
Modelling and Quantification of 

Structural Uncertainties in Petroleum 

Reservoirs Assisted by a Hybrid 

Cartesian Cut Cell/Enriched Multipoint 

Flux Approximation Approach 

 

 

Mohammad Ahmadi 

 

 

Submitted for the Degree of Doctor of Philosophy 

Institute of Petroleum Engineering 

Heriot Watt University 

Edinburgh 

UK 

 

April 2012 

 

This copy of the thesis has been supplied on condition that anyone who consults it is 

understood to recognize that the copyright rests with its author and that no quotation 

from the thesis and no information derived from it may be published without the prior 

written consent of the author or the University (as may be appropriate). 



Abstract 

Efficient and profitable oil production is subject to make reliable predictions about 

reservoir performance. However, restricted knowledge about reservoir distributed 

properties and reservoir structure calls for History Matching in which the reservoir 

model is calibrated to emulate the field observed history. Such an inverse problem 

yields multiple history-matched models which might result in different predictions of 

reservoir performance. Uncertainty Quantification restricts the raised model 

uncertainties and boosts the model reliability for the forecasts of future reservoir 

behaviour. Conventional approaches of Uncertainty Quantification ignore large scale 

uncertainties related to reservoir structure, while structural uncertainties can influence 

the reservoir forecasts more intensely compared with petrophysical uncertainty. 

 

What makes the quantification of structural uncertainty impracticable is the need for 

global regridding at each step of History Matching process. To resolve this obstacle, we 

develop an efficient methodology based on Cartesian Cut Cell Method which decouples 

the model from its representation onto the grid and allows uncertain structures to be 

varied as a part of History Matching process. Reduced numerical accuracy due to cell 

degeneracies in the vicinity of geological structures is adequately compensated with an 

enhanced scheme of class Locally Conservative Flux Continuous Methods (Extended 

Enriched Multipoint Flux Approximation Method abbreviated to extended EMPFA). 

 

The robustness and consistency of proposed Hybrid Cartesian Cut Cell/extended 

EMPFA approach are demonstrated in terms of true representation of geological 

structures influence on flow behaviour. In this research, the general framework of 

Uncertainty Quantification is extended and well-equipped by proposed approach to 

tackle uncertainties of different structures such as reservoir horizons, bedding layers, 

faults and pinchouts. Significant improvements in the quality of reservoir recovery 

forecasts and reservoir volume estimation are presented for synthetic models of 

uncertain structures. Also this thesis provides a comparative study of structural 

uncertainty influence on reservoir forecasts among various geological structures.  
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Chapter 1 

 

 

 

Introduction 

 

 

 

1.1 Geological Structures 

In hydrocarbon reservoirs, different geological features with extended planar shapes are 

encountered which arise from various sources. These planar features belong to different 

geological classifications such as: 

1. Sedimentological features like stratigraphic sequences which are identified with 

significant surfaces developing along the boundaries of rock layers deposited at 

different times and are determined with variations in sediment supply the rate of 

change in accommodation space (Bryant, 1996). Among them sequence 

boundaries are the product of a fall in sea level that erodes the sub-aerially 

exposed sediment surface of the earlier sequence or sequences. These 

boundaries are diachronous (evolutionary), capping the previous high-stand 

systems tract and eroding the surface of the down-stepping sediments deposited 
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during accompanying forced regression associated with the sea level fall 

(Catuneanu, 2002). 

 

 

Figure 1.1: Representative facies at sequence boundaries (from Rocee et al., 2011) 

 

2. Unconformities which are buried erosion surfaces separating two rock masses 

or layers of different ages, indicating that sediments have not been continuously 

deposited (defined by American Geological Institute, 1962). In general, they 

describe the surfaces of non-deposition or erosion which represents a break in 

the rock sedimentary record. 

 

 

Figure 1.2: Various kinds of unconformities 

Nonconformity Disconformity

Angular Unconformity Paraconformity
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3. Structural features which are caused by deformation of rock masses or strata as 

a result of tension or compression stresses imposed on rock masses (Russel, 

1955). This stresses are created by tectonic, gravitational, diapiric or 

compactional processes. Faults and folds are two main large scale structural 

features mainly associated with magnificent rock volume displacements. They 

might form favourable geometries for hydrocarbon trapping.  

 

 

Figure 1.3: Different types of faults due to stresses imposed at variety of directions and 

strengths on rock body (from American Geological Institute, 1962) 

 

However some features might belong to either of these classes like pinchout which can 

be due to interrupted deposition (sequence boundaries) or erosion (unconformities). In 

this thesis we are interested in modelling of those planar features which leave 

discontinuities into the rock body; either in terms of lithology (unconformities and 

boundary sequences) or in terms of stratigraphy (faults). For example we will not study 

micro-structures like fractures, joint or shears. We will use the term “Geological 

Structures“ with negligence throughout the thesis to describe these features. In 

hydrocarbon reservoirs geological structures are often recognised as the planes 

confining different compartments of a reservoir. Petrophysical properties tend to 

abruptly vary across the geological structures. In this regard, geological structures can 

be viewed as the reservoir boundaries. One can categorise them into two main families: 

1. Internal boundaries such as faults or the boundaries of reservoir layers which 

separate different reservoir flow units. More gently dipped structures (layers 

boundaries) determine the depth, thickness and the orientation of each 
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stratigraphic layer. While faults as the more harshly dipped structures offset 

reservoir layers and change the stratigraphic connectivity of previously 

sedimented flow units (Arnold, 2008 and Manzocchi et al., 1999).   

2. External boundaries such as reservoir top structure or the water-oil contact 

surface which control the depth and the vertical extent of the reservoir.  

 

Reservoir performance is strongly influenced by the geometrical and topological 

specifications of geological structures. As stated by Schaaf et al. [2009], impact of 

geological structures on reservoir production might be by orders of magnitude bigger 

than corresponding impact of petrophysical properties. Embedded large-scale 

discontinuities of rock properties along the planes of geological structures and their 

complex geometry predominantly govern the reservoir flow behaviour. Thus incorrect 

determination of their geometry and topology might dramatically reduce the reliability 

of production forecasts as a result of following disadvantages: 

1. Overestimation or underestimation of oil volume originally in place and 

consequently the production rates. 

2. Getting misled in determination of dominant production mechanism of 

reservoir due to alteration of water-oil and oil-gas contact surfaces 

3. Non-trustworthy assessment of gravity force especially in fractured reservoirs 

where the gravity drainage as an important production mechanism is 

dependent on reservoir thickness, individual thicknesses of high-permeable 

and low-permeable layers and their corresponding depths. 

4. Deviation from true overall reservoir interconnectivity in vertical and 

horizontal directions which is strongly influenced by faulting network (Childs 

et al., 1997 and Knipe, 1997). 

