
 

 Swansea University E-Theses                                     _________________________________________________________________________

   

Multi-dimensional higher resolution methods for flow in porous

media.
   

Lamine, Mohamed Sadok
   

 

 

 

 How to cite:                                     _________________________________________________________________________  
Lamine, Mohamed Sadok (2009)  Multi-dimensional higher resolution methods for flow in porous media..  thesis,

Swansea University.

http://cronfa.swan.ac.uk/Record/cronfa42721

 

 

 

 Use policy:                                     _________________________________________________________________________  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence: copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder. Permission for multiple reproductions should be obtained from

the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

Please link to the metadata record in the Swansea University repository, Cronfa (link given in the citation reference

above.)

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/

http://cronfa.swan.ac.uk/Record/cronfa42721
http://www.swansea.ac.uk/library/researchsupport/ris-support/


 

Swansea University 
Prifysgol Abertawe

M ulti-Dim ensional Higher Resolution M ethods for Flow in Porous Media

Mohamed Sadok Lamine

Submitted to the University of Wales Swansea 
in fulfilment of the requirements for the Degree of Doctor of Philosophy

March 31th 2009

Civil and Computational Engineering Centre 
School of Engineering 
Swansea University 

Singleton Park, Swansea SA2 8PP 
Wales, United Kingdom

SW A N SE A  UNIVERSITY 

LIBRARY

§ |

f ,

0 1 T0  BE 

REM O VED FROM  

T H E LIBRARY



ProQuest Number: 10807490

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 10807490

Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



LIBRARY



2

Summary

Currently standard first order single-point upstream weighting methods are employed in 

reservoir simulation for integrating the essentially hyperbolic system components. These 

methods introduce both coordinate-line numerical diffusion (even in 1-D) and cross-wind 

diffusion into the solution that is grid and geometry dependent. These effects are par

ticularly important when steep fronts and shocks are present and for cases where flow is 

across grid coordinate lines.

In this thesis, families of novel edge-based and cell-based truly multidimensional upwind 

formulations that upwind in the direction of the wave paths in order to minimise crosswind 

diffusion are presented for hyperbolic conservation laws on structured and unstructured 

triangular and quadrilateral grids in two dimensions. Higher resolution as well as higher 

order multidimensional formulations are also developed for general structured and un

structured grids.

The schemes are coupled with existing consistent and efficient continuous CVD (MPFA) 

Darcy flux approximations. They are formulated using an IMPES (Implicit in Pressure 

Explicit in Saturation) strategy for solving the coupled elliptic (pressure) and hyper

bolic (saturation) system of equations governing the multi-phase multi-component flow 

in porous media.

The new methods are compared with single point upstream weighting for two-phase and 

three-component two-phase flow problems. The tests are conducted on both structured 

and unstructured grids and involve full-tensor coefficient velocity fields in homogeneous 

and heterogeneous domains. The comparisons demonstrate the benefits of multidimen

sional and higher order multidimensional schemes in terms of improved front resolution 

together with significant reduction in cross-wind diffusion.
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Chapter 1 

Introduction and Background

Petroleum reservoir simulation involves the use of numerical methods to obtain the 

solution of mass, momentum and energy conservation equations (in integral or partial 

differential form) governing fluid flow in petroleum reservoirs. The need for accurate 

and realistic reservoir simulation has always driven the field of research and development 

of efficient and robust numerical discretisation techniques for reservoir simulation. There 

exists a number of different numerical discretisation approaches which are used in reservoir 

simulation. One such approach is the finite volume method (FVM). Most of the existing 

numerical reservoir simulators employ a single point upstream weighting (SPU) first order 

scheme for the fluid transport equations that suffers both excessive smearing at saturation 

and concentration fronts as well as a grid dependency introducing a cross diffusion error 

into the numerical solution. The main focus of this thesis is to investigate and develop 

novel higher resolution finite-volume numerical discretisation techniques for the reservoir 

simulation saturation equation.

1.1 R eservoir Sim ulation

1.1.1 Petroleum  Reservoirs and Recovery processes

A subsurface reservoir is a geological formation in which fluids have accumulated over 

millions of years by migration from source rocks. The reservoir rock is typically sedimen

tary in nature subject to forces including fluid pressure, viscous, capillary and gravity. 

Naturally occurring hydrocarbon systems found in petroleum reservoirs are mixtures of 

organic compounds which exhibit multi-phase behavior over wide ranges of pressures and
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temperatures. These hydrocarbon accumulations may occur in the gaseous state, the 

liquid state, the solid state, or in various combinations of gas, liquid, and solid.

In order to recover oil and gas wells are drilled into the reservoir, some of which produce 

(producer) oil and others are used to inject (injector) water or gas to provide pressure 

support. The recovery of oil by any of the natural drive mechanisms is called p rim ary  

recovery. This term refers to the production of hydrocarbons from a reservoir without 

the use of any process (such as fluid injection) to supplement the natural energy of the 

reservoir. Secondary recovery aims at increasing the efficiency of oil displacement to

wards the production wells and uses techniques such as water flooding. Usually, te r tia ry  

p roduction  methods also referred to as enhanced oil recovery processes are necessary 

in order to attain efficient levels of oil recovery. These techniques include polymer flooding 

and miscible displacement. Polymer flooding involves the addition of polymer substances 

to injected water in order to increase the viscosity of the water and displace the trapped 

oil in the rock pores. Miscible displacement consists of mixing gaseous fluids with oil 

to form a single phase. The single flow regime between the oil and gas phase reduces 

interfacial tensions and can result in more effective displacement.

In the oil industry the goal is to maximise hydrocarbon recovery under different con

ditions. This depends on deriving mathematical and physical models for the processes 

that occur in the reservoir. The models should incorporate as much geology and physics 

as necessary to describe the essential phenomena and lead to coupled systems of non

linear partial differential equations. Discretised numerical models are then derived that 

has the required properties of accuracy and stability and which must produce solutions 

representing the basic features without introducing spurious non physical phenomena.

1.1.2 Reservoir Simulation and Num erical D iscretization

Reservoir simulation is that process whereby the behavior of a hydrocarbon reservoir 

is inferred from the behavior of a mathematical model which describes it [128, 13]. The 

degree to which the model duplicates the actual reservoir is a function primarily of the 

input data used, and secondly the adequacy of the model to simulate the physical system. 

The current state of the art in reservoir simulation is directly related to high speed comput

ers, accurate geological models for reservoir description and robust numerical techniques. 

With increased computer power, numerical simulation has become an efficient reservoir 

management tool for all stages in the life of a reservoir, as larger amounts of data are
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incorporated in more geologically realistic models that describe the complex behaviour of 

multi-phase flow in real reservoirs. Reservoir simulation has become very advanced over 

the past decades. Simulation grids may be very large, and the level of details can be very 

high. One of the reasons for the high level of details is the considerable effort which is 

put into seismic measuring and other techniques prior to drilling exploration wells. Also, 

the history may be well known for a reservoir that have been producing hydrocarbons for 

many years through logging and measured production etc. This may be used to verify or 

history match geophysical data. Parameter estimation is an important area in its own, 

and production data is essential to recalculate/calibrate a model with respect to porosity 

and permeability. Because the geology may be estimated at such a detailed level, one 

may be required to model flow on grids incorporating general complex geometry.

Three basic problem areas have dominated much of the recent research in reservoir sim

ulation. First, the need for an effective model to describe the complex fluid and rock 

interactions that control recovery processes. Simulators are severely hampered by the 

lack of knowledge of reservoir properties, heterogeneities, and relevant length scales and 

of important mechanisms such as diffusion, dispersion, and viscous instabilities. Russell 

and Wheeler [145] and Young [167] present excellent surveys of the influence of dispersion 

and attempts to incorporate it in present reservoir simulators. Since the mixing and veloc

ity variations are influenced at all relevant length scales by the heterogeneous properties 

of the reservoir, there is a need for volume averaging of porosity and permeability. Re

cently, developments have been made in homogenization [85, 96], renormalisation [98, 51], 

scaled averaging [97], upscaling [20, 47], multi-scale methods [87, 27, 95, 12], and statisti

cal methods have also been explored to obtain effective permeability [14, 72]. A review of 

different upscaling techniques used in petroleum reservoir simulation is also presented in 

[70]. Also, simulators are now used as an experimental tool to develop methods to model 

the interrelations between localized and large scale media effects.

Next, the need to develop accurate discretisation techniques that retain the important 

physical properties of the continuous models. Recently, a variety of new discretisation 

techniques have been developed for both the pressure and transport equations. Discon

tinuous Galerkin (DG) [135, 137], Mixed finite elements (MFEM) and related methods 

[145, 67, 66, 44, 45, 69, 48, 11, 90], and finite volume methods (FVM) [61, 50, 62, 53, 

2, 161, 3, 4, 5, 1] are being used to yield accurate mass-conservative approximations to 

the pressure and Darcy velocity of the fluid. Eulerian-Lagrangian techniques [25, 42, 146]
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have also been developed that not only conserve mass but also take advantages of the 

computed flow of the fluids to accurately model the transport phenomena. Adaptive local 

grid refinement in space and time [65, 51] can be controlled by A posteriori error estima

tors. Then multi-grid or multilevel iterative techniques [68, 84] can be used to efficiently 

solve the discrete systems.

Finally, the need to develop efficient numerical solution algorithms that utilize the po

tential of the emerging computing architectures. Major potential advantages in comput

ing lie in emerging parallel computer architectures and use of parallel computation for 

Large-Scale Reservoir Simulation [168]. Techniques such as domain decomposition e.g. 

[165, 120] that naturally split a large problem into smaller pieces to be addressed sepa

rately on distinct processors, which also allows modularized local grid refinement and can 

play a significant role in developing effective and robust simulation codes.

1.2 Scope o f W ork and R esearch C ontribution

The work documented in this thesis presents a number of developments in numerical 

discretisation techniques for the subsurface reservoir simulation saturation equation. The 

advantages and limitations of some of these formulations are discussed and analysed in this 

work with the help of numerical tests. The major objective of this thesis is to address the 

important aspects of higher resolution methods for flow in porous media on unstructured 

grids in two space dimensions.

1.2.1 Summary of Major Work

The main objective of this thesis is to develop higher resolution multidimensional and 

higher order cell vertex finite volume methods for convective flow in porous media on 

structured and unstructured grids. The schemes are coupled with existing control volume 

distributed full tensor Darcy flux approximations. The principal accomplishments of this 

work are listed below:

(i) A study of a family of novel truly multidimensional schemes for convective flow in 

porous media on structured and unstructured quadrilateral and triangular grids in 

2D. Details of the formulation are documented in [107, 102, 105, 103, 104].

(ii) An extension of a class of higher order methods to unstructured highly distorted
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grids. A sequence of higher resolution non-uniform limiters are introduced and 

tested for classical two phase flow problems in porous media on a range of unstruc

tured grids. The outcome of this research is documented in [109, 108, 106].

(iii) The implementation of a novel class of higher order multidimensional schemes for 

flow in porous media on unstructured meshes [101].

(iv) Applications of the above schemes to two phase flow and three component two-phase 

flow systems driven by viscous and gravity forces in homogeneous and heterogeneous 

domains.

The research outputs in this study are listed in the bibliography of this thesis.

1.2.2 Organization of the Thesis

The thesis is subdivided into eleven chapters, including an introduction and conclu

sion. The synopsis of each chapter is as follows.

The flow equations of mass and momentum conservation for fluid flow in porous media 

are introduced in C h ap ter 2. Description of the problem to be solved with specified 

boundary and initial conditions is also presented in this chapter.

C hap ter 3 presents a literature review of previous work on higher resolution and higher 

dimensional upwind finite volume discretisation schemes employed in petroleum reservoir 

simulation. Limitations of standard single point upstream weighing finite volume schemes 

are discussed.

C hap ter 4 is devoted to the details of the discretisation of the coupled system of hyper

bolic and elliptic equations. Formulations of edge-based and cell-based vertex-centered 

upwind finite volume approximations for the saturation equation are considered. Also, 

a review of multi-point control-volume distributed CVD (MPFA) approximations of the 

Darcy flux are presented. The solution strategy and time stepping algorithm are then 

proposed. Finally, an overview of discrete local maximum principles for hyperbolic equa

tions is presented.

Higher-order upwind schemes on highly distorted unstructured triangular grids in 2D, are 

the subject of ch ap te r 5. The schemes are coupled with consistent Darcy flux approxi

mations. Non-uniform grid limiters are presented and the schemes are tested on a series 

of test cases for two phase flow in porous media.
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C hapter 6 is devoted to a class of novel locally conservative edge based truly multi

dimensional schemes, for structured and unstructured quadrilateral grids. Extensions to 

triangular and hybrid meshes is proposed in chap ter 7. Two phase flow results are tested 

on a range of grids with variations in spacing and orientation. Numerical cases involve 

both diagonal and full homogeneous permeability tensors for high mobility ratios. 

Applications of the edge based schemes to gravity driven flows and to compositional flow 

systems using different combinations of upwind and tracing formulations are investigated 

throughout numerical case studies in chap ter 8.

C hapter 9 presents novel families of cell-based multidimensional schemes for convective 

flow in porous media on unstructured grids. A stability analysis is performed for linear 

flux and a class of weighting factors is derived on triangular and quadrilateral elements. 

C hapter 10 introduces novel families of higher order multidimensional schemes for con

vective flow in porous media. The formulation of these methods is established using both 

edge based and cell based finite volume approximations. Different versions of the schemes 

are compared with the standard methods with the help of numerical tests on homogeneous 

and heterogeneous permeability fields for different types of structured and unstructured 

grids.

Finally, the last chapter summarizes the novel research contributions of this work and 

recommendations are made for continuation of this work through future research.



Chapter 2 

Flow Equations

The purpose of this chapter is to introduce the principal equations governing the flow 

in porous media, which are modelled in this thesis. Fluid flow in porous media is governed 

by the fundamental laws of conservation of mass, momentum and energy. Additionally, 

several empirical relations comprising PVT-relations, rock and fluid properties and multi

phase flow behaviour are necessary to build a mathematical representation of the physical 

problem that is as realistic as possible. For reference, textbooks including Peaceman 

[128], Aziz and Settari [13], Bear [19] give further details on the subject. This chapter 

is organised as follows. In section 2.1 we will briefly cover the primary physical and 

geological parameters influencing the flow. Section 2.2 presents the Darcy’s Law and the 

flow equations governing single and multi-phase flow. Throughout the dissertation, we 

consider two different models for flow in porous media namely:

• a two-phase immiscible flow model and

• a three-component two-phase immiscible flow model,

The above models are discussed in more detail in section 2.3.

2.1 M odel Param eters

2.1.1 Rock Parameters

Porous media are made up of pore spaces and a solid matrix. The distribution and 

volume fraction of such pores in the rock determine the rock properties, which in turn are 

the parameters governing the hydrocarbon flow in the reservoir.
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Porosity

The rock porosity, referred to as \I/, is a scalar dimensionless static entity which cor

responds to the void volume fraction of the medium, that is, 0 < < 1. The porosity

usually depends on the pressure. In simplified models, it is customary to assume that 

^  only depends on the spatial coordinate. We assume, without loss of generality with 

respect to the numerical methods presented, that the porosity is equal to unity.

P erm eab ility

The absolute permeability, denoted by K, is a measure of the rock’s ability to trans

mit a single fluid at certain conditions. In general, for flow in higher dimensions, the 

permeability is modelled via a spatially varying full tensor K, which means that the per

meability in the different directions depends on the permeability in the other directions. 

In 2D, the permeability tensor takes the form:

This tensor must be symmetric and positive definite to ensure a physically consistent 

conductivity.

In the case where K is diagonal, the medium is said to be isotropic if K n  = K 2 2 , as 

opposed to anisotropic corresponding to K n  ^  K w

Moreover, due to rock formations, the permeability may vary rapidly over several orders 

of magnitude across the porous medium. Under the influence of insitu stress, fractures 

may open or close at depth and therefore affect drastically the bulk permeability. 

Furthermore, since the definition of permeability involves a certain fluid, different fluids 

will experience different permeability in the same rock sample. This is usually modeled 

through relative permeabilities discussed below.

2.1.2 Fluid properties

S a tu ra tio n  and  C oncen tra tion

The void in the porous medium is assumed to be filled with different phases. The 

volume fraction occupied by each phase p  is the saturation Sp. By definition,

K 12 K 22

(2 .1 .1)
P



10

For practical reservoir purposes, usually only three phases are considered namely aqueous 

(w), oleic (o) and gaseous (g) phase. Each phase contains one or more components. A 

hydrocarbon component is a unique chemical species. The mass fraction of a component 

I in a phase p is denoted by Cip. In each of the phases, the mass fractions should add up 

to unity, so that for N  different components, we have:

N

Cip = 1, for each phase p. (2-1.2)
i=i

Density and Viscosity

Next, we assign a density pp and a viscosity pp to each phase p. In general, these 

are functions of phase pressure (f)p and the composition of each phase. In this work, 

compressibility effects are neglected. Also the phase densities are assumed to be constant 

for the models considered.

Capillary Pressure

Due to interfacial tensions, the phase pressures are different, defining the capillary 

pressure as:

4*cij =  4*i

for the phases i , j .  It is usually assumed that the capillary pressure is a function of the 

saturation only. In the rest of the dissertation, capillary effects will be neglected.

Relative Permeabilities

The relative permeability, krp of phase p is introduced to account for the reduced 

permeability of each phase due to the presence of the other phases. Typically, this pa

rameter is chosen to be an empirical function of the phase saturation. For two phase 

flow problems, Brooks and Corey [24], Corey [37] and Van Genuchen [158] have suggested 

analytical expressions for the relative phase permeabilities. Here, we use the following 

simplified model:

krp = S (p, (2.1.3)

where Sp denotes the normalised saturation variable of phase p  and (  denotes the order 

of mobility.
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Phase M obilities

Fluid phase mobility is defined as the ratio of the relative permeability to phase vis

cosity [39]. The pth phase mobility is written as:

A p krp! Pp. (2.1.4)

2.2 C onstitu tive  Equations: C onservation  Laws

2.2.1 Continuity Equations: M ass Conservation Laws

For multiphase flow, the mass conservation equation (continuity equation) takes the 

form:

+  V • (PpVp) = Ppq, (2.2.1)

where Vp denotes the pth phase velocity and q refers to the source or sink term. We assume 

throughout this thesis that:

• the flow is incompressible. Consequently, pp is constant.

• Also, the porosity is set to unity.

Then Equation (2.2.1) simplifies to :

^  +  V • Vp =  q. (2.2.2)

2.2.2 Equation of Motion: D arcy’s Law

The movement of water, oil and natural gas through the subsurface is a very complex

phenomenon because of the involved microscopic scale and heterogeneity of the medium.

Usually the velocity of the flow is so small (Re «  1) and the flow passages are so narrow 

that laminar flow may be assumed. Rigorous analysis of the flow is not possible because 

of complexity of the shape of the individual flow passages. Although, several theories 

have been formulated, credit is attributed to the French engineer Henry Darcy [40], who 

published his famous work on the public fountain of the French city of Dijon. Darcy’s 

law models the effective velocity across a representative elementary volume (REV).
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Phase Velocity Form ulation

For single phase flow, the compact differential form of Darcy’s law is written as:

V =  “ (V<£ +  pgVh). (2.2.3)

Here, fi is the fluid viscosity, g is the gravitational constant, h is the spatial coordinate

in the upward direction and <f) is the pressure. When several phases or components are

present in porous media, Darcy’s law may be extended to describe simultaneous flow of 

more than one phase:

V p =  -A PK (V0 + ppg V h ) . (2.2.4)

Total Velocity Form ulation

The total Darcy velocity, which is the sum of the phase velocities, is defined as: Define 

the total Darcy velocity as:

V T =  -A K  (V0 + pgAh), (2.2.5)

where
Nr,

A =  X > „ , (2.2.6)
p= 1

is the total mobility. Let
Nr,

P = Y , P v ^ l K (2-2-7)
p= 1

is the mean density and

A p ( S ) = p p - p .  (2.2.8)

The pth phase velocity is then defined by

Vp =  /p(Vr  -  A p(S)gK V h),  (2.2.9)

where f p is the fractional flow of phase p, i.e.

f p ( S )  =  (2.2.10)
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2.3 G overning Equations

2.3.1 Immiscible Two Phase Flow

The Buckley-Leverett model for flow of two immiscible incompressible phases in a 

porous medium is important to models of oil reservoirs and contaminated aquifers. In 

this model, we assume that the fluid consists of two distinct phases. It is assumed that 

the molecules forming the two phases do not interact or move from one phase to the other. 

In the following, a water-oil system is considered, phase quantities bear suffices w for the 

aqueous phase (water) and o for the oleic phase. Recall that the saturations of the phases 

S0 and Sw are the ratios of the phase volumes to fluid volume. By definition,

Sw +  S0 = 1.

Typically, water is the wetting phase, meaning that it prefers to move along the surface of 

the rock pores. Oil is the non-wetting phase, and prefers to sit as disconnected droplets 

in the centre of cell pores, or move as ganglia when the droplets can connect. Thus the 

presence of both oil and water reduces the flow of the other. In the absence of capillary

forces, the Darcy velocities of the phases act so as to reduce the flow of each other and

take the form:

V* =  —AIOK (V 0 +  Piu^V/i), (2.3.1)

V 0 =  -A 0K (y<f> + p0gVh).

The Buckley Leverett flow model of two incompressible fluids is described, using the 

fractional approach, by an elliptic equation for the pressure </>:

-V A  • K V 0 =  M, (2.3.2)

and a hyperbolic equation for the saturation, neglecting the capillary pressure and dis

persion. The saturation equation is written as:

<99
* d t  +  V ' V <»(S) = m > (2-3.3)

where S  is the water saturation, m  is the distributed source term, the porosity ^  =  1 and

~VW takes the form:

V W{S) =  / (5 ) (V t  -  X0g A p K V h ) ,  (2.3.4)

where V r =  V m +  V„ is the total velocity. Here, Ap =  pw — p0.
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Buckley-Leverett M odel in ID

In one dimension, in the absence of source and sink terms, the conservation equation 

(2.3.3) reduces to:

f + s = « >
and Equation (2.3.1) takes the form

Vw = - K K ( ^  +  pwg (2.3.6)

The phase velocity is expressed in terms of total velocity Vr =  Vw +  VQ as

Vw = f(S ) (V r  -  A„Apg— ), (2.3.7)

where /  is the fractional flow.

Then, the incompressible flow condition, in 1-D, reduces to

dVr^ = 0 ,  (2.3.8)

from which it follows that the total velocity is spatially constant in 1-D for an incom

pressible flow. Equations (2.3.7) and (2.3.8) are used to determine pressure and velocity 

subject to initial and boundary conditions for the pressure and saturation. The satura

tion of the oil phase is deduced from the volume balance equation, where saturations sum 

to one. Dimensionless parameters that influence the Buckley-Leverett models considered 

here are the gravity number:
7 =  K 9(p«’ - P ° \  (2.3.9)

VoVt

and the mobility ratio

M  =  — . (2.3.10)
l̂ VJ

The gravity number is the ratio of gravity to viscous forces. The mobility ratio is one 

of the factors that determine the physical stability regime of the flow. In the case of

mobility ratios larger than unity, small instabilities (typically due to heterogeneities in

the medium) in the flow will grow and the displacement is destabilized [119, 43]. This leads 

to the development of patterns at the interface between the two fluids. These phenomena 

are referred to as viscous fingering. Gravity may act to stabilize or destabilize the flow.

The Buckley-Leverett flux function is neither convex nor concave. This model is especially
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interesting when both the total fluid velocity and gravity are nonzero. In the cases 

presented in this work, we use fractional flow functions of the form,

MS<
;  MS< + ( 1 - S ) C

where £ is the order of mobility, S denotes the normalised water saturation and M  is the 

mobility ratio defined above. Typical profiles of the Buckley-Leverett flux function for 

different gravity numbers are depicted in Figure 2 .1. Solutions of the Buckley-Leverett 

equations exhibit sharp travelling wave fronts in oil and water saturations, followed by 

smooth expansion regions.

(c) VT =  1, g =

Figure 2 .1: Buckley-Leverett flux function: Vw =  f (S ) (V r  — g{ 1 — -S')2) with /(-S') =  
sp+fi-s)* f°r £ = 2-

2.3.2 Polym er Flood System: Three Component Two Phase 

Flow

The hyperbolic system considered here is comprised of a miscible aqueous phase (wa

ter and polymer concentration) together with an oil phase. Throughout the thesis, the 

concentration of a polymer solute is denoted by C; by definition C  is the volume fraction 

of the polymer solute in the miscible phase. In one space dimension, the conservation 

equation in the absence of source and sink terms takes the form:
dS <9F(S) „
* + t e = 0’ (2-3'n )

where

S =
S

S C
(2.3.12)
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denote the vector of conservative variables and

V„,

is the nonlinear flux vector. Let

F

C =

c v w

s

c

(2.3.13)

(2.3.14)

denote the vector primitive variables. The phase velocity is defined by equations (2.3.6) 

and (2.3.7). Here, the oil saturation is (1 — S) and aqueous viscosity /.iw is now a function 

of polymer concentration C.

C harac te ris tic  D ecom position

The decomposition matrices of system Equations (2.3.11) are presented in [21 , 51] and 

derived here for completeness.

Equation (2.3.11) can be expanded into the ’’quasilinear form”:

dS_dC  5 F ^ C _ 0 
dC  dt + d C d x  ~

where

and

m dST  =  —  =
d c

1 o 

c  s

T_ d F _
d C ~

dV,n
as

dV«,
ac

C dVw Vw + C dVw
as rw 1 ^  ac j  

is the local jacobian of the system with respect to primitive variables.

Assume S  ^  0, then multiplying Equation (2.3.15) by ( f § ) -1 gives:

dC m lTac n
a r + T  V  =  0’

with

T lJ =

av„, dvw 
as ac

0

(2.3.15)

(2.3.16)

In the form Equation (2.3.16), characteristic speeds are the diagonal entries (also corre

sponding with the eigenvalues) of the matrix T - 1J , namely

dVw . Vw 
d S  5  ’
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corresponding respectively with the eigenvectors

'  1 '
dVm

and dC

0 Vu, r i  dVm 
. S .

and the transformation matrix from conservative variables to characteristic variables W  

is given by:

R

dVw
dC

dVw

(2.3.17)

The matrix R  can become singular if the eigenvalues and are equal.

2.4 Initial and B oundary C onditions

2.4.1 Hyperbolic Equation

For the initial value problem (IVP) field data is prescribed. For initial boundary value 

problems (IBVP), considered here in two-dimensions, an initial flow field is prescribed 

together with boundary values which are assigned according to the number of inward 

pointing characteristics [13]. Zero normal flow is imposed on solid walls.

2.4.2 Elliptic Equation

The two most common kinds of boundary conditions used in reservoir simulators with 

respect to the elliptic pressure equation are:

D irichlet

This boundary condition requires the specification of pressure at the reservoir bound

aries or wells. Typically, this involves specifying flowing bottom hole pressure at a well 

and a constant pressure at physical boundaries of reservoir.

N eum ann

This boundary condition requires the specification of flow rates at reservoir bound

aries. Typically, it involves specifying flow rates at wells and no-flow across physical 

solid boundaries of reservoir. Flow rates are specified or the pressure is specified at the 

boundary.
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Chapter 3 

Previous Work

In this chapter, some background work related to the topic of this thesis is described. A 

brief overview of the development of higher resolution methods is presented in section 3.1 

and recent advances in modern multidimensional schemes for the transport equations are 

presented in section 3.2. Finally, section 3.3 presents state of the art of consistent Darcy 

flux continuous approximations based on control volume distributed (CVD) schemes for 

the pressure equation.

3.1 M otivation  for th e  D evelopm ent o f H igher R eso

lu tion  Schem es in R eservoir Sim ulation

One of the most important tasks in the numerical simulation of fluid flow problems 

is the reduction of numerical diffusion in the solution. Numerical diffusion is caused by 

the use of first order interpolation schemes in the approximation of the convective terms 

in the momentum equations introduced in chapter 2, Equation (2.2.4). First order up

wind single-point upstream weighting schemes are still commonly employed in reservoir 

simulation for integrating the essentially hyperbolic components of the system, due to its 

simplicity and robustness of the resulting algorithm. However, these methods are known 

to introduce false coordinate-line numerical diffusion (even in 1-D) also referred to as 

longitudinal or streamline diffusion.

