsupervised classification methods for novelty

detection in [153]. There is a parameter ν that usually is unknown and significantly

affects the OCSVM results. A heuristic method was suggested in [134] that is effective

if the majority and outliers are clearly separable.

In this chapter, we will develop a SVM-based method for automatic compli-

ance monitoring of United States Department of Agriculture (USDA)’s Conservation

Reserve Program (CRP) based on multispectral Landsat imagery. The CRP is a

long-term program that aims to improve soil, water and wildlife resources by en-

couraging farmers to plant native plant species (mostly grasses) on agricultural land

for 10-15 years [2]. In return annual rental payments are made to the farmers by

USDA ($1.6 billion in 2002). However, USDA is facing the problem that farmers
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are not maintaining CRP tracts according to contract stipulations. Current methods

for CRP compliance monitoring involve intensive manual inspection of aerial pho-

tographs, which is time-consuming and costly. USDA’s Common Land Unit (CLU)

data used for general compliance issues is generated from aerial photographs, which

are updated every 1-2 years and may not be very timely for CRP compliance moni-

toring on a large scale [79]. In addition, most existing CRP reference data obtained

from USDA’s Natural Resource Conservation Service (NRCS) are not very accurate

or up-to-date for management purposes. There is a need for an automatic compliance

monitoring method that can examine CRP tracts on a large scale more efficiently and

promptly with minimum human involvement.

In [29], we have applied both the OCSVM and TCSVM to CRP compliance

monitoring that is formulated as an unsupervised classification problem, where more

than half of a CRP tract under test is assumed to be compliant, and CRP reference

data were used as prior knowledge to locate CRP tracts for testing. The OCSVM

is first applied to obtain initial classification results where the majority and outliers

can be separated. Then TCSVM training samples are selected with a certain spatial

constraint. In the OCSVM, ν is estimated using the method suggested in [134] that

estimates optimal ν by computing a distance measure based on many candidate ν

values. This may not be efficient when handling large scale remotely sensed data, and

it may fail when two clusters are not clearly separable. In this work, we suggest a

ν-insensitive 1 approach where a mild deviation from true ν, which is unknown, will

not significantly affect the classification performance. ν-insensitivity is achieved by

carefully selecting sufficient and reliable TCSVM training samples according to their

SVM scores obtained from the OCSVM. Compared with [134], this method reduces

the computational load by avoiding ν estimation, and also improves the classification

performance. Similar to [29], we use CRP reference data to locate CRP tracts and to

evaluate the proposed method. By comparing the classification results with the CRP

reference data, the compliance issue can be addressed.

1 In this work, “ν-insensitive” means “much less sensitive” to the variation of ν
compared with conventional ν-SVM approaches.
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6.1 One-class Support Vector Machine (OCSVM)

The OCSVM is an extension of the general TCSVM to the unsupervised clas-

sification case [140, 153]. This method aims at providing an approximation function

to categorize the majority of data. Basically, the OCSVM tries to find the region

in the feature space where the data resides. Two different OCSVM approaches have

been proposed. One is Support Vector Data Description method that constructs a

spherical boundary to contain as much as possible of data in the feature space while

minimizes the volume of the sphere [153]. Those lying outside the sphere are classified

as outliers. The other is ν-SVM that computes a hyperplane in the feature space to

separate a pre-specified fraction (1 − ν) of data with the maximum distance to the

origin (margin) ρ

||w||
[140]. Parameter ν ∈ (0, 1] is an upper bound on the fraction of

margin errors, and a lower bound on the number of support vectors. The classification

hyperplane is constructed by solving:

min
w∈F,ξ∈Rm,ρ∈R

1

2
||w||2 − νρ +

1

N

N
∑

i=1

ξi, (6.1)

subject to yi(xi · w) ≥ ρ − ξi, i = 1, 2, . . . , N , where F indicates the feature space.

Both methods are shown to be equivalent when using the RBF kernel in [140, 153]. It

is also shown in [153] that both methods operate comparably in practice and perform

best when the RBF kernel is used . A connection between OCSVM and TCSVM can

be described as follows: if the OCSVM has ρ > 0, it is equivalent to a TCSVM with

C set a priori to 1/ρ [27]. Since ρ shows the threshold to the origin, a large ρ means

a better separation, which imply a smaller C in the TCSVM.