 

1.2 Structural Uncertainties: Sources and Consequences 

Seismic surveys are the key tools to determine the location, the size and the shape of 

geological structures. Seismic waves are sent into the depth of the earth and the 

reflections coming from different stratigraphic layers are gathered. When a seismic 

wave encounters a boundary between two layers with different acoustic impedances, 
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some of the energy in the wave will be reflected at the boundary, while some of the 

energy will continue through the boundary. The amplitude of the reflected wave is 

predicted by multiplying the amplitude of the incoming wave by the seismic reflection 

coefficient, determined by the impedance contrast between the two layers. By 

observing changes in the strength of reflectors, seismologists can infer changes in the 

seismic impedances. In turn, they use this information to infer changes in the 

properties of the rocks at the interface, such as density and elastic modulus. The 

transverse element of seismic waves (Shear waves) only move through the solids, 

unlike the longitudinal element (compressional waves) which can be transmitted 

through both solid and fluid media. This enables the seismic reflection to differentiate 

between hydrocarbon containing layers (petroleum reservoir, aquifer, and gas cap) and 

the layers devoid of fluid. Also density contrast among formations containing different 

saturation distributions of oil, gas and water or enjoying different porosities eventuates 

in different response times received from different depths of reservoir. This difference 

yields a powerful tool enabling us to: 

1. Determine the reservoir extent and boundaries 

2. Make distinction between deposited layers (also potential pinched out layers) 

3. Find any interruption of stratigraphic continuity along the bedding layers 

which is translated as a fault 

 

 

Figure 1.4: A typical seismic cross section (taken from Al Rougha et al., 2004) showing the 

beddings cut off by three normal faults 
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If the seismic wave velocity in any rock type is known, then the travel time may be 

used to estimate the depth to the reflector. Time maps can be converted into depths by 

means of velocity models per different rock types. Geophysicists use the obtained 3D 

map to constraint the geometry and location of large scale geological structures. 

However the predicted reservoir structure is quiet doubtful due to several 

uncertainties associated with different stages of seismic data processing (Thore et al., 

2002 and Røe et al., 2010): 

1. Measurement errors in seismic data acquisition due to velocity anomalies, 

presence of gas cloud, or navigation errors (Downton et al., 2007). 

2. Non-uniqueness nature of seismic data migration and time-depth conversion 

which are both known as inverse problems. 

3. Poor seismic resolution due to non-dissociable velocity contrasts in horizontal 

and vertical directions (Seiler et al., 2010-A). 

4. Ambiguity present in interpretation of seismic data made by geophysicists 

resulting in spread of different possible structural models (Rankey and 

Mitchel, 2003, Bond et al., 2007 and Baddley et al., 2004). 

 

Uncertain modelling of reservoir structures brings about uncertainties in geometry and 

topology of geological structures such as top and basin horizon positioning, gross 

thickness of stratigraphic layers, and fault position and local geometry (Gazet et al., 

2009).  

 

 

Figure 1.5: Example of uncertainty with geometry of a geological structure; three different 

realizations from a geological structure (layer-layer boundary) with different degrees of 

complexity (taken from Lever, 2007) 
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Reservoir compartmentalisation which is mainly dictated by the structure of the 

horizons and faults controls the gross reservoir volume and Net To Gross (NTG) ratio 

(Røe et al., 2010). Even in presence of depth pickings on both sides of a fault, 

uncertainties reside in the horizon correlation across faults. Although updated structural 

models for developed fields are usually believed to be more precise; but even these 

fields are also not immune from uncertainty. Several examples can be found in literature 

on structural uncertainty which describe the structural uncertainty in mature fields 

(Dromgoole and Spears, 1997, Williams et al., 2006, Friedel et al., 2009, Salhi et al., 

2005). However, strong impression of reservoir volume, connectivity and 

compartmentalisation from structural uncertainty, makes it as a main contributor to the 

uncertainty of reservoir production forecasts. Indeed when structural uncertainty is not 

properly addressed in the framework of uncertainty modelling and quantification, 

reservoir engineers might fail to design an optimum scenario for reservoir development.  

 

Thus structural uncertainty strongly influences the decisions on reservoir exploration 

and exploitation. For example to drill wells with improved productivity indices, 

following points should be taken into account regarding the uncertain geological 

structures: 

1. Wells must be drilled far from the sealing fault, as they restrict the flow towards 

the well. 

2. Wells must be drilled where the high permeable layers have their maximum 

thickness along the formation.  

3. Wells must be drilled where they do not cut through pinched out layers, as 

pinchouts reduce dramatically the open thickness to the flow along the wellbore.  

4. Locations and relative pattern of wells with respect to each other must be 

designed such that their productivities get optimized regarding the reduced 

horizontal interconnectivity resulting from the faults offset. 

5. In a water flooding program, an optimum placement of injection and production 

wells is dependent on variation of gross thickness along the formation and 

individual thicknesses of high and low permeable layers. 
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In general location and local geometry of geological bodies in large scale determine the 

production forecast for a given reservoir model. Remembering the reservoir model as 

one of possible reproductions of real subsurface reservoir, the importance of identifying 

and constraining the structural uncertainties is clarified.  

 

1.3 Previous Works on Quantification of Structural Uncertainties 

Basic idea in conventional approach for uncertainty quantification is varying static 

properties of reservoir models (like porosity, permeability, transmissibility multipliers) 

to determine their corresponding uncertainty intervals. As a main drawback, this 

approach ignores the structural uncertainties of geological objects involved in reservoir 

models. However significant influence of structural uncertainties on reservoir 

engineering decisions has raised an increasing demand in industry to account for such 

uncertainties (Rivenæs et al., 2005). What makes quantification of structural uncertainty 

less feasible is the deficiency of current tools to conduct automatic history matching and 

uncertainty quantification workflows capable of updating the structural models. 

However inflexibility of current geo-modelling softwares does not allow the varying 

interpretation of reservoir geometry during the history matching process (Irving et al., 

2010-B and Seiler et al., 2009). Therefore as a most common practice in works on 

uncertainty quantification, structural uncertainties have been neglected (Evensen et al., 

2007 and Zhang and Oliver, 2009). Works on quantification of structural uncertainties 

were initiated with more conveniently operational structural parameters like the 

reservoir depth, layer thickness and aquifer depth. In Palatnik et al. [1994] such 

structural parameters have been parameterised as region multipliers and a conjugate 

gradient method has been applied to minimise the objective function in history 

matching process.  

 

Rivenæs et al. [2005] has considered the fault structural uncertainty by creating 

stochastic alternative realizations of fault pattern. Structural parameters of each fault 

pattern realization then were encapsulated and reduced to transmissibility multipliers. 

Streamline flow simulation then were performed on whole realization dataset and 

corresponding misfits compared with observed data were ranked to identify best history 
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matched models. However lack of conducting a direct optimisation loop for history 

matching is the main deficiency of this method which restricts the quality of matches.  

 

Alternatively in Suzuki and Caers [2008], a large set of prior model realizations of 

reservoir structure representing the prior structural uncertainty were built and the 

discrete choice of structural interpretation was considered as one uncertain parameter. A 

stochastic search algorithm was utilised to tackle obtained discrete parameter space. The 

employed algorithm was subjected to Hausdorf distance criteria (Cignoni et al., 1998) 

as a measure of distance from the global minimum of misfit surface in N-dimensional 

parameter space. Similar to Rivenæs et al. [2005], a good history match is possible 

when the prior ensemble of structural realizations has been wide enough to cover all 

inherent structural uncertainties. Indeed this approach is very likely to fail in case of 

complex reservoir geometry encompassing several uncertain geological structures, as 

creating a representative ensemble which spans high dimensional uncertain parameter 

space is very time-consuming and consequently tends to be impractical.  

 

Schaaf et al. [2009] has investigated the influence of uncertainty in reservoir and aquifer 

depth and thickness on gas storage forecasts. In this work the variation of reservoir and 

aquifer thickness in history matching workflow has been incorporated with varying 

volume cells in a one-dimensional reservoir model. However the grid framework itself 

is not altered during the history matching process. Extension of such approach to two-

dimensional or three-dimensional models of oil reservoirs is neither trivial nor 

functional, because unlike the gas reservoirs, production behaviour in oil reservoirs is 

strongly impressed by local variation of reservoir or aquifer thickness in two 

dimensions due to complex phenomena like gravity drainage or gravity segregation.  