Also, as standard first order schemes rely upon upwind information that is determined 

according to the grid geometry; directional diffusion is introduced into the solution that 

is grid and geometry dependent. The effect can be particularly important for cases where
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sieep fronts and shocks are present and for cases where flow streamlines are not closely 

aligned with the grid coordinate lines and is known as transverse or cross-wind diffusion 

[132, 21, 36, 141, 142, 88 , 6 , 152].

Higher order convection schemes continue to be developed for the essentially hyperbolic 

systems of reservoir simulation [57, 51, 58, 56, 59, 21, 23, 48, 62, 157, 55]. These schemes 

require an extended support to obtain higher order accuracy and are constructed such 

tliat the solution remains free of spurious oscillations. These methods yield benefits in 

terms of improved front resolution and have been successfully demonstrated for a variety 

of multi-phase flow problems in reservoir simulation.

A more robust solution algorithm that is free of both cross-wind diffusion and spurious 

oscillations remains an area of research for reservoir simulation and is the target of this 

thesis.

Towards this goal, higher resolution schemes are presented for convective flow approxima

tion on non-uniform distorted unstructured grids. This work continues with the develop

ment of the higher order unstructured grid schemes presented in [58, 56]. The convection 

schemes are coupled with continuous Darcy fluxes for approximation of the pressure equa

tion and applied to multi-phase flow problems. The schemes are tested on unstructured 

grids with variable grid spacing and benefits of the resulting schemes in terms of improved 

front resolution are demonstrated for two-phase flow and three component two-phase flow 

test cases in two dimensions.

3.2 H igher R eso lu tion  M eth od s for H yperbolic C on

servation  Laws

3.2.1 One Dim ensional Case

In the case of one space dimension, upwind finite volume schemes have reached a de

gree of maturity where they can be considered as reliable tools for producing accurate 

numerical approximations of hyperbolic systems of partial differential equations.

Among the popular schemes that preserve the monotonicity of the solution are the up

wind schemes introduced by Godunov [74], Engquist and Osher [64] and Roe [140]. These 

schemes are based on the solution of local or approximate Riemann problems. Central 

schemes including Lax Friedrichs are also used. These schemes are the basis of devel
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opment of higher order methods initiated by VanLeer [160] that provide second order 

accuracy in smooth regions and prevent the development of nonphysical oscillations near 

discontinuities.

High resolution schemes for conservation laws in one dimension are usually constructed 

using some form of TVD (total variation diminishing) limiter [156] so that high order 

accuracy can be achieved while avoiding spurious oscillations in the solution. Of interest 

here is the slope limiting (MUSCL) approach of van Leer , in which the limiter is applied 

in a geometric manner, to the gradients of a piecewise linear reconstruction of the solution, 

to create a monotonicity preserving scheme. At a given accuracy, the higher order schemes 

allow much coarser grids than the SPU scheme and hence require fewer calculations to 

produce accurate solutions. The computational time saved on the calculations outweighs 

the costs associated with higher order reconstructions. The details of such schemes is the 

subject of chapter 4.

TVD based methods have been used in the petroleum literature by several authors e.g. 

[143, 23]. The extension of higher order methods to compositional flow systems is nontriv

ial due to the strong, nonlinear coupling of the advection equation. Thiele and Edwards 

[157] developed novel TVD schemes for compositional streamline simulation in ID. 

Extensions to very high order methods include the piecewise parabolic method of Wood

ward and Collela [166] as well as the essentially non-oscillatory (ENO) type schemes of 

Osher-Shu [117] and weighted-ENO (WENO) schemes [116]. Harten et al. [77] introduced 

the ENO reconstruction that uses an adaptive stencil to achieve third and higher orders 

of accuracy.

In addition, the Runge-Kutta Discontinuous Galerkin (DG) methods [31, 35, 34, 32, 33, 

29, 30], provide an attractive alternative to classical methods that have been employed 

in several applications. There has been an increasing interest in such methods in reser

voir simulation due to its high accuracy and adaptability to general meshes. Riviere 

[135, 137, 136] applied the DG methods to solve the hyperbolic transport equations for 

miscible flow problems. More recently Hoteit and Firoozabadi [86] combined the DG 

methods with the mixed finite element methods to solve compositional flow problems.

3 .2.2 Higher Order Schemes in Higher Dim ensions

Extensions of one dimensional higher resolution methods to multi-dimensions were 

first constructed using serial techniques such as operator splitting [154, 113]. Neverthe
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less, the generalisation of these schemes on unstructured meshes rules out the use of the 

TVD condition which proves to be prohibitively restrictive on Cartesian meshes because 

the resulting scheme can be no more than first order accurate [74, 75], also monotonic

ity has limited meaning in multi-dimensions and is a one dimensional concept. Early 

TVD based extensions to higher dimensions in reservoir simulation include [143, 144, 26]. 

Spekreijse [153] proposed a new positivity criteria for unstructured grids, based on posi- 

tivity of coefficients of the discrete form in a scalar conservation law. This resulted in a 

solid framework for the development of modern truly multidimensional higher resolution 

methods for conservation laws. The stability of the higher resolution formulations on gen

eral unstructured grids is based on ensuring that some form of discrete local maximum 

principle (DMP) is satisfied.

Work has been conducted by Jameson [91, 92] concerning limiting reconstructed solu

tions. This lead to the introduction of the local extremum diminishing (LED) schemes 

on unstructured triangular meshes in an edge-based finite volume framework. Unlike 

the TVD interpolation, the LED interpolation can be extended to an unstructured mesh 

while maintaining the positive coefficients of the discrete form for a scalar conservation 

law. This can be performed by calculating gradients of appropriate neighbouring triangles 

or edges and applying a discrete maximum principle [15].

Similar approaches have been carried out by Barth and Jesperson [16], Durlofsky et al. 

[46], Liu [114] and Batten et al. [18] employing slope limiting procedures for multidi

mensional cell-centered finite volume schemes for unstructured triangular meshes. More 

specifically, the limiting procedure involves the construction of an appropriate linear rep

resentation of the solution within a triangular element before it is limited in a manner 

that enforces the positivity constraint.

In the field of reservoir simulation, higher order Godunov schemes have been tailored to 

the equations of flow in a porous medium by Bell et al. [21] including application to black 

oil and compositional flow systems. The authors used a characteristic decomposition of 

the essentially hyperbolic system and adopted an Engquist-Osher (monotone) flux at the 

sonic points in order to ensure entropy satisfaction for expansion shocks.

This method was extended by Edwards [51] who introduced a higher-order Godunov 

scheme on non-uniform quadrilateral grids method with local dynamic grid adaptivity, 

where grid blocks are inserted in highly active regions of the flow field and removed from 

regions of inactivity. The new method was applied for two phase flow and three component
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two phase flow problems. The quality of results computed by the adaptive higher-order 

scheme are comparable with those computed by the higher-order scheme on a uniform 

grid, globally refined to the level of the finest adaptive grid zones, while great savings in 

computer time are obtained (up to 64 times in two space dimensions) in comparison with 

standard upstream weighting methods. The adaptive higher order scheme is shown to be 

vastly superior compared to the first-order scheme on a uniform or adaptive grid. 

Edwards [57] also presented higher order finite volume schemes based on the LED formal

ism for the hyperbolic equations coupled with the general tensor flux-continuous CVD 

(MPFA) approximation in 2D where both explicit and implicit time discretisations have 

been implemented. The comparison between higher order schemes for multi-phase flow in 

porous media coupled with CVD (MPFA) versus CVFE approximations for the pressure 

equations and demonstrate the benefits of the CVD coupled with higher order convec

tion for heterogenous permeability fields in the resolution of the saturation fronts. The 

schemes have been formulated in a edge-based framework on general grids. Extensions of 

the formulations on arbitrary 3D grids of any cell type have been presented in [58].

One of the aims of this work concerns the extension of the above schemes to highly 

distorted unstructured grids and definition of the optimal non-uniform grid limiter. A 

sequence of non-uniform mesh limiters are also introduced and tested in application to 

multi-phase flow problems [106]. More details are given in chapter 5.

3.3 M odern tru ly  M ulti-d im ensional Schem es for H y

perbolic C onservation  Laws

3.3.1 Literature Review  of Positive M ultidim ensional Schemes

While the use of higher order methods has been shown to be efficient in reducing the 

dependency of the numerical solution on the grid geometry [21], these schemes focus on 

reducing coordinate diffusion and require wide stencils.

An alternative approach, introduced in the literature in order to overcome cross-wind 

diffusion effects is known as truly multidimensional upwinding [142, 88]. The term truly 

or genuinely multidimensional schemes refers to schemes that consider the truly higher 

dimensional wave vector structure of the problem in higher dimensions unlike the dimen

sional splitting methods.
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Multidimensional upwind schemes were developed initially for the approximation of steady 

state solutions of the two-dimensional Euler equations on unstructured triangular grids 

[142, 129, 83, 127].

More recently, several positive multidimensional advection schemes have been proposed in 

the CFD (Computational Fluid Dynamics) literature. These methods include the corner 

transport upwinding (CTU) [36], the N-scheme [138, 151] and the rotated grid H-box 

methods [22, 81] for Cartesian grids. These methods use characteristic information to 

determine the numerical fluxes via the tracing of pseudo-control volumes. They are de

signed to monitor the average time evolution of the approximation to the solution within 

a complete grid cell rather than concentrating on the activity at the interfaces. 

Straightforward application of the above techniques to general non-uniform velocity fields, 

that occur in heterogeneous media for example, does not guarantee positive solutions. 

Also, the formulation of the schemes is closely related to the uniform structure of the grid 

which require further consideration in taking them into general unstructured grids.

Skew Upstream  Differencing Scheme

The early developments of multi-dimensional schemes date back to the 1970’s with 

Raithby [132] who proposed the Skew Upstream Differencing Scheme (SUD) as an alter

native to the conventional upstream difference scheme, in order to reduce false diffusion 

errors in the region of flow where the computational grid coordinate line and flow stream

lines are not closely aligned. The benefits of the scheme have been shown using numerical 

results for uniform flows and for a non uniform rotational velocity field on a Cartesian 

grid. The scheme was formulated with a finite difference technique and it formed the 

basis for subsequent developments.

CVFEM  Skew Upwind

In the control volume finite element (CVFEM) context, Schneider and Raw [147] pro

posed an upwind procedure that accounts for the directionality of the flow field through a 

skewed approach, while simultaneously precluding the possibility of negative coefficients. 

The schemes were originally devised to solve the Navier Stokes equations. They recom

mended both nodal and integration point values in the approximation of the convected 

value at the integration point, in order to avoid negative coefficients, especially in a highly 

non-uniform flow field. The 2-D work was formulated with bilinear quadrilateral elements
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and requires the inversion of 4x4 local matrices.

Although its 3-D extension appears straightforward, to perform inversion of 12x12 local 

elemental matrices may become prohibitively expensive, especially if a more cost-effective 

procedure could offer the same or comparable accuracy and stability. Local inversion is 

required when convection upwind variables include both integration point and nodal vari

ables, since each integration point variable must be written explicitly in terms of nodal 

variables alone.

Optimal Linear M ultidimensional Schemes

In 1992, Roe and Sidilkover [138] investigated the theory of optimal linear, positive 

schemes for constant-coefficient advection in two and three dimensions. The schemes were 

introduced as a single parameter family and were presented in a conservative form. They 

observed that the optimum schemes have much lower numerical diffusion, and permit 

larger time-steps. Quantitatively, the optimum scheme has about four times less dissipa

tion than the dimensionally split scheme and allows stable time-steps that are greater by 

a factor two.

In order to derive the optimum oscillation free, constant coefficient schemes, the authors 

establish the residual formula, on Cartesian grids, that has the smallest possible trunca

tion error and propose a quantification of the cross-wind diffusivity of the scheme following 

the work of Hirsch et al. [82, 83]. The optimum linear scheme, referred to as the ”N- 

scheme” - where N stands for narrow - uses a linear interpolation in the upwind triangle 

forming the cell and depends on narrow three node stencil in two dimensions. As shown 

by Roe and Sidilkover who gave its name, it is identical to the upwind scheme of Rice and 

Schnipke [134] on regular quadrilateral grids, provided that the latter are triangulated 

using the optimal choice for diagonals. Further details are presented in chapter 6 , section 

6.2.3.

Corner transport Upwind CTU scheme

The Corner Transport scheme introduced by Collela [36] uses a bilinear interpolation 

on the cell as a first step to building a second order multidimensional scheme. The scheme 

uses corner point data in order to enhance the stability of the upwind approximations. 

In the same paper, explicit second-order time-dependent Godunov-type methods have 

been derived in two space variables by using the wave propagation properties for mul
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tidimensional hyperbolic equations and by limiting some of the second-order terms to 

suppress oscillations. The algorithm coincides with the multidimensional upwind method 

for hyperbolic conservation laws independently developed by van Leer [159] for the ad- 

vection equation. However, unlike van Leer’s algorithm, the extension to systems is based 

on a two step predictor corrector formalism on structured quadrilateral grids. Compar

isons with second-order operator split methods have been established for gas dynamics 

applications on rectangular grids.

Residual distribution schemes

Another approach towards the construction of genuinely two dimensional upwind ad- 

vection schemes are the fluctuation (or residual) distribution schemes, which have been 

developed in the last decade [141, 9, 6 , 7, 10, 133, 88].

A review of fluctuations distribution methods is given in [155, 41].

These methods were originally developed for the scalar advection equations on triangular 

meshes in the steady state [139]. Extensions to these methods to systems and unsteady 

flows has followed due to the work of Abgrall and Barth [7] and more recently the work of 

Ricchuito [133]. For the approximation of steady state flows on unstructured triangular 

grids, these methods have reached a degree of maturity whereby the multidimensional 

schemes reproduce most of the advantages of upwind schemes in one dimension: second 

order approximation of smooth solutions, satisfying a discrete maximum principle in the 

presence of discontinuities, and rapid convergence to the steady state without the neces

sity for additional artificial viscosity. A distinctive and attractive feature of these schemes 

is that they are computationally compact.

They can be written as loops over elements and when processing an element no reference 

is made to data outside that element. This makes the methods efficient for parallelisa- 

tion. Extensions to quadrilateral meshes of the residual distribution methods has been 

proposed by Abgrall [8].

Unfortunately, most of the upwind distribution schemes developed for steady state prob

lems are only first order accurate for time dependent flows. Also, these schemes use 

average velocities over the elements and the generalisation to nonlinear fluxes requires 

special treatment. In addition, the schemes are not formulated in a locally conserva

tive framework when applied to unsteady nonlinear hyperbolic problems on unstructured 

grids.
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3.3.2 Recent developm ents of M ulti-D  schemes in Reservoir Sim

ulation

Positive multidimensional upwind schemes for multi-phase flow transport equations 

is an active area of research in reservoir simulation. A two parameter family of wave 

oriented upwind schemes is presented by Edwards [54] on uniform quadrilateral grids. The 

formulation of the schemes was given in a locally conservative finite volume framework and 

formed the basis of the developments herein (chapters 6-10). Like the CTU scheme, the 

scheme uses the corner point and uses characteristic tracing. The scheme uses a nine point 

stencil instead of a five point stencil (as in SPU), and is based on a bilinear interpolation 

of the saturation on the quadrilateral grid cell. In the same paper, positivity analysis was 

conducted for linear advection on Cartesian grids and a generalisation to non-linear fluxes 

was also proposed. The schemes are coupled with a consistent CVD (MPFA) Darcy flow 

approximation and are identical to the N-scheme for the linear advection equation on a 

Cartesian grid. The stability and benefits of these schemes were shown through numerical 

cases involving full tensor permeability fields and high mobility ratios for two-phase flow 

systems.

Extension of this work to unstructured quadrilateral and triangular grids is presented in 

[107, 102] using an edge-based formulation and [101] using a cell-based formulation. A 

complete description is given in this thesis.

The CVFEM approach has also been adopted in reservoir simulation by Kozdon et al. 

[100] for simulating adverse mobility ratio displacements in for miscible gas injection into 

homogeneous and heterogeneous porous media on Cartesian grids. The approximation of 

the advection transport equation was also coupled with the MPFA method on Cartesian 

grids. An IMPEC strategy (implicit pressure, explicit concentration) was used in order to 

solve the coupled system of equations. In the same paper, the authors introduced the Flat 

scheme that provides minimal constant diffusion at the cross-wind diffusion at the expense 

of adding extra transverse diffusion in comparison with the optimal multidimensional 

scheme on Cartesian meshes for linear advection.

3 .4  F lux-C ontinuous F in ite-V olum e Schem es

Rapid variation in permeability is common in oil reservoirs where permeability coeffi

cients can jump by several orders of magnitude. Continuity of normal flux and pressure
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at local physical interfaces between grid blocks with strong discontinuities in permeability 

are fundamental laws that must be built into the discrete approximation of the pressure 

equation.

Flux-continuous finite volume methods (FVM) [61, 2, 60, 161, 3, 62, 4, 53, 1, 122, 63] 

have been developed for mass-conservative approximations to the pressure and Darcy 

velocity of the fluid. Locally conservative flux-continuous full-tensor finite-volume schemes 

have been developed for the essentially elliptic component of the reservoir simulation 

system. These schemes are control-volume distributed (CVD) MPFA where flow variables 

and rock properties are assigned to the control-volumes of the grid and provide a consistent 

discretization of the porous medium pressure equation applicable to general geometry and 

permeability tensors on structured and unstructured grids.

In this work the higher resolution convection schemes are coupled with existing continuous 

Darcy-flux CVD approximations. Details of these schemes are presented in chapter 4, 

section 4.2.1.
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Chapter 4 

N um erical D iscretisations

Numerical methods are necessary for the discretisation of reservoir simulation equa

tions due to the complexity of the permeability and geometry of petroleum reservoirs 

as well as the non-linearity and coupling involved. In this chapter, the focus is on the 

formulation of state of the art finite volume methods for reservoir simulation. Section 4.1 

includes a brief description of the finite volume method. Control volume cell vertex ap

proximations are introduced in section 4.2 and are applied to the pressure and hyperbolic 

equations for multi-phase flow. Edge based and cell based formulations are considered 

for discretising the hyperbolic conservation form. Important distinctions between the 

formulations will be highlighted in the subsections 4.2.2 and 4.2.3 as well as in chapter 

9. Solution strategy and time discretisation techniques are also discussed in this section. 

Finally, an overview of the discrete maximum principles for the hyperbolic equation is 

presented in 4.3.

4.1 F in ite  V olum e M ethods

The finite volume methods (FVM) are related to the original integral equations, and 

are derived from conservation of physical quantities over cell volumes. Fundamental to 

FVM is the introduction of control-volume cell average. Godunov [74] pursued this inter

pretation in the discretisation of the gas dynamics equations where the discrete solution 

has a piecewise constant representation in each control-volume defined by the cell average 

value. The finite volume form is suitable for discontinuity capturing and has been used 

in obtaining solutions to nonlinear hyperbolic conservations laws [110, 111, 76, 112, 113]. 

When compared to other discretisation methods such as finite differences or finite ele
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ments, the primary attraction of finite volume methods is numerical robustness by enforc

ing a discrete maximum principle , applicability to general unstructured meshes 
and the intrinsic local conservation  properties of the resulting schemes [93, 89, 164, 17] 

as the flux entering a given control volume is identical to that leaving the adjacent control 

volume.

4.1.1 Integral Forms for M ulti-phase Flow

The integral form of the flow equations is given, as the first step of the finite volume 

discretisation. After integrating over a control volume Qcv with surface <90^ via the Gauss 

divergence theorem, the continuity equations for phases p — 1 ,N P are written as

f  + ( f V p • nds =  m p (4.1.1)
Jncv dt JdQcv

where the integral is taken over the control volume n  is the outward unit normal 

vector to the surface, dQcv, bounding the control volume D,cv and where Sp, V p and m p 

are the p th phase saturation, Darcy velocity and specified phase flow rate respectively. 

Since the pore volume must always be filled by the fluids present, this gives rise to the 

volume balance where saturations sum to unity. Neumann boundary conditions apply 

on solid walls with zero normal flux. Inflow-outflow conditions apply at wells where 

fluxes/pressures are prescribed. Initial data in terms of saturation and pressure fields are 

also prescribed [13]. Without loss of generality with respect to the numerical schemes 

presented here, gravity and dispersion effects will be neglected in this chapter and will be 

treated in chapter 8 .

4.1.2 Finite Volume Formulation

In its most simple setting the steps involved in devising a finite volume approximation 

for a system of conservation laws in integral form are the following [6]:

1. Decompose the domain in non-overlapping cells referred to as finite volumes or 

control volumes, over which the discrete solution is defined by its cell averages.

2. Evaluate the numerical fluxes through the boundaries of the control volume. This 

numerical flux is computed by means of a numerical flux function, with the two 

solution states at the interface as arguments, either given by the cell average itself 

or by a suitable reconstruction involving neighbouring cell averages.
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3. Use the computed flux balance for each finite volume to evolve the cell averages in 

time by means of a suitable time integration scheme.

Finite volume methods are developed such that a close relationship to the physics of 

the underlying conservation law is maintained, aiming to capture as much as possible 

of the important properties of the weak solution. In its most sophisticated form in one 

dimension, the nonlinear physics of the conservation law is included by applying the flux 

function derived from the exact solution of the ID Riemann problem associated with the 

two adjacent states [94, 74, 140].

4.1.3 Gridding and Unstructured M eshes in Reservoir Simula

tion

The simulation of fluid flow in petroleum reservoirs is performed by discretising the 

actual domain into a number of sub-domains or grid blocks and locally approximating 

the conservation law for each fluid component in the system via a finite volume scheme. 

Although the actual physical processes are independent of discretisation of the domain, 

the outcome of any flow simulation depends on the grid geometry and the discretisation 

scheme.

While it is still common in the practice of petroleum reservoir simulation to use Carte

sian grids, development and use of general grid methods is emerging increasingly in the 

literature. The theory, implementation and application of unstructured grids has been 

extensively discussed in literature since the late 1980’s. Heinemann and Brand [79] were 

the first to introduce Voronoi type grids to petroleum engineering naming them PeBi 

(Perpendicular Bisector) grids. Later, several researchers contributed to the development 

of unstructured grids, Heinemann [80], Palagi [125, 126], Verma and Aziz [163], Fung et 

al. [71] among others. Use of all elements in 3-D is presented in [122]. Here the focus is 

on 2-D elements.

In general, unstructured gridding in 2D is a spatial discretisation that consists of poly

gons, which locally vary in shape and size [162]. The use of unstructured grids provide 

a flexible framework that enables more accurate and detailed representation of complex 

geologic features. In many cases, the methodology of unstructured grid facilitates the 

modelling of different geometries and enhances the accuracy of the solution with compar

ison to Cartesian grids [163].
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C ontro l Volumes

Schemes which use the cells of the mesh as control volumes arc called cell centered 

schemes. Vertex centered schemes on the other hand, use mesh duals as control volumes 

where control volumes are formed by joining cell centers to cell edge m idpoints for all 

cells sharing common nodes as a geometric dual to  the primal grid cells and flow solution 

unknowns and rock properties arc stored on a per cell vertex basis. In this work, a vertex 

centered finite volume approxim ation is used. Control volume tessellation is flexible in 

the  finite volume m ethod. Edges and faces about the central vertex are shown in Figure 

4.1 for duals formed from median segments or centroid segments among others. These 

geometric duals arise naturally  for two dimensional finite-volume schemes. The dual cells 

or polygons serve as control volumes with the solution unknowns (degrees of freedom) 

stored on a per vertex basis with cell-wise assembly.

Figure 4.1: Triangulation duals: median (dashed), centroid (dotted).

4.2 Cell V e r te x  F in i te  vo lum e A p p ro x im a tio n s

4.2 .1  F lu x  C on tin u ou s C ontrol V olu m e D istr ib u ted  (C V D ) A p 

p rox im ation s

The m ain focus of this subsection is on the families of flux-continuous, locally con

servative, control-volume distributed (CVD) finite volume schemes and the discretisation 

issues related to these schemes.

In reservoir sim ulation flow variables and rock variables are assigned to control-volumes 

so th a t they are control-volume distributed (CVD). U nstructured CVD m ulti-point flux 

approxim ations CVD (MPFA) are presented in [163, 4, 52, 53]. The form ulation presented
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here follows [52]. In this formulation flow and rock variables are vertex centered, i.e. dis

tribu ted  to the ccll-vertex polygonal control-volumes, which are defined with respect to 

a given grid vertex by the contour constructed by connecting cell-edgc m id-points to cell 

centres, for all cells sharing the common vertex.

The finite volume formulation is derived from the integral form of the flow equations 

(4.1.1). A unique discrete flux is then constructed for each control-volume sub-face and 

the closed integral of flux approxim ated by the sum of the discrete outward normal fluxes. 

The fluxes are constructed in a cell-wise assembly process, for a triangular cell there arc 

three subcell fluxes, Fa, F b, Fc, Figure 4.2. The subcell fluxes are accum ulated with re-

Figure 4/2: Sub-cell flux basis (dashed triangles).

spcct to  their triangle cell edges within an assembly process. The edge index e ( i , j ) refers 

to the j th edge attached to vertex i. The net edge based single phase flux Fe^j)((/)) as

sociated with edge e ( i , j ) is comprised of the sum of adjacent sub-cell fluxes tha t belong 

to the prim al grid cells with common edge In the dom ain interior two adjacent

sub-cell fluxes are assembled for each cell edge, with reference to  vertex i and local edge 

e of Figure 4.3(a) and the local fluxes of Figure 4.3(c), the net edge based flux is given by

F e(i,j)  =  F ai +  F b2. (4-2.1)

C ontrol-V olum e Flux and C ontinu ity

Here, flow variables are assigned to grid vertices and rock properties are piecewise 

constant with respect to the control-volumes. A consistent normal flux approxim ation 

is constructed for the three fluxes th a t respect the physical constraints of continuity of 

pressure and flux across the control-volume interfaces separating different perm eability
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(b)

Cell 2

Cell 1

Figure 4.3: (a) Segment of primal grid; (b) control-volume; (c) dual grid (bold) and fluxes 
in cells sharing the edge c.

values w ithin each primal grid cell.

Referring to the triangular cell, the locally numbered vertices have pressures

= (01 , 02) 03)-

Three continuous interface pressures

$ /  =  ( 0 a ,  0 6 ,  0 c )

are introduced at points (a,6, c) on the control-volume sub-faces, Figure 4.2. Subcell

triangular basis functions are then formed by joining each cell-vertex to the two adjacent

interface points. The pressure field now assumes a piecewise linear variation over each 

subccll triangle as shown in Figure 4.3. Consequently approxim ations of the derivatives 

0£, (f)̂  arc linear functions of and A piecewise constant gradient is then formed 

over each subcell triangle and is used in tu rn  to define local piecewise constant Darcy 

fluxes. The general tensor T  defined by the Piola transform ation is formed locally by 

resolving physical full-tensor fluxes with respect to the subcell geometry and control- 

volume permeability. Three flux continuity conditions are imposed within each triangle 

and are expressed as

Fa =  -  (Ti20£ + T220r/)|  ̂= — CCl10£ + T120r/)|^,

Fb — — ( ? 1 1 0 £ +  Ĉl2 0 jj) | g — — ( 7 n 0 £  +  TA2 0 7 7 ) | , ( 4 .2 .2 )

Fc =  — (7"l20£ +  T,220r;)|c' =  ~  (^"l20£ +  T220i))lcr>
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where (£, rf) is a local dimensionless coordinate system in each subcell. Here T \3a denotes 

interface flux F at location a  and state of volume j .  The actual position of a  along each 

subcell face defines both the point of continuous pressure and the flux quadrature (Figure 

4.3(c)), and in turn leads to a family of unstructured schemes [52, 53, 124].

The system of Equations (4.2.2) is rearranged into the form

F =  A L<&f +  B l <&v = (4.2.3)

and thus the interface pressures can be expressed locally in terms of the cell vertex pres

sures. After elimination of the from Equation (4.2.3) it follows that

F  =  {Al {Al -  A r ) - \ B r  -  B l ) + B l )&v. (4.2.4)

The fluxes of Equation (4.2.4) can also be written as a linear combination of cell edge 

potential differences [53], demonstrating the consistency condition that flux is zero for 

constant potential and each component of flux takes the form

N e d C

Fa{<t>) =  -  X )  (4 '2 -5)
3 =1

where N edC  is the number edges of the primal grid cell. The effect of quadrature point 

upon accuracy and convergence is explored in [124].