6.2 ν-insensitive SVM Classification

6.2.1 Estimating ν for OCSVM

Given a CRP clip of Landsat imagery, we assume the majority (more than half)

is compliant. In the OCSVM, we need to set ν . It is ideal to chose the percentage of

non-CRP outliers, which is unknown and assumed to be ≤ 0.5. The method proposed

in [134] tries out different ν values based on given training data, and the value that
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results in the largest separation distance two classes is selected as the optimal one.

The separation distance between two clusters is computed as:

Dν =
1

N+

∑

fw(x)≥ρ

fw(x) − 1

N−

∑

fw(x)<ρ

fw(x), (6.2)

where N+ and N− are the sizes of the majority and outlier classes, respectively, and

fw(x) = (x ·w). It can be seen that Dν provides an average estimation of separability

between two classes in the feature space, and optimal ν̂ is estimated as:

ν̂ = arg max
ν

Dν . (6.3)

An accurate estimation of ν̂ requires many tests under different candidate ν values.

This is not efficient when we are dealing with very large data sets. In addition, the

method suggested in [134] provides accurate estimation only when the majority and

outlier are clearly separated in the feature space, which is not always true between

CRP and non-CRP regions [149].

6.2.2 Study of Feature Space

The OCSVM classifies a sample x according its SVM score defined by sw(x) =

fw(x)− ρ. This score shows the distance of x to the constructed hyperplane, and its

sign indicates if x is classified as the majority (positive) or the outlier (negative). A

large score magnitude implies that the sample is more likely to be correctly classified.

Since ν is the upper bound of the amount of outliers, changing ν actually changes

the position and orientation of the classification hyperplane in the feature space. An

improper ν would cause some outliers to be mis-classified as the majority class, or

vice versa. These samples, which are prone to be misclassified, are usually located

around the optimal hyperplane associated with the true ν, i.e., ν∗.

A graphical illustration is shown in Fig. 6.1, where stars (outlier) and squares

(majority) represent two classes that are linearly nonseparable in a 2-D feature space,

and the classification hyperplane changes within region C with respect to different

ν values. In region C, the hyperplanes I and III are associated with the smallest

and largest possible ν values, e.g, νmin and νmax, respectively, and the hyperplane II

is associated with true ν∗. The method using equation (6.2) may not be accurate
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because there are always some misclassified samples involved in the computation due

to the linear non-separability. On the other hand, region A includes outlier samples

with large negative SVM scores, and region B contains majority samples with large

positive SVM scores. The samples in regions A and B are more probable to be

correctly classified when ν ∈ [νmin, νmax]. Thus if we use samples in regions A and B

as outlier and majority training samples for TCSVM, the classification results that

are insensitive to the variations of ν values could be obtained.

A

B
C

I II III

Figure 6.1: SVM hyperplanes with respect to different ν values in the feature space.
Hyperplanes I, II, and III are associated with the smallest ν value,
the true ν value, and the largest ν value, respectively. The distance
from the origin to the decision hyperplane is given by ρ

‖w‖
when solving

equation (6.1).

6.2.3 Proposed ν-insensitive Approach

In this work, we propose a ν-insensitive method for reliable TCSVM train-

ing. Given a test CRP tract X of N samples, we assume that the majority of X

is compliant, i.e., ν∗ < 0.5. After the OCSVM classification, we sort all data sam-

ples in the majority and outlier classes according to their SVM score magnitudes,

i.e., |sw(x)|, from the largest to the smallest. XM = {x(m)
i , i = 1, · · · , N+} and

XO = {x(o)
j , j = 1, · · · , N−} denote the sorted majority and outlier data sets, re-

spectively, where N = N+ + N−, |sw(x
(m)
1 )| ≥ |sw(x

(m)
2 )| ≥ · · · ≥ |sw(x

(m)
N+

)|, and

|sw(x
(o)
1 )| ≥ |sw(x

(o)
2 )| ≥ · · · ≥ |sw(x

(o)
N−

)|. We define Xt
M and Xt

O as the majority and

outlier training sets for TCSVM, which can be constructed as follows:

Xt
M = {x(m)

i |i = 1, · · · , 0.45N},
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(a) (b) (c) (d)

Figure 6.2: Experimental demonstration of the proposed ν-insensitive method based
on a synthetic mosaic. (a) Mosaic. (b) Ground data (25% outlier). (c)
OCSVM (ν = 0.25, 85.18%). (d) The proposed method (ν = 0.5,
84.32%).