 

In another work Schaaf et al. [2009] presented an automatic workflow for simultaneous 

updating of structural and petrophysical reservoir properties. Studies structural 

parameters were horizon depths, throw and transmissibility multipliers of fault and 

facies distribution. Commercial geomodelling software (PETREL 2008) is launched by 

a software for assisted history matching, such that the simultaneous variation of 
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structural model and simulation model become possible. However the necessity for 

rebuilding both geological grid and simulation grid at each step of history matching 

process is the main drawback, as this would disturb the grid architecture and 

consequently the equity of simulation errors for all models gets contravened. Slow 

decrease in objective function and relatively poor data match in this work can be 

attributed to non-fixed grid state vector during the history matching process. Moreover 

obtained stochastic geological models were not utilised to quantify structural 

uncertainties.  

 

Røe et al. [2010] have developed a stochastic geostatistical approach to model the prior 

geometrical/topological uncertainties of fault surfaces and fault network. Faults are 

defined as two-dimensional tilted surfaces, where they reside within their corresponding 

fault uncertainty envelope around the base case (seismic-picked surface). A Gaussian 

simulated residual is added to base case to simulate the uncertainty envelope, while 

krigging is applied to condition the fault realization to the well observations. However 

they have not addressed the complexities with flexible simulation of fault surfaces 

within a history matching workflow. 

 

Irving et al. [2010-B] have proposed two geologically-based workflow to optimise 

uncertain structural properties of fault (position, juxtaposition and transmissibility) and 

depth of reservoir horizons. They have used a kind of fractional experimental design to 

create a limited ensemble of possible structural models which then used to perform 

sensitivity analysis and optimisation, therefore no automatic workflow to rebuild grid 

during optimisation process have been adopted and grid has been deformed manually to 

adjust to stochastic horizon and fault surfaces. Moreover, variation of fault geometry is 

represented with altering the across-fault cell connections while grid framework remains 

unchanged. As a result, geological realism would be less preserved in grid framework.  

 

Seiler et al. [2009] proposed a workflow for assessment of structural uncertainties 

associated with top and bottom horizons capable of continuously updating the structural 

model. The production data were sequentially assimilated by mean of an Ensemble 
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Kalman filter. In another paper (Seiler et al., 2010) their approach were extended to 

structural uncertainties of faults. They employed an elastic grid approach to conform the 

grid architecture to evolving geometry of top and basin horizons during the history 

matching process, in which the corner points of base simulation model were re-adjusted 

at each step of history matching to honour the renewed geometry of horizon.  

 

 

Figure 1.6: The elastic grid approach to fiddle the grid corner points with reforming horizons 

(from Seiler et al., 2009) 

 

Seiler’s approach (schematically shown in figure 1.6) although leaves the same number 

of cells for all models sampled during history matching process, but the cell 

deformation would not be restricted just to the neighbourhood of reforming geological 

structure and the deformation is propagated into the whole grid. Therefore in most parts 

of discretized region the transmissibility tensor is substantially modified, resulting in 

different trend of numerical error compared with other models. This infringes a main 

proposition of history matching which allows comparing goodness of models based on 

respective discrepancies between simulated and observed data.  

 

1.4 Thesis Statement and Objectives 

The significant impact of large scale structural uncertainties on reservoir performance 

dictates that field development decisions should be built in the light of descriptive 

reservoir forecasts which take the structural uncertainties into account. Thus it is 

crucially demanded to create multiple realisations of reservoir geological structures 

exhibiting good compliance with the observed data. Different nature of structural 

uncertainties from distributed uncertainties of petrophysical properties calls for totally 

different parameterisation of history matching process, since unlike the conventional 
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approaches of history matching, the geometry of structures should be varied in contrast 

to modification of petrophysical properties within the simulation model.  

 

The need for translation of geometrical variation of structures into the grid structure has 

turned into the main obstacle against developing competent workflows for assessment 

of structural uncertainties. A comprehensive workflow for history matching of 

structures should fulfil two apparently contradictory criteria simultaneously: 

 Precise representation of structures geometry on simulation grid to accurately 

emulate the impact of geometrical configuration on flow 

 Not disturbing the gridding pattern within the history matching process to 

accommodate almost constant simulation error over all  models 

 

 

Figure 1.7: Free displacement and deformation of geological structures within their 

corresponding uncertainty ranges with their bounds shown with dotted lines during the history 

matching process over a stationary Cartesian grid; the curved green and mustardy green lines 

are cross sections of top and base horizons of reservoir, blue closed curve is the cross section of 

a pinchout and tilted nearly vertical lines are vertical cross sections of two faults 

 

This thesis aims toward proposing a robust workflow capable of continual updating of 

geological structures fulfilling both abovementioned vital criteria. We will link up this 

workflow to the general framework of uncertainty quantification developed at Heriot-
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Watt University in order to constraint the structural uncertainties. The main objectives 

of thesis are expressed as: 

 Developing a powerful algorithm inspired by “Cartesian Cut Cell Method” 

(Causon et al., 2000, 2001 and Yang et al., 1997, 2000) for rendering the 

variation of geological structures into a fixed Cartesian grid with very limited 

and localised cell reshaping  

 Adopting and invigorating suitable schemes from the class of “Locally 

Conservative Flux Approximation Methods” (extended EMPFA) to circumvent 

the numerical deficiencies emerging in the vicinity of complex reservoir 

boundaries 

 Validate and justify the feasibility and performance of proposed “Hybrid 

Cartesian Cut Cell/extended EMPFA” for history matching of reservoir models 

consisting of single or multiple geological structures 

 Justify the benefits of proposed workflow for constraining the uncertainties of 

reservoir reserve and recovery 

 Compare the uncertainties arising from different types of structures and 

incorporate their respective influences on reservoir performance in posterior 

inferences 

 

1.5 Thesis Outline 

Chapter 2 reviews the general concepts and different techniques used for history 

matching and uncertainty quantification. Specifically the working mechanisms of 

Neighborhood Algorithm (for history matching) and Neighborhood Algorithm-Bayes 

(for uncertainty quantification) are explained.  

 

Chapter 3 is dedicated to describe the general algorithm inspired by “Cartesian Cut Cell 

Method” for importing the free deformation and movement of different geological 

structures with different geometrical complexity into the stationary Cartesian grid.  
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Chapter 4 discuses the motivations of using extended EMPFA and the mathematics 

behind it. Moreover the consistency, stability and accuracy of proposed scheme for the 

problems offering typical structural complexity are demonstrated.  

 

In chapter 5, using the proposed “Hybrid Cartesian Cut Cell/EMPFA” several synthetic 

models with non-intersecting structures (reservoir top and bottom structures, faults, 

pinchout) are history matched and their posterior uncertainty intervals are determined. 

Different impacts of geological structures with different geometries on reservoir flow 

and uncertainty are discussed.  

 

In chapter 6, the use of proposed workflow is extended to models enjoying multiple 

intersecting structures. The influences of convolved sources of structural uncertainty on 

recovery forecast will be analyzed with reservoir engineering knowledge and testified 

with posterior inference.  

 

In chapter 7, the summary of research undertaken including the key conclusion is 

presented. Also some promising ideas of research are recommended for the future work.  

 

In Appendix A, some information about the written flow code was presented which 

include the matrix solver, temporal discretisation, coupling scheme and so on. Moreover 

the fluid properties as well as capillary and relative permeability curves used in the 

simulation exercises are provided.  
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Chapter 2 

 

 

 

An Overview of History Matching 

and Uncertainty Quantification 

 

 

 

Reservoir engineers take decisions about the optimised plans of field development. 