The closed surface integral of phase velocity can now be expressed as the sum of outward 

normal phase fluxes FPi over each of the surface increments of the control-volume Flcv: viz

/Jdnc

Ns
V p • fids =  (4-2.6)

i=  1

where N s  is the number of surface increments that enclose the volume Fl^. The outward 

normal phase flux in the ith normal direction is written in terms of the general tensor T  

as

Fp( =  - /  f p A ^ T y ^ .d r i  (4.2.7)
J dQcv J=1

where & are local curvilinear parametric coordinates, T* is the parametric coordinate 

surface increment and <f)̂  is the derivative of (j> with respect to and T  =  J J _1K J _T 

is the general tensor defined via the Piola transformation which is a function of the 

Cartesian permeability tensor and geometry, where =  d xi/d^j is the Jacobian of 

the local curvilinear coordinate transformation, and J  = x^yn — y^xv is the Jacobian
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determinant. The actual approximation of the transmissibility tensor T  naturally arises 

by normal resolution of Darcy flux across an interface [123]. The grids considered here 

generally give rise to non-zero cross terms with ^  0 for i ^  j  in the general tensor. 

For incompressible flow, Equation (4.1.1) is summed over the Np phases and using the 

sum of saturations is unity, yields the pressure equation
N S

£ F r ( =  0 (4.2.8)
i= l

away from sources and sinks (or wells) where the total flux F7; involves a product of total 

mobility and single phase flow flux and is given by

f  2
Ft. =  -  /  A ^ T ^ d l V  (4.2.9)

J  d ilev j = l

4.2.2 Edge Based Cell Vertex M ulti-phase Flow Approxim ation

Consider the control volume corresponding to the node i Figure 4.3(b). Let N eav be

the total number of constitutive edges connected to vertex i and t* the i th control-volume 

area. Define the control volume cell average as

v  l  s *(Ti JQi
SPi = -  I S„dQTi

for the pth phase. The finite volume approximation of Equation (4.1.1) can be interpreted 

as producing an evolution equation for control volume averages

The flux integral appearing in Equation (4.1.1) is approximated by
p  N edV

f  V„ ■ nds =  Y ,  U(S1, S nn)FT' (iM (<T+1). (4.2.10)
J  dSlev J= 1

for the pth phase continuity equation, where S£, are the left and right hand values of 

the phase saturation vectors with respect to edge e ( i,j)  and n  denotes the time level of 

the scheme. Here FTe(ij) =  AFe(iJ )(0), where Fe^j)((j)) is the single phase Darcy flux and 

MPi denotes the pth phase flow rate, which is prescribed at wells and is zero otherwise.

The semi-discrete finite volume form of Equation (4.1.1) for multiphase flow on un

structured grids is then written as
1 N e d V

T'J t SP‘ + E {p(SZ- s « ) ^ (ii)# " +1) =  MPI, (4.2.11)
j = 1



36

The phase continuity equations are coupled through the discrete pressure equation

Nedv
£  A(S2’ Sfl)f « (« )(^ +1) =  Mi> (4.2.1.2)
3=1

which is obtained by summing Equation (4.2.11) over the phases and using the volume 

balance constraint. Equivalently Equation (4.2.12) can be expressed as

N edV Nq

= (4-2-13)
e=l <7=1

where iq sums over the flux quadrature points (one per sub-face), N q — 1 at boundaries

(one subcell), N q = 2 in the field where two subcell faces join at the edge midpoint

Edge1 ei

Figure 4.4: Left and Right convention.

4.2.3 Cell Based Cell Vertex M ulti-phase Flow Approxim ation

In the absence of source terms, the cell based finite volume semi-discrete equation is 

written as:
j NedV

T'J t SP‘ +  E E  SV Fr, =  (4-2.14)
e=l iq= 1

for each phase p. The total Darcy-flux is computed from the pressure equation at a single 

quadrature point per subcell [53], here we evaluate the subcell flux on the control volume 

sub-face at the point of attachment to the cell edge e. Thus the quadrature points are 

chosen to coincide with the center of the cell edges.
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4.2.4 Single Point Upstream  W eighting Scheme

The approximate flux is defined according to the sign of the local wave direction wp, 

evaluated here at the control volume sub-faces connected the edge e. Referring to Figure

4.4 with respect to a local frame of reference aligned with the direction i to j  along the 

edge e, the standard reservoir simulation upwind scheme is written as

fP(S2,sS) =  { ^ 2 J  Wp ~°n (4-2.15)
/p(Sfl) Wp < 0

and the first order upwind scheme, (known as single-point upstream weighting in the 

reservoir simulation literature [13]) is defined with S£ =  S" and =  S”.

R em ark  4.2.1 Note that the control volume cell based and edge based single-point up

stream weighting formulations coincide on Cartesian meshes. This observation extends 

to unstructured grids in the case where the wave velocity at the quadrature points on each 

side of the cell edges are of the same sign.

4.2.5 Solution strategy: Im plicit Pressure Explicit Saturation  

(IM PES) Algorithm

In conventional compositional simulations either pressure is treated implicitly and the 

saturation variables are treated explicitly leading to implicit pressure explicit saturation 

(IMPES) algorithm [13, 21] or all variables are treated implicitly (Fully Implicit). In 

the first approach the time-step is restricted by the CFL condition and in the second 

approach the amount of work per time-step increases sharply as the number of components 

needed to describe the system increases. Here an IMPES formulation is adopted where 

pressure is the implicit variable, and the saturation and concentration variables are treated 

explicitly. This explicit treatment will reduce the number of unknowns we need to solve 

simultaneously.

The system of Equations (4.2.11) (Equations (4.2.14) respectively) and (4.2.12) are solved 

sequentially, Equation (4.2.12) is first solved implicitly for pressure while Equation (4.2.11) 

(Equation (4.2.14 respectively) is solved explicitly in this formulation. Fully implicit and 

semi-implicit formulations are presented in [57, 58].
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4.2.6 R unge-K utta Tim e D iscretisation

A common strategy for explicit time integration of semi-discrete equations of the form 

in Equation (4.2.11) is to use Runge-Kutta (RK) methods. Here we have used the third 

order monotonicity preserving Runge-Kutta method proposed in [148]. Let £  denote the 

local discrete spatial approximation operator on the extended stencil and A t  be the local

time step, which can vary from a time step to another. Writing Equation (4.2.11) (or

Equation (4.2.14)) as

| s Pi=£(Sp),

the third order Runge-Kutta method is written as:

s<J> = s;t + Atc(sy),
Sg* =  |Sp, +  ^ (S p 1*) +  jAtCfSp1'),

s «+1 = Is?. + !£(S®) + !At£(S<2)).
Comparisons between numerical simulations using third order Runge-Kutta discretisation 

and forward Euler time stepping have indicated little difference in results. Consequently, 

the more efficient forward euler method is used for time integration unless stated other

wise.

Therefore, the edge based vertex centered finite volume discretisation of Equation (4.2.11) 

for multi-phase flow on unstructured grids now takes the form [57]:

Nedv
(S?y -  S?.)Tj + At J 2 fp(S2, s = AtMPi, (4.2.16)

j = 1

and the cell-based vertex centered finite volume discretisation of Equation (4.2.14) is 

written as:

NedV Nq
( s ; f  -  s» )t< + a « £  E f(sz,, snRq)F Tq( r +1) = a tMpl. (4.2.17)

e=l iq= l

4.3 Local D iscrete M axim um  Princip les for th e  hy

perbolic equation

Discrete maximum principle analysis plays a central role in the design and analysis 

of finite volume schemes suitable for non-oscillatory discontinuity capturing schemes. A 

systematic analysis of the conditions required by a scheme to satisfy these requirements
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was given by Godunov [74] who introduced the concept of monotonicity. There is an 

extensive literature on this very important topic and many definitions and criteria can 

be found [38, 130]. Bounded total variation motivated the development of total variation 

diminishing (TVD) schemes, introduced by Harten [76] as a general concept to ensure that 

unwanted spurious oscillations are not generated by a numerical scheme. Spekreijse [153] 

expressed monotonicity as a positivity condition. More recent general analysis has been 

developed by Jameson [91] based on the definition of local extrema diminishing (LED) 

schemes. In this section we present a review of different formulations of discrete maximum  

principles following Barth [15].

4.3.1 One Dim ensional N on Linear Scalar Conservation Laws

In this section we examine discrete total variation and maximum principles for scalar 

conservation laws. Consider the nonlinear conservation law:

St + ( f (S ) )x = 0; (4.3.1)

subject to the initial condition:

S(x,0)  = S0(x). (4.3.2)

Equation (4.3.1) is discretised in the conservation form:

^ +1 =  ^  -  &-!/>) (4-3-3)

where fj+1/2 is a consistent numerical flux i.e. fj+1/2 =  H(Sj-i+i , .., Sj+i) and H ( S , .., S) —

m -
We shall first define the monotonic data and total variations.

Definition 4.3.1 M o n o to n ic  D ata. A grid function S  is called monotone i f  for all i,

if
S i+i) < S t < max(Si_i, Si+1). (4.3.4)

Definition 4.3.2 Total varia tion . Define the total variation in one dimension:

OO

TV (S )  =  Y ,  I Si -  Si-,. | . (4.3.5)
— OO

According to Lax [111],
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’’the total increasing and decreasing variations of a differentiable solution be
tween any pair of characteristics is conserved.”

Furthermore, in the presence of shock wave discontinuities, information is lost and the 

total variation decreases.

Strong M onotonicity HHL

A finite difference scheme Equation (4.3.3) is said to be monotone in the sense of 

Harten, Hyman and Lax [78] if H  is a monotone increasing function of each of its argu

ments with
BH
—— (S - k, .., Sk) > 0, V -  k < i < k. (4.3.6)

This is a strong definition of monotonicity. In [78], it is proven that schemes satisfy

ing this condition also satisfy the entropy inequality which distinguishes the physically 

relevant discontinuities. Unfortunately, they also prove that HHL monotone schemes in 

conservation form are at most first order spatially accurate.

Weak M onotonicity: M onotonicity Preserving Schemes

To allow higher order accuracy, Harten [76] introduced a weaker concept of mono

tonicity. A numerical scheme is called monotonicity preserving if monotonicity of S n+1 

follows from the monotonicity of S n.

It follows immediately from the definition of monotonicity preservation that

• local maxima are non-increasing, and

• local minima are non-decreasing;

which is a property of the conservation law equation. VanLeer [160] interpreted the 

monotonicity preserving condition using geometric considerations.

Total Variation Diminishing (TVD)

Harten [76] introduced the notion of total variation diminishing schemes using a weaker 

form of monotonicity than the monotonicity preserving criteria. The total variation mea

sures the total amount of oscillations in the function. A scheme is said to be total variation 

diminishing (TVD) if

T V (S n+1) < T V (S n). (4.3.7)



41

Harten has proven that schemes which are HHL monotone are TVD and schemes that 

are TVD are monotonicity preserving. Furthermore, it can be shown that all linear 

monotonicity preserving schemes (i.e. the coefficients of the discrete form are independent 

of S) are at most first order accurate. Thus high order accurate TVD schemes must 

necessarily be nonlinear with solution dependent coefficients.

4.3.2 D iscrete M aximum Principles on Unstructured M eshes

Monotonicity concept is restricted to one dimensional data. Here, a review of differ

ent positivity criteria for hyperbolic conservation laws in higher dimensions is presented. 

Consider the Cauchy initial value problem (ivp) on a closed domain D:

S t +  V • ${S) = 0, in fi; (4.3.8)

5'(x, 0) =  S'o(x), in <9D,

where $(S ) denotes the flux function. Then, the semi discrete finite volume scheme

Equation (4.2.11) for each control volume € D is written as:

J t Si + V. E f M S u , S g e ) ^ 0 ,  (4.3.9)
 ̂ e(j,k)&dQj

where Tj is the control volume area, fjk  is the discrete numerical flux at the center of the

edge e(j, k ), which is a function of the left and right states Slc and Sj^.

E n tro p y  Satisfying Schemes and  M onotonicity

In order to guarantee convergence to entropy satisfying weak solutions, we choose the 

flux to be m onotone or an E-flux [15]. Monotone fluxes include Godunov flux defined 

as

/ G(SL,Sfl) =  { m i n W s |f { 5 )  S l ~ S r  (4.3.10)
m ax S € [S r ,s l ] K s )  S R  <  s l

tha t relies on flux functions that are strictly convex, and the Local Lax Friedrichs (LLF) 

flux defined as

/ iir(5£,S fl) =  5(f(5L) +  f(5fi) ) - 5  sup I f ' t S m - S y ,  (4.3.11)
^ ^ se[sL,sR]
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that involves the derivatives of the flux function [117].

E-fluxes were introduced by Osher [121]. The most prominent E-flux is the Enquist-Osher 

(EO) flux written as:

/pEO(Sx, S R) =  i(f (S i)  +  f(SR)) -  i  J ° R \((S)\dS. (4.3.12)

Farther details on alternative numerical fluxes can be found in Godlewski and Raviart

[73] and Leveque [113]. A compelling motivation for the use of monotone fluxes in the 

finite volume scheme Equations (4.3.9) is the obtention of discrete maximum principles 

in the resulting numerical solutions of nonlinear conservation laws. A standard analy

sis technique is to first construct local maximum principles which can then be applied 

successfully to obtain global maximum principles and stability results. The first result 

concerns the boundedness of local extrema in time for semi-discrete finite volume schemes 

that can be written in nonnegative coefficient form.

LED P ro p e r ty

The semi discrete scheme for each control volume Qj,

j t S i = ^  Cjk(Sh)(Sk -  Sj),  (4.3.13)
e(j ,k)&d£lj

where the right hand side involves the sum over all nodes connected to node j ,  is local 

extremum diminishing (LED) [91], i.e. local maxima are decreasing and local minima are 

nondecreasing if

Cjk{Sh) > 0 , for every e(j, k) e  dflj.

Here Sh{t) denotes a piecewise polynomial solution representation in space on each control 

volume such that

‘SjW = ~  I Sh (x ,t)dx1 (4.3.14)
Tj Jn,

and
Cjk =  - M Sk’S£  (4 3 1 5)

Sk Sj

where hjk is the weighted outward normal to the edge e^- Note here that by construction

E  d(Sj )-&ik = 0.
e ( j , k )e d Q j
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Local Space-Time Discrete Maximum Principle

The fully discrete scheme for the time slab increment [tn, t n+1] and each Qj 6

s ; +1 =  s j  +  ^  £  c k ( s * ) ( s t  -  s,-),
3 e(j,k)GdUj

exhibits a local space-time discrete maximum principle

min (57, S£) < S?+1 < max (SJ,S?), (4.3.16)
e(j,k)€dQj 3 3 e(j,fc)ean/ k y

if

Cjk(Sh) > o , for every e(j,k) <E d fy ,  

and satisfies the CFL-like condition

1 “  7 “ ^ 2  Cjk(Sh) > 0 , for every e(j,k) € dflj.
3 e(j,k)edClj

A global In s ta b ility  bound is then obtained for a scalar initial boundary condition 

problem Equation (4.3.8).

Positivity Criteria

Definition 4.3.3 A scheme is said to be positive i f  the value of the solution at the new 

time-step can be written as the convex sum of the values at the previous time-step,

5Jl+1 =  with a k > 0,Vfc, (4.3.17)
k

together with the consistency condition

X S  =  1- (4-3-18)
k

This ensures that no new extrema are created, since

min(5fc) < Si < m ax^jf). (4.3.19)
k k

As recalled by Roe in [139], the concept of positivity was initially introduced by Godunov

[74] for the one-dimensional linear advection equation. Spekreijse [153] extended the 

concept to two dimensions for structured grids and a great many others e.g. [16, 141, 

115, 6] have used it as a convenient criterion for the design of non-oscillatory schemes on 

unstructured meshes.
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Local Positivity

A more restrictive property, referred to as local p o s i t iv i ty  is obtained by considering 

the contribution from each grid element, taken separately, and demanding that the scheme 

be positive for each contribution [6]:

otkSk , with Vc, \/k E c, OLck > 0. (4.3.20)
cell c k €c

It follows that if a scheme is locally positive, it will also be positive for the global update 

scheme.
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Chapter 5 

H igher Order Schem es on  

U nstructured Triangular M eshes

5.1 Introduction

In this chapter, higher resolution schemes are presented for convective flow approxi

mation on distorted unstructured grids. This work continues with the development of the 

higher order unstructured grid schemes presented in [57, 58, 56]. The convection schemes 

are coupled with continuous Darcy fluxes for approximation of the pressure equation and 

applied to multi-phase flow problems. Extension of the higher order schemes to general 

unstructured grids is presented in section 5.2. An edge-based vertex-centered finite vol

ume approximation is adopted here. Also, we refer to section 2.3.1 for the flow equations 

and to section 4.2.2 for details on the discretisation. A sequence of higher resolution 

non-uniform limiters are presented in 5.3. The schemes are tested on a range of highly 

distorted structured and unstructured grids with variable grid spacing. Two-phase flow 

results are presented in section 5.4 that demonstrate the advantages of the new higher 

order flux-continuous formulation. Conclusions follow in section 5.5.

5.2 H igher Order R econstructions

A higher order unstructured grid approximation is now presented with respect to 

the saturation variables. This formulation follows [57] with higher order reconstruction 

applied to the saturation field and relates to the Local Extrema Diminishing LED schemes 

of [91], [118]. For the remainder of this section superfix n  is omitted and it is understood
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that all saturations are computed at level n.

The scheme is expressed as a two-step process. The procedure involves calculating higher 

order left and right hand side states relative to the mid-point of each edge e (along which 

flux is to be defined) by expansions about the edge vertices at i and k , Figure 5.1. As 

in one dimension [160], the expansions are constrained with slope limiters to ensure that 

the higher order data satisfies a local maximum principle, preventing the introduction of 

spurious extrema.

First we define the difference in S over the edge e as shown in Figure 5.1, as

ASki =  Sfc -  S; (5.2.1)

where it is now understood that AS with a double suffix denotes a difference in S. Re

ferring to Figure 5.1 the left and right states S l and Sr at the midpoint of the key edge 

e (joining vertices i and k) are expressed as

SL =  S<+ ^ +ASfej (5.2.2)

where <$+ is a function of

r+ =  (ASju/A S fcj) (5.2.3)

and

Sr =  St -  i s ' A S *  (5.2.4)

where 4>_ is a function of

rfe-  =  (A S^/A S*) (5.2.5)

Extension to unstructured grids requires special construction of the differences A S iu and 

ASdjfc. Directional differences are constructed by extrapolating along the key edge defined 

by vector A r^  in the respective upstream and downstream directions, see arrows in Figure

5.1. Extrapolation of the respective upstream and downstream data is constrained such 

that a local maximum principle is imposed. The upstream triangle i, 1,2 is labelled Tu 

and the downstream triangle A:, 3,4 is labelled TD. The space vector corresponding to

edge e (A r^) is extrapolated into the respective triangles Tu, TD, see arrows in Figure

5.1. This is illustrated further with respect to vertex i. The edge vector is extrapolated
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(a)

Figure 5.1: Higher Order Support.

to the point of intersection u , on the opposite edge of the triangle Ty, Figure 5.1. The 

upwind difference is equal to the convex average of triangle edge differences with

ASiu =  ( l - O A S il +  CASi2 (5.2.6)

where 1 — £ > 0 and £ > 0 is the ratio of area of sub-triangle i, 1, u to area of triangle T y . 

In order to impose a maximum principle with respect to Ty  and edge e, the limiter <F+ 

is defined so as to bound the higher order gradient approximation between the slopes on 

triangle edges i l  and i2 and slope of edge e. The limiter is defined by

$+ =  $(r+ ) (5.2.7)

where is defined by Equation (5.2.3) and 4>(r) can be any classical slope limiter [160] 

and [156]. The higher order reconstruction is then bounded between S*, and Su, which by 

convexity (Equation (5.2.6)), ensures that the bounds are such that

min{S} < Sl < max{S} (5.2.8)
Tu Ue TjjUe

over triangle Ty  and edge e yielding a local maximum principle with reconstruction re

ducing to first order locally at two dimensional extrema.

In cases where coincidence or near coincidence is detected between the extrapolated edge

and an upwind triangle edge the limiting is collapsed to be entirely edge based. A similar

convex average interpolant is constructed for vertex k using the right hand bold triangle 

together with analogous limiter bounds that now depend on 4>(r^) and the edge slopes 

ASfci, AS3fc and A S^.
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This completes the definition of the higher order states. The second step of the scheme 

uses the upwind flux where each higher order approximation of phase saturation is up- 

winded according to the direction of the phase wave speed, using Equations (5.2.2), (5.2.4) 

in Equation (4.2.15).

Here, while limiting is based on the van-Leer (Fromm) limiter

4>(r) =  max(0, min(2r, 2, —^—)) (5.2.9)

where r  is the ratio of neighbouring differences in solution, modifications for mesh distor

tion are considered below. Further details on limiters are presented in [156].

Three dimensional extensions of this scheme are presented in [58, 56]. In this work we 

consider possible extensions of the above schemes for arbitrary unstructured grid distor

tions.

5.3 Lim iters on N on-U niform  M eshes

For application to non-uniform distorted meshes we require that gradients and lim

iters are modified according to mesh irregularity and non-uniformity. In this section, we

introduce a sequence of possible limiters which take into account the irregularity of the

grid.

On a non-uniform grid, the linear reconstruction is illustrated for the left hand state and 

expressed as

SL =  S; + l * +VSi • Arjy (5.3.1)

where VS; • A r^  =  AS^ denotes the constructed gradient defined with respect to node 

i. The van-Leer MUSCL constraints on a non-uniform (cell-vertex) grid require that

Si + i $ +VSi • Arti < S„ (5.3.2)

Si -  i $ +VSi • Arju > Sd (5.3.3)

The inequalities of Equation (5.3.2) lead to the limiter upper bounds 4>+ < min(2,2rjy)
r- +kiwhere is a non-uniform grid limiter ratio defined by
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In this work the ratio of divided differences corresponds to the ratio of average gradients 

on the triangle Tu and on the edge e respectively. Possible non-uniform grid limiters are 

proposed below for defining $ + in Equation (5.3.1). Here it is understood that when 

defining <E>+ then r  =  and an analogous definition is used for

A common procedure to approximate the gradient is to use a least square fit to the 

solution using the neighboring cells [15]. A least square fit of gradients at node i using 

the gradients on Tu and on the edge e is considered. The limiter in Equations (5.2.9) and 

(5.3.1) takes the form

$ L5 (r) =  max(0, min(2r, 2, ™ * )). (5.3.5)
' i u  ' ' k i

A second order accurate gradient approximation on a non uniform mesh derived via Taylor 

series analysis is written as a linear combination of the adjacent gradients with weights 

proportional to local grid spacing ratios. The corresponding limiter is written as

$Ts{r) = max(0, min(2r, 2, (5.3.6)
A riu +  Arfci

The Green-Gauss approximation [15] gives the limiter

$ G(r) =  max(0, min(2r, 2, ^ kl + Â tuT)). (5.3.7)
A riu +  Arfci

Note that all the limiters introduced above are equivalent to the original Fromm limiter 

described by Equation (5.2.9) when the grid is uniform.

Finally, in an attempt to improve the accuracy of the solution we introduce a weighted 

limiter

ih r \ ■ (o o o ( X - 6 ) & r iu +  9Arkir$e(r) =  max(0, min(2r, 2 ,2---------   — ------ )), (5.3.8)
A riu +  A rki

where 0 is a real parameter in [0,1]. The case 0 = |  corresponds to a third order spatial 

approximation on a uniform grid. The case 9 = |  corresponds to the limiter defined by 

Equation (5.3.6).

5.4 N um erical Test Cases

The test cases involve two phase flow (oil-water) initial oil saturation is prescribed 

and water is injected. Water saturation contours are shown in each case. Solid wall (zero 

normal flow) boundary conditions are applied on all solid boundaries of each reservoir
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domain. In all cases flow rate is specified at the (inflow) injector and pressure is prescribed 

at the (outflow) producer and a consistent Darcy flux approximation is used. The different 

grid types employed are shown below.

For all cases, unit mobility ratio is used and Mp =  1 for p = w, o. The primary unknown 

is the (normalized) water saturation S. In the first four cases, a linear flux is used for 

the relative permeability. The water and oil mobilities are respectively AW(S) =  S  and 

Xo(S) =  ( l - S ) .

5.4.1 Case 1: Linear P iston  Flow

The first case is a study of a linear injection problem using perturbed and distorted 

triangular grids shown in Figure 5.2(a) and Figure 5.4(a) respectively. Injection and pro

duction wells are located along opposite sides of the rectangular domain. Total mobility is 

constant and the permeability tensor is assumed to be diagonal isotropic so that the pres

sure is solved exactly (in this particular case) using the consistent Darcy flux. Thus any 

error in the saturation field is entirely due to the convective flux approximation. Water 

saturation contours are shown at 0.7 pore volumes injected (PVI) for both unstructured 

grids.

The first results, Figure 5.2(b) and Figure 5.4(b), show the effect of employing the first 

order upwind scheme for the convective flux.

Contours of the analytical solution are projected on to the grid and shown in Figure 5.2(c) 

and Figure 5.4(c). In this case, the analytical solution corresponds to

S ( x , y ,P V I )  = 1| x<=pVi.

where 1^ denotes the characteristic function on the domain A.

Higher order results computed using respectively the Fromm limiter defined in Equation 

(5.2.9), the Taylor series limiter (Equation (5.3.6)) and the 9-weighted limiter (Equation 

(5.3.8)) with 9 = |  are shown for each grid, Figures 5.3 and 5.5. Results using the Green- 

Gauss limiter (Equation (5.3.7)) and Least Squares limiter (Equation (5.3.5)) are omitted 

here as they are qualitatively similar to the ones using the Taylor Series limiter.

The first order scheme results show excessive numerical diffusion in the scheme, in addition 

to a clear dependency on the grid structure. The contours of the projected analytical 

solution suggest a contouring effect which might introduce some irregularity in the actual 

appearance of the results.
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Figures 5.3 and 5.5 show that on both grids, the higher order schemes provide considerable 

improvement in the resolution of the saturation front specially in the case of the random 

perturbed grid which presents a strong irregularity. The Taylor Series limiter produces 

similar results to the Fromm limiter without distance scaling in this case. Finally, the 

results from the 0-limiter for 9 = | ,  show similar resolution compared with the Taylor 

Series limiter.

5.4.2 Case 2: Grid Orientation Study

The second case is a study of local grid orientation. Results are computed on a dis

torted coarse grid and on a corresponding fine grid for different types of triangulation as 

shown in Figure 5.6 and Figure 5.10. The permeability tensor is assumed to be diagonal 

isotropic so that the pressure field is essentially Laplacian in this case. Injection and pro

duction wells are located half way along opposite sides of the rectangular domain, water 

saturation contours are shown at 0.2 PVI.

First order results for the coarse grid (14x15) in Figure 5.8 show that the direction of 

triangulation effectively introduces a full tensor effect due to the strong local grid orien

tation. The high order schemes improve front resolution but cannot completely remove 

the effect of grid orientation on the solution due to the coarse grid level, Figure 5.9. 

Similar results are obtained for all of the Fromm based non-uniform grid limiters in this 

case. From Figure 5.7, we note that the discrete pressure field, obtained with a consistent 

Darcy flux, also contributes a small bias in the numerical pressure field in this case.

For the finer grid (26x27), the first order results still retain a bias due to the direction of 

triangulation. In comparison, the high order schemes improve front resolution and reduce 

grid orientation effects, Figure 5.11.

5.4.3 Case 3: Full Tensor Point Source to Point Sink

The third case involves an anisotropic homogeneous tensor with principal axes oriented 

at 45 degrees to the reservoir domain. The domain principal permeability direction is 

parallel to y = x, creating a full tensor with respect to the uniform grid shown in Figure 

5.13(a). The normalized tensors have components K xx — 1.0, K yy =  1.0, K xy = 0.82. 