Xt
O = {x(o)

j |j = 1, · · · , (1 − ν)N−}. (6.4)

On the one hand, since ν∗ < 0.5, we might use at least 0.5N samples in

XM with the largest positive SVM scores as majority training samples (e.g., region

B in Fig. 6.1). Conservatively, we choose 0.45N to avoid selecting samples near

the hyperplane. On the other hand, the number of outlier training samples (e.g.,

region A in Fig. 6.1) is set to be (1 − ν)N−. If we choose small ν, small N− results.

Then most samples in XO could be true outliers, and we can use most of them for

TCSVM training. On the contrary, if we choose large ν, large N− results. XO may

mistakenly contain some majority samples, and we use a small portion of samples in

XO with the largest negative SVM scores. In practice, Xt
M and Xt

O may still have

some mis-classified training samples. To further reduce the side-effect of mis-classified

data samples, a large margin size is preferred in the TCSVM, which requires small C

value in equation (5.4). Furthermore, the OCSVM usually suffers from the problem of

having many support vectors and bounded support vectors around the hyperplane, the

TCSVM could introduce a more natural decision hyperplane with a relaxed placement

of less support vectors, leading to the better generalization performance than the

OCSVM alone.

6.2.4 Experimental Demonstration

Here, a synthetic mosaic and its ground data (Fig. 6.2) are used to examine

the proposed method. Specifically, the autoregressive features are extracted from
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Figure 6.3: Simulation results on the synthetic mosaic. (Left) Purity of outlier
training samples vs. ν. (Right) Purity of majority training samples vs.
ν.

.

texture pixels within a 7 × 7 window, resulting in a 25-dimension feature space [96].

The OCSVM is first tested with ν ∈ [0.05, 0.5], and RBF kernel is used with γ1 =

10−6 determined via cross validation. Small γ1 indicates a large kernel width that is

necessary for this majarity/outlier two-class problem [92]. If we define the purity of

the training sample as:

purity =
true majority (or outlier) samples

detected majority (or outlier) samples
, (6.5)

then based on the OCSVM results, the purity of the outlier and majority classes

regarding different ν values are shown in Fig. 6.3 (a) and (b). It is seen that when ν

changes from 0.05 to 0.5, the purity of both classes vary considerably.

Our previous work in [29], referred to as Method-I, suggested a simple method

to select TCSVM training samples by examining the class homogeneity in a 5 × 5

window. Although Method-I can improve the purity of training samples, it could

be too conservative to select enough training samples. The proposed ν-insensitive

method, referred to as Method-II, can select sufficient and reliable training samples

with higher purity, as shown in Fig. 6.3 (a) and (b). This leads to ν-insensitive clas-

sification results. The highest OCSVM classification accuracy (85.18%) is obtained

when ν = 0.25, as shown in Fig. 6.2 (c). When testing Method-II, RBF kernel is

also used for TCSVM with γ2 = 10−5. Even when ν = 0.5, which deviates from true

ν∗ significantly, we still obtain the similar accuracy (84.32%) as the OCSVM that

requires many attempts, as shown in Fig. 6.2 (c) and (d).
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6.3 Experiments and Discussions

6.3.1 Study Area and Experiment Setup

The study area is located in Texas County, Oklahoma, which has the largest

CRP enrollments in Oklahoma. Landsat TM multispectral image bands 2, 3, 4, 5, 7

obtained in Spring (February) and Summer (June) of year 2000 are used, based on

which an original multi-layer database is constructed. This database also contains the

local mean and variance, which are calculated within a 3× 3 window of each spectral

band, and vegetation indices, which include TM4/TM3, TM5/TM2, TM5/TM4 in

each season, and Normalized Vegetation Difference Index (NDVI). TM4/TM3 (Ratio

vegetation index) and TM5/TM2 are helpful to discriminate different vegetation [107].