Thus prediction of the reservoir performance under different scenarios of field 

development is desired. To accomplish this aim, governing mathematical equations of 

mass conservation are to be solved numerically on reservoir models as translations of 

reservoir rock and fluid data onto the numerical grid. Petrophysical properties are 

distributed throughout the reservoir by interpolating the data sampled at sparse well 

locations. Also the geometry of different compartments building the petroleum reservoir 

is determined with interpretation of seismic data and subjected to restricted precision 

due to poor resolutions and/or noisy signals. However the reservoir model can be tuned 

by manipulating the petrophysical or structural property distributions in a way that they 

reproduce the observed production data. Described history matching process might 

come up with multiple models mimicking the production history but not necessarily 
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giving the similar forecast of reservoir future. In this regard, lack of information on 

spatial distribution of rock properties and geometry of involved geological structures 

makes it necessary to introduce the role of uncertainty in the reservoir management 

problems.  

 

In this chapter we will review various approaches for history matching and uncertainty 

quantification. Also the general framework for uncertainty quantification based on 

Bayesian statistics is introduced. 

 

2.1 History Matching 

Aim of history matching process is to achieve a reasonable match between simulation 

output and the observed data. During this process, dynamic information representing the 

field performance is utilised to update the reservoir simulation model. This information 

may include production rates data, well pressure measurements, tracer data, time-lapse 

seismic data and other information sources. In general history matching is conducted in 

order to improve the robustness and functionality of the reservoir model for future 

predictions. In this regard, history matching helps to decision making about the 

optimised scenarios of field development.  

 

Works on history matching were started with manual approaches in which the input 

parameters of reservoir model were manually readjusted in order to obtain similar 

outcomes from reservoir model to observed data. Although such an approach involves 

trial-and-errors, but reservoir engineering and geological judgments and reservoir-

specific experiences accelerates the process. However the growing use of optimisation 

tools has facilitated the history matching process in recent decades. Automatic or 

assisted approach for history matching reduces the manual work done by reservoir 

engineers to obtain a consistent simulation model with reservoir performance data. In 

this approach, uncertain reservoir parameters are determined, then the problem of 

calibrating reservoir model with observation data is reduced to an optimisation problem 

with respect to uncertain parameters in which the discrepancy between observation data 

and simulation outcomes is to be minimised. A measurement of discrepancy between 
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observed data and simulation outcome is defined by a standard weighted summation of 

least squares, when we assume the Gaussian statistics for the measurement and 

simulation errors (Tarantola, 1987, Christie et al., 2005).  

 
2

2
0 2

N
i

i

Obs Sim
M




                                                                                                  (2.1) 

In Eq. 2.1, Obs and Sim are referred to as the observed and simulated values of 

production data (e.g. oil production rates, water cuts, bottom hole pressures, and so on), 

also   represents the standard deviation of errors, where a Gaussian probability 

distribution is proposed for measurement errors of observed data and simulation error is 

assumed to be zero. It is worth mentioning that term  Obs Sim  can be expressed as 

the difference between simulation error and measurement error. So at negligible values 

of simulation error,  is almost identical to standard deviation for discrepancy term

 Obs Sim . For most reservoir engineering purposes, measurement errors at each time 

step are assumed to be independent and a constant value is assigned to . In this way 

each step of history matching process (as an “inverse” problem) is itself a “forward” 

problem where the set of updated reservoir parameters are feed into the simulator and 

observable quantities like production rates and well pressures are computed for 

calculating the misfit.  

 

2.1.1 Literature Review of Automatic History Matching  

Gradient-based methods were the initial optimisation tools employed for the adjustment 

of reservoir models during history matching processes (Slater et al., 1970, Thomas et 

al., 1971, Chen et al., 1973 and Anterion et al., 1989). All these methods are inspired 

from the original idea of Newton-Raphson method originally designed for finding 

successively better approximations of roots of a single-variable real-valued function. 

These methods require calculating the derivatives of objective function (Misfit function 

for history matching applications) with respect to uncertain reservoir parameters called 

as the sensitivity coefficients or the gradients. Starting from an initial guess of uncertain 

parameters, sensitivity coefficients will then be used to calculate new set of uncertain 

parameters within their initial allowed intervals leading into smaller misfit values. 

Different variations of such an approach have been used in petroleum industry for 
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history matching, e.g. Gauss-Newton least-square procedure (Thomas et al., 1970, 

Watson et al., 1986), optimal control theory (Chen et al., 1973), Adjoint method (Li et 

al., 2001), and so forth.  

 

The main drawbacks of Gradient-based methods in terms of difficulty in 

implementation and quality of results can be summarised as: 

1. Need for individual computation of sensitivity coefficients for each parameter at 

each iteration and at each time step (Bissel et al., 1994). 

2. Potential entrapment in local minima rather than achieving global minima 

(Gomez et al., 2001). 

3. Tendency to return single history-matched model as the final result. 

 

Minimisation of misfit function has many local or global solutions, thus the history 

matching problem can be considered as an “ill-posed” problem. Therefore the single 

history-matched reservoir model obtained from Gradient-based methods is only one of 

the possible reservoir models reproducing the observed data. Remembering the fact that 

history-matched model will be used for forecasts of reservoir performance, the 

importance of multiple history-matched models would be clarified. Figure 2.1 shows the 

uncertainty associated with oil recovery prediction when several models have been 

found which honour the observations. 

 

 

Figure 2.1: Multiple forecasts for multiple solutions to history matching problem 
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In the early 90’s, the importance of generating multiple history matched models had 

been widely clarified and the research were focused on optimisation methods capable of 

finding multiple solutions. Stochastic methods are capable of finding multiple minima 

(Holger et al., 2004); therefore realistic prediction of future reservoir performance 

becomes possible.   

 

 

Figure 2.2: Global minimum (pink) and multiple local minima (blue) for a misfit function  

 

In stochastic optimisation methods, the parameter space is randomly explored, 

introducing such randomness into the search process: 

1. Accelerates the progress in minimising the misfit function (Holger et al., 2004). 

2. Abates the sensitivity of the method to the modelling errors (Spall et al., 2003). 

3. Enables the method to escape the local minima and increases the possibility of 

finding the global minima (Holger et al., 2004). 

 

Tuning runtime parameters of stochastic methods gives the flexibility to make a 

balance between the exploration of search space and the exploitation of better solutions. 

An optimal search is achieved when the different areas in the parameter space are 

properly searched, such that as much as possible local minima are found. In this way, a 

reliable quantification of uncertainties associated with forecasts is assured. However 

when a faster reduction of misfit value is desired, previously visited areas in search 

space are refined successively to get better solutions; In this case search is exploitation-

dominated. 
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In petroleum industry, among different stochastic methods, there has been much more 

interest in evolutionary population-based algorithms. Such algorithms are inspired from 

real population-based systems in nature (Ant colony, Social behaviour of a flock of 

birds and so on) and their runtime parameters emulate the multiple intelligent individual 

agents of their fundamental real systems. In these algorithms a population of solutions is 

generated at each step of optimisation and then the fitness of each member of population 

is evaluated and ranked. Thereafter multiple intelligent individuals utilize the 

interactions among members (solutions for the current step) to update the solution for 

the next step. Improvement of the quality of solutions in this way can give (at least 

theoretically) any possible search sequences (Koppen, 2004). It means that the search 

within the parameter space would be effectively navigated such that algorithm is 

capable of simultaneously refining different already spanned regions (which might be 

far away from each other) for finding better solutions and approaching the global 

minimum out of several local minima. 