Boundary conditions are imposed as in Case 2. The results are shown at time 0.2 PVI. The 

effect of the full tensor is shown in Figure 5.13(b) for the first order scheme and Figure
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5.13(c) for the higher order scheme. The strong cross flow effect due to the dominant 

angled permeability field is apparent from the elongated saturation front.

Results for a principal axis at —45 degrees are shown in Figure 5.14. In both cases, the 

higher order schemes capture the front with improved resolution. Note that the saturation 

profiles corresponding to the two full tensor fields are mirror images.

5.4.4 Case 4: Taylor Series Limiter on D istorted High A spect 

Ratio Grid

In this case a classical quarter five-spot system is tested with water injection at the 

bottom left corner and oil produced at the top right corner. The exact evolving front is 

always symmetric about y = x. The nature of the grid (Figure 5.15(a)) used provides a 

severe test for the schemes. The higher order results in Figures 5.16(a) and 5.16(b) both 

provide significant improvement in front resolution compared to that of the first order 

scheme in Figure 5.15(b). Here we also note that some improvement in symmetry of the 

front is obtained with the spatial weighted Taylor series higher order Fromm limiter Figure 

5.16(b), when compared to the standard higher order Fromm limiter Figure 5.16(a).

5.4.5 Case 5: N on Linear Buckley Leverett Problem  on Delau

nay M eshes

In this case a nonlinear Buckley-Leverett quarter five-spot problem is tested with water 

injection at the bottom left corner and oil produced at the top right corner. Here the 

water and oil mobilities are respectively AW(S) = S 2 and \ 0(S) =  (1 — -S')2. A Delaunay 

triangulation is used to define the grid. The coarse grid has 108 nodes and the fine grid has 

290 nodes, Figures 5.17(a) and 5.18(a). The Fromm based Taylor Series limiter (Equation 

(5.3.6)) is employed. Results are shown at time 0.3 PVI.

The higher order results in Figures 5.17(c) and 5.18(c) provide significant improvement in 

front resolution compared to that of the first order scheme in Figures 5.17(b) and 5.18(b).

5.4.6 Case 6: P iston  Flow in a Heterogeneous M edium

The last case involves linear injection into a heterogeneous medium where injection 

and production wells are located along opposite sides of the rectangular domain. Results 

are obtained using a 55x15 uniform grid (Figure 5.20(a)). The permeability distribution
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is from Layer 6 of Model 2 of the 10th SPE Comparative Solution Project [28]. This layer 

is characterised by a smoothly varying lognormal permeability field that spans six orders 

of magnitude. Logarithm of the upscaled permeability field is depicted in Figure 5.20(b). 

Figure 5.21 shows saturation profiles after 0.5 PVI computed with the standard single

point upwind (Figure 5.21(a)) method and the higher order method (Figure 5.21(b)). 

The higher order method increases resolution significantly compared to the first order 

single-point upwind method, the latter shows excessive numerical diffusion producing non

physical features in the numerical solution. The higher order scheme is able to capture 

the fingering front and provides much improved resolution of the solution.

5.5 C onclusions

Higher order convective flux approximations are presented for unstructured grids. The 

schemes are coupled with consistent continuous Darcy-flux approximations and applied 

to two-phase flow problems.

Two-phase flow comparisons between higher order and standard methods in reservoir 

simulation are presented for a range of distorted unstructured grids. A sequence of non- 

uniform mesh limiters are also presented and tested. The comparisons indicate that while 

the higher order schemes are similar in performance, the Fromm based Taylor Series 

limiter is more robust for distorted meshes. The results demonstrate the benefits of the 

higher order schemes both in terms of improved front resolution and significant reduction 

in unstructured local grid orientation for diagonal and full-tensor velocity fields.
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(a) (b) (c )

Figure 5.2: Case 1 - (a) Random  perturbed Grid, (b) projection of the first order result, 
(c) projection of the analytical solution.

(a)

02 03 04 05

(b) (c)

Figure 5.3: Case 1 - Projection of the highcr-ordcr results using the (a) non weighted 
Fromm, (b) Taylor Series lim iter (c) weighted lim iter with 9 =  |  on the random  perturbed 
grid.
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(a) (b) (c)

Figure 5.4: Case 1 - (a) D istorted Grid; projection of the (b) first order result, and the (c) 
analytical solution.

(a) (b) (c)

Figure 5.5: Case 1 - Projection of the higher order results using the (a) non weighted 
Fromm, the (b) Taylor Series lim iter and the (c) weighted limiter with 6 —  ̂ on the 
d istorted grid.

Figure 5.6: Case 2 - Coarse grids.
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(a)

I I

(b) c

Figure 5.7: Case 2 - Pressure field on the coarse grids.

I

(a) (b) (c )

Figure 5.8: Case 2 - First order results on the coarse grids.

(b)

Figure 5.9: Case 2 - Higher order results on the coarse grids.



(b) (c)

Figure 5.10: Case 2 - Fine grids.

(a) (b) (c)

Figure 5.11: Case 2 - F irst order results on the fine grids

Figure 5.12: Case 2 - Higher order results on the fine grids.



(b)

Figure 5.13: Case 3 - Full tensor 45 degrees -(a) Uniform grid (b) first order results and
(c) higher order results.

(a)

I
0 01 0.2 0.3 04 OS 06 07

(b)

Figure 5.14: Case 3 - Full tensor -45 degrees - (a) First order results and (b) higher order 
results.
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Figure 5.15: Case 4 - (a) High aspect ratio  grid and the (b) first order sa turation  profile.

Figure 5.16: Case 4 - Higher order using the (a) standard  Fromm limiter and the (b) 
Taylor Series weighted limiter.
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(a) (b)

Figure 5.17: Case 5 - (a) Coarse grid, (b) first order result and (c) higher order result 
using Taylor Series Fromm based limiter.

(a) (c)

Figure 5.18: Case 5 - (a) Fine grid, (b) first order result and (c) higher order result using 
Taylor Series Fromm based limiter.

(a)

Ftr

cm

(b)

Figure 5.19: Case 5 - ID Profiles along the diagonal for first Order results (solid) and 
higher order results (dashed) on the (a) coarse grid and the (b) fine grid.
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Figure 5.20: Case 6 - (a) Grid and (b) logarithm  of the perm eability field.

(a) (b)

Figure 5.21: Case 6 - (a) first order results and (b) higher order results using Taylor Series 
Fromm Limiter.
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Chapter 6 

H igher D im ensional Schem es on  

Quadrilateral Grids

6.1 In troduction

The standard upwind scheme in two dimensions suffers from many deficiencies as dis

cussed in [132, 36, 141, 142, 88] and illustrated with linear advection.

By definition, single-point upstream weighting chooses to define the control volume face 

flux by using information that flows across the face. However, crucially when selecting 

this data, while the criteria is based on the sign of the wave velocity at the control volume 

face, the actual data is defined by the nearest neighbour coordinate value. In one dimen

sion, this is sufficient to unambiguously define the scheme in terms of the incoming wave 

direction. However, in higher dimensions the wave direction can be at an angle according 

to the wave velocity vector direction. The deficiency of the standard scheme is its failure 

to recognize exactly from where the wave is coming and consequently fail to use the real 

upwind data.

The direct use of the standard scheme in multiple dimensions thus creates an additional 

source of numerical diffusion referred to as cross-wind diffusion. The focus here is on 

reducing cross wind-diffusion.

The actual physical wave direction which could be in any direction, not just along co

ordinate lines will require that the scheme has extra information available within a cell 

radius of each control-volume face. The main idea of the multidimensional scheme is to 

trace back along the two-dimensional characteristic to the point of intersection with the
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upwind coordinated lines whenever possible.

In this chapter, higher dimensional convection schemes that minimize cross-wind diffusion 

are presented for convective flow approximation on quadrilateral structured and unstruc

tured grids. The higher dimensional schemes are coupled with full-tensor Darcy flux 

approximations.

Formulation of the family of higher dimensional schemes on structured quadrilateral grids 

is presented in section 6.2.3. Formulations for unstructured quadrilateral grids are pre

sented in section 6.3. Two-phase flow results are presented in section 6.4 that demonstrate 

the advantages of the new higher dimensional flux-continuous formulation.

Benefits of the resulting schemes are demonstrated for classical test problems in reservoir 

simulation including cases with full tensor permeability fields. The test cases involve a 

range of structured and unstructured grids with variations in orientation and permeability 

that lead to flow fields that are poorly resolved by standard simulation methods.

The higher dimensional formulations are shown to effectively reduce numerical cross-wind 

diffusion effect, leading to improved resolution of concentration and saturation fronts. 

Gravity flow will be neglected in this chapter and will be considered in chapter 8 .

6.2 W ave O riented U pw ind Schem es on C artesian  

Grids

A family of genuinely multidimensional conservative schemes for the transport equa

tion is first presented on structured quadrilateral grids. This formulation was first intro

duced by Edwards in reservoir simulation [54] and provides the basis of the developments 

herein. In this section, we restrict ourselves to the study of the linear advection equation 

with a uniform velocity field.

Consider a cartesian mesh with uniform spacing in the x and y directions, Arc and Ay, 

as shown in Figure 6.1, on which we wish to solve the scalar wave equation of the form:

S t +  F (S )X +  G{S)y = 0. (6 .2 .1)

The locally conservative form of the finite volume discretization is then written as:

S y 1 -  SI? 1 =  iA i -  F--V2,i) -  ^ ( G y +1/2 -  (6.2.2)
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6.2.1 Study of a Constant V elocity Case

We shall first consider the case of linear advection where

S t +  aSx +  bSy = 0 . (6.2.3)

We assume that both a and b are positive treating the other cases by symmetry. The 

exact solution to Equation (6.2.3) subject to the initial condition S ( x , y , t  = 0) — So(x, y) 

is given by:

S (x ,y , t )  — So(x — ta ,y  — tb). (6.2.4)

The locally conservative form of the finite volume discretization is then written as:

1 -  SiJ = - ^ +1/2J -  S"_w ) -  *»(5&+1/J -  S £ _ 1/s). (6.2.5)

where vx =  a A t /A x  and vy =  b A t/A y .

In this case, the standard first order accurate single point upwind scheme reduces to:

- S b  = -  ST-ij) -  -  Sfc-i). (6 -2 .6)

The scheme is defined on a five point stencil. It is positive and stable under the restrictive 

CFL condition:

vx +  vy < 1. (6.2.7)

The stability condition of Equation (6.2.7) indicates a reduction in the time step compared 

to one dimension due to the higher dimensional contribution. In order to account for 

the genuine two dimensional wave direction within the upwind scheme, it is necessary 

to include more information to resolve the wave direction and assign the corresponding 

upwind data. For a cartesian grid, the natural extension of scheme is to extend the stencil 

from a total of five possible nodes to a nine nodes including the corner point data [54, 36].

Family of Conservative Characteristic Tracing Schemes

A family of positive upwind schemes was introduced for flow in porous media in [54]. 

The method was presented on structured grids and applied to two phase flow problems 

with strong cross-flow. Upwind data is interpolated on to the characteristics where the 

upwind data is written as:

£*+i/2j  — (1 -  v)S™j +  r]Si,j-1

S i j + i /2 =  ( l - Q S Z j  +  t S i - u

(6 .2 .8 )
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where £ and rj are the weighting factors with 0 < < £ < 1  and 0 < r] < 1 . Assuming that 

£ and r) are constant on each grid cell, this formulation could be interpreted as a bilinear 

variation of the saturation over the cell [54]. The wave tracing and interpolant points are 

illustrated in Figure 6 .1. The approximation gives rise to a family of generalized upwind

Figure 6.1: Characteristics.

difference approximations of the form.

=  ( l - ^ ( l - , , ) - ^ ( l - £ ) ) S "  ( 6 . 2 . 9 )

+  (*»(1 -  0  -  

+  (*■„ +

Positivity M onotonicity and Stability

First note that the coefficients of the explicit values of in Equation (6.2.9) sum 

to unity. The scheme is positive and stable if the updated value S ij  is a convex average

of the previous data, preventing the occurrence of any spurious oscillations. Note that

in this case the contribution of the corner node is always positive by definition.

Thus the positivity conditions reduce to:

(vx + vv) < 1 + ( w x + isyO  (6 .2 .10)

v x tj +  i/v£ < min(i/y, vx).

The first inequality is clearly positive for larger CFL numbers than the upstream weighting 

scheme, provided non zero values of (£, rj) are used. This implies that the use of the corner
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data points will enhance the stability of the standard method.

M ultidimensional Schemes on Cartesian Grids

The class of schemes discussed above turns out to be identical to the one presented by 

Roe and Sidilkover in [138] for linear advection on regular grids. The authors focused on 

a class of schemes described by a single parameter family. Extension to three dimensional 

regular grids was also presented.

On a regular Cartesian grid where A x  — Ay,  the single parameter k family of consistent 

schemes can be written in the form:

^ 1 = SiJ + ^  1 (6 .2 .11)

+  (a -  b + /OST-ij

+  { ~ a +  b +  k O ^ - i

+  (a + b -  k)S”l

where the n is a function of a and b and can be understood as defining an interpolation 

scheme of the four upwind nodes at the location (Xij — A t -  a, y^j — A t  • 6). It can also be 

shown that k =  (a +  b ) — 2(£6 +  17a).

Positivity requires that

\a — b\ < k < a +  b, (6.2.12)

At  < . (6.2.13)
CL b K

Table 6.1 shows the expression for k for three common multidimensional numerical dis

cretisations in the literature namely the N-scheme of Roe and Sidilkover [138], Koren’s

scheme [99] and the CTU scheme of Collela [36] compared with the single point upstream 

weighting scheme. The N-scheme (Narrow Scheme) [142, 150] uses a linear interpolation

Scheme K Time step
Single Point Upwind a + b

Koren’s scheme a2 +bi2 
a+b At ^  A x  a2 b+b2

CTU a + b -  2 ^ a b ^  — max(o,6)

N scheme | a — b\ ^  — max(a,6)

Table 6.1: Comparison of different values of k for classical Multidimensional schemes 
[100],
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in the upwind triangle and depends on a ’’narrow” three node stencil whereas the CTU 

scheme introduced by Collela [36] uses a bilinear interpolation on the quadrilateral cell. 

For this scheme, k depends on the time step unlike the other presented methods. Note 

that both the N scheme and the CTU scheme allow the largest time step according to 

Equation (6.2.12) and single point upwinding scheme the most restrictive.

Diffusion E rro rs  and  O ptim al L inear Schemes

The quest for an optimal linear scheme requires a better definition of the optimality 

condition with regards to the numerical diffusion errors introduced by the the family of 

discretisation on a Cartesian grid.

In a rigourous discussion, Shubin and Bell [149] derived, for miscible displacement, the 

form of the truncation error terms up to second order, for a general discretisation stencil. 

They used a modified equation analysis to examine the dependence of truncation error 

on the angle between the flow direction and the grid lines.

Here, we adopt a slightly different approach to discuss the directional dependence of the 

numerical diffusion for immiscible incompressible linear two phase flow in porous media 

assuming a constant uniform total velocity field neglecting gravity and capillary effects. 

In order to interpret the numerical diffusion, it is convenient to write the truncation error 

of the scheme Equation (6.2.11) in the streamline coordinates (x ', y ') [149, 150, 82, 99, 54], 

where x' is aligned with the flow direction.

Let
9 = arctan(-) 

a
define the angle of the flow velocity to the grid x —coordinate. Then the velocity vector 

V  can be expressed as
cos(0)

V  =  |V|
sin(0)

where |V| =  \ /a 2 + b2 denotes the velocity modulus. The transformed coordinates (x ’, y') 

are obtained via :
1 T r>nc(Q\ 1 I" ~ '

(6.2.14)
s ' " cos(0) sin(0) X

y ' . — sin(0) cos(0) . y .
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First note that expanding the Taylor series approximation of Equation (6.2.11) in the 

original Cartesian grid coordinates (x, y) yields:

St +  aSx +  bSy =  ^ - ( a  - 'ycos2(9))Sxx (6.2.15)
<u

+ ^ ( & - 7 sin 2{6))Syy

+ +  b — k — 2 7 sin(0) cos {0))Sxy +  0 ( A x 2),

where 7  =  is the CFL number.

Thus, using Equation (6.2.14), the Taylor expansion of Equation (6.2.3) in the streamline 

coordinates (x',y') takes the form [138, 82]:

S t + |V | ^  =  Dx,x, SX'X> (6.2.16)

~\~ Dylyl Sylyl

+  Dx'y> Sxiy> 4- HO terms,

where

A r p  I f

Dx>x> = |V| — [sin(0) +  cos(6>) -  —  sin(6) cos(0) -  ^ l v l]» (6.2.17)

A t
Dyiyi =  [«;sin(0) cos(0)],

Dx'y> = |V |^ [c o s (0 )  -  sin(0) +  |^ |( s in 2(0) -  cos2(0))] 

and k is defined in table 6 .1.

Note that the first order truncation error shows three different diffusion terms: longi

tudinal (corresponding to Dx>xi), cross-wind (corresponding to Dy/yi) and cross-term or 

rotational (Dx>y> coefficient) diffusions.

Equation (6.2.16) implies that when n is independent of the A t,  only the longitudinal dif

fusion is affected by the time stepping. Zero-cross wind diffusion (dissipation) is obtained 

for the case k, — 0, which results in a non-positive scheme. The optimal positive linear 

scheme which minimizes cross-wind diffusion corresponds with the N scheme (Narrow 

Scheme) [142, 138]. As shown by Roe and Sidilkover who gave its name, it is identical 

to the upwind scheme of Rice and Schnipke [134] on regular quadrilateral grids, provided 

that the latter are triangulated using the optimal choice for diagonals.

Figure 6.3 illustrates the magnitude of the directional diffusion coefficients versus the an

gle of the constant flow vector to the grid for the SPU, N-scheme and Koren’s scheme.
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b<a

/a<b

U-1i,j-i

Figure 6.2: Stencil of the optim al linear positive scheme on Cartesian grids [138].

Since k depends on A t  for the CTU scheme, the behaviour of other schemes can be re

produced for different tim e step sizes and therefore will be om itted in this analysis. In 

particular, setting A t  =  [nâ  ^ , the CTU scheme is identical to the N-scheme and corre

sponds to the SPU scheme for A t  — 0.

Figure 6.3(b) shows th a t the N-schcrnc has minimal cross-wind diffusion for the family of 

positive schemes, and standard  single point upwind has maximal transverse diffusion. 

The plots clearly show th a t all schemes have zero cross-term diffusion for flow th a t is 

aligned with the grid and the N-scheme has zero cross-wind diffusion a t 6 = 7t/4 where 

Equation (6.2.11) reduces to:

1 =  (6'2-18)

involving only corner nodes and the scheme behaves as a 1-D first order approxim ation 

on the diagonal nodes.

Also, the diffusion tensor of K oren’s scheme is flow aligned since the cross-term  diffusion 

is zero for all 0 and the standard  upstream  weighting scheme has the largest cross-term 

diffusion in modulus (Figure 6.3(c)).

Figure 6.3(a) shows the part of the longitudinal diffusion error th a t is independent of the 

tim e step size A t.  It is clear th a t for a fixed tim e step, SPU provides the smallest am ount 

of longitudinal smearing of the solution whereas N-schcmc proves to be the most diffuse 

in the direction of the flow.
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e s s vs

\!

(a) Longitudinal diffusion (b) Cross-wind Diffusion (c) Cross-term  Diffusion

Figure 6.3: Cross-wind and cross-term diffusion as a function of the angle of the flow to 
the grid [138] for |V | =  1 and A x  =  1. The SPU scheme is illustrated in dotted  line, the 
solid line represents the N-schcmc and the dashed line corresponds to the K oren’s scheme.

O ptim al L inear Schemes on N on U niform  Q uadrila tera l G rids

In the case of regular non-uniform quadrilateral grids, the optim ality condition for 

Equation (6.2.10) is equivalent to the following equality

[yxT] +  vyi)  =  min(i/y, vx). (6.2.19)

Note th a t this choice will make the coefficient of either S'tn_13 or equal to zero,

so th a t the stencil is always one of the two triangles shown in Figure 6.2 which makes the 

stencil the smallest possible for the optim al positive scheme. Substituting the Equation 

(6.2.19) in the first inequality of Equation (6.2.10) yields the CFL condition

m ax(^x, Vy) < 1. (6.2.20)

By choosing £ =  0 and 77 =  0, the standard  upwind scheme is recovered. The scheme 

reduces to the first order CTU scheme introduced by Collela in [36] for £ =  vx and 77 =  uy 

[54].

A symm etric choice of the param eters £ and 77 th a t satisfies the optim ality condition 

Equation (6.2.19) corresponds with:

£

V

Note th a t in this condition, the param eters £ and 77 are chosen to be independent of

the time stepping. Also, the geometric aspect ratio  of the grid is incorporated into these

^ min(1’ ^ )  (6.2.21)
1 , vv ,-  m in (l, — ).
2 vx '
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parameters. This choice gives zero cross diffusion schemes for the cases a =  6, a =  0,6 =  1 

and a = 1,6 =  0 on a Cartesian grid. Other choices of the weighting parameters within 

the positivity limits are:

£ — t: m in (l,—  -----) (6.2.22)s 2 K vx +  uv
1 • n vV  \77 =  -  min i , ----------).

This choice corresponds with Koren’s scheme on Cartesian grids [99].

6.2.2 Study of a Variable Coefficient Case

D ata Based Scheme Formulation

We now account for the variability of the velocity field and the impact on the formu

lation of the scheme. This step is key to generalisation to unstructured quadrilaterals.

S t 4- ( a (x ,  y ) S ) x + (b(x, y ) S ) y = 0. (6.2.23)

The locally conservative form of the finite volume discretization is then written as:

S ? 1 -  S?J = -  ^ 1 /2  jS T - W  -  0 W S & + 1 /*  -

(6.2.24)

where — a i+ i / 2 , j A t / A x  and =  h j + i / 2 A t / A y  are the resolved velocities at

the center of the cell edges.

Upwind data in first order upstream weighting is computed using the directional wave 

speed and written as:

S?+i/2j =  S” . i f a m /2 , j> 0 ,  (6.2.25)

Si+l /2 , j  =  S i+ l , j if a i+l/2, j < 0;

and

S?J+1/2 =  ^ i f 6 m /2 )i> 0 , (6.2.26)

1/2 =  $ i , j +1 i f  b i + i / 2 ,j <  0.

Family of Conservative Characteristic Tracing Schemes

Accounting for the multidimensional nature of the wave speed, the left and right states 

at the center of the edge connecting the nodes ( i ,j)  and ( i+ l , j )  are calculated in a locally
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conservative form via [54]:

^ i+ 1 /2 ,j =  (1 — £ i+ l /2 j ) £ J j  +  Ci+l/2,j[Xi+l/2,j'S,i , j - l  +  (1 -  X i + l / 2 , j ) S i , j + l \ ;  (6 .2 .2 7 )

^ R i + i / 2,j =  (1 _  ?7 i+ l/2 j ) ‘S'I+l,j +  ^ i+ l /2 j [ X i+ l /2 j ^ + lJ + l  +  (1 -  X i + l / 2 , j ) S i + i tj - i \ ,

and equivalent reconstructions on the edge connecting the nodes ( i , j )  and ( i , j  +  1) take 

the form:

^ i, i+ i /2  =  (1 — ^ ij+ l /2 )5 J j  +  € i , j + l / 2 [ X i , j + l / 2 S i - l , j  +  (1 -  X t j+ l /2 )S i+ lj ] ;  (6 .2 .2 8 )

^R i , 3+ 1/2 — (1 — V i J + l ^ S i j + i  +  ^ J+ l/2 [X i,j+ l/2*S ,i+ lJ + l  +  (1 ~  X i j + 1/ 2 ) S i - 1, j + l \ ,

where 0 < &+1/2j  < 1, 0 < ?7i+i/2,j < 1, 0 < &J+1/2 < 1 and 0 < Vij+112 < 1 denote 
the weighting factors used to interpolate the left state as a linear combination of the grid 

nodes depending on the direction of the wave speed. Note here that the weighting factors 

can vary spatially according to local wave speed. Here Xi+i/2j  (respectively Xij+1/2) is 
a boolean parameter which accounts for the normal direction of the wave velocity with 

respect to the cell edge and takes 0 or 1 depending on the direction of the flow.

Positivity Analysis

First, we introduce the following notation which will be used for the remainder of this 

work. Let x + = (x +  |a : |) /2  and x~ = (x — \x\)/2  denote the positive and negative part of 

a real x. The convention of a positive (respectively negative) flux contribution entering 

(respectively leaving) the control volume {i,j)  is adopted here.

The contribution to the scheme from node ( i , j )  to the control volume (i + l , j )  can be 

explicitly written as:

(1 — £ i + l / 2 , j ) { J/i + l / 2 , j )  ^*+l»J+l/2(^/i+ l )j-f 1/ 2) (6 .2 .2 9 )

Hence, the positivity condition takes the form:

£*+ l/2 ,j(I/i+ l /2 ,j )+ — ^ i+ l ,j+ l /2 (^ + i j + i / 2 )  — ?7 i + l j - l / 2 ( zyf+ i )j _ i /2 )  5: ( Vi + l / 2 , j )  + • (6 -2 .3 0 )

In order to satisfy this condition, the weights are chosen to correspond with:

1 . max((j^|; /2)+, /2)+)
C.+i/2j  =  -  m in (l,-----------—i ------—-----  ), for (i/j+1/2J)+ > 0; (6.2.31)

6  V*T+l/2 , j )

1 . maX(K +W+l/2) + .('/?+lj-l/2)+). t , x „
rii+1/2,j =  -  m i n ( l , -------------------- r - ^  r r i ---------------------)> f o r  < 0-

^ I \ Vi + l / 2 , j )  I
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Note here that the factor of a half 1 /2  introduced in Equation (6.2.21) reduces to a 1/3, in 

order to preserve positive contributions to the saturation update for all flow conditions. 

Also, the weights are chosen to maximise the CFL number. The choice of weighting 

factors will be discussed in the next section 6.3.2.

6.2.3 Nonlinear Flux Formulation

For the general case, where the flux is nonlinear in saturation, we compare two for

mulations following [54].

Nonlinear Flux of M ulti-dimensional Data

The first formulation involves the multi-dimensional upwind data reconstruction where 

we define the generalized flux by:

A ^ L i+1/2ij) = / ( ( l  -  £ i + l / 2 , j ) S ”j  +  6 +l/2j[Xi+l/2j ^ j - l  +  (1 -  X i + i / 2 , j ) S i t j+ 1] ) , (6.2.32)

=  / ( ( !  ~  ^ + 1/ 2 ,j ) S i +1J  +  r) i+i /2, j \ X i + i / 2 , jS?+1>j+1 +  (1 -  X t + i / 2 j ) 5 i + i j - i ] ) -

An analogous definition is adopted for S L i j+1 / 2  and S R i j + 1 / 2 .

Nonlinear M ulti-dim ensional Flux

The second formulation, the multi-dimensional upwind flux reconstruction is written

as:

/ ( ^ i+ i /2 , j )  =  U  ~  € i + l / 2 , j ) f t S i , j )  +  € i + l / 2 , j [ X i + l / 2 , j f t S i , j - l )  +  (1 -  X i + l / 2 j ) / ( ^ j + l ) ] ( 6 -2 -3 3 )

=  (1  -  Vi + l / 2, j ) f { S i +1j )  +  r} i+l /2 , j [ X i + l / 2 , j f ( S i + l j +1) +  (1 -  X i + l / 2 , j ) A ^ i + l j - l ) ] •

Definition of S l . . +1/2 and S r .  j+1/2 are defined analogously.

The weighting factors £ and 77 used in Equations (6.2.32) and (6.2.33) are defined by 

Equation (6.2.31) for stability where a consistent definition of the local wave velocity 

components vx and vy is used. More specifically, in the case where the flux is of the form:

F (S ) = f ( S ) V f ,  

G (S) = f ( S ) V ^

(6.2.34)
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which models multi-phase flow in the absence of gravity (see chapter 2, section 2.2.2), we 

choose:

A y

(6.2.35)

Another alternative for the definition of the tracing wave speed for the same nonlinear 

flux is to choose the Rankine-Hugoniot wave speed [49], where for example,

which includes spatial variation due to velocity field as well as non-linear flux variations. 

