15 research outputs found

    Multiscale Finite-Volume CVD-MPFA Formulations on Structured and Unstructured Grids

    Get PDF
    This paper presents the development of finite-volume multiscale methods for quadrilateral and triangular unstructured grids. Families of Darcy-flux approximations have been developed for consistent approximation of the general tensor pressure equation arising from Darcy's law together with mass conservation. The schemes are control-volume distributed (CVD) with flow variables and rock properties sharing the same control-volume location and are comprised of a multipoint flux family formulation (CVD-MPFA). The schemes are used to develop a CVD-MPFA based multiscale finite-volume (MSFV) formulation applicable to both structured and unstructured grids in two dimensions. The basis functions are a key component of the MSFV method, and are a set of local solutions, usually defined subject to Dirichlet boundary conditions. A generalization of the Cartesian grid Dirichlet basis functions described in [P. Jenny, S. H. Lee, and H. A. Tchelepi, J. Comput. Phys., 187 (2003), pp. 47--67] is presented here for unstructured grids. Whilst the transition from a Cartesian grid to an unstructured grid is largely successful, use of Dirichlet basis functions can still lead to pressure fields that exhibit spurious oscillations in areas of strong heterogeneity. New basis functions are proposed in an attempt to improve the pressure field solutions where Neumann boundary conditions are imposed almost everywhere, except corners which remain specified by Dirichlet values

    Three-dimensional unstructured gridding for complex wells and geological features in subsurface reservoirs, with CVD-MPFA discretization performance

    Get PDF
    Grid generation for reservoir simulation, must honour classical key geological features and multilateral wells. The features to be honoured are classified into two groups; (1) involving layers, faults, pinchouts and fractures, and (2) involving well distributions. In the former, control-volume boundary aligned grids (BAGs) are required, while in the latter, control-point (defined as the centroid of the control-volume) well aligned grids (WAGs) are required. Depending on discretization method type and formulation, a choice of control-point and control-volume type is made, i.e. for a cell-centered method the primal grid cells act as control-volumes, otherwise for a vertex-centered method the dual-grid cells act as control-volumes. Novel three-dimensional unstructured grid generation methods are proposed that automate control-volume boundary alignment to geological features and control point alignment to complex wells, yielding essentially perpendicular bisector (PEBI) meshes either with respect to primal or dual-cells depending on grid type. Both grid types use tetrahedra, pyramids, prisms and hexahedra as grid elements. Primal-cell feature aligned grids are generated using special boundary surface protection techniques together with constrained cell-centered well trajectory alignment. Dual-cell feature aligned grids are generated from underlying primal-meshes, whereby features are protected such that dual-cell control-volume faces are aligned with interior feature boundaries, together with protected vertex-centered (control point) well trajectory alignment. The novel methods of grid generation presented enable practical application of both method types in 3-D for the first time. The primal and dual grids generated here demonstrate the gridding methods, and enable the first comparative performance study of cell-vertex versus cell-centered control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulations using equivalent mesh resolution on challenging problems in 3-D. Pressure fields computed by the cell-centered and vertex-centered CVD-MPFA schemes are compared and contrasted relative to the respective degrees of freedom employed, and demonstrate the relative benefits of each approximation type. Stability limits of the methods are also explored. For a given mesh the cell-vertex method uses approximately a fifth of the unknowns used by a cell-centered method and proves to be the most beneficial with respect to accuracy and efficiency. Numerical results show that vertex-centered CVD-MPFA methods outperform cell-centered CVD-MPFA method

    Enhanced multiscale restriction-smoothed basis (MsRSB) preconditioning with applications to porous media flow and geomechanics

    Full text link
    A novel method to enable application of the Multiscale Restricted Smoothed Basis (MsRSB) method to non M-matrices is presented. The original MsRSB method is enhanced with a filtering strategy enforcing M-matrix properties to enable the robust application of MsRSB as a preconditioner. Through applications to porous media flow and linear elastic geomechanics, the method is proven to be effective for scalar and vector problems with multipoint finite volume (FV) and finite element (FE) discretization schemes, respectively. Realistic complex (un)structured two- and three-dimensional test cases are considered to illustrate the method's performance

    Multi-dimensional higher resolution methods for flow in porous media.