 

Some of stochastic methods applied in history matching problems are as followings:  

1. Genetic Algorithm: Romero et al. [2000] and Erbas et al. [2007] 

2. Evolutionary Search Strategies: Schulze-Riegert et al. [2001] and Selberg et al. 

[2007] 

3. Simulated Annealing: Ouenes et al. [1993] and Portella et al. [1999] 

4. Particle Swarm Optimisation: Banks et al. [2007] and Lazinica [2009] 

5. Scatter Search: Sousa et al. [2006] 

6. Chaotic Optimisation: Mantica et al. [2002] 

7. Ensemble Kalman Filters: Evensen [2003] , Nævdal [2002] and Bianco et al. 

[2007] 

 

In this thesis, we will employ Neighbourhood Algorithm (NA) for the history matching 

of uncertain geological structures. So in the next section, we will explain the working 

mechanisms of the method and some of its applications in history matching. 

 

2.1.2 Neighbourhood Algorithm 
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The Neighbourhood Algorithm (NA) has been originally by Sambridge [1999-A] to 

solve a seismic waveform inversion problem. NA is categorised as a stochastic method 

searching for models with good match to the data. In this algorithm a random set of 

models is generated and then objective function is computed for all models to evaluate 

and rank them. Then the search space will be geometrically represented in term of 

Voronoi diagram (Okabe et al., 1992). This diagram divides the finite-dimensional 

search space into separate cells which are the nearest neighbourhood region of each of 

initial models. Thus starting from randomly generating nsi models, search space will be 

decomposed into nsi cells around nsi initial points, such that the interfaces of each cell 

are the equidistant lines drawn between each pair of initial neighbour points.   

 

Then nr best models based on ranking of lowest misfits are chosen and ns new models 

are generated by a random walk search in the Voronoi cells of models selected. Thus at 

each iteration, ns / nr new individual models are generated at each cell. After re-

evaluation of objective functionsa for ns new models, the geometry of the old Voronoi 

diagram is updated. The procedure will be iterated until a predetermined stopping 

condition such as maximum number of iterations is satisfied.    

 

Behaviour of NA in terms of exploration/exploitation in the search space is determined 

by manipulating the tuning parameters (niter , ns and nr). Sambridge [1999-A] stated that 

amount of exploration and exploitation is affected by the ns/nr ratio rather than the 

individual values of these two tuning parameters. He recommends a reasonable good 

solution would be obtained when ns is selected about the number of model parameters 

and number of re-sampled models (nr) is between 2 and (nr/2). According to Elabed 

[2003] higher values of ns/nr ratio results in faster convergence of algorithm to good-

fitting regions, while at lower ns/nr ratios NA is more explorative. Moreover size of 

initial population (niter) affects the quality of results especially in high-dimensional 

search spaces, as higher niter provides more information from explored search space and 

leads the algorithm towards more diverse solutions throughout the search space (Erbas, 

2007). Potential entrapment of NA in local minima has been reported by Elabed [2003] 

for cases that first best models are in a restricted small region of search space. In such 

cases, next iterations of NA just results in more refinement of that region, while the rest 
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of search space is left unexplored. In figure 2.3, the general procedure of neighbourhood 

algorithm has been schematically represented.   

 

 

Figure 2.3: General working flowchart of Neighbourhood Algorithm (from Hajizadeh, 2011) 

 

Despite many efforts to generalize suggestions for selecting tuning parameters of NA, it 

seems that this decision is principally governed by the physics of the problem in terms 

of distribution of local minima throughout the parameter space and the convolved 

impacts of matching parameters on simulated solutions. There have been reports using 
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the minimum possible value (ns/nr = 1) by Beghein et al. et al. [2002, 2004] to higher 

values (ns/nr =4 or 5) by Kennett [2006]. Therefore in this thesis, suitable values of NA 

tuning parameters will be selected according to type of problem and the desired quality 

of result for each specific problem. A problem in which the solution is materially less 

sensitive to some of matching parameters in contrast with rest of them, should be 

conducted with more explorative modes (ns/nr  1) to properly span the parameter 

space for as much as good solutions (local/global minima). This would enhance the 

assessment and quantification of inherent uncertainties.  

 

NA has been applied to various ranges of problems, especially to the problems in the 

field of seismology. Several researchers have employed NA for different inversion 

problems in seismic (Kennett [2006], Jansky et al. [2007], Cerv et al. [2007], Yao et al., 

2008).Also several applications of neighbourhood algorithm in petroleum engineering 

can be seen in the literature. As a pioneering works, Christie et al. [2002] has used 

Neighbourhood Algorithm to obtain multiple history-matched models in the Teal South 

reservoir. Also history matching of both real (Nicotra et al., 2005 and Valjak, 2008) and 

synthetic (Subbey et al., 2003) reservoirs has been performed by means of 

neighbourhood algorithm. Stephen and MacBeth [2006] and Stephen et al. [2007] have 

applied NA for simultaneous history matching of production and 4-D seismic data. 

Arnold [2009] has used the NA as the choice of sampling algorithm in a geologically-

parameterised history matching framework, where the fault parameters or channel 

parameters are history matched.  

 

As mentioned by Hajizadeh [2011], NA has been mainly applied in low dimensional 

optimization problems with less than 25 unknown parameters. In this thesis we aim to 

investigate the structural uncertainties for small 2D models with limited number of 

geological structures. So considering the simplicity of tuning the NA and its robustness 

for more exploratory modes (compared with many other stochastic methods), we will 

use it relevantly for structural history matching.  

 

2.2 Uncertainty in Reservoir: Sources and Quantification 
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Prediction of reservoir performance is associated with uncertainties arising from the 

lack of accurate and reliable knowledge about the reservoir rock and fluid properties 

(Gavalas et al., 1976). Large financial investments required for field development plans 

have made it necessary to decide based on accurate quantification of these uncertainties. 

Uncertainties impacts the decisions about the infill drilling, water flooding scenarios, 

enhanced oil recovery plans and consequently the design of well surface injection or 

production facilities (Birchenko et al., 2008).  

 

Randomness, fuzziness and incompleteness of reservoir data bring about the 

uncertainties in petroleum reservoirs (Blockley et al., 2000). Randomness is referred to 

as the lack of data which leaves some reservoir data patterns hidden underground 

(especially for geological structures) and reduces the clarity and visibility of those 

patterns. This would prevent from fitting a certain statistical model to the reservoir data. 

Measurement errors or non-comprehensive reservoir parameterisation might induce an 

inaccurate (fuzzy) expression of reservoir data or fuzziness. Most common type of 

uncertainties occurring in petroleum reservoirs is the incompleteness uncertainty. 

Incomplete and interrupted rate and pressure measurements especially in the early 

stages of reservoir production reduce the certainty and reliability of history-matched 

reservoir models (Caumon et al., 2004). However the deficiencies of current 

technologies to acquire more representative information from reservoir system prevents 

us from setting up a more precise reservoir model and result in non-reliable predictions 

of reservoir performance. 