Finally, note that for constant wave speed, the schemes resulting from Equations (6.2.32) 

and (6.2.33) reduce to Equation (6.2.8).

6.3 W ave O riented U pw ind Schem es on U nstructured  

Q uadrilateral Grids

In this section, two key issues are addressed when dealing with unstructured grids, 

namely:

1. the definition of the upwind direction based on the local wave velocity defined over 

the subcells and

2. the choice of the weighting coefficients to minimize the cross-wind diffusion while 

preserving positivity.

6.3.1 A Family of Wave Oriented Conservative Upwind Schemes

Edge based and cell based formulations are presented in this thesis. In this chapter, 

the focus is on the edge based approximation. The cell-based reconstructions are treated 

in chapter 9. First, recall the edge based finite volume approximation as in Equation

(4.2.16):

(6.3.1)
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where iq sums over the flux quadrature points (one per sub-face). Here we evaluate the 

subcell flux Ft  on the control volume sub-face (dashed in Figure 6.4(a)) at the point of 

attachm ent to  the cell edge e. The sub-face fluxes are represented by the arrows in Figure 

6.5(a) and the quadrature points are chosen to coincide with the center of the cell edges. 

The upwind tracing procedure is comprised of two steps.

Cell 2

Edge e

Cell 1-o

4/ " ;/ 1 1

1
IV

\ b \ \  %
III

(a) (b) (c)

Figure 6.4: (a) Control volume (dashed line) (b) compact stencil (b) subcells.

Step  I

The first step is to establish the global flux direction relative to the adjoining subcclls. 

An edge-based upwind formulation is then w ritten as:

gn+l   gn NedV
Tj j A t  j  = Y ,  +  K S r , ) F ^ } ,  (6.3.2)

e = l

where Fre is the resultant to ta l Darcy flux at the center of the edge e. The arrows in 

Figure 6.5(b) illustrate the resultant fluxes at the centre of the edges a, 6, c, d and e. Here, 

we adopt the convention of fluxes entering (respectively leaving) the j th control volume 

bear a positive (respectively negative) superfix.

Step  II

We consider how to use the subcell velocity to improve the accuracy of the tracing 

vector. In the  case of Cartesian grids with wave velocities having a uniform direction, the 

determ ination of the wind direction param eter (defined in the next section as x) which
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(b)a

Figure 6.5: Total fluxes a t the centre of edges.

dictates the  upstream  subcell is straightforw ard. However, the question of specifying a 

unique wave direction at the centre of the edge in the edge-based formulation arises when 

the flow involves variable velocity fields an d /o r it is resolved on unstructured grids. Two 

views are considered. The first approach involves using a suitable mean of the velocities

2 4

l

2 4

l

2 4

I

(a) (b) (c)

Figure 6.6: (a) Wave velocities on the subcell (black arrows) uniquely defined by the 
local subcell fluxes (grey arrows); (b) upstream  and downstream  velocity averages (black 
arrows) and (c) upwind velocity average.

defined on the subcells I, II, III and IV, shown in Figure 6.6(a) and define the upstream  

inform ation relative to the resolving local edge subcell mean velocity as shown in Figure 

6.6(c).

The second approach involves defining both  the upstream  velocity direction (by averaging 

subcell velocities I and II) and the downstream  velocity direction (by averaging subcell 

velocities III and IV) in order to decide upon the upwind direction th a t provides a unique
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upwind value as depicted in Figure 6.6(b).

Although practical, both approaches have been tested and shown numerically to produce 

spurious oscillations for cases involving strong variations in the velocity field on highly 

distorted grids. A stability and positivity analysis for a linear flux with variable velocity 

field presented below, leads to a more robust upwind formulation.

6.3.2 Formulation using D ata

First, we present a family of genuinely multidimensional edge-based finite-volume 

schemes on unstructured quadrilateral grids using a Data based formulation. We gen

eralize Equation (6.2.27) with respect to the key edge e and the adjacent cells sharing the

edge as shown in Figure 6.4(b). The left and right multidimensional data reconstructions

at the integration point on the edge e ( i,j)  oriented from i to j  are calculated as:

s I ,  =  ( l - 4 ) S ?  +  ^[XeS? +  ( l - X e)SJ] (6.3.3)

s s .  =  ( i - % ) s ?  + Tfe[x.s; +  ( i - x , ) s ; ]

where

1 if the wave velocity is pointing from subcell I to subcell IV,
Xe ~  { (6.3.4)

0 if the wave velocity is pointing from subcell II to subcell III.

and £ and r) denote the weighting factors where £ (respectively rj) is used to interpolate

the left (respectively right) state as a linear combination of S i  (respectively S j )  and 5*1 

(respectively S 3 ) or S 2 (respectively S 4 ) depending on the direction of the wave speed.

Positive Linear Schemes

We will analyze the stability and consistency of the family of schemes 6.3.3 on an 

arbitrary unstructured quadrilateral grid for linear advection. Let N v  denote the net 

number of supporting vertices. Expanding Equation (6.3.2) with respect to the data 

yields:
N v

SJ+1 = aj S J +  Y .  a ‘WS"w  <6-3'5)
k—l,i(k)^j

where ctj  are the vertex support coefficients of S j .  In particular, the contributions from 

celli and cell2 to the control volume j  essentially involve the connecting edges e(i, j) ,
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a(3 ,j) and 6(4, j )  (thick lines in Figure 6.7). The arrows in Figure 6.7(a) shows an 

illustration of the case x  = 1 f°r the three edges. Then Equation (6.3.2) is written as:

£ t (SJ+1- S J )  = F + [( l-C e)S? +  ax«S ?  + (l-X«)S;)] (6.3.6)

+ FfJ(l -  7fc)sy + Ve(xSn4 +  (1 -  Xe)S?)]

+ F+[(i-fa)s; + |0(i-x.)s?]
+ FjT[(l-»j0)S? + r)oXaS?]
+ f £ [ ( i - & ) s j  +  & a ss ]

+  Ffb[ ( l - in , )S f  + rh(l -Xb)S?\ + ET,

where ET (extra terms) signifies any contributions coming from cells other than celli and 

cell2 - Thus, the associated weights to the nodes i and j  can be explicitly expressed as:

A t
<*i = ----((1 -  fe)#re +  VaXaFTa +  T)b( 1 -  (6.3.7)

Tj

and
A t Nedv

OLj =  1 +  —  ( 1  “  ^ ) F Te - ( 6 -3 -8 )
e=l

Consistency

The scheme is consistent by construction, where

N v

£ > *  = 1. (6.3.9)
k = 1

Stability

The stability condition is derived from Equation (6.3.8) which shows that the scheme 

permits a larger CFL number than the standard upwind method if rje are not all equal to 

zero.
I L

(e :t (i  - * ) * ? . )
This means that using directional information will enhance the stability of the method.

 —  • (6-3.10)
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i

3

I

(a) (b)

Figure 6.7: (a) Wave direction orientation with respect to the key edges e, a and b (in 
bold) is illustrated by the arrows that correspond to Xe — 1> Xa — 1 and Xb — 1- (b) 
The arrows indicate possible contributions from the node i to the update of the solution 
control volume j .

P ositiv ity

Recall the definition of the positivity criteria introduced in Definition 4.3.3 tailored 

here for the scheme Equation (6.3.5).

D efinition 6.3.1 I f  the scheme of Equation (6.3.5) is consistent such that Equation 

(6.3.9) is satisfied, stable such that the CFL condition of Equation (6.3.10) is satisfied, 

then the scheme of Equations (6.3.2), (6.3.3) is said to be p o s itiv e  i f  > 0 for all k.

The consistency condition of Equation (6.3.9) together with positivity and the CFL con

dition of Equation (6.3.10) ensures that S™+1 is equal to a convex average of S.f for all i 

belonging to support of j, which leads to a positive scheme. Considering the contribution 

from node i in Equation (6.3.7), a necessary and sufficient condition for a* to be positive 

is:

~  X a O a F f a ~  (1 — — ^ T e ‘ (6.3.11)

S tagna tion  point

This condition implies that in the case where =  0 i.e. the flux is oriented from j  

to i , the upwind information with respect to the edge a (respectively b) does not originate 

from celli (respectively cell-f).

iI

I
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Theorem  6.3.1 if  Fre = F > 0 with respect to j , and with respect to i Ftc =  FTc < 0 

and FTd =  Frd < 0 i.e. Ftb is oriented from i to j ,  Ftc is oriented from node i to the 

node 1 and Frd is oriented from node i to the node 2 as illustrated in Figure 6.8(a) then

£e=0.

It follows from theorem 6.3.1 that at a stagnation point the standard single-point upstream 

weighting scheme is recovered locally with respect to the edge e (i,j) .

2 4

I

2 4

I I

3

(a) Stagnation point (b) (c)

Figure 6.8: Different cases for the flow.

P ro o f Consider the key edge b and denote w the edge connecting j  to the node u as shown 

in Figure 6.9 belonging to the cell adjacent to ceZ/2 and assume that the upwind informa

tion with respect to the edge b originates from this cell. Then, writing the contribution 

of the node u in the situation depicted in Figure 6.9 implies

XblbF^ =  0. (6.3.12)

On the other hand recall that from the expression Equation (6.3.11) related to the node 

i, the following condition holds:

(1 -  XbHFH  =  0. (6.3.13)

Equations (6.3.13) and (6.3.12) imply rjb = 0. In other words, at a stagnation point 

the standard single-point upstream weighting scheme is recovered locally with respect 

to the edge b(u,j). Applying the same reasoning by symmetry, while considering the 

control volume i instead of j , this observation leads to the first constraint presented in 

the theorem 6.3.1, which completes the proof.
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i

(a)

Figure 6.9: Stagnation point.

W eighting Factors

Case I In the case where FTe > 0, FTa < 0 and FTb < 0 i.e. Ftc is oriented from i to

; j ,  Fra is oriented from node j  to the node 3 and Fxb is oriented from node j  to the node

4 as shown in Figure 6.10(a), a sufficient condition for the inequality of Equation (6.3.11)

[ to be satisfied is that

I fel^Tel H-^al^Tal +  ^ I ^ tJ  < |^Te|- (6.3.14)

Setting the weights to be proportional to the ratio of the inward and outward fluxes, i.e.

7]a = P m i n ( |^ | ,  l),rjb = 0 m i n ( 1), (6.3.15)

yields

0  < i  and £e < (6.3.16)

Note here that the actual bound (of unity) on the flux ratio |rf- (|rf- respectively) is de

duced from the tracing analysis limiting strategy below relative to edge a (b respectively).

Case II  The condition of Equation (6.3.16) is relaxed when at least one of the fluxes 

FTa and Frb is non strictly negative as illustrate in Figure 6.10(b). Assume for instance 

that Fra > 0 i.e. Fxa is pointing from node 3 to node j ,  thus the positivity condition of

I
iI

i

Ii
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i

3

i

3

2 4

I

(a) (b) (c)

Figure 6.10: Weighting factor.

Equation (6.3.11) is satisfied for £e and r)b satisfying the following inequality:

+  1. (6.3.17)
r r e

A symmetric choice corresponds to

£e < ^ and r]b < i  m i n ( |^ | ,  1). (6.3.18)

Case I I I  In the case where the fluxes Fra >  0 and Fn  > 0, the positivity constraint

Equation (6.3.11) is relaxed further and reduces to

te < I- (6.3.19)

L im iting S tra teg y  Define the flux ratios R u  and R 2e as:

F t  Ft
R u  = 1r ,R 2 e  = -£ L- (6.3.20)

FTe FTe

and let R  =  max(/?le, R 2e, 0), then, the weighting factor takes the form:

/ x  f k if Ft  <  0 and F t  < 0 ,£e < (3 min(l, R) with (3 = < (6.3.21)
[ |  otherwise

Considering a positive uniform velocity field V  = (a, 6) on Cartesian quadrilateral grid, 

a unit CFL condition (Equation (6.3.10)) is retrieved as the condition (3 = |  is always 

satisfied with £e =  |  min(l, J).
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We also note that in case Figure 6.8(c), where both cross fluxes are entering the control 

vclume i , the upwind subcell is selected with the edge that corresponds to a larger flux 

ratio in order to maximize the CFL condition of Equation (6.3.10), which may lead to 

a gain in accuracy. Other alternatives could be chosen such as an average between both 

fluxes. However, the main result of this subsection is the general limiter of Equation 

(6.3.21) on the angle of the characteristic/streamline to ensure positivity.

Loo Stability

An immediate corollary of positivity is that the scheme is stable in L Convergence 

fo'lows from consistency and stability (Lax equivalence theorem for the linear case).

6.3.3 Nonlinear Formulation

For the general case, where the flux is nonlinear in saturation, we compare two for- 

milations.

Nonlinear Flux of M ulti-dimensional Data

The first formulation involves multi-dimensional upwind data correction where we 

define the generalized flux by:

KS2) =  / ( ( l - & ) S ?  +  &[x.Sr +  (l-X « )S JD , (6.3.22)

f iS%) =  f ( ( l - V e ) S ? + r , e { X e S 2 + ( l - X e ) S Z } ) .

Nonlinear M ulti-dim ensional Flux

The second formulation involves the multi-dimensional upwind flux correction where 

we define the generalized flux by:

K S l)  = ( l - ( e ) A S ? ) + a X e A S ? )  + (l-X e )j{S Z )} , (6.3.23)

A S r ) = ( l - v M S ? )  + Ve[XeAS2) + (l-X e )A S Z )}-

Here, we have used conditions Equations (6.3.4), (6.3.10) and (6.3.21) for stability in our 

calculations.
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6.4 N um erical Test Cases

The test cases involve two phase flow (oil-water). Initial oil saturation is prescribed 

and water is injected. Water saturation contours are shown in each case. Solid wall (zero 

normal flow) boundary conditions are applied on all solid boundaries of each reservoir do

main. In all cases, flow rate is specified at the (inflow) injector and pressure is prescribed 

at the (outflow) producer and a consistent Darcy flux approximation is used. Both dis

torted structured and unstructured quadrilateral grids are tested.

Results involve full tensor coefficient velocity fields, with strong cross terms that induce 

significant cross-flow across the cells which also adds to the full tensor effect due to the 

unstructured nature of the grid.

Two cases are presented. The first case is a study of a quarter five spot problem involving 

a linear flux whereas the second case is a study of a piston problem for nonlinear flux. 

The flow mobility ratio is set to M  =  1. Both cases involve a linear or quadratic Buckley 

Leverett flux and a full homogeneous permeability tensor with principal axes oriented at 

45 degrees to the reservoir domain with 10 to 1 anisotropy ratio. The normalized ten

sors have components K xx = 1.0, K yy =  1.0, K xy = 0.82. The primary unknown is the 

(normalized) water saturation S.

6.4.1 Case 1: Linear Full Tensor Quarter Five Spot

The first case involves a linear flux, corresponding with linear relative permeabilities 

i.e. krw = S  for the water phase (w ) and kro = (1 — S) for the oil phase (o). Quarter five 

spot boundary conditions are imposed together with an anisotropic full tensor permeabil

ity field with principal axes oriented 45 degrees to the reservoir domain. The main feature 

of this case is the advection of the stable discontinuity across the grid. Water saturation 

contours are shown at 0.3 pore volumes injected (PVI) for the same CFL number equal 

to 0.4. The standard single-point upstream weighting results on distorted structured and 

unstructured quadrilateral grids are shown in Figures 6.11(b), 6.12(b) and 6.13(b). The 

multidimensional upwind results are shown in Figures 6.11(c), 6.12(c) and 6.13(c).

The standard scheme results show that the front is largely diffused. In contrast, the multi

dimensional scheme provides sharper resolution with improved symmetry of the problem, 

while predicting earlier breakthrough (as expected) with minimal cross-flow spread. We 

also note that the full-tensor effect due to the grid is noticeably attenuated in the multi

I
|
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dimensional wave oriented results.

6.4.2 Case 2: Nonlinear Full Tensor P iston  Flow

The second case involves a nonlinear Buckley Leverett flow subject to fluid injection 

on the left hand boundary and specified pressure on the right hand boundary. The water 

and oil relative permeabilities are respectively krw = S 2 and kro — (1 — S )2. The results 

obtained using standard single-point upstream weighting are shown in Figures 6.15(b) 

and 6.16(b) and those obtained using the data based multidimensional wave-oriented 

higher dimensional upwind scheme are shown in Figures 6.15(c) and 6.16(c). The multi

dimensional flux results are shown in Figures 6.15(d) and 6.16(d) on the coarse and finer 

unstructured grids.

The standard first order results indicate a strong grid orientation bias, whereas the re

sults obtained with the multidimensional schemes show reduced grid dependence on the 

distorted unstructured meshes and provide improvement of front resolution with a clearer 
indication of the flow pattern, which is consistent with the problem, where the full tensor 

forces the flow across the domain. In addition, the multidimensional data based results 

show some signs of spurious oscillations on the unstructured grids in this nonlinear case, 

whereas the multidimensional flux results are essentially free of spurious oscillations.

6.5 C onclusions

A family of multidimensional upwind schemes is presented for hyperbolic conserva

tion laws on structured and unstructured quadrilateral grids. The methods are locally 

conservative and are coupled with consistent and efficient continuous Darcy flux approx

imations and applied to two-phase flow problems. Positivity conditions are derived for 

linear convection including the CFL limits. The schemes permit higher CFL numbers 

than the standard upwind scheme.

Two-phase flow results are presented. Comparisons with single point upstream weighting 

scheme are made on a both distorted and unstructured quadrilateral grids for cases involv

ing full tensor coefficient velocity fields. The comparisons demonstrate the benefits of the 

higher dimensional schemes both in terms of improved front resolution and significantly 

reduced cross-wind diffusion.
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(b)(a)

Figure 6.11: Case 1 - (a) Distorted coarse grid 14x15; saturation profile using (b) single
point upstream-weighting and (c) multidimensional scheme.

(b)(a)

Figure 6.12: Case 1 - (a) D istorted finer grid 26x27; saturation  profile using (b) single
point upstream-weighting and (c) multidimensional scheme.

(b)(a)

Figure 6.13: Case 1 - (a) U nstructured finer grid; sa turation  profile using (b) single-point 
upstream-weighting and (c) multidimensional scheme.

>- >-

(b)

Figure 6.14: Case 1 - Reference solution on a 64x64 Cartesian grid using (a) single-point 
upstream-weighting; (b) highcr-order and (c) m ultidimensional schemes.
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(b)

(c) (d )

Figure 6.15: Case 2 - (a) U nstructured coarse grid; sa turation  profile using (b) single-point 
upstream -weighting, (c) multidimensional d a ta  based scheme and (d) multidimensional 
flux based scheme.

(a) (b)

(d)

Figure 6.16: Case 2 - (a) U nstructured finer grid; sa turation  profile using (b) single-point 
upstream -weighting, (c) m ultidimensional d a ta  based scheme and (d) m ultidimensional 
flux based scheme.
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(a) (b) (c )

Figure 6.17: Case 2 - Reference solution on a 64x64 Cartesian grid using (a) single-point 
upstream-weighting; (b) higher-order and (c) m ultidimensional schemes.



89

Chapter 7

M ultidim ensional Schem es on

Triangular and H ybrid Grids

In this chapter, formulation of the edge-based family of multi-dimensional schemes on 

unstructured triangular grids and hybrid grids consisting of triangles and quadrilaterals 

is presented. Two-phase flow results are presented in section 7.3 that demonstrate the

advantages of the new higher dimensional flux-continuous formulations.

7.1 A  Fam ily o f E dge-based  H igher D im ensional Schem es 

on Triangular Grids

The focus here is on reducing cross-wind diffusion on triangular grids. The main idea 

of the multidimensional triangular scheme is to trace back along the two-dimensional 

characteristic to the point of intersection with the upwind co-ordinate lines whenever 

possible as with the quadrilateral multidimensional scheme. The formulation begins with 

the same two issues as for quadrilateral meshes (chapter 6, section 6.3) as the upwind 

direction is based on the local wave velocity which is defined over the subcells.

Discretisation of Equation (4.2.16) is expressed again as:

(7.1.1)

as in the quadrilateral formulation c.f. section 6.3.1.



90

2

Cell 2

E dge ei

Cell 1

2

IV
l

□  1 0

"Y

(a) (b) (c)

Figure 7.1: (a) Control volume (dashed line) (b) compact stencil (b) subcells.

11

(a) (b)

Figure 7.2: Total fluxes at the centre of edges.

7.1 .1  F orm u lation  using  D a ta

A family of genuinely multidimensional triangular edge-based finite-volume schemes 

using a da ta  based formulation is first presented. As for the quadrilateral meshes, the key 

edge e and the adjacent cells sharing the edge as shown in Figure 7.1(b), then  the left and

right states a t the integration point on the edge e ( i , j ) oriented from i to j  are computed

as:

S2. =  ( l - ? e )S " + ? e [X e S ?  +  ( l-X e )S S ]  (7.1.2)

=  (1 -  Ve)Sj +  %[XeS; +  (1 -  Xe)S?]
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where

1 if the wave velocity is pointing from subcell I to  subcell IV,
X e  =  { (7.1.3)

0 if the wave velocity is pointing from subccll II to subcell III.

and 0  <  £ <  1  and 0  <  rj <  1  denote the weighting factors where £ (rj respectively) is 

used to interpolate the left (right respectively) s ta te  as a linear combination of Si (Sj 

respectively) and S\ (S 2 respectively) or S 2 {Si respectively) depending on the direction 

of the wave speed.

Two D im ensional Analysis

We will first analyze the stability and consistency of the scheme 0 1 1  a uniform triangular 

grid as shown in Figure 7.3 for linear advection with constant wave velocity V . In this 

example case i =  2, j  =  0 and S£ is replaced by S 31 in Equation (7.1.2). Define S L 0i for

3 4

2
\ \  —*—► \ \

0 \
\  —\  \\  \

X d - X4

r \
1 6  1 6

(a) (b)

Figure 7.3: Positivity analysis for a uniform velocity case (a) stencil and streamlines (b) 
Flux directions.

z =  1 ,2 ,3  and S L 0i for i =  4 ,5 ,6  as the left and right states a t the edge (z,0) oriented 

from z to 0 and Si is the saturation  value a t the node z. Therefore, the left and right
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states are written as:

5101 — (1 — £oi)<Sl + £01*^2 j (7-1-4)

5102 =  (1 — £0 2 )^ 2  +  £o2*Sij

S l,Q3 =  ( 1  — £ o 3 ) S 3 +  ^03*^2?

8 rQ4 =  (1 — 1104)80 +  110483,

8rQ 5  — (1 — 1105)80  +  7705^65

8 r 06 =  (1 — 1106)8o +  7706^1 •

Let noi denote the normal to the control volume face corresponding with the edge e(0,i) 

for i =  1..6. Also let F0i = V-noi- Then, assembling the fluxes with regards to the control 

volume 0 yields:

SJ+1 =  [ i _ 4 ! ( ( i _ %4)|Fo4| +  (1 _ %5)|Fo5| +  (1 _ %6)|Fo6|)]S " (7.1.5)
TO

+  — [ ( 1  — C01)  l - ^ o i  I +  £ 021-^021 — ^ e l F o e l W
To

+  ------[ ( 1  ~  £ 02) 1̂ 02 ! +  £ o i | ^ O l |  +  £ 03 1-^ 0 3 1] ^ 2
To

+  ------[ ( 1  — £ 03)  | ^ 0 3 1 — 77041 - ^ 0 4 1] S J
To

~ ---------77051^051^.
To

From Equation (7.1.5), note that coefficients sum to unity. A necessary condition for the 

scheme to be positive is that all the coefficients are positive namely:

7704) 1^041 +  (1 — 7705) |^051 +  (1 ~ T706)|-̂ 06|) > 0 ,

(1 — £oi)|*bl| +  £021 ̂ 021 — 7̂061 ̂ 061 > 0,

(1 ~ £02) |-̂ 7021 +  £oi|*Oi| +  £o31-̂ 031 > 0,

(1 — £03) | -̂ 031 — 77o4|E()4| > 0,
A t lri .

------77051 ̂ 051 > 0.
To

Note that the third inequality in Equations (7.1.6), is satisfied provided that £oi and rjoi 

are such that the interpolation is convex between each pair of nodes 0 and i for i = 1..6. 

The last inequality implies

7705 =  0. (7.1.7)
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This motivated the analysis of stagnation points when unstructured grids are considered. 

As a consequence the multidimensional scheme locally reduces to a standard first order 

reconstruction at the edge joining the nodes 0 and 5.

Taking this condition into account, the first inequality is written as

1 H----- (̂ 7041 ̂ 041 +  7̂061 -̂ 061) -------(| ̂ 041 +  1^051 +  | ̂ 061) > 0. (7.1.8)T0 T0

and is clearly positive for higher CFL numbers than the standard upstream weighting 

scheme. The second and fourth inequalities are equivalent to

£oi|^Ol| +  7̂061 ̂ 061 < Î Oll +  C021 -̂ 021J (7.1.9)

^031 ̂ 031 +  7̂041 ̂ 041 < | Fq3 | ,

and define a family of multidimensional schemes.

T heorem  7.1.1 There exist non negative coefficients £oi>£o3>£o2 and 7704,7706 that satisfy 

the inequalities in Equations (7.1.9) and the choice of these parameters is non unique. 

Also, equations (7.1.5) and (7.1.4) define a family o f linear positive and consistent gen

uinely multidimensional schemes for this section under the conditions Equations (7.1.9), 

(7.1.7) and (7.1.8).

P ro o f The node contributions in Equation (7.1.5) sum to one by construction and are 

positive for a choice that uses locally the upwind and downwind flux information corre

sponding to
1 ^01 c ^  1 c ^  1 

7706 — , £01 S -  , £02 S 1
 ̂^06 *

and
_ 1 -̂ 03 c

V04 2 p  J 0̂3 — 2 '

Note here that this choice is non symmetric and uses a local stencil.

Unlike the analysis performed on Cartesian grids (chapter 6, section 6.2.3) that deals 

with the node contribution, the discussion presented here makes use of the full stencil and 

motivates the following analysis on unstructured triangular meshes.
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Positive Linear Schemes on U n stru c tu red  T riangular Schemes

The stability  analysis of the family of schemes Equations (7.1.2) on an arb itrary  un

structured  triangular grid for linear advection is closely related to the positivity analysis 

0 1 1  quadrilateral meshes presented in chapter 6, section 6.3.1. Again, we s ta rt by expand

ing Equation (7.1.1) with respect to the d a ta  yielding:

N v

S " +1 =  ajS J  +  £  o w S f o .  (7.1.10)
k=l,i(k)^j

where cq are the vertex support coefficients of Si and N y  is net number of supporting 

vertices. The arrows in Figure 7.4(a) shows an illustration of the case y  =  1 for the three

ll

1 1

(a) (b)

Figure 7.4: (a) Wave direction orientation with respect to the key edges e, a and b (in 
bold) is given by the arrows th a t correspond to \  equals one. (b) C ontributions from the 
node i.

edges. Then Equation (7.1.1) is w ritten as:

r.
( s ;+1 -  £?) =  F + [ ( l - « e)S? +  UXeS? + ( l-x « )S J )]  (7.1.11)

+  F fJ ( l -  V e ) S ]  +  V e (  +  ( 1  -  X«)S?)1

+ F+[(l - J a)S? + £,(l -Xa)S"]

+ ff„ [(l-» 7 .)S J  +  %X.S?]

+ i ^ [ ( i - & ) s ;  +  &xkS?]

+ F f j ( l - %)S" + %(1 -X 6)sr] +  F r
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where ET (extra terms) signifies any contributions coming from cells other than cell\ and 

cell2 and the associated weights to the node i is written as:

a t =  ((1 — £e)FTe F  ^o(l — Xa)FTa +  £bXbFTb ~b VaXaFTa ~  Xb)FTb)’ (7.1.12)
Tj

which is different than the quadrilateral case Equation (6.3.7) as it involves two extra 

positive terms that account for the contributions of the nodes 1 and 2. The associated 

weight to the central node j  is expressed as

A t NedV
e*, =  l  +  —  (7.1.13)

T3 e= l

and implies a larger allowable time step than the standard first order single point upstream 

weighting scheme for non-vanishing 77.

Also, the multidimensional triangular approximation is consistent by construction in the 

sense that the coefficients a:*, sum to unity.