TM5/TM4 (Ratio drought index) provides the information of plant water content [33],

which is useful to discriminate irrigated crops from relatively dry CRP grasses. The

NDVI is calculated from the imagery in each season and the largest one is chosen as

the final value. The data in each layer is normalized to zero mean and unit standard

deviation. A heuristic method is used to select a feature subset based on the original

database and the CRP reference data. This method measures the contribution of an

individual feature layer by approximately estimating its effect to the construction of

the hyperplane [54]. After the feature selection, we remove the band 2 image and

TM5/TM2 in February, resulting 35 feature layers. A software LIBSVM [24] is used

to implement OCSVM and TCSVM. In the OCSVM, the RBF kernel with γ = 10−6

is chosen according to cross validation. 10 different ν values are tested, which are

from 0.05 to 0.5 at interval 0.05. In the TCSVM, we select C = 0.5 and a RBF kernel

with γ = 0.01.

6.3.2 Simulation Results

Simulations are performed on six CRP tracts extracted from Texas County.

In each CRP tract, we also deliberately add some non-CRP regions near to CRP

boundaries to test the performances of the proposed methods. Method-I needs 10

times (regarding 10 ν values) of OCSVM training and once TCSVM training, while
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Figure 6.4: The plots of classification accuracy v.s ν for three methods in six tracts:
(a) tract 1, (b) tract 2, (c) tract 3, (d) tract 4, (e) tract 5, (f) tract 6.

Method-II trains both OCSVM and TCSVM only once, saving more than 80% com-

putational load. The classification accuracies with respect to different ν values are

shown in Fig. 6.4, and the standard deviations (StDev) is computed for each method.

Table 6.1 compares the StDev of the classification accuracy for six CRP tracts. As

we can see, the performances of both OCSVM and Method-I vary significantly as ν

changes, while Method-II is much less sensitive.

Table 6.1: Standard deviations of the classification accuracy.

CRP Tract Index 1 2 3 4 5 6
OCSVM 4.92 5.14 2.64 4.85 13.24 14.03
Method-I 6.88 9.97 5.98 6.84 18.84 18.24
Method-II 2.66 2.96 1.88 1.89 5.16 4.40

We also illustrate the CRP classification results in Fig. 6.5, where five rows
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refer to, respectively, 3-band Landsat images, the CRP reference data , the OCSVM

classification results, the results of Method-I where ν̂ is estimated from equation (6.2),

and the results of Method-II where ν = 0.4. Moreover, the percentage of non-CRP

areas according to the CRP reference data (Pnc), the percentage of non-CRP areas

detected by Method-II (P ∗
nc), as well as the their differences (P ∗

nc−Pnc) are computed

for each CRP tract and listed in Table 6.2.

Table 6.2: Non-CRP percentages (%) comparison.

CRP Tract Index 1 2 3 4 5 6
Pnc 37.24 30.53 33.74 21.28 9.26 3.7
P ∗

nc 28.27 27.25 27.98 28.8 34.85 29.47
P ∗

nc-Pnc -8.97 -3.28 -5.76 +7.52 +25.59 +25.77

In tracts 1, 2, 3, and 4, P ∗
nc is relatively consistent with or even lower than

Pnc. Manual inspection further manifests that the CRP areas in tracts 1, 2, 3, 4 have

good compliance with respect to the CRP reference data. However, the non-CRP

areas in tracts 5 and 6 are found to be significant. This implies that there could

be the compliance issue in tracts 5 and 6. As observed from the 3-band Landsat

images in Fig. 6.5, there exist some active cultivation areas (darker areas) in those

two tracts, which were previously registered as CRP in the reference data. Therefore

tracts 5 and 6 need further detailed inspection. Moreover, there are also some man-

made buildings in tracts 1, 3, 4, which can be clearly detected by Method I and

Method-II as well. Nevertheless, only non-CRP percentage values may not provide

sufficient information for compliance monitoring, and additional analysis of the CRP

classification maps (the last row of Fig. 6.5) may be necessary.

From the last row of Fig. 6.5, it is interesting to find that Method-II produces

better boundary localization around CRP and non-CRP regions than the OCSVM

and Method-I. We also found some limitations of our previously proposed Method-I.