 

The sources of errors contributing to uncertainty in reservoir engineering can be 

categorised in two main groups:  

1. Data measurement inaccuracies: Low accuracy of measurement tools or the 

operator errors in recording and interpreting the data constitute most usual errors 

in both direct and indirect measurement of reservoir static or dynamic 

information (Iwegbu et al., 2007). However each type of data measurements has 

its own specific errors: 

a. Direct measurements of reservoir static properties (porosity and 

permeability) from a very small core are poor representatives of 
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underground reality. Because initial and boundary condition imposed on 

a core sample during the laboratory measurement might be different 

from reservoir conditions. Moreover exposition of core to different 

pressures when it is carried from reservoir to laboratory alters its pore 

pressure and consequently yields wrong measurement of rock properties. 

Elkins [1972] and Chappell et al. [2007] have discussed the uncertainties 

in determination of initial oil in place (Stock Tank Oil Initially In Place 

or briefly STOIIP) and prediction of reservoir recovery arising from 

imperfect measurement of porosity and permeability.  

b. Intrinsic limitations of any indirect data measurement methods (e.g. well 

logging for porosity or saturation, well testing for permeability, seismic 

surveys for reservoir structure) might eventuate in significant 

uncertainties. Small penetration depths for well logging leave a porosity 

or saturation value coming from a limited area around the well. Also 

structural uncertainties resulting from poor quality of seismic data belong 

to this category.  

2. Simulation errors: Incorrect input data, inadequate representation of physics of 

reservoir flow and imprecise computational approximations employed in 

numerical methods are the main factors leaving erroneous modelling of reservoir 

flow (Christie et al., 2005).  

a. Interpolations made to produce maps of rock properties throughout the 

reservoir from limited and sparse measured data remain uncertainties in 

geological model which are exacerbated when transferred to the 

simulation model. 

b. Imperfect translation of inherent physics of flow into the mathematical 

equations, unknown details of sub-grid heterogeneity and reduced 

information due to upscaling induce the physics errors.  

c. Solution errors are developed as a result of following grounds: 

i. Simplifying assumptions for solving reservoir mathematical 

equations. 

ii. Round-off errors due to limitation of computer memories for 

decimal digits. 

iii. Numerical dispersion due to discretization of mathematical 

operators on reservoir simulation cells. 
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2.2.1 Methods for Uncertainty Quantification  

The most common definition of uncertainty quantification is to determine state of 

uncertain processed information quantitatively by means of assigning a probability 

distribution for describing that information. Such an approach suits well to problems 

that have been stochastically modelled which is the case for most geological 

uncertainties. However structural uncertainties related to fault or the top structures have 

been also tackled with scenario-based approach. Samson et al. [1996] has used this 

approach to investigate the impact of different scenarios for seismic interpretation of top 

structure and water-oil contact on gross-rock volume estimates.  

 

The main goal in probabilistic methods for uncertainty quantification is the calculate 

forecast uncertainty based on a posterior probability distribution of reservoir models. 

Such a probability distribution is assigned to the ensemble of models generated during 

the history matching process based on a posterior inference. According to Erbas [2007] 

classification of uncertainty quantification methods, three groups can be recognised 

regarding how they process the history matching result to determine the posterior 

probability distribution: 

1. Methods using the single best model with lowest misfit value: Linearization 

about the maximum posteriori (LMAP) (Oliver, 1996) 

2. Methods using a subset of history matched models: the randomized maximum 

likelihood (RML) method (Oliver et al., 1996)  

3. Methods using a the whole ensemble of models: Markov chain Monte Carlo 

(McMC) method (Behrenbruch et al., 1985) 

 

Bayes theorem, named after Thomas Bayes, is a formal way to update our beliefs about 

the state of a system in terms of probabilities, when we are provided with information 

(Christie et al., 2005 and Sivia, 1996). When applied for uncertainty quantification 

purposes on continuous problems, Bayes theorem is written as: 

( | ) ( )
( | )

( | ) ( )
M

p O m p m
p m O

p O m p m dm



                                                                                  (2.2). 
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where M is the space of reservoir models, m is a vector of model parameters (an 

arbitrary model from space M), O is a vector of the observed data (including the 

dynamic reservoir information), p(m) is the prior probability distribution and p(O|m) is 

the likelihood of the data defined as a measure of the quality of the fit of model (m) 

predictions to the observed data (O). Finally p(m|O) expresses the posterior probability 

density (PPD) representing our updated knowledge about the model (m) in the light of 

observations (O).  

 

In this thesis we will employ the Bayesian framework (developed by the uncertainty 

quantification group at Heriot-Watt university) to quantify the structural uncertainties. It 

is a systematic procedure to update current knowledge of a system based on newly 

obtained data (Christie et al., 2005). In a Bayesian inference, the Bayes theorem is used 

to perform inferences about the value of some parameter of interest based on the prior 

information and new observed information.  

 

The model likelihood is maximised when the difference between the simulation results 

and observations (or the misfit value) gets minimised, thus a direct relation between 

likelihood function and the misfit value is expected. Likelihood of a model can be 

interpreted as the probability that true value of reservoir observation is equal to 

simulation outcomes based on proposed reservoir model. Commonly with the 

assumption of normal (Gaussian) distribution of measurement errors around zero with a 

variance 2
 at any given time-step (t), the log of likelihood is taken proportional to the 

negative of misfit value ( log( ( | ))M p O m ). In effect measurement errors are 

supposed to stay independent at different time steps and consequently the likelihood of 

the model is obtained from the product of the probabilities of individual measurements 

at all time-steps of available data points (N). So one would end up with: 

2

2
1

( )1 1
( | ) ( ) exp

22

N
N t

t

Obs Sim
p O m

  

 
  

 
                                                        (2.3). 

 

Eq. 2.3 is written for single observation parameter measurement on a single well. 

However it can be extended to be utilised for problem with multiple flowing data types 
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(like production and injection rates of flowing phases, bottomhole pressures, gas oil 

ratio and water cuts) measured on multiple wells (Barker et al., 2001).  

2

2
1 1 1

( )1 1
( | ) ( ) exp

22

pw t

t

NN N
ij ij kN

ijk

i j k ijij

Obs Sim
p O m 

   

   
   

    
                                (2.4) 

in which Nw is the number of wells with subscript i running over wells, Np is the number 

of production data types with subscript j running over them and Nt is the respective 

number of production data report times with subscript k runs over time-steps. Observed 

data (
ijkObs ) and simulated ones (

ijkSim ) for each of the parameters (j) have been 

reported at time steps k with a standard deviation of σij. ijk  denotes the extra weighting 

factor for each parameter at each time step reported at each well. These weights reflect 

the importance of some of data types at specific time steps (Hajizadeh, 2011).  

 

Results from a posterior inference often are expressed as the Bayesian credible intervals 

(Erbas, 2007). Such intervals predict that the true values of the parameters (true model) 

have a particular probability of lying in the credible interval given the data actually 

obtained. Therefore a narrower credible interval is equivalent to the more confidence in 

history-matched reservoir model and less uncertainty associated with them. To 

determine these intervals, Cumulative Posterior Distribution (CDF) is needed from 

posterior which can be calculated by summation of PPDs arranged in an ascending 

order (Christie et al., 2005).  In this thesis credible interval is reported as the interval of 

parameters corresponding to 10% to 90% CDF values ([p10,p90]). However based on 

the mean, mode, variance or any other statistical measures from posterior probabilities, 

conclusion about posterior beliefs can be drawn.  

 

In this thesis we will use Neighbourhood Bayes Algorithm or briefly saying NAB 

(developed by Sambridge, 1999-B) to build an approximation for the real posterior 

probability distribution. In the next section we will explain the working mechanism of 

NAB. In figure 2.4 the general workflow used in this thesis for history matching and 

uncertainty quantification of geological structures has been depicted. 
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Figure 2.4: Complete history matching and uncertainty quantification framework (Sivia, 1996, 

Christie et al., 2005), it is statistically a consistent way to make inference about a given 

ensemble of models generated within history matching process. This allows for 

forecasting the reservoir performance with reduced uncertainty.  