Considering the contribution from node i in Equation (7.1.12), a necessary and suffi

cient condition for to be positive is:

£eFTe ~  X a V a F Ta ~  — X b ) rlbF Tb — FTe ~b £a(l — X a ) F Ta ~b £ b X b F Tb m (7.1.14)

It is clear that this condition is less restrictive than than the key constraint 6.3.11 derived 

for quadrilateral grids. The stability of the multidimensional scheme is enhanced by the 

positive contributions of the fluxes F£a and F£  on the right hand side of the inequality. 

A sufficient condition which is applicable in the general case is used in the rest of this 

analysis and is written as:

£eFTe ~  XcJiaFTa _  _  Xb)VbFTb < Fj^. (7.1.15)

This implies that in the case where F£  =  0 i.e. the flux is oriented from j  to i, the upwind 

information with respect to the edge a (b respectively) does not originate from celli (cell2 

respectively). Equation (7.1.14) reduces then to:

-VaFra ~  ^ FTb ^  °- (7.1.16)

assuming that Xa — 1 and Xb — 0. Positivity condition requires r]a = 0 and 775 =  0 in the 

case where FTa < 0 and FTb < 0.

Applying the same reasoning while considering the control volume i instead of control 

volume j ,  this observation leads to the first constraint at a stagnation point as for quadri

lateral grids namely:
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Theorem  7.1.2

*/ f Tk > 0 with respect to j ,  and with respect to i Ftc <  0 and Frd <  0 i.e. FTe is oriented 

from  i to j , Ftc is oriented from node i to the node 1 and Frd is oriented from  node i to 

the node 2 as illustrated in Figure 7.5(a) then f e =  0. This means that at a stagnation 

point the standard single-point upstream weighting scheme is recovered locally with respect 

to the edge e(i, j ) .

2 2 2

1 1 1

(a) (b) (c)

Figure 7.5: Different cases for the  flow

On the other hand, in the case where Fre > 0, Fra <  0 and Frb <  0 i.e. Fre is oriented 

from i to j ,  FTa is oriented from node j  to the node 1 Frb is oriented from node j  to the 

node 2 as shown in Figure 7.6(a), a sufficient condition for the inequality 7.1.15 to be 

satisfied is tha t

fe\Fre | + Pa I Frpa | + Pb\Frb\ < | FTe\. (7.1.17)

Setting the weights to be proportional to the ratio  of the inward and outward fluxes, i.e.

Pa = / y m in ( - ^ r ,  1), Pb =  1), (7.1.18)
TTa| | rTb\

yields

(3 < i  and f e < i .  (7.1.19)

Again, the actual bound (of unity) on the flux ratio (|rf- respectively) is deduced 

from the tracing analysis relative to edge a (b respectively). Note here th a t the condition 

Equation (7.1.19) is relaxed when at least one of the fluxes Fra and FTb is non strictly



Figure 7.6: Weighting factor

negative (Figure 7.6(b)) and the inequality 7.1.19 becomes (5 < Furtherm ore, define 

the flux ratios R ie and /?2 e as:

R, e =  | F « 2 e =  (7.1.20)

and let /? =  max(/2ie, /?2 e , 0 ), then, the weighting factor takes the form:

f i  if F t  <  0 and FT. < 0 ,
£e < P m in(l, R) witli p  = < ° ' (7.1.21)

[ |  otherwise

O ther alternatives could be chosen such as an average between both  fluxes e.g.

R u  =  t A t , «2e =  (7.1.22)
Te + Tc Te + Td

which leads to  <  [3R with p  and R  defined as above in Equation (7.1.21).

Also we note th a t in case Figure 7.6(c), where both cross fluxes are entering the control 

volume i , the  upwind subcell is selected with the edge th a t corresponds to a larger flux

ratio in order to maximize the CFL condition, which may lead to a gain in accuracy.

However, the  main result of this subsection is the general lim iter of Equation (7.1.21) on 

the angle of the characteristic/stream line to ensure positivity.

7.1 .2  N on lin ear Form ulation

As for the  quadrilateral counterpart, we compare two formulations taking into account 

the general case where the flux is nonlinear in saturation.



Nonlinear Flux of Multi-dimensional Data

The first formulation involves multi-dimensional upwind data correction where we 

define the generalized flux by:

K S l )  =  / ( ( l - « S ” + 4 [ X e S r  +  ( l - X e ) 5 J ] ) ,

X S £ ) =  f { ( l - V e ) S J  +  V e [ X e S ^ + ( l - X e ) S ^ \ ) .

Nonlinear Multi-dimensional Flux

The second formulation involves the multi-dimensional upwind flux correction where 

we define the generalized flux by:

A  s i )  =  ( i - t M S ? ) + t ' \ x e A S ? )  +  ( i - X ' ) A S 2 ) ] ,

ASS) =  (i-tk)AS?) + vJ*Ass) + (i-x,)As;)]-

Here, we have used conditions of Equations (7.1.3), (6.3.10) and (7.1.21) for stability in 

our calculations.

7.2 Edge-based M ultidim ensional Schem es On H y

brid M eshes In 2-D

For completeness, the multidimensional edge based formulation is presented in this 

section for unstructured hybrid meshes. The notation used here is adopted in the next 

chapters.

7.2.1 Formulation using D ata

Consider the key edge e and the adjacent cells sharing the edge as shown in Figure

7.7(b), then the left and right states at the integration point on the edge e ( i,j)  oriented

from i to j  are calculated as:

S 2 e =  ( l - « e ) S ? + 4 e [ X e S ?  +  ( l - X e ) S 2 ]  ( 7 . 2 . 1 )

S2. =  ( l-% )S ?  + r/e[XeSJ + (l-Xe)SJ]

where

1 if the wave velocity is pointing from subcell I to subcell IV,
Xe = I (7.2.2)

0 if the wave velocity is pointing from subcell II to subcell III.
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and 0  <  £ < 1  and 0  <  77 <  1  denote the weighting factors where £ (respectively 7 7) is used 

to interpolate the left (respectively right) state as a linear com bination of Si (respectively 

S j )  and S i  (respectively 5 3 ) or S 2 (respectively S4 ) depending on the direction of the 

wave speed. Note here th a t node 1 and 3 coincide.

o-coO)

Edge e

Cell 1

Cell 2

(a)

Figure 7.7: (a) Control volume (dashed line) (b) compact stencil (b) subcclls.

7 .2 .2  P ositive  Linear Schem es

In this section, we will analyze the stability and consistency of the family of schemes 

defined by Equations (7.1.1), (7.2.2) and (7.2.1) for linear advection on an arb itrary  

unstructured grid comprised of triangles and quadrilaterals. The discretisation using the 

multidimensional edge based scheme of Equation (7.1.1) on the unstructured  grid Figure 

7.7 with respect to the control volume j  is similar to 9.1.16 and 9.1.5 and now takes the 

form:

^ ( S " + 1 - 5 » )  =  F + [ (  l - C e ) S ?  +  a X e S r  +  ( l - x e)S?)] ( 7 . 2 . 3 )
At

+  F fJ (  1 -  r,e)S] + vc(x<S2 +  (1 -  x .)S ? )]

+  F £ [ ( l  -  6 0 S ?  +  6 , ( 1 - X « ) S ? ]

+ F f J ( l  -  Va)S] + r,a

+ F + [ ( l-& )S J  +  to S J ]  

+ FjT [(1 — %)S" + %(1 — Xb)S” ] +
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where the same notation as in 7.1 is adopted and ET (extra terms) denote the contribu

tions coming from cells other than celli and cell2 - The coefficient of node aij then takes 

the form:

= ((1 — ^e)^Te F  £a(l — Xa)Fj^ + VaXaF^ +  f]b{\ ~  Xb)FTb). (7.2.4)
TJ

As for triangular and quadrilateral grids, the scheme is consistent by construction and 

the positivity limit is

£e-̂ 7\  ~  WaXaFTa ~  T]b{ 1 — Xb)FTb < Fj^ +  £a(l — X a)F^, (7.2.5)

that reduces to

£eFj<e ~  T)aXa,Frpa — f]b(\ ~  Xb)FTb < Fj^. (7.2.6)

7.2.3 Stagnation Point

The most restrictive case corresponds to Ffe ~  FTa < 0 and Fn  < 0 where the
postivity condition Equation (7.2.5) reduces to

~ rla,Fj'a — VbFTb = 0 (7.2.7)

f°r Xa ~  0 and Xb = 1 and yields r)a = 0 and r)b = 0.

Theorem 7.2.1

i f  FTe > 0 with respect to node j ,  and with respect to node i Ftc < 0 and FTd < 0 z.e. FTe 

is oriented from i to j ,  Ftc is oriented from node i to the node 1 and Frd is oriented from  

node i to the node 2 as illustrated in Figure 7.8(a) then £e — 0. This means that at a 

stagnation point the standard single-point upstream weighting scheme is recovered locally 

with respect to the edge e (i,j) .

Proof c.f. Proof 6.3.2 based on Equation (7.2.6).

7.2.4 Weighting Factors

The derivation of the weighting factors follows the same reasoning as for the triangular 

grids section 7.1. In the case where Fre = F^e > 0, Fra = F^a < 0 and Frb = Frb~ < 0 i.e. 

Ft£ is oriented from i to j ,  FTa is oriented from node j  to the node 3 FTb is oriented from
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I

(a)

i

1

i

I

(b ) (c)

Figure 7.8: Different cases for the flow

node j  to the node 4 as shown in Figure 7.9(a), a  sufficient condition for the inequality 

in Equation (7.2.5) to be satisfied is tha t

L \F Te\+ Va\FTa\+ Vb\FTb\ <  |Fre\ .  (7.2.8)

Setting the weights to be proportional to the ratio of the inward and outward fluxes, i.e.

Va = P m i n ( ^ ,  1), rjb = P m in ( |^ - ,  1), (7.2.9)
CTa t Tb

yields

0  < 1  (7.2.10)

Again, the condition of Equation (7.2.10) is relaxed when at least, one of the fluxes Fra 

and Frb is positive Figure 7.9(b) and the inequality in Equation (7.2.10) becomes

(7.2.11)

Furtherm ore, define flux ratios R ie and Z?2 e as:

(7.2.12)

and let R — m ax(/?ie, 0), then, the weighting factor takes the form:

£e < P m in(l, R) w ith /3 =

0 < \ .

R  _  FTc r  _  FT,i
K \ e  —  T T i  n 2 e  ~  T T ~  ■t Te r Te

|  if FTa < 0 and Frb < 0,

|  otherwise
(7.2.13)

For non-linear fluxes, the edge based multidimensional schemes are defined as in section 

6.3.3.

LIBRARY
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i

I

(a) (b) (c)

Figure 7.9: Weighting factor

7.3 N u m e ric a l  R esu lts

The test cases involve two phase flow (oil-water). Initial oil sa turation  is prescribed 

and water is injected. W ater saturation contours arc shown in each case. Solid wall (zero 

normal flow) boundary conditions are applied on all solid boundaries of each reservoir do

main. In all cases, flow rate is specified at the (inflow) injector and pressure is prescribed 

at the (outflow) producer and a consistent Darcy flux approxim ation is used. Both regular 

and distorted unstructured triangular grids arc tested. Results involve full-tensor coeffi

cient velocity fields due to the grid or perm eability field (or both), w ith strong cross-terms 

th a t induce significant cross-flow across grid cells which adds to the full-tensor effect due 

to the unstructured nature  of the grid.

7.3 .1  C ase 1: L inear P is to n  B u ck ley  L everett F low

The first case is a study of a linear flow problem using a triangular grid shown in 

Figure 7.10(a) as in case 1 presented in chapter 5 section 5.4.1. Here, water saturation 

contours are shown at 0.5 pore volumes injected (PVI). The first result, Figure 7.10(b), 

shows the effect of employing the standard  first order upwind scheme for the convective 

flux approxim ation. The multidimensional scheme result is shown in Figure 7.10(c). The 

first order scheme result shows a strong dependency on the grid structure. The multidi-
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mensional scheme provides considerable improvement in the resolution of the saturation 

front compared to the standard  scheme and is independent of the grid structure for this 

case.

is

(b) (c)

Figure 7.10: Case 1 - (a) ZigZag mesh; saturation profiles using (a) single-point upstream - 
weighting and (b) multidimensional approximations.

7.3 .2  C ase 2: Linear Full T ensor Q uarter F ive  S p ot

The second case involves a linear Buckley Leverett flux, corresponding with linear 

relative permeabilities and has the same set up as case 1 presented in chapter 6 section 

6.4.1. Here water saturation contours arc shown at 0.25 pore volumes injected (PVI) for 

the same CFL number equal to 0.4. The main feature of this case is the advection of the 

stable discontinuity across the grid. The standard  single-point upstream  results on dis

to rted  structured and unstructured triangular grids arc shown in Figures 7.11(b), 7.12(b) 

and 7.13(b). The multidimensional upwind results are shown in Figures 7.11(c), 7.12(c) 

and 7.13(c). The standard  scheme results show a largely diffused front. In contrast, the 

multidimensional scheme provides improved symm etry of the problem, while predicting 

earlier breakthrough with minimal cross-flow spreading.

7 .3 .3  C ase 3: H igh M ob ility  R atio  P is to n  F low

The th ird  case involves a nonlinear Buckley Leverett flow subject to fluid injection 

on the left hand boundary and specified pressure on the right hand boundary and a 

full homogeneous permeability tensor with principal axes oriented at 45 degrees to the 

reservoir domain with 20 to 1 anisotropy ratio. The water and oil relative perm eabilities 

are respectively krw = S 2 and kro =  (1 — S )2. The normalized tensors have components
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(a)

I
I

(b) (c)

Figure 7.11: Case 2 - (a) Triangular mesh oriented in the direction of the flow (21x21); 
saturation profile using (b) single-point upstream-weighting and (c) multidimensional
scheme.

********************
* * * * * * * * * * * * * * * * * * * *

(a) (b) (c)

Figure 7.12: Case 1 - (a) Cross Mesh (21x21); saturation profile using (b) single-point 
upstream-weighting and (c) multidimensional scheme.

Figure 7.13: Case 2 - (a) Delaunay mesh (290 nodes); sa turation  profile using (b) single
point upstream-weighting and (c) multidimensional scheme.
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K xx = 1.0, K yy = 1.0, K xy = 0.9. The flow mobility ratio is set to M  = 40. The

results are computed on the triangular grid with an aspect ratio 4:1 shown in Figure

7.14(a). The result obtained using standard single-point upstream weighting is shown in 

Figure 7.14(b) and that obtained using the data based multidimensional wave-oriented 

higher dimensional upwind scheme is shown in Figure 7.14(c). The multidimensional flux 

result is shown in Figure 7.14(d). Figure 7.15 shows a reference solution on a 64x64 

cartesian grid. The standard first order results indicate a strong grid orientation bias 

with a spread front that first collides with the top wall before breakthrough occurs at the 

right hand boundary. In contrast the results obtained with the multidimensional schemes 

show reduced grid dependence and provide improvement in front resolution, although the 

multidimensional flux result is slightly sharper than the multidimensional data result. 

The flow pattern is now consistent with the problem, where the full tensor forces the flow 

across the domain, with breakthrough at the right hand boundary now consistent with 

the reference solution.

7.3.4 Case 4: Nonlinear piston Full Tensor Flow

The last case has the same domain, boundary conditions and non-linear relative per

meabilities as Case 3, now with a unity mobility ratio i.e. M  = 1 and involves a full 

permeability tensor with a 10 to 1 anisotropy ratio. The normalized tensors have compo

nents K xx = 1.0, Kyy =  1.0, K xy = 0.82. Results are computed on a triangular grid. The 

reference solution is shown on a 64x64 regular grid in Figure 7.17. The results obtained 

using standard single-point upstream weighting are shown in Figure 7.16(b) and those 

obtained using the data based multidimensional wave-oriented upwind scheme are shown 

in Figure 7.16(c). The multidimensional flux results are shown in Figure 7.16(d).

The standard first order results indicate a more diffused front, whereas the results ob

tained with the multidimensional schemes show reduced grid dependence on the distorted 

unstructured meshes and provide improvement of front resolution with a clearer indica

tion of the flow pattern, which is consistent with the problem, where the full tensor forces 

the flow across the domain.
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>•

X

(a) (b)

X

>-

X

(c) (d)

Figure 7.14: Case 3 - (a) Grid (40x10); saturation profile using (b) single-point upstrcam - 
wcightiilg, (c) multidimensional da ta  based scheme and (d) m ultidimensional flux based 
scheme.

>-

(a)

Figure 7.15: Case 3 - Reference solution on a 64x64 cartesian mesh

7.4 Conclusions

A family of multidimensional upwind schemes is presented for hyperbolic conservation 

laws on triangular grids. The methods are locally conservative and are coupled with
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(c) (d)

Figure 7.16: Case 4 - (a) U nstructured triangular grid (159 nodes); sa turation  profile 
using (b) single-point upstream-weighting, (c) m ultidimensional da ta  based scheme and 
(d) m ultidimensional flux based scheme.

>-

X

Figure 7.17: Case 4 - Reference solution on a 64x64 cartesian mesh

consistent and efficient continuous Darcy flux approxim ations and applied to two-phase 

flow problems. Positivity conditions are derived for linear convection including the CFL 

limits. The schemes perm it higher CFL numbers than  the standard  upwind scheme.
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Two-phase flow results are presented. Comparisons with the standard first order single 

point upstream weighting scheme are made on a both regular and distorted unstructured 

triangular grids for cases involving full-tensor coefficient velocity fields. The comparisons 

demonstrate the benefits of the higher dimensional schemes both in terms of improved 

front resolution and significantly reduced cross-wind diffusion.
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Chapter 8 

Gravity and System s

This chapter describes the application of the numerical methods presented in chapters 

5-7 to gravity driven flow problems as well as to multi-component multi-phase flow systems 

through the study of a three component two phase flow polymer flood system in two 

dimensional space.

The main objectives are first to provide an extension of the multidimensional schemes in 

order to handle general flow situations involving counter current gravity flows. The second 

aim is to develop a multidimensional formulation for systems of hyperbolic equations. 

Finally, we investigate different tracing formulations.

A two phase flow water and oil system is considered for the gravity case. A polymer 

flood systemis considered here which is comprised of a miscible aqueous phase (water and 

polymer) and an immiscible oleic phase.

The chapter is organised as follows. The first section 8.1 deals with gravity driven flows, 

where two upwind approximations are presented and two different multidimensional data 

based reconstructions are proposed. The different formulations are compared for a gravity 

segregation on quadrilateral and triangular unstructured meshes. Section 8.2 is devoted 

to the two dimensional three component two phase flow system, where the first order and 

higher order upwind formulations based on componentwise reconstructions following the 

ideas in [51, 21] are presented. Three different limiting strategies involving conservative, 

primitive and characteristic variables are adopted for the higher order method. Also, 

three innovative tracing approaches are also introduced in the same section that lead to 

a novel family of multidimensional data based first order schemes for hyperbolic systems 

for flow in porous media. Finally, numerical results are presented and comparisons of the 

different formulations illustrate the benefits of the new formulations with respect to the
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standard methods.

8.1 G ravity D riven  Flows

8.1.1 Formulation

Recall the continuity equations for a gravity driven two phase flow:

[  +  /  V p • fids =  m p (8.1.1)
Jncv d t  J dQcv

where the integral is taken over Q,cv and where Sp, Vp and m p are the p th phase saturation, 

Darcy velocity and specified phase flow rate respectively. Here we consider two upwind 

formulations: the first one corresponds with the upstream mobility weighting [13, 128]. 

This approach is the reservoir simulation standard and is physically motivated. The idea 

is to solve for both phase saturations independently using the phase velocities (modeled 

by Darcy’s law) in order to decide upon the flow direction for each phase. This enables 

the scheme to account for the counter current flow when the phases migrate in opposite 

directions, which is typical of gravity segregation problems. The second approach uses 

a fractional flow formulation and involves expressing the flux in terms of a single phase 

saturation, water saturation being the usual choice and is favoured here. Two phase 
incompressible flow is governed by a single scalar hyperbolic equation coupled with an 

equation for the pressure equation in general case; the saturation for the oil is deducted 

from the volume balance equation, where the saturations sum to one. Upwinding is per

formed according to the characteristic wave speed defined from the hyperbolic equation. 

This scheme is well established [73] and provides physically consistent solutions.

The phase continuity equations (8.1.1) are coupled through the discrete pressure equa

tion (4.2.8). Control volume distributed Darcy flux approximations presented in [52] (see 

section 4.2.1) are used for the elliptic component. Note here that, in order to account for 

gravity, Equation (4.2.9) is adjusted and takes the form:

C 2
Fr. =  -  /  a E  W f *  +  P 9 k jW i ,  (8-1.2)

V 90cv j  — \

where & are local curvilinear parametric coordinates, is the parametric coordinate sur

face increment and 0^. (respectively ) is the derivative of 0 (respectively h) with respect 

to £j and T =  J J -1K J_T is the general tensor defined via the Piola transformation which
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is a function of the Cartesian permeability tensor and geometry, where =  dxi/d^j is 

the Jacobian of the local curvilinear coordinate transformation, and J  = — y^xv is

the Jacobian determinant and p is defined by Equation (2.2.7).

An IMPES algorithm, section 4.2.5, is adopted here using the consistent locally conser

vative control volume distributed Darcy flux approximation. Explicit first order forward 

Euler method is used for the temporal discretisation. In this chapter, we consider a finite 

volume edge based cell vertex approximation with focus on the spatial discretisation.

Scheme A: V elocity U pw ind

In the absence of capillary forces, the Darcy velocities of the aqueous and oleic phases 

including gravity are written as:

V„ - - \ wK(S7(f) +  pwgVh), (8.1.3)

V 0 =  -A 0K (Vcl> + p0gVh).

We recall the upstream mobility weighting finite volume approximation written as:

NedV
{ s ; p  -  +  A1 £  A„(S2, SSK .w jW '*1) = AtMpl, (8.1.4)

3= 1

as before where the approximate upwind mobility is defined according to the sign of the 

local wave velocities wPe with respect to the local frame of reference aligned with the 

direction i to j along the edge as defined in section 4.2.2. Here, S£, are the left

and right hand values of the phase saturation vectors with respect to edge e ( i , j ) and n  

denotes the time level of the scheme. The upwind scheme is then written as:

M S I ,  SnR) =  { Wp‘ ~ °  (8.1.5)
^p(Sr) Wpe < 0

The local pth phase wave velocity corresponds with the net edge based single phase Darcy 

flux (for the phase p) at the edge e ( i,j) , referred to herein as wPe and consists of the sum 

of the sub-face discrete fluxes expressed on each cell sharing the edge e as:

r 2
FM )  = -  I XP^2TiMtj +  pgh^dTi. (8.1.6)

JdSlcv j=i

The first order upwind scheme is defined with S£ =  S" and =  S^. Note here that we 

solve for both the water and oil saturations.
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Scheme B: C harac te ris tic  Upw ind

Using the fractional approach the integral continuity equations (8.1.1) reduce to a 

hyperbolic equation for the water saturation S', written as:

f  ^  + (f V  • rids =  0 (8.1.7)
J Vlcv J dtlcv

in the absence of source terms where V is the water velocity and takes the form:

V ( S )  = / ( S ) V r  +  7 ( S ) V G . (8.1.8)

Here,
VT =  v „  +  v 0

is the total velocity and

V G = g{p0 -  pw)K V h .

The fractional flow is defined by:

A .(g )  MS<
’ A(5) MS< + (1~S)(  ( >

and the function 7  corresponds to:

A„(5)A.(5) M ( l - S ) < 5 <
7 ( 5 )  -  A J  (S) = m  -  MSC +  (1 _  S)C (8-1-10)

where (  defines to the order of mobility. The edge-based vertex centered finite volume 

discretization of Equation (8.1.7) on unstructured grids takes the form:

NedV
( S " +1  -  5?)71 +  At £  [f(S£, SnR)FT„(lj)( r +1) + 7 (52, SnR)FĜ J  =  0 , (8 .1.11)

j =1

where FT }  is the net edge based flux defined by Equation (8.1.2) and accounts for the

total velocity contribution. The net component of flux due to gravity FGe(. includes the

gravity potential discretisation written as

r 2 ^
Fg =  -  /  {p w -  P o)g '^J Tijh ^ V i . (8.1.12)

Jdficv j =i

The net Darcy flux is then defined by %Je where

® .(5 )  =  f(S)Ft ^  (<T+1) +  7 ( 5 ) ^ , , , , ,  (8.1.13)
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and the characteristic wave velocity is written as

w *(S)  =  QgFT'(ij r +1) + g ^ F o ^ y  (8.1.14)

The characteristic upwind flux approximation used here is defined by:

( ©e( s a  if wc,(S ) > 0, for S  € [S i,S a],

V e(S l, SS) =  I gje(Sg) if wC'(S ) < 0, for S  e  [Si, Sa], (8.1.15)

[ QJgLF otherwise

where at sonic points, a Local Lax Friedrichs (LLF) flux approximation QJFLF is used as 

an entropy fix in order to disperse expansion shocks, [148, 73]. Again, here the sonic loci 

are determined using a test for the change of sign in wCe evaluated at the left and right 

states of the local Riemann problem. Practically, the LLF approximation is adopted when 

< 0 and wCe(Sn) > 0 as inspired from [73]. The Local Lax Friedrichs numerical 

flux is written as:

t y LF =  1[(®(SZ) + ®(SS)) -  max I | (S J  -  S2)]. (8.1.16)

8.1.2 M ultidimensional Schemes and Tracing V elocities

In the case of two phase immiscible flow, the tracing velocities are well defined and

correspond to the total Darcy flux Fre on the grid edges as detailed in chapters 5-7. The

tracing parameters are independent of saturation data.

In this section, the family of genuinely multidimensional edge-based finite volume schemes 

on unstructured grids using a data formulation is adopted. The details of approximation 

are discussed in section 7.2. In the following, we adopt the same notations as in chapter 

7, section 7.2. The multidimensional data reconstructions with respect to the key edge 

e(i , j )  (Figure7.7(b)) are defined by:

S i. =  ( l - & ) S r  +  £e[x«S? +  (l-X «)S2] (8.1.17)

S £ . =  ( i - % ) s ?  +  j?,[x«si +  ( i - * e) s ; ]

where

„ 1 if the wave velocity is pointing from subcell I to subcell IV,
Xe = { r (8.1.18)

0 if the wave velocity is pointing from subcell II to subcell III.

and 0 < £ < 1 and 0 < 77 < 1 denote the weighting factors where £ (respectively 77) is 

used to interpolate the left (respectively right) state as a convex linear combination of
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Si (respectively Sj) and Si (respectively S3) or S2 (respectively S4) depending on the 

direction of the wave speed. Note that here node 1 and 3 coincide (respectively 2 and 4) 

when celli (respectively cell2) degenerates to a triangle.

The focus here is on the definition of the tracing parameters £ and rj for gravity driven 

two phase flow. Instead of using the total Darcy fluxes for the tracing, we propose to use 

two different tracing velocities. The first formulation corresponds with tracing according 

to the physical velocities defined in Equation (8.1.3). The second formulation uses the 

characteristic water phase velocity defined below. Another alternative could also be to 

use the total Darcy flux for upwinding. Nevertherless, in the case of high gravity numbers 

where the total Darcy flux term Ft  is negligible, the flow is mainly driven by the gravity 

term Fq- Due to this limitation, this method will not be considered in this work.

Formulation I: Tracing with Phase Velocities

Formulation I follows section 7.2 where the resultant total Darcy flux Fre used for the 

tracing is now replaced by the resultant phase Darcy flux at the centre of the edge wPe 

defined by Equation (8 .1.6) for the tracing step. Also, note that wPe reduces indeed to 

Ftc in the absence of gravity. Hence, the flux ratios R u  and R 2e are expressed as:

=  = (8.1.19)wPe wPe

and R  = max(i?le, R 2e, 0). Then, the weighting factor takes the form:

, I q if wvn < 0 and wv. < 0 ,
£e < /?min(l,.R) with f3 = < (8.1.20)

y |  otherwise

Formulation II: Tracing with Characteristic Velocity

First, define the characteristic flux at the edge e(i , j )  for the aqueous phase as:

r \ s R - S L \>e;
Wc. = I Sr~Si- (8.1.21)

I  u>c(S), I SR -  SL \< £.

where the characteristic wave speed wCe is defined in Equation (8.1.14) and the Darcy flux 

Q3e is defined by Equation (8.1.13).