    Get PDF
    Currently standard first order single-point upstream weighting methods are employed in reservoir simulation for integrating the essentially hyperbolic system components. These methods introduce both coordinate-line numerical diffusion (even in 1-D) and cross-wind diffusion into the solution that is grid and geometry dependent. These effects are particularly important when steep fronts and shocks are present and for cases where flow is across grid coordinate lines. In this thesis, families of novel edge-based and cell-based truly multidimensional upwind formulations that upwind in the direction of the wave paths in order to minimise crosswind diffusion are presented for hyperbolic conservation laws on structured and unstructured triangular and quadrilateral grids in two dimensions. Higher resolution as well as higher order multidimensional formulations are also developed for general structured and unstructured grids. The schemes are coupled with existing consistent and efficient continuous CVD (MPFA) Darcy flux approximations. They are formulated using an IMPES (Implicit in Pressure Explicit in Saturation) strategy for solving the coupled elliptic (pressure) and hyperbolic (saturation) system of equations governing the multi-phase multi-component flow in porous media. The new methods are compared with single point upstream weighting for two-phase and three-component two-phase flow problems. The tests arc conducted on both structured and unstructured grids and involve full-tensor coefficient velocity fields in homogeneous and heterogeneous domains. The comparisons demonstrate the benefits of multidimensional and higher order multidimensional schemes in terms of improved front resolution together with significant reduction in cross-wind diffusion

    CVD-MPFA full pressure support, coupled unstructured discrete fracture–matrix Darcy-flux approximations

    Get PDF
    Two novel control-volume methods are presented for flow in fractured porous media, involving coupling the control-volume distributed multi-point flux approximation (CVD-MPFA (c.f. Edwards et al.)) constructed with full pressure support (FPS), to two types of discrete fracture-matrix approximation for flow simulation on unstructured grids; (i) involving hybrid grids and (ii) a lower dimensional fracture model. Flow is governed by Darcy's law together with mass conservation both in the rock matrix and in fractures, where large discontinuous permeability tensors can occur. Finite-volume FPS schemes are more robust than the earlier CVD-MPFA triangular pressure support (TPS) schemes for problems involving strongly anisotropic homogeneous and heterogeneous full-tensor permeability fields. We use a cell-centred hybrid-grid method, where fractures are represented by lower-dimensional interfaces between matrix grid cells in the physical mesh, and expanded to equi-dimensional cells in the computational domain. We present a simple procedure to form a consistent hybrid-grid locally for a dual-cell. We also propose a novel hybrid-grid for intersecting fractures, for the FPS method, which improves the condition number of the global linear system and permits larger time steps for tracer transport. The tracer flow transport equation is coupled with the pressure equation and the results provide flow parameter assessment of the fracture models. Transport results obtained via TPS and FPS hybrid-grid formulations are compared with corresponding results of fine-scale explicit equi-dimensional formulations. The results show that the hybrid-grid FPS method applies to general full-tensor fields and provides improved robust approximations compared to the hybrid-grid TPS method for fractured domains, for both weakly anisotropic permeability fields and in particular for very strong anisotropic full-tensor permeability fields where the TPS scheme exhibits spurious oscillations. The hybrid-grid FPS formulation is extended to compressible flow and the results demonstrate the method is also robust for transient flow. Furthermore, FPS is coupled with a lower-dimensional fracture model, where fractures are strictly lower-dimensional in the physical mesh. Comparisons of the hybrid-grid FPS method and the FPS lower-dimensional fracture model are presented for several cases of isotropic and strongly anisotropic fractured media which illustrate the benefits of the respective methods

    Numerical methods for coupled processes in fractured porous media

    Get PDF
    Numerical simulations have become essential in the planning and execution of operations in the subsurface, whether this is geothermal energy production or storage, carbon sequestration, petroleum production, or wastewater disposal. As the computational power increases, more complex models become feasible, not only in the form of more complicated physics, but also in the details of geometric constraints such as fractures, faults and wells. These features are often of interest as they can have a profound effect on different physical processes in the porous medium. This thesis focuses on modeling and simulations of fluid flow, transport and deformation of fractured porous media. The physical processes are formulated in a mixed-dimensional discrete fracture matrix model, where the rock matrix, fractures, and fracture intersections form a hierarchy of subdomains of different dimensions that are coupled through interface laws. A new discretization scheme for solving the deformation of a poroelastic rock coupled to a Coulomb friction law governing fracture deformation is presented. The novelty of this scheme comes from combining an existing finite-volume discretization for poroelasticity with a hybrid formulation that adds Lagrange multipliers on the fracture surface. This allows us to formulate the inequalities as complementary functions and solve the corresponding non-linear system using a semi-smooth Newton method. The mixed-dimensional framework is used to investigate non-linear coupled flow and transport. Here, we study how highly permeable fractures affect the viscous fingering in a porous medium and show that there is a complex interplay between the unstable viscous fingers and the fractures. The computer code of the above contributions of the thesis work has been implemented in the open-source framework PorePy. The introduction of fractures is a challenge to the discretization and the implementation of the governing equations, and the aim of this framework is to enable researchers to overcome many of the technical difficulties inherent to fractures, allowing them to easily develop models for fractured porous media. One of the large challenges for the mixed-dimensional discrete fracture matrix models is to create meshes that conform to the fractures, and we present a novel algorithm for constructing conforming Voronoi meshes. The proposed algorithm creates a mesh hierarchy, where the faces of the rock matrix mesh conform to the cells of the fractures, and the faces of the fracture mesh conform to the cells of the fracture intersections. The flexibility of the mixed-dimensional framework is exemplified by the wide range of applications and models studied within this thesis. While these physical processes might be fairly well known in a porous medium without fractures, the results of this thesis improves our understanding as well as the models and solution strategies for fractured porous media