 

2.2.2 Neighbourhood Bayes Algorithm for Posterior Inference  

Neighbourhood Bayes Algorithm belongs to the general class of Markov chain Monte 

Carlo (McMC) techniques (Gilks et al., 1994) generally proposed for sampling from 

probability distributions. Posterior inference can be directly made based on what have 

been sampled by these techniques from posterior probabilities. To perform this 

technique, a sequence of random states of a system stochastically evolving in time 

(X(0), X(1), ... ,X(n)) (called Markov Chain) is constructed by proposing that probability 

distribution for next state ( X(n) ) is totally determined by probability distribution of 

current state ( X(n-1) ) (Bonet-Cunha et al., 1998). Starting from an initial non-

stationary state, the Markov chain is then expanded by let the system to move from state 

X(i) to new state X(j) based on a joint probability distribution called transition matrix ijP  

which expresses the probability of achieving the state X(j) at a single step from the state 

i. Denoting πi(t) as the probability of the chain being at state X(i) at time t, probability of 

updating the chain state at time t+1 to X(j) (joint probability) is obtained from 

 i ij

i

t P .  

 



Chapter 2: An Overview of History Matching and Uncertainty Quantification 

 

30 
 

The state of the Markov chain after a large number of steps is then used as a sample of 

the desired distribution (commonly known as the equilibrium distribution). The quality 

of the sampling improves as a function of the number of steps and the probability is 

almost independent of initial state after a large number of steps. Then the equilibrium 

probability distribution is specified by the visiting frequency of states over the long 

chain (Gamerman, 1997). To extract proposed samples from distributions like posterior 

distribution, Markov chain should lead into a stationary state coinciding with the target 

distribution. Sampling is usually performed randomly which is preferable over 

expensive direct samplings. A random walk propagates in a Brownian manner and is 

not necessarily conducted in a straight direction. The simplest random walk algorithm 

used for sampling in McMC methods is the Metropolis–Hastings algorithm (named 

after Metropolis et al., 1953). Metropolis-Hastings Algorithm moves the system state 

from tθ  to 1t
θ  in a Brownian manner based on an acceptance probability which is 

obtained from the individual probabilities of current and proposed next states and 

transition matrix ijP .  If acceptance probability is larger than a tolerance, then system 

state is updated to θ
t+1

, otherwise current state is retained. When the joint distributions 

(i.e. transition matrices) are not known explicitly, a special case of Metropolis-Hastings 

Algorithm (Gibbs sampler explained by Casella et al., 1992) is used which employs 

conditional probabilities. The Gibbs sampling algorithm generates an instance from the 

distribution of each variable in turn, conditioned to the current values of the other 

variables. Gibbs sampler yields a sequence of samples forming a Markov chain which 

its stationary distribution is the demanded joint distribution (Gelman et al., 1995). Gibbs 

sampling is especially suitable to sample the posterior distribution of a Bayesian 

framework which are typically indicated as an ensemble of conditional distributions.  

 

Applying a straightforward McMC technique for predicting the posterior probabilities 

of reservoir model, it is required to run reservoir models for a giant number of possible 

states within the prior range and then evaluate the likelihoods from mismatch with the 

observations. Obviously this is very time-consuming to simulate all the required 

models. NAB (Sambridge, 1999-B) has been designed to resolve this kind of problem in 

different areas of science and engineering using the Bayesian statistics. An already 

ensemble of models created by a stochastic sampling algorithm is imported into the 

NAB routine and the inference is performed from information from whole ensemble. As 
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an important advantage, NAB avoids any forward running of reservoir simulator for all 

the models generated by the sampling algorithm or each model resampled.  

 

NAB uses a Gibbs sampler to build an approximation of real posterior probability 

distribution (PPD). The previously explored multidimensional search space is 

represented with Voronoi cells. NAB proposes an already determined PPD for each 

model is constant over the Voronoi cell which encompasses that model. Then NAB 

interpolates PPD of unknown points in the search space.  

 

NAB requires conditional probability distribution function (PDF) ( ( | )i i   ) is 

determined for full parameter range. The probability of current state being at i  along 

the thi parameter axis conditioned to fixed values of other parameters is expressed by 

( | )i i    NAB finds the intersections of each parameter axis with lines drawing from 

centres of Voronoi cells and attributes a constant PDF to each segment confined within 

two successive intersections which is specified from product of the PPD value for 

Voronoi cell by the width of the segment. 

 

 

An arbitrary point from input ensemble ( 0 0 0 0

1 2( , ,..., )n  θ ) is chosen as the start point 

of NAB and then Gibbs sampler performs random walks along each parameter axis in 

multi-dimensional parameter space. Random deviations from the PPD constructed over 

each parameter axis are followed by determining the acceptance probability of proposed 

point:  

max

( | )

( | )

p

i i
acc

i i

p
  

  




                                                                                                      (2.5). 

in which max( | )i i    gives the maximum PDF along the selected axis. If the step is 

rejected, then the process is repeated until completely cycling through each parameter 

axis. A new state vector is generated when the cycling through all parameter axes is 

carried out once. Updating the state vector tθ  to 1t
θ  is continued until meeting 

convergence criteria. After the parameter space has been satisfactorily spanned by many 

independent random walks starting from different location in input ensemble, true 
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posterior distribution can be approximated with the obtained conditional. In figure 2.5, 

the working mechanism of Gibbs sampler for NAB has been schematically shown for a 

two dimensional parameter space.  

 

 

Figure 2.5: Algorithm of Gibbs sampler used in NAB (from Erbas, 2007) 

 

To make Bayesian appraisal about the future uncertainty associated with reservoir 

performance, NAB constructs a resampled ensemble smaller from the input ensemble. 

Then the posterior probability p(m|O) is approximated from the visiting frequency of 

resampled models. Then the inference is carried out by running forecast simulations 

over the resampled ensemble resulting in determination of bounds of Bayesian credible 

interval for the recovery prediction.  

 

Erbas [2007] has investigated the relation between resolution of input ensemble and the 

performance of NAB to narrow down the uncertainty. She has concluded that the ideal 

input ensemble of NAB is generated by a sampling algorithm balanced between 

exploring and refining the misfit surface.  
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Chapter 3 

 

 

 

Cartesian Cut Cell Method 

 

 

 

This chapter describes how an adapted form of Cartesian Cut Cell Method is applied to 

reconstruct new models during the process of history matching. At each step of history 

matching process new geometrical specifications are assigned for geological structures. 

The reformed boundaries of the new structures should be mapped into the grid 

framework in order to build a new model. Cartesian Cut Cell Method translates the 

complex geometry of the renewed reservoir boundaries into the grid while it assures not 

distorting Cartesian grids away from reservoir boundaries (faults, pinchouts, layer 

boundaries, reservoir top and base structures). 

  

SUQIB (the code for Structural Uncertainty Quantification assisted by an Immersed 

Boundary approach) is a C++ code that we have developed for tackling the problem of 

structural uncertainty in two-dimensional models. This code is capable of handling 

multiple uncertain structures with demanded degree of complexity. SUQIB modifies the 
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grid framework at each step of history matching by means of Cartesian Cut Cell Method 

to account for the updated geometry of geological structures. It employs the Enriched 

Multipoint Flux Approximation to compute the flux terms in flow equation especially 

for degenerated cells left after cutting the grid with new geological surfaces. We will 

explain the procedure of Cartesian Cut Cell based on the workflow of SUQIB and its 

classes and routines.  