Note here that formulation II involves the resultant characteristic wave velocity for the 

water phase at the centre of the edge WCe defined by Equation (8.1.21) in the tracing step
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instead of using the resultant to tal Darcy flux Fre- 

Then, the flux ratios R \e and R 2e become:

W  W
( 8L22)

and the weighting factor is w ritten as:

|  if WCa <  0 and WCb <  0,
<  /3m in(l,/?) with j3 =  < a (8.1.23)

[ |  otherwise

with R  = niax(i?ie, R 2e, 0).

8 .1 .3  C ase S tu d y  o f G ravity  Segregation: Oil Shale B arrier

Gravity driven two-phase flow is used to investigate the  different multidimensional 

formulations in two dimensions. Q uadratic relative perm eabilities arc assumed with C — 2. 

The mobility ratio is set to unity. The perm eability tensor is assumed to be diagonal 

isotropic.

The initial condition consists of an oil lens sitting on top of a  shale barrier, in an otherwise 

gas filled reservoir, with solid walls at the sides and top boundaries.

Pressure is specified on the lower boundary. The boundaries and initial interface arc 

shown in Figure 8.1. All oil saturations are shown at the same ou tpu t tim e 0.25 PVI

Oil

Shale  barrier

Gas

Figure 8.1: Characteristics

where the shock due to the downward moving heavier water phase has formed followed 

by the Buckley Leverett expansion. A CFL of 0.45 is used for low order. The tim e step 

is reduced by a factor 2 for higher order results.
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Characteristic upwinding
Scheme B

Upstream Upwinding
Scheme A

Standard  first order

S tandard  higher order

Figure 8.2: Reference S tandard  First order and higher order Solutions 0 1 1  a 65x65 C arte
sian mesh.

Scheme Upwind
A Velocity
B Characteristic

Table 8.1: N otation - Upwind schemes.

R eference Solutions

Reference solutions 0 1 1  a uniform 65x65 Cartesian grid using standard  first order and 

standard  higher order (detailed in chapter 6) are shown in Figure 8.2 for both upwind 

formulations A and B. Results arc com puted on unstructured triangular and quadrilateral 

grids shown in Figure 8.3.

The first-order schemes smears the discontinuity (Figure 8.2(a) and (b)). Higher order 

results (figures 8.2(c) and (d)) for both  schemes A and B show a noticeable improvement 

of the sa turation  front resolution compared with the low order m ethod (figures 8.2 (a) 

and (b)).

The results using scheme B show better solution quality overall than  those computed
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Combination Corrcspondance
A-1 Velocity upwind Phase velocity tracing
A-II Velocity upwind Characteristic tracing
B -I Characteristic upwind Phase velocity tracing
B -II Characteristic upwind Characteristic tracing

Tabic 8.2: Notation - M ultidimensional formulations, 

using the upstream  mobility upwind scheme A in term s of satu ration  front detection.

(a) (b)

Figure 8.3: Meshes.

M ultidim ensional Solutions

Standard  first order results on the unstructured grids show a smeared front for both 

upwind formulations with scheme B providing better resolution of the rarefaction and a 

more accurate position of water front than  the scheme A.

The multidimensional velocity upwind characteristic trace form ulation (A-II) shows a sign 

of instability and provides oscillatory results on both triangular and quadrilateral grids 

as indicated in Figures 8.4(e) and 8.5(e).

Also, the characteristic upwind using velocity tracing formulation (B-I) yields overshoots 

in the saturation profile on the quadrilateral grid (Figure 8.5(d)). This is most likely due 

to the characteristic velocity and phase fluxes having opposite signs, which results in an 

inconsistency between the upwind strategy and tracing fluxes used in the m ultidimen

sional tracing step.

Note here th a t the multidimensional characteristic upwind velocity trace (B-I) result on 

the triangular mesh in Figure 8.4(d) is essentially oscillation free. This observation infers



118

that the structure of the triangular mesh has contributed in restricting the weighting 

coefficients in regions where the same scheme failed on the quadrilateral mesh adding a 

stabilizing effect to the formulation.

Multidimensional results using consistent tracing options (A-I) (Figures 8.4(c)) and 8.5(c)) 

and (B-II) (Figures 8.4(f) and 8.5(f)) provide oscillation free results with noticeably 

sharper resolution of the saturation front, particularly in regions where a cross flow is 

important, when compared with standard first order.
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Velocity Upwinding
Scheme A

Characteristic upwinding
Scheme B

Standard first order

Tracing 0 1 1  the Wave Velocity

Formulation I

Tracing 0 1 1  the Characteristic velocity

Formulation II

Standard Higher order

Figure 8.4: Casel: Saturation profiles on the triangular mesh.
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Velocity Upwinding
Scheme A

Characteristic upwinding
Scheme B

Standard First Order

Tracing with phase velocity

Formulation I

Tracing with characteristic velocity

Formulation II

S tandard higher Order

Figure 8.5: Casel: Saturation profiles on the unstructured quadrilateral grid.
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8.2 Polym er flood three com ponent tw o phase flow  

system s

8.2.1 Flow Equations

The integral conservation equations for a polymer flood three component two phase 

flow system over 0  in the absence of source and sink terms are written as:

f ^ + < £  F(S) ■ nds =  0, (8.2.1)
Ju dt JdQcv

where F  =  (V, C Y )T and S is the vector of conservative variables defined by Equation

(2.3.12) (see section 2.3.2). In this section, S denotes the miscible phase saturation and 

C the component concentration in the miscible phase, here the aqueous phase, V refers 

to the Darcy velocity of the aqueous phase defined by:

V(S) =  /(S )V t +  7 (S)Vg . (8.2.2)

The fractional flow takes the same form as in Equation (8.1.9) where the water viscosity 

is now a function of concentration and is set to = 0.5 +  C. For convenience, the gravity 

term is omitted in the following and the Darcy velocity reduces to

V(S) -  / ( S)VT. (8.2.3)

8.2.2 Characteristic Upwind approximation

We use a characteristic decomposition upwind scheme. The edge based vertex centered 

finite volume discretisation of Equation (8.2.1) with respect to control volume j  takes the 

form
S
gra+1 __ g n  Nedv

A t
+  £ f ( S 2 , ,S £ J F r .  =  0, (8.2.4)

e=l

where Fre is the discrete total Darcy flux evaluated at the centre of the edge e. The

system is first decomposed into characteristic form. Decomposition is performed via the

local transformation with respect to the edge e

AS =  R e A W, (8.2.5)

where R e is the matrix of right eigenvalues of the system Jacobian matrix A  = and

the matrix of eigenvalues Te is defined via

re =  R ;lAeRe (8.2.6)
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and AS, A W  represent the respective conservative and characteristic variable increments. 

The matrix of discrete eignevalues Te is written as

r . =

§L oas u

0 L s J

(8.2.7)

and the transformation matrix R e is defined by

1

R f
dc

(8 .2 .8)

C C%L + S ( £ -  | | )

The upwind scheme is in effect applied to each characteristic wave component and the 

discrete system is recomposed into a conservative form. The numerical flux corresponding 

to the edge e is defined by:

A S u , S r.)  =  T[(f(SL.)) +  f(SR.) -  R  I r .  I R - ^ S r .  -  S u )], (8.2.9)

R em ark  8.2.1 In the presence o f stagnation points or i f  equal eigenvalues are detected 

(in which case, R e becomes singular), a Rusanov flux approximation is locally applied 

[55]. The approximate flux thus takes the form:

where

ASz,.,so = -[(asO) +ASO-1 rfy | (s*. - so],

T™  1= max max I T^(S)  I I  
[SlM  k

(8 .2 .10)

(8 .2 .11)

The matrix R  is singular when the eigenvalues are equal. Also at sonic points, a Rusanov 

local Lax Friedrichs flux is applied locally i. e.

A S l „ s o  =  1 [ (A & )  + A s R) )~  I r « ,  | ( s R -  s t )] (8 .2 .12)

First order reconstructions correspond with S l = Si and S r  = Sj. The CFL condition 

applies with respect to the maximum eigenvalue of the system.

8.2.3 Higher Order Approxim ations

Higher order approximation is introduced wave by wave and applied to the charac

teristic variables W , followed by recomposition to the conservative variables [55, 51].
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Here, higher order expansions are introduced componentwise for the left and right states 

respectively where the higher order reconstruction are applied to the characteristic W , 

conservative S or the primitive variables C repectively. We refer to chapter 5, section 5.2 

for details of the higher order formulation on unstructured meshes, the same notation is 

adopted in this subsection.

Conservative Variables

The componentwise higher order left and right states are defined with respect to the 

key edge e (joining vertices i and j ) are expressed as:

Sl =  S; +  i^ r+ JA S * , (8.2.13)

Sr =  Sj  -  ^ (r 'J A S * .

where ^ ( r ±) are the slope limiters which are functions of adjacent discrete gradients

Tji = (AStU/ASjj), (8.2.14)

rJi =  (A Sdj/A Sji).

Prim itive Variables

Writing the scheme using the primitive variables gives [55]

SL =  S< +  iP e$ (rt)A S Ji, (8.2.15)

SR = S i  -

where P e denotes the transformation matrix between conservative and primitive variables 

and the slope limiter 4> is fucntion of

r+ =  (ACj„/AC,-i), (8.2.16)

TJi =  (ACa/AC*).

Characteristic Variables

Writing the scheme using the characteristic variables gives

S l  =  Sf +  i R e$(r+j)R e- 1ASji, (8.2.17)

SR =  Si  -  lR .$ (r7 i)Re- lASii.
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where R e denotes the transformation matrix between characteristic and conservative de

fined in Equation (8.2.5) and the slope limiter $  is fucntion of

r± =  (AWiU/AWji), (8.2.18)

rJi =  (A W d j/A W ji).

8.2.4 M ultidimensional First Order Approximation

In this section, a family of genuinely multidimensional edge-based finite volume schemes 

on unstructured grids using a data formulation (chapter 7, section 7.2) is applied to the 

system.

Componentwise multidimensional data reconstructions with respect to the key edge e ( i , j ) 

(Fig.7.7(b)) are proposed where three different tracing strategies are considered.

Scheme C: Conservative Tracing

The componentwise multidimensional right an left states reconstruction is written as:

S2. =  ( l - & ) S ?  +  fe[x.S? +  ( l - Xe)SJ], (8.2.19)

SS. = (i-% )s? + »7.[x«sj + (i-x«)s;],

where in this formulation, the same scalar weighting factor £e (rje) is used and where

both saturation and concentraion components are traced using the characteristic Rankine- 

Hugoniot wave speed WCe defined by Equation (8.1.21).

Scheme D: Characteristic Tracing

In the second formulation, the multidimensional approximation is introduced wave 

by wave and applied to the characteristic variables followed by recomposition to the 

conservative variables. The left and right multidimensional characteristic reconstruction 

with respect to the edge e are defined by:

Sz,e = Si -hRcCeXeR^^Sii + Rd̂ e(I -  Xe)R-d1A Si2, (8.2.20)

Sfle = Sj + Ra77eXeRo L̂ASj3 + R bT]e{I -  XejRfe^AS^,

where the weighting factors are defined in a tensorial form, e.g.



125

0

Ce = (8 .2 .21)

_  0 £2 _

The definition of the weights and £2 follows Equation (7.2.4) and is based on the first 

and second characteristic wave velocities, WCe defined in Equation (8.1.21) and ^V e(S) 

respectively.

Schem e E: P rim itive  Tracing

The third tracing option involves tracing on the characteristic Rankine-Hugoniot wave

saturation and concentration reconstructions with respect to the key edge e, are written 

as:

characteristic reconstructions Equation (8.2.4).

8.2.5 Case Study of a N on Linear High M obility Full Tensor 

Polym er Flood

The three component two-phase flow test cases consists of a polymer flood into an 

oil filled reservoir, where the injected aqueous phase is comprised of polymer miscible 

with water. Quadratic relative permeabilities are assumed with £ =  2 and the normalised 

aqueous viscosity is a function of polymer concentration with ji = 0.5 +  C.  Injection of 

polymer miscible with water causes a contact discontinuity to form in aqueous saturation, 

which terminates the rarefaction before the shock. The reference solution on a 256x256 

Cartesian grid is shown in Figure 8.8.

The numerical case involves a full homogeneous permeability tensor with principal axes 

oriented at 45 degrees to the reservoir domain with 40 to 1 anisotropy ratio. Water and 

polymer are injected on the left hand boundary and specified pressure on the right hand 

boundary. The mobility ratio is set to be equal to 10.

speed WCe for the saturation variable and tracing on ^V e(S) multidimensional recon

struction of the concentration variable. The left and right edge-based multidimensional

SLe — S*+PcCeXeACii 4- P d£e(I — Xe) ACj2, 

SRe =  S j +  P o^eXeACj3 +  Pfe7?e(I ~  Xe) AC j4,

(8 .2 .22 )

where the tensors of weighing factors correspond to those used for the multidimensional
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The computed saturation are shown in figures 8.6-8.7 at the same output time using a 

64x64 regular grid, with the prescribed initial data

f S, C = 0.05,0.1, x  < 0.0;
{ ~  ’ (8.2.23)
y S, C  =  1.0,0.7, otherwise.

H igher O rder solutions As in the one dimensional case, first order results (Figure 

8.6(a),(b)) show smeared front resolution whereas the higher order method dramatically 

improves the resolution of the saturation profile.

The higher order upwind formulation with limiting applied to the conservative variables 

(Figures 8.6(c), 8.6(d)) fails to preserve the positivity of the solutions. Spurious oscil

lations are clearly visible in the concentration profile (Figure 8.6(d)). In contrast, the 

higher order results using both the primitive (Figures 8.6(e), 8.6(f)) and characteristic 

(Figures 8.6(g), 8.6(h)) variables are oscillation free. Note that the characteristic based 

higher order results provide the best results with sharp shock front and superior resolu

tion of the rarefaction in the saturation profile when compared with the primitive and 

conservative formulations which both introduce extra diffusion in the solution particularly 

for the rarefaction.

M ultid im ensional Solutions All multidimensional results (Figure 8.7) are essen

tially oscillation free and show a clear improvement of the front resolution in comparison 

with the first order results where the saturation and concentration fronts are captured 

more accurately across the grid with significantly reduced cross-wind diffusion.

The characteristic based multidimensional results are shown in (Figure 8.7 (e), 8.7(f)) 

and provide the best results with improved resolution in the saturation front and clearly 

sharper concentration profile.

8.3 Conclusions

Multidimensional first order edge based upwind schemes have been applied to Gravity 

driven flow where different tracing velocity formulations are tested. Two phase flow nu

merical results are presented. Comparisons with single point upstream weighing scheme 

are made on triangular and quadrilateral unstructured grids. The multidimensional 

schemes provide better resolution of the saturation front than the standard first order
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Saturation Concentration

Standard first order

Standard higher order

Standard higher order

Primitive Limiting

Standard higher order

Figure 8.6: Saturation and concentration solutions using standard  first order and higher 
order schemes.
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Saturation Concentration

Multi-D

Multi-D

Tracing with the primitive variables

Multi-D

Tracing with the conservative variables

Tracing with the characteristic variables

Figure 8.7: Multidimensional saturation and concentration profiles.
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(a) (b)

Figure 8.8: Reference solution on 256x256 Cartesian grid, (a) Saturation profile; (b) 
concentration profile.

m ethods where the best results arc given when characteristic tracing is used in combina

tion with charatcristic upwinding.

Also, both higher order and multidimensional upwind schemes arc also introduced for 

hyperbolic systems where different limiting strategies involving primitive, conservative 

and characteristic variables are adopted. Numerical test cases involving two phase three 

component flow demonstrate the benefits of the schemes when compared to standard  first 

order approximations and illustrate the advantage of using the characteristic variables 

instead of the primitive and conservative variables.
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Chapter 9 

Cell-Based M ultidim ensional 

Schem es on U nstructured M eshes

In this chapter, a cell-based multidimensional flux-consistent upwind formulation is 

introduced for reservoir simulation on general unstructured grids in two dimensions. The 

cell-based formulation is presented in 9.1. The motivation for the cell-based formulation 

is the use of sub-cell fluxes for determining tracing trajectories. Sub-cell fluxes are defined 

at a finer scale than edge-assembled fluxes which are used in the edge-based formulation. 

Analogous sub-cell stfearnline tracing is used in [131] for the streamline method. The 

cell-based and edge-based methods are contrasted in terms of properties and results in 

the work below.

9.1 Cell Based Local M ultid im ensional A pproxim a

tions

The notation adopted in this section is defined in chapter 7, section 7.2. The same 

conventions for the flux definitions are used here.

Consider the key edge e and the adjacent cells sharing the edge as shown in Figure 9.1. 

Let el and e2 denote the control volume sub-faces connected to edge e ( i , j ) oriented from 

i to j  belonging to the adjacent cells cell\ and cel^.
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9.1.1 Formulation using data

First, we present a family of genuinely multidimensional cell-based finite-volume schemes 

on unstructured grids using a data based formulation.

The left and right states at the integration point of the control volume sub-faces connected 

to the edge e ( i , j ) are now defined on triangular cells by:

Sn
L = ( 1 - & i)S? +  £,iS?,

Sfltl = (l-^eOSy + TtaS?;

and on quadrilateral cells by:

S L  = (l-Se2)S? +  Ce2S?,

=  ( l- ife O sy + jfe js ; .

(9.1.2)

The weights are locally defined using the subcell sub-face fluxes as shown in Figure 9.1 

with 0 < i eq < 1 and 0 < rjeq < 1 for q = 1, Nq.

1

(a) Triangular cell (celli) (b) Quadrilateral cell

(celli)

Figure 9.1: Local tracing: local interpolant points are indicated by a star and tracing 
streamlines are shown in dotted arrows. Grey arrows illustrate sub-cell fluxes calculated 
at the centre of cell edges.

Linear local positivity analysis

First we shall consider the linear case. Stability of the scheme requires a positive 

coefficient contribution (convex average) corresponding to each contributing node of the
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control volume update. Expanding equation (4.2.17) with respect to the data yields:

(9.1.3)
NedV Nq

s f 1 =  + £  £  £  4 ic)s fc",
e= l ic=  1 k£cellic,k^j

where N edv is the total number of constitutive edges connected to vertex j .  The scheme 

of Equation (9.1.3) is called locally positive if a™ > 0, V ic and V k belonging to cell ic 

such that k /  j  and aj > 0 subject to the consistency condition

NedV Nq

% + £  £  Y  °£c) =  L (9-L4)
e=l ic= 1 k&celliC,k^j

Triangular cell: celli

The contributions from cell\ to the control volume j  update are written as:

Tj
A t

(9.1.5)

+ [ ( l - V e i ) S ]  +  ve iS  r \F ^

+ 1(1 -  U ) S "  +

+ [(1 -  %i)S? + V « iS ? ]F ^  +  E T 1 ,

where ET1 (extra terms) signifies any contributions coming from cells other than cell\.

The associated weights corresponding to node i are expressed as:

^  = ^ ( ( 1  -  +  € * * £ . +  V alF ^J . (9.1.6)

j

(b) Pi = i(a) Stagnation point

Figure 9.2: Weighting factor for triangular cells.

The purpose of this subsection is to derive conditions governing interpolation weights 

over each cell sharing the key edge e, so that the scheme satisfies the local positivity
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condition.

For the scheme of Equations (9.1.1) to satisfy the local positivity condition on, a necessary 

condition is:

from j  to i , the upwind information with respect to the edge c does not originate from 

celli and inequality in Equation (9.1.7) reduces to

1.

Applying the same reasoning while considering the control volume i instead of j , this 

observation leads to the first constraint at a stagnation point namely:

T heorem  9.1.1

i f  Frei is oriented from i to j ,  and F tc1 is pointing from i to 1 as illustrated in Figure 9.2 

then £ei =  0. This means that at a stagnation point the standard single-point upstream 

weighting scheme is recovered locally on the control volume sub-face belonging to celli.

P ro o f The coefficient of node 1 in the contributions from celli to the control volume i 

update in the case where both subcell fluxes Frel and FTcl are leaving the control volume 

i reduces to:

(9.1.7)

Equation (9.1.7) implies that in the case where F? = 0 i.e. the sub-face flux is oriented

r)alFTal < Cal-F^ , (9.1.8)

which yields rjal = 0 when the sub-face flux FVal < 0 and is oriented from node j  to node

(9.1.9)

Local positivity condition requires £ei =  0.

In the case where Frel = F fei > 0, FTal = Fffai < 0 i.e. FVel is oriented from i to j ,  FTal 

is oriented from node j  to the node 1 as shown in Figure 9.2(a), a sufficient condition for 

the inequality of Equation (9.1.7) to be satisfied is that:

£el|F;re l | + ^ a l |^ T ail <  |^Tei (9.1.10)

Setting the weights to be proportional to the ratio of the inward and outward fluxes, i.e.

(9.1.11)
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yields

P i < ^  and Cei < (9.1.12)

Notice here that the condition of Equation (9.1.12) is relaxed when the sub-cell flux Fral 

is positive i.e. F? =  0 (Figure 9.2(b)) and the inequality 9.1.12 becomes

Pi < 1 and U  < 1. (9.1.13)

Furthermore, define the flux ratio R ei as

Re 1 =  ^ , (9.1.14)
Te. 1

then, the weighting factor takes the form:

£ei < Pi min(l, max(JRei, 0)) with Pi = { ^ rcl < 0, (9.1.15)
1 otherwise.

Q u adrila tera l cell: cell2

The contributions from cell2 to the control volume j  update are written as:

^ ( S " +1 -  SJ) =  [ ( l - ^ ) S r  +  ?e2SJ)]F+2 (9.1.16)

+  [ ( l - )? ,2)S" +  77e2SJ]Ff<2 

+ [ ( l - 4 2)SJ +  & SJ]F +2 

+  [(1 — %2)S" + %2S"]F^2 +  ET2,

where ET2 (extra terms) signifies any contributions coming from cells other than cell2. 

The associated weights corresponding to node i are expressed as:

<*?> = ^ ( ( 1  -  £e2) f £ 2 + V u F jJ .  (9.1.17)
Tj

For the scheme of Equations (9.1.2) to satisfy the local positivity condition, a necessary 

condition is:

^ FTe2 ~ ^ 2 F Th2 < FTe2' (9.1.18)

Following a similar argument as for a triangular cell, a local positivity constraint at a

stagnation point is established.

T h eo rem  9 .1 .2
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(a) Stagnation point

LiJ
(b) ft = i (c) f t  =  1

Figure 9.3: Weighting factor for quadrilateral cells.

*/ FTe2 is oriented from i to j ,  and Frd2 is pointing from i to 2 as illustrated in Figure

9.3(a) then £e2 =  0. This means that at a stagnation point the standard single-point

upstream weighting scheme is recovered locally on the control volume sub-face belonging 

to cell2 -

P ro o f The coefficient of node 2 in the contributions from cell2 to the control volume i 

update in the case where both subcell fluxes Fre 2 and Frd2 are leaving the control volume 

i reduces to:

-?e2 f £ a- (9.1.19)

Local positivity condition requires £e2 — 0.

In the case where Fre2 = Ffe2 > 0, FTb2 = F? < 0 i.e. F tb2 is oriented from i to j ,  FTb 2 
is oriented from node j  to the node 4 as shown in Figure 9.3(b), a sufficient condition for 

the inequality Equation (9.1.18) to be satisfied is that:

U F TJ  + rjb2 \FTb2 \< \F TJ .  (9.1.20)

Setting the weights to be proportional to the ratio of the inward and outward fluxes, i.e.

Vb2 = with r)b2 < 1, (9.1.21)
Tb2

yields

P2 < ^ and Ce2 < (9.1.22)

Note here that the condition Equation (9.1.22) is relaxed when the sub-cell flux is 

positive i. e- F Tb2 ~  0 (Figure 9.3(c)) and the inequality Equation (9.1.22) becomes

P2 < 1 and Ce2 <  1. (9.1.23)
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Furthermore, define the flux ratio R e2 as

R e2 =  (9.1.24)
r Te 2

then, the weighting factor takes the form:

£e2 < ^2min(l,max(/2e2,0)) with (32 =  {  ̂ Tb2 < (9.1.25)
1 otherwise.

S tab ility

The associated weights of node j  can be expressed in the form:

A t Nedv
“1 = 1 + — E E , (9.1.26)

e=l ic= l,N q

for both triangular and quadrilateral grids. The stability condition is derived from Equa

tion (9.1.26) which shows that the scheme permits a larger CFL number than the standard 

upwind method if r\eic are not all equal to zero.

^  < ~ s r 'N ed V  ^ N q  /\ x ' (9.1.27)

Again the use of directional information will enhance stability of the method.

9.1.2 Relation between Edge and Cell based tracing formula

tions

Consider a Cartesian grid with Frel =  FTe2 = ^  > 0, the local weighting factors in 

the cell based formulation are written as:

L i < /?imin(l,max(:̂ , 0 ) ) ,  (9.1.28)
r r e

£e2 <  & m in ( l ,m a x ( |^ ,0 ) ) .
r Te

Summing the contribution of node i in the update of the j lh control volume over the cells 

celli and cell2 sharing the edge e, the cell based formulation could be interpreted as an 

edge based formulation with a corresponding global weighting factor:

£?c,"“sed = l & i  +  fe )

= 1(A  + ft)  min(l, m a x ( |K  0) +  j A -  m a x ( | ,  0X9-1-29)
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where A: =  1,2 takes the values, 0, 1/2 or 1 depending on the subcell flux directions as 

discussed in the previous section. Note here that the weighting factor in the edge based 

formulation takes the form:

p h a s e d  =  max(Fre, ^ , 0 ) ^  (9.1.30)
T e

where the range of values for /? is included in {0, 1/3, 1/2}. From Equations (9.1.29) 

and (9.1.30), equivalence between edge-based and cell-based formulations is established 

on Cartesian grids.

9.1.3 Nonlinear Flux formulation

As for the edge based multidimensional higher-order reconstructions, we present two 

cell based formulations analogous to the schemes introduced in chapter 7, section 7.2. 

However for unstructured grids, the cell-based scheme proves to be overall the most robust 

and relies on sub-cell flux tracing therefore uses finer scale information.

Nonlinear Flux of M ultidim ensional Data

The first formulation involves multi-dimensional upwind data where we define the 

generalized flux for e.g. triangle cell 1 by:

ASl) = /((i + 4..ST).
k s r ) =  / ( ( i - ^ ^ + ^ s ? ) .

Nonlinear Multi-dimensional Flux

The second formulation involves the multi-dimensional upwind flux where we define 

the generalized flux for e.g. triangle cell 1 by:

KSD  =  ( i  -  L M s ? )  + U A S f) ,  

= (l - %1MS?) +  W W ) .

Here, we have used conditions of Equations (9.1.4) and (9.1.15) for stability in our calcu

lations.
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9.2 N um erical R esults

The test cases involve two phase flow (oil-water). Initial oil saturation is prescribed 

and water is injected. Water saturation contours are shown in each case. Solid wall (zero 

normal flow) boundary conditions are applied on all solid boundaries of each reservoir do

main. In all cases, flow rate is specified at the (inflow) injector and pressure is prescribed 

at the (outflow) producer and a consistent Darcy flux approximation is used.

Results involve full tensor coefficient velocity fields, with strong cross terms that induce 

significant cross-flow across grid cells which also adds to the full tensor effect due to the 

unstructured nature of the grid.

Three different cases are presented involving full and diagonal permeability tensors in 

homogeneous and heterogeneous media. Linear and nonlinear fluxes are considered and 

results are computed using a range of structured and unstructured triangular and quadri

lateral grids.

9.2.1 Case 1: Linear Full Tensor Quarter Five Spot

The first case involves a linear Buckley Leverett flux, corresponding with linear relative 

permeabilities. Injection and production wells are located along opposite sides of the 

rectangular domain. Total mobility is constant and the permeability tensor is assumed to 

be diagonal isotropic so that the pressure is solved exactly (in this particular case) using 

the consistent Darcy flux. Thus any error in the saturation field is entirely due to the 

convective flux approximation. Water saturation contours are shown at 0.5 pore volumes 

injected (PVI).