    Ultra-fast screening of stress-sensitive (naturally fractured) reservoirs using flow diagnostics

    Get PDF
    Quantifying the impact of poro-mechanics on reservoir performance is critical to the sustainable management of subsurface reservoirs containing either hydrocarbons, groundwater, geothermal heat, or being targeted for geological storage of fluids (e.g., CO2 or H2). On the other hand, accounting for poro-mechanical effects in full-field reservoir simulation studies and uncertainty quantification workflows in complex reservoir models is challenging, mainly because exploring and capturing the full range of geological and mechanical uncertainties requires a large number of numerical simulations and is hence computationally intensive. Specifically, the integration of poro-mechanical effects in full-field reservoir simulation studies is still limited, mainly because of the high computational cost. Consequently, poro-mechanical effects are often ignored in reservoir engineering workflows, which may result in inadequate reservoir performance forecasts. This thesis hence develops an alternative approach that couples hydrodynamics using existing flow diagnostics simulations for single- and dual-porosity models with poro mechanics to screen the impact of coupled poro-mechanical processes on reservoir performance. Due to the steady-state nature of the calculations and the effective proposed coupling strategy, these calculations remain computationally efficient while providing first-order approximations of the interplay between poro-mechanics and hydrodynamics, as we demonstrate through a series of case studies. This thesis also introduces a new uncertainty quantification workflow using the proposed poro-mechanical informed flow diagnostics and proxy models. These computationally efficient calculations allow us to quickly screen poro-mechanics and assess a broader range of geological, petrophysical, and mechanical uncertainties to rank, compare, and cluster a large ensemble of models to select representative candidates for more detailed full-physics coupled reservoir simulations.James Watt Scholarshi

    Modelling and quantification of structural uncertainties in petroleum reservoirs assisted by a hybrid cartesian cut cell/enriched multipoint flux approximation approach

    Get PDF
    Efficient and profitable oil production is subject to make reliable predictions about reservoir performance. However, restricted knowledge about reservoir distributed properties and reservoir structure calls for History Matching in which the reservoir model is calibrated to emulate the field observed history. Such an inverse problem yields multiple history-matched models which might result in different predictions of reservoir performance. Uncertainty Quantification restricts the raised model uncertainties and boosts the model reliability for the forecasts of future reservoir behaviour. Conventional approaches of Uncertainty Quantification ignore large scale uncertainties related to reservoir structure, while structural uncertainties can influence the reservoir forecasts more intensely compared with petrophysical uncertainty. What makes the quantification of structural uncertainty impracticable is the need for global regridding at each step of History Matching process. To resolve this obstacle, we develop an efficient methodology based on Cartesian Cut Cell Method which decouples the model from its representation onto the grid and allows uncertain structures to be varied as a part of History Matching process. Reduced numerical accuracy due to cell degeneracies in the vicinity of geological structures is adequately compensated with an enhanced scheme of class Locally Conservative Flux Continuous Methods (Extended Enriched Multipoint Flux Approximation Method abbreviated to extended EMPFA). The robustness and consistency of proposed Hybrid Cartesian Cut Cell/extended EMPFA approach are demonstrated in terms of true representation of geological structures influence on flow behaviour. In this research, the general framework of Uncertainty Quantification is extended and well-equipped by proposed approach to tackle uncertainties of different structures such as reservoir horizons, bedding layers, faults and pinchouts. Significant improvements in the quality of reservoir recovery forecasts and reservoir volume estimation are presented for synthetic models of uncertain structures. Also this thesis provides a comparative study of structural uncertainty influence on reservoir forecasts among various geological structures
    corecore