Largest Dν is not necessarily related to true ν∗. This fact indicates that CRP and

non-CRP are not clearly separated even in the high dimensional feature space mapped

via the RBF kernel. For example, in tract 2, Dν has the largest value when ν̂ = 0.4,

while the highest OCSVM classification accuracy is obtained when ν = 0.25 which is

close to true ν∗.
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Figure 6.5: Simulation results of the six tracts. The five rows refer to the 3-band
Landsat images (June, 2000), CRP reference data (gray: CRP, black:
non-CRP), OCSVM results, Method-I results, and Method-II results,
respectively.

6.4 Summary

We have developed a ν-insensitive SVM-based method for CRP compliance

monitoring. Both OCSVM and TCSVM are used together to accomplish unsupervised

CRP classification. Specifically, the proposed method can reduce the side-effect of

improper ν setting of OCSVM by selecting TCSVM training samples according to

their SVM scores. The percentage of non-CRP/outlier areas could imply whether a

given CRP tract is fully compliant, and the classification map can be used to further

reveal the detailed information. The proposed method provides a useful guidance

for effective and efficient CRP compliance monitoring. One limitation is that we

assume the majority of a CRP tract is complaint which is not necessarily true. We

are studying the multi-class implementation of one-class SVM where no assumption

is made about the dominant class in each CRP tract.
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Chapter 7

CONCLUSIONS AND FUTURE WORKS

In this report, we have studied feature selection and extraction approaches for

visual data segmentation. In particular, key-frame extraction in video segmentation,

WDHMM likelihood computation, decision tree training, and support vector learning

are specific approaches of feature selection and/or extraction for segmentation pur-

pose. Both nonparametric and parametric methods are investigated and improved in

terms of segmentation performance and computational efficiency. Several new meth-

ods are developed that can further inspire our studies towards the real applications.

In these applications, we are able to obtain state-of-the-art or promising results as

well as efficient algorithms. We conclude this report as follows:

• We propose a novel framework to coherent extract video key-frames and segment

objects in a unified spatio-temporal feature space, where key-frame extraction

is formulated as a feature selection process. Based on cluster divergence and

maximum likelihood -based criteria, two numerical methods and one analytical

method are developed to extract key-frames for object segmentation. All meth-

ods show impressive performance on both synthetic and real video sequences.

The proposed framework explicitly reveals the inherent relationship between

key-frames and objects, facilitating content-based video analysis by providing

robust and accurate object segmentation results, as well as compact and seman-

tically meaningful key-frame representations of video shots.

• We develop a new approach for unsupervised Bayesian image segmentation.

Instead of segmenting an image by estimating a model to fit the image data as

much as possible, we suggest to partition the image by exploiting the disparity
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of fitness with respect to one global model, which might not be necessary to fit

the image data very well. Wavelet-domain hidden Markov models are used here

to characterize the image, and WDHMM model likelihood is the key feature for

segmentation. A dual-model framework with a new hybrid soft-hard decision

approach is developed to make WDHMMs applicable to the unsupervised case.

Two new clustering approach are suggested to capture the fitness disparity

efficiently. The simulations on synthetic mosaics and real images show very

good performance of the proposed method.

• We show that features extracted or selected from multispectral Landsat images

and GIS data are helpful for complex land cover classification problems us-

ing nonparametric decision tree classifier (DTC) and support vector machines

(SVM). For mapping USDA’s CRP tracts, a new DTC pruning method and two

SVM post relaxation methods are studied for increasing the system sensitivity

(recall rate) by selecting or extracting proper features. For CRP compliance

monitoring problem, we propose a novel method to avoid the estimation of a

key OCSVM parameter, i.e., ν, which is usually computationally expensive and

complicated, by selecting representative samples in the projected feature space

to train a TCSVM. This makes the method practical because ν is usually un-

known in many real applications. Simulations indicate the effectiveness and

good performance of the suggested approaches.

The perspectives of future work could be highly correlated to the current re-

search. For example, we want to use motion vector rather than pixel-wise frame

difference as the motion feature in the unified feature space, consequently, we expect

to obtain key-frames with more specific object motion information. Moreover, after

building the coherent framework for video segmentation, how to integrate it into a

high level video analysis platform? Any progresses of these work could lead to more

powerful and efficient tools for content-based video analysis.
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