The results are computed on an unstructured triangular Delaunay mesh shown in Figure 

9.4(a). The standard single-point upstream weighting result (Figure 9.4(b)) shows that 

the front is largely diffused. In contrast, the multidimensional schemes (Figures 9.4(c) 

and 9.4(d)) provide sharper resolution and improve the symmetry of the problem about 

the diagonal while reducing cross-flow spread of the saturation front.
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3d

(a) Delaunay mesh 290 

nodes

(b) Single point upwind (d) Multi-D Cell-based

Figure 9.4: Case 1 - Saturat ion profiles for the linear quarter five spot problem with full 
tensor at 45 degrees.

9 .2 .2  C ase 2: N onlinear Full Tensor P is to n  F low

The second case involves a quadratic Buckley Leverett flow subject to  fluid injection 

on the left hand boundary and specified pressure on the right hand boundary and a full 

homogeneous permeability tensor with principal axes oriented a t 45 degrees to the reser

voir dom ain with 10 to 1 anisotropy ratio. The water and oil relative perm eabilities arc 

respectively krw = S 2 and kro = (1 — S')2 and the flow mobility ratio  is set to  unity  M  =  1. 

The results are first computed on the unstructured triangular grid shown in Figure 9.5(a). 

The nonlinear case highlights the difference between the flux of M ulti-D d a ta  and M ulti-D 

flux. The reference solution on a 64x64 Cartesian grid is shown in Figure 9.6(a).

The results obtained using standard single-point upstream  weighting arc shown in Figures 

9.5(b) and 9.5(c) and those obtained using the data  based multidimensional wave-oriented 

higher dimensional upwind scheme are shown in Figures 9.6(b) edge based and 9.6(d) cell 

based. The multidimensional flux results are shown in Figures 9.6(c) (edge-based) and 

9.6(e) (cell-based) on the unstructured triangular grid.

The standard  first order results are quite smooth whereas the results obtained with the
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multidimensional schemes show reduced grid dependence and provide considerable im

provement of front resolution with a clearer indication of the flow pattern , particularly 

for the M ulti-D cell-based schemes with results tha t arc most consistent with the problem.

(a) Grid (b) SPU Edge-based

Figure 9.5: Case 2 - Standard first order saturation profiles.

(a) Reference Solution on (b) Flux of Multi-D Data (c) Multi-D Flux Edge- 
a 64x64 Cartesian Grid Edge-based based

(d) Flux of Multi-D Data (e) Multi-D Flux Cell- 
Cell-bascd based

Figure 9.6: Case 2 - Multi-Dimensional first order saturation profiles on triangular mesh.

The equivalent unstructured quadrilateral grid (Figure 9.7(a)) which has the  same vertices 

as the triangular grid of Figure 9.5(a) provides the second part of this test case. First, we
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show a comparison between standard first order edge-based and cell-based schemes which 

highlights a difference between the two types of formalism th a t can become apparent even 

with standard  first order upwind (Figures 9.7(b),(c)). The first order results show strong 

local grid orientation effect. The multidimensional comparison clearly dem onstrates th a t 

cell-based M ulti-D (Figure 9.8) consistently provides the best results.

(b) SPU Edge-Based(a) Grid

Figure 9.7: Case 2 - Standard first order sa turation  profiles on quad-mesh.

(a) Multi-D Data Edge- (b) Multi-D Flux Edge- 
based based

(c) Flux of Multi-D Data (d) Multi-D Flux Cell- 
Cell-based based

Figure 9.8: Case 2 - Multi-Dimensional first order saturation profiles on quad-mesh.
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9 .2 .3  C ase 3: P iston  F low  in a H eterogen eou s M ed iu m

The th ird  case involves linear injection into a heterogeneous medium where injection 

and production wells arc located along opposite sides of the rectangular domain. Results 

arc obtained using a 60x220 uniform grid. The permeability distribution is from Layer 

3 of Model 2 of the 10th SPE Comparative Solution Project [28]. Figure 9.9 shows the 

logarithm  of the permeability field. W ater saturation contours are shown at 0.005 pore

Figure 9.9: Logarithm of the permeability field.

volumes (PV) injected. Figure 9.10 shows saturation profiles computed with the standard  

single-point upwind method (Figure 9.10(a)). The first order M ulti-D edge based (Fig

ure 9.10(b)) and cell based (Figure 9.10(c)) schemes provide similar and much improved 

solution resolution compared to the standard method. The Multi-D schemes provide the 

best overall resolution of the finger like features of the solution Figures 9 .10(e),(f).
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(a) Standard First Order (b) Standard Higher-order

(c) Multi-D Edge-Based (d) Multi-D Cell-Based

Figure 9.10: Case 3 - Saturation profiles for the heterogeneous Case.

9.3 C onclusions

Families of cell-based multidimensional upwind formulations arc presented for hyper

bolic conservation laws on structured and unstructured quadrilateral and triangular grids. 

The m ethods are coupled with consistent and efficient continuous Darcy flux approxim a

tions. The schemes are locally conservative, conditions for positivity are derived for linear 

convection. The M ulti-D m ethods perm it higher CFL numbers than  the standard  upwind 

scheme.

The new m ethods are compared with single point upstream  weighting for two-phase flow 

problems. The tests are conducted on both structured  and unstructured grids and in

volve full-tensor coefficient velocity fields. The comparisons dem onstrate the benefits of 

m ultidimensional schemes in term s of improved front resolution together with significant 

reduction in cross-wind diffusion. While unstructured edge based formulation reduces 

local crossflow grid orientation and distortion effects compared to single point upwind,
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the unstructured cell based multidimensional schemes yield the best results for the test 

cases presented.
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C hapter 10 

H igher Order M ultidim ensional 

Schem es on U nstructured M eshes

In this chapter, two new higher order families of multidimensional upwind schemes 

are presented for reservoir simulation on general unstructured grids in two dimensions. 

The higher-order multi-dimensional convection schemes are coupled with existing continu

ous Darcy-flux approximations, (chapter 4, section 4.2.1). Although the multidimensional 

schemes presented in chapters 6, 7 and 9 effectively reduce the cross-wind numerical dif

fusion in 2-D on general unstructured grids, they do not cure the longitudinal numerical 

diffusion along the coordinate lines (see section 6, 6.3). These schemes are further en

hanced by the development of a higher order multidimensional formulation and the net 

result is a family of higher order multidimensional schemes that minimizes both crosswind 

diffusion and coordinate line diffusion.

Standard higher order approximations are summarized in section 10.1 where an extension 

to general unstructured quadrilateral meshes is presented. Section 10.2 is dedicated to the 

formulation of cell-wise and edge-wise families of higher order multidimensional schemes. 

Two-phase flow results are presented in section 10.3 that demonstrate the advantages of 

the new higher-order higher-dimensional flux-continuous formulation.
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10.1 Higher-Order M ulti-P hase Flow  A pproxim ations  

on U nstructured M eshes

In this chapter, we recall the higher order reconstructions presented in chapter 5 for

distorted triangular meshes and present an extension of theses schemes to quadrilateral

meshes.

As detailed in chapter 5, section 5.2, the higher order reconstructions left and right hand 

side states relative to the mid-point of each edge e (along which flux is to be defined) is 

defined by expansions about the edge vertices at i and fc, Figure 10.1. A local maximum 

principle is enforced via the use of limiters that account for the non-uniformity of the 

mesh (chapter 5, section 5.3) in order to prevent the introduction of spurious extrema in 

the solution.

Referring to Figure 5.1 the left and right states S l and S r  at the midpoint of the key 

edge e (joining vertices i and k ) are expressed as

S t =  Si +  i $ +AS«, (10.1.1)

where 4>+ =  ^ (r^ ) is a function of

r+ =  ^ ,a^ riu. (10.1.2)
ASW/A  rki

and

S t, =  S  u -S r  =  S f c  —  i $ ' A S f c j ,  ( 1 0 . 1 . 3 )

where 4> =  <j>{rki) is a function of

A S  dfc/Ardfc 

A S k i /A rh i '
Directional differences are constructed by extrapolating along the key edge defined by 

vector Arfci in the respective upstream and downstream directions, see arrows in Figure 

5.1. Extrapolation of the respective upstream and downstream data is constrained such 

that a local maximum principle is imposed. The upstream triangle is defined using nodes 

i, 1,2 and is labelled Tv . Similarly the down stream triangle k, 3,4 is labelled TD. The 

space vector corresponding to edge e (A r^) is extrapolated into the respective triangles 

Tu, To, see arrows in Figure 10.1. This is illustrated further with respect to vertex i. 

The edge vector is extrapolated to the point of intersection u and d respectively, on the 

opposite edge of the triangle Tu and Tp respectively as shown in FigurelO.l.

In the following, we refer to this formulation as the standard higher-order scheme.
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4

2
(a)

Figure 10.1: Higher order support for unstructured grids.

10.2 H igher Order M ulti-D im ensional Schem es

The higher order multidimensional upwind schemes are comprised of two steps:

1. higher-order reconstruction of the data that corrects the directional diffusion of the 

approximation, followed by

2. truly multi-dimensional upwind approximation on the higher order data.

Let §Le (S fe  respectively ) define the left (right respectively) state higher order recon

struction with respect to the edge e given above, in the following, S l& {Sue respectively)

denotes the left (the right respectively) higher order multidimensional saturation inter- 

polant with respect to the edge e (i,j) .

10.2.1 Edge Based Higher-Order M ulti-Dim ensional Approxi

m ation

Formulation using D ata

Referring to Figure 10.2, the edge-based Higher order Multidimensional data based 

formulation is written as

S L e =  ( l - Q S u  +  t e K l - X e i S u  +  X e S L d ] ,  ( 1 0 - 2 . 1 )

SRe =  ( l - V e ) S R e  +  Tle[ ( l -Xe)Sl J ,  +  XeSRa]- 

The weighting coefficients £ and rj are defined using Equation (7.2.13).
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Ld
Rb

Ra

Figure 10.2: Higher order reconstructed da ta  a t the edges, dots illustrate the higher order 
da ta  a t the control volume faces.

N onlinear Flux Form ulation

Similar to the first order multidimensional low-order schemes presented in chapters 6 

and 7, nonlinear flux is treated  using two formulations, where now the m ultidimensional 

reconstructions involve the higher order states instead of the first order data.

N onlinear Flux of M ulti-dim ensional H igher-order D ata  The second formu

lation involves the m ulti-dimensional upwind flux correction of higher-order da ta  recon

struction where the generalized flux is w ritten as:

F ( S Le) = F ( ( l - Q S u  + U ( l  (10.2.2)

F ( S f e )  =  F ( ( l  -  V e ) S R e  + % [ ( !  -  X e ) S f l l ,  +  Xe-Sfia])-

N onlinear M ulti-dim ensional F lux of H igher-order D a ta  The first formula

tion involves m ulti-dimensional higher-order upwind da ta  reconstruction where we define 

the generalized flux by:

F ( S u )  = ( l - Q F ( S Le) + U ( l - X e ) F ( S Lc (10.2.3)

F ( S fie) =  (1 -  % ) F ( S f i e )  + T)e[( 1 -  X e ) F ( S R b ) +  X e F ( S a , ) ] .

Here, we have used conditions of Equations (7.2.2), (6.3.10) and (7.2.13) for stability  in 

our calculations.
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10.2.2 Cell-Based Higher-Order M ulti-Dim ensional Approxima

tion

Formulation using data

Cell-based Higher order Multidimensional data based reconstruction takes the form:

SLe 1 =  (1 — £el)^Lel +  £el^Z,cl, (10.2.4)

S fe  1 — (1 — Vel)SRel +  VelSRal, (10.2.5)

with respect to cell\ and

S lc2 =  (1 “  Ce2) ^Le2  +  Ce2^Ld2j (1 0 .2 .6 )

SRe.2 = (1 — Ve2 )SRe2 +  Ve2Sm>2 i (10.2.7)

with respect to cell2. The weighting coefficients £ei and ?7ei are defined using Equation

(9.1.7) whereas £ e2 and r)ei are defined using Equation (9.1.18).

Nonlinear Flux formulation

As for the edge-based multidimensional higher-order reconstructions, we present two 

cell based analogous formulations to the schemes introduced in section 10.1.

Nonlinear Flux of M ulti-dimensional Higher-order D ata The second formu

lation involves the multi-dimensional upwind flux correction of higher-order data recon

struction where we define the generalized flux by:

F (S Lel) =  F ( ( l - £ el)SLel+£elSz,cl), (10.2.8)

F(Sne i) =  F(( 1 — 77ei)5flei +  r}eiSRai),

with respect to the celli and

F (S Le2) -  F (( l -  U ) S Le2 +  U S Ld2), (10.2.9)

F {S R e  2 ) — F ( ( l — r}e2)Sne . 2  +  Ve2 SRb2 ),

with respect to cell2.

Equations (9.1.4), (9.1.15) and (9.1.25) have been used for stability.
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N onlinear M ulti-d im ensional F lux  of H igher-order D a ta  The first formula

tion involves multi-dimensional higher-order upwind data reconstruction where the gen

eralized flux is defined by:

F ( S U i) =  ( l - U ) F ( S Lei) +  L i F ( S Lcl) } (10.2.10)

F^Srzi) =  (1 — 77el)^ ('S/lei) +  VelF(SRal),

with respect to the celli and

F (S Le2) =

F (S r* )  =

with respect to cell2. Again, here, 

for stability in our calculations.

10.3 N um erical R esu lts

The test cases involve two phase flow (oil-water). Initial oil saturation is prescribed 

and water is injected. Water saturation contours are shown in each case. Solid wall (zero 

normal flow) boundary conditions are applied on all solid boundaries of each reservoir do

main. In all cases, flow rate is specified at the (inflow) injector and pressure is prescribed 

at the (outflow) producer and a consistent Darcy flux approximation is used.

Results involve full tensor coefficient velocity fields, with strong cross terms that induce 

significant cross-flow across grid cells which also adds to the full tensor effect due to the 

unstructured nature of the grid.

Four different cases are presented involving full and diagonal permeability tensors in homo

geneous and heterogeneous media. Linear and nonlinear fluxes are considered and results 

are computed using a range of structured and unstructured triangular and quadrilateral 

grids. The flow mobility ratio is set to unity M  =  1 for all cases presented here.

10.3.1 Case 1: Linear Full Tensor Quarter Five Spot

The first case is a study of a quarter five spot problem involving a linear Buckley Lev

eret t  flux.Quarter five spot boundary conditions are imposed together with an anisotropic 

full tensor permeability field with principal axes oriented at 45 degrees to the reservoir 

domain with 10 to 1 anisotropy ratio.

(1 -  & ) F (S Lei) +  t '2 F (S Ld2), (10.2.11)

(1 — Ve2)F(SRe2) + Ve2F(Sa,2),

we have used Equations (9.1.4), (9.1.15) and (9.1.25)
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Water saturation contours are shown at 0.25 pore volumes injected (PVI) for the same 

CFL number equal to 0.4.

The results are computed on an unstructured triangular Delaunay mesh shown in Figure 

10.3(a). The standard single-point upstream weighting result (Figure 10.3(b)) shows that 

the front is largely diffused. In contrast, the multidimensional schemes (Figures 10.3(c) 

and 10.3(d)) provide sharper resolution and improve the symmetry of the solution about 

the diagonal while predicting an earlier breakthrough with minimal cross-flow spread. We 

note that the full tensor effect due to the grid is noticeably attenuated in the multidimen

sional wave oriented results.

Higher-order results are shown in Figures 10.3(e), (g) and (h). The higher order Multi-D 

edge-based (Figure 10.3(f)) and cell-based (Figure 10.3(g)) both show improved resolu

tion of the front compared to the standard higher order results (10.3(e)), though the 

cell-based method shows the best overall improvement in resolution, particularly near the 

boundaries.
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(a) Delaunay mesh 290 
nodes

(b) Single point upwind

(c) Standard Higher-order

(d) Multi-D Cell-based

(f) Higher-order Multi-D (g) Higher-order Multi-D
Edge-based Cell-based

Figure 10.3: Case 1 - Saturation profiles for the linear quarter five spot problem with full 
tensor a t 45 degrees.

10.3 .2  C ase 2: Full T ensor P o in t Source to  P o in t S ink

The second case is a study of local grid orientation effect for a source sink problem 

involving a linear Buckley Leverett flux and a diagonal isotropic perm eability tensor. 

Results arc computed on a distorted triangular grid as shown in Figure 10.4(a). Reference 

solution on a 81x81 Cartesian grid is depicted in Figure 10.4(b).

The permeability tensor is assumed to be diagonal isotropic so th a t the pressure field is 

essentially Laplacian in this case. Injection and production wells are located half way



(a) Perturbed triangular 
mesh

(b) Reference Solution on 
a 81x81 Cartesian Grid

(c) Single point upwind 
Order

(d) Multi-D Edge-based

(f) Standard Higher-order

(e) Multi-D Cell-based

Edge-based Cell-based

Figure 10.4: Case 2 - Saturation profiles for the Source and Sink Linear problem.

along opposite sides of the rectangular domain, water saturation contours are shown at 

0.2 PVI. First order results in Figure 10.4(c) show th a t the direction of triangulation 

effectively introduces a full tensor effect due to  the strong local grid orientation.

The edge-based and cell-based M ulti-D schemes both  improve front resolution reducing 

the effect of grid orientation. The S tandard  higher order scheme improves front resolution, 

however visible signs of grid orientation remain in the solution. In contrast, the higher- 

order M ulti-D schemes (Figures 10.4(g),(h)) provide higher resolution of the front while
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reducing grid orientation.

10.3 .3  C ase 3: N on lin ear  Full T ensor P is to n  F low

The th ird  ease is a study of a nonlinear Buckley Lcverett piston flow as in chapter 9 

section 9.2/2. For completeness we include earlier results a t the first, order m ultidim en

sional schemes for easy comparison with higher order multidimensional results.

The results arc com puted on unstructured triangular and quadrilateral grids. The un

structu red  triangular grid is shown in Figure 10.5(a).

The nonlinear case also highlights the difference between the flux of M ulti-D da ta  and 

M ulti-D flux. The results obtained using standard  single-point upstream  weighting are 

shown in Figure 10.5(b) and those obtained using the d a ta  based m ultidimensional wave- 

oriented higher dimensional upwind scheme are shown in Figures 10.6(a) edge based and 

10.6(c) cell based. The multidimensional flux results are shown in Figures 10.6(b) and 

10.6(d) on the unstructured triangular grid.

The standard  first order results indicate a grid orientation bias whereas the results ob

tained with the multidimensional schemes show reduced grid dependence and provide a 

definite improvement in front resolution with a clearer indication of the flow pattern , 

particularly  for the Multi-D cell-based schemes with results th a t arc the most consistent 

with the problem. Reference solution on a 64x64 Cartesian grid is shown in 10.7(d).

The comparison between higher order schemes is illustrated in Figure 10.7. While solution 

resolution is consistently improved by use of the higher-order schemes, compared with the 

first order results, the cell-based higher order Multi-D scheme provides the best results.

(a) Grid (b) SPU Cell-based

Figure 10.5: Case 3 - S tandard  first order saturation  profile.

The equivalent unstructured quadrilateral grid (Figure 10.8(a)) which has the same
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(a) Flux of Multi-D Data (b) Multi-D Flux Edge-
Edge-based based

(c) Flux of Multi-D Data 
Cell-based

(d) Multi-D Flux Cell- 
based

Figure 10.6: Case 3 - M ulti-Dimensional first order saturation  profiles on triangular mesh.

vertices as the triangular grid of Figure 10.5(a) provides the second part of this test case. 

S tandard first order upwind (Figures 10.8(b)). Both the first order and higher-order 

Multi-D comparisons clearly dem onstrate th a t the cell-based M ulti-D (Figure 10.9) and 

higher-order Multi-D schemes (Figure 10.10) consistently provide the best results.



156

(a) Standard Higher- 
order

(b) Flux of higher-order (c) Higher-order Multi-D
Multi-D Data Edge-based Flux Edge-based

(d) Reference Solution on (e) Flux of higher-order (f) Higher-order Multi-D
a 64x64 Cartesian Grid Multi-D Data Cell-based Flux Cell-Based

Figure 10.7: Case 3 - Higher order saturation  profiles for the non-linear piston problem 
with full tensor on triangular mesh.

a) Grid

Figure 10.8: S tandard  first order sa turation  profile on quadrilateral mesh.

10.3 .4  C ase 4: Tracer F low  in a H etero g en o u s M ed iu m

We return  to the heterogeneous case of chapter 9, section 9.2.3. This case involves a 

tracer flow in a heterogeneous medium where injection and production wells are located
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(a) Multi-D Data Edge- 
based

(b) Multi-D Flux Edge- 
based

(c) Flux of Multi-D Data (d) Multi-D Flux Cell-
Cell-based based

Figure 10.9: Case 3 - M ulti-Dimensional first order saturation profiles on quad-mesh.

along opposite sides of the idealised reservoir domain. Results are obtained using a 30x110 

uniform grid. Figure 10.11 shows the logarithm  of the upscaled perm eability held. W ater 

saturation  contours are shown a t 0.005 pore volumes (PV) injected. Figure 10.12 shows 

saturation  profiles com puted with the standard  single-point upwind m ethod (Figure 10.12

(a)) and the higher order m ethod (Figure 10.12 (d)).

The higher order m ethod increases resolution significantly compared to the first order 

single-point upwind m ethod, the standard  first order m ethod shows excessive numerical 

diffusion producing non-physical features in the numerical solution. The first order Multi- 

D edge based (Figure 10.12(b)) and cell based (Figure 10.12(c)) schemes provide similar 

and much improved solution resolution compared to the standard  m ethod, the first order 

M ulti-D results arc com parable to th a t of the standard  higher-order scheme. The higher- 

order Multi-D schemes provide the best overall resolution of the finger like features of the 

solution Figures 10.12(e),(f).
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(a) Standard Higher- (b) Flux of Higher-order (c) Higher-order Multi-D
order Multi-D Data Edge-based Flux Edge-based

(d) Reference Solution on 
a 64x64 Cartesian Grid

(c) Flux of Higher-order 
Multi-D Data Cell-based

(f) Higher-order Multi-D 
Flux Cell-based

Figure 10.10: Case 3 - Higher order sa turation  profiles for the non-linear piston problem 
with full tensor on quad-mesh.

Figure 10.11: Logarithm  of the upscaled perm eability field.

10.4 C onclusions

Families of higher order edge-based and cell-based m ultidimensional upwind formula

tions are presented for hyperbolic conservation laws on general grids. The m ethods are 

coupled w ith consistent and efficient continuous Darcy flux approxim ations. The schemes 

are locally conservative, conditions for positivity of the schemes are defined for linear 

fluxes. The new m ethods perm it higher CFL numbers than  the standard  upwind scheme.
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(a) Standard First Order (c) Multi-D Cell-Based

(d) Standard Higher- (e) Higher-order Multi-D (f) Higher-order Multi-D
order Edge-Based Cell-Based

Figure 10.12: Case 4 - Saturation profiles for the heterogeneous Case.

The new methods arc compared with single point upstream  weighting for two-phase flow 

problems. The tests are conducted on both structured and unstructured grids and in

volve full-tensor coefficient velocity fields. The comparisons dem onstrate the benefits of 

multidimensional and higher order multidimensional schemes in term s of improved front 

resolution together with significant reduction in cross-wind diffusion. For cases involving 

severe grid distortion the cell based multidimensional schemes prove to be more robust 

than the edge based schemes though both  formulations provide notable improvement 

compared to single point upwind.

(b) Multi-D Edge-Based
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Chapter 11 

Conclusions and R ecom m endations

11.1 C onclusions

In this thesis, families of novel edge-based and cell-based multidimensional upwind 

formulations have been presented for hyperbolic conservation laws on structured and 

unstructured triangular and quadrilateral grids in two dimensions. Higher resolution as 

well as higher order multidimensional formulations have also been developed for general 
structured and unstructured grids.

The schemes are coupled with previously developed consistent and efficient continuous 

CVD (MPFA) Darcy flux approximations. They are formulated using an IMPES (Implicit 

in Pressure Explicit in Saturation) strategy for solving the coupled elliptic (pressure) and 

hyperbolic (saturation) system of equations governing the multi-phase multi-component 

flow in porous media. The focus in this work is on the spatial discretisation of the mul

tidimensional hyperbolic operator for time dependent problems where first order forward 

Euler time stepping is employed to advance the saturation front.

The multidimensional formulations are locally conservative, positivity conditions are de

rived for linear fluxes on unstructured meshes and permit higher CFL numbers than the 

standard upwind scheme.

The new methods have been compared with single point upstream weighting for two- 

phase and three-component two-phase flow problems. The tests are conducted on both 

structured and unstructured grids and involve full-tensor coefficient velocity fields in ho

mogeneous and heterogeneous domains. The comparisons demonstrate the benefits of 

multidimensional and higher order multidimensional schemes in terms of improved front 

resolution together with significant reduction in cross-wind diffusion.
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In this work, data based and flux based non linear flux approximations are presented. 

Two-phase flow numerical results show that the edge-based multidimensional flux formal

ism is more robust than the data based counterpart.

Numerical tests have also shown that while the edge-based formulation provides improved 

resolution compared to single point upwind, improved performance is obtained with the 

cell-based multidimensional formulation. This is attributed to the use of fine scale velocity 

field for characteristic tracing.

In addition, an extension of a class of higher order methods [57] to highly distorted un

structured triangular and quadrilateral grids for flow in porous media has been developed. 

A sequence of higher resolution non-uniform limiters are introduced and tested for clas

sical two phase flow problems on triangular grids. The schemes are based on MUSCL 

reconstructions using extended stencils and provide significant improvement compared to 

standard first order methods.

The multidimensional first order edge-based upwind schemes have been applied to Grav

ity driven flow where different tracing velocity formulations are tested. Both higher order 

and multidimensional upwind schemes are also introduced for hyperbolic systems where 

different limiting strategies involving primitive, conservative and characteristic variables 

are adopted. Numerical test cases involving two phase three component flow show the 

benefits of the schemes when compared to standard first order approximations and il

lustrate the advantage of using the characteristic variables instead of the primitive and 

conservative variables.

11.2 R ecom m endations for Future W ork

The work presented in this thesis is only the beginning for research and development 

of the family of higher order multidimensional schemes for hyperbolic conservation laws. 

This work has laid the foundation for further investigation, which will hopefully give even 

greater insight into this novel and interesting approach with application to subsurface 

reservoir simulation. Further possible research routes are suggested here:

i The schemes presented here are coupled with consistent CVD Darcy flux approx

imations. The quadrature point where the Darcy fluxes are evaluated at the grid 

edge mid-points where control volume sub-faces join. It has been shown [124] that 

improved pressure profile resolution is achieved using quadrature points along the
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control volume sub-faces. Further investigations need to be carried out in this di

rection with combination to both cell-base and edge based first order and higher 

order multidimensional formulations.

ii The innovative higher resolution schemes have been implemented in one dimensional 

and two dimensional space. The extension of these schemes to 3D constitutes the 

next step in the development of truly higher dimensional unstructured schemes in 

reservoir engineering.

iii In this work, the positivity analysis has been performed for the multidimensional 

schemes on unstructured grids in the case of linear fluxes. A maximum principle 

analysis should be investigated for the general nonlinear fluxes in order to derive 

stability weighting factors.

iv The multidimensional schemes presented here use an IMPES strategy for the up

date of the saturation and concentration. A fully implicit formulation could be 

also used. Also, first order forward Euler time discretisation has been used to ad

vance the reconstructed saturation data in time using the higher resolution spatial 

discretizations presented here. Higher order time accuracy is another aspect for 

further investigation.

v The higher order reconstruction considered here uses the MUSCL strategy which 

are second order accurate in space. Very high order accuracy could be achieved 

using alternative higher order interpolation methods such as discontinous galerkin 

schemes. The DG methods provide an attractive alternative as they use a compact 

stencil despite the increase in the number of degrees of freedom it might incur.

vi Here, edge-based multidimensional schemes have been applied to gravity driven flow 

and both phase velocity and characteristic speeds have been investigated for the 

tracing step via the use of a challenging water-oil gravity segregation case study on 

unstructured grids. We conclude that the characteristic multidimensional schemes 

produced the best results. Application of cell based multidimensional formalism 

and higher order multidimensional methods is the subject of ongoing research and 

will be the subject of future study.
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