 

3.1 Introduction to the Family of Immersed Boundary Methods (IBM) 

As discussed in Chapter 1, assessment of structural uncertainties requires continuous 

updating of geometry of embedded geological objects during the history matching 

process. Such a successive variation raises the need for regridding at each step of 

history matching. Obviously unstructured gridding or corner point grid as a standard 

method in petroleum engineering for representation of geological structures (Ponting, 

1989) can provide body-fitted grids conforming to the renewed surfaces of uncertain 

structures. This leads into models having different gridding patterns with different 

trends of numerical errors and violates the main proposition for history matching which 

assumes numerical errors for different models are approximately similar. Thus the 

misfits calculated for variable models are not anymore comparable. However high 

computational expense imposed by regridding at each step is another disadvantage.  On 

the other hand Cartesian grids preserve the trend numerical error constant over all 

models, whilst it cannot conformally follow the complex geometry of uncertain 

structures and leaves inaccurate approximations of flow variables in the vicinity of the 

uncertain structures.  

 

Thus it is desired to modify Cartesian gridding such that no general regridding is 

needed, but more accurate flow approximation is made with introducing corrector-

modifier terms in flux equations. This is the main idea behind the Immersed Boundary 

Method developed by Peskin [1972, 1977, 1981, 1982] to study the flow patterns 

around the heart valves. In computational fluid dynamics, there has been always an 

interest in developing numerical methods that compute flow fields with complex 

stationary and/or moving immersed boundaries on fixed Cartesian grids. The 

transparent preference of these methods over the conventional body-conformal 
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approaches is the invariant computational grid regardless of the geometric complexity 

of the immersed boundaries. In this way the complex geometry of boundaries is 

decoupled from its mapping onto the computational grid.  

 

 The novel technique employed by Peskin turned out to a very helpful method for the 

problems of fluid-solid interactions which numerous different variants of it have been 

developed in last 40 years. In this method solutions of a variable coefficient elliptic 

equation (Poisson Equation) are sought: 

      .   x P x f x x                                                                                    (3.1), 

where the domain   has been divided into two disjoint sub-domains   and   by an 

embedded boundary  . Poisson equation describes the flow in many biological systems 

with fluid-solid interaction. In the original work by Peskin [1972], Immersed Boundary 

Method was applied for blood flow in an artificial heart with blood-valve common 

surface. Coefficient   jumps across the embedded boundary resulting in discontinuity 

of the flow variable P and the term P  along the embedded boundary. Embedded 

boundary is moving in time and its geometry is deformed while Cartesian grid on the 

background is stationary. The tension imposed on the fluid due to deformation of   is 

expressed with singular stresses     , ,P x t x X x t dx  , where  ,X x t  represents 

the trend of embedded boundary. Peskin [1977, 1981] has employed discretized forms 

of mentioned singular stresses at certain points along the embedded boundary to 

distribute the discontinuity over the a buffer layer of cells in the vicinity of  . However 

this approach leaves a first-order precision, as the discretized delta functions smear out 

the discontinuity across the boundary into a thickness of order of mesh-width.  

 

Lai and Peskin [2000] and Li and Lai et al. [2001] have developed formally second 

order accurate variants of IBM with reduced numerical dispersion for simulating the 

flow around a solid embedded object. These methods fail to achieve a second order 

accuracy when a varying non-smooth delta function is used to translate the discontinuity 

into the cells. Cortez et al. [2000] have formulated higher order approximation of 

boundary forces. The generalized IBM developed by Tornberg et al. [2003-A, 2003-B, 
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2004] minimizes the distribution of singular forces over the computational grid and 

leads into higher order accurate approximation of pressure. In general despite the simple 

implementation of IBM and its capability to complex geometries, its main drawback is 

its limitation on order of precision. However increasing the resolution of grid in the 

vicinity of embedded boundary can improve the accuracy of results. This is what has 

been investigated by Roma et al. [1999] where IBM has been coupled with Adaptive 

Mesh Refinement.  

 

Different versions of Peskin basic approach have been applied to simulate a wide 

variety of problems in fluid mechanics and biology. Some examples are heat transfer 

problems over the heterogeneous media, interface diffusion or the complex 

aerodynamic flow predictions. The continuity equation (mass conservation equation) for 

fluid flow in porous media is written as: 

      . x x Q x   K                                                                                         (3.2),    

where  xK  stands for permeability tensor,  x  is the flow potential (summation of 

hydraulic pressure and gravity heads) and  Q x  refers to as the fluid source/sink terms 

over the unit volume. Considering the analogy of this equation with Poisson Equation 

(Eq. 3.1), flow in porous media lies in this category of problems and geological 

structures with irregular geometries can be regarded as the embedded boundaries. 

Although they do not deform with time, but their variation during the history matching 

process sparks the innovative idea of Quantification of Structural Uncertainty Assisted 

by Immersed Boundary Methods.  

 

A significant advance in the class of IBM was made by LeVeque et al. [1994] who 

developed Immersed Interface Method (IIM) in which the discontinuities in the solution 

and normal gradient across the interface are explicitly incorporated into the finite 

difference scheme. In this method the standard 5-point stencil of finite difference in two 

dimensions is converted to a 6-point stencil leading into a sparse but not positive 

definite. Thus for cells adjacent to the immersed boundary one can write: 
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      
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x P x m P k I J i j


                                                     (3.3). 

The multipliers km  are obtained after writing down the Taylor expansion of jump 

conditions across the interface on closest point of boundary to the cell ( , )i j . So km  

multipliers translate the jump condition across the interface and relative configuration of 

cell ( , )i j  and interface into the flow equations. IIM has been applied for several 

moving interface/free boundary problems like works done by Hou et al. [1997] on Hele-

Shaw flow, Li et al. [1999-A] on Stephan flow and crystal growth, Li et al. [1999-B] on 

electro-migration voiding.  

 

The Ghost Fluid Method (GFM) developed by Fedkiew et al. [1999-A, 1999-B] has 

been proposed based on the similar philosophy to IIM. But it results in symmetric 

positive definite systems of discretized equations.  

 

Sharp Interface Cartesian Method was first introduced by Udaykumar et al. [1999, 

2001] to model the viscous incompressible flow around embedded solid objects with 

complex geometries. Unlike the already explained method, a finite volume 

discretization can be implemented in this method as well as finite difference method. 

However the sharpness of immersed interface is preserved by reshaping the control 

volumes through which interfaces passes. Different application of this method can be 

found in the literature for fluid-solid interaction and solidification problems 

(Udaykumar et al., 2002, 2003, Marrela et al., 2005, Liu et al., 2005). However the 

communication between the moving boundary and the flow solver is usually 

accomplished directly by modifying the computational stencil near the immersed 

boundary.  
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Figure 3.1: Left: Calculation of pressure gradient for an interface in the vicinity of immersed 

interface, Right: 6 point stencil used to determine the unknown parameters of polynomial, the 

yellow coloured interface is the target interface for calculating the pressure gradient and the area 

bounded between dotted lines and curved boundary is the area at which the pressure is described 

with a quadratic-linear polynomial. 

 

For example the pressure gradient across the interface between cells (3) and (4) in figure 

3.1 is calculated with a polynomial linear respect to x and quadratic with respect to y.  

2 2

1 2 3 4 5 6P c xy c y c xy c y c x c                                                                              (3.4) 

To obtain the unknown coefficients a 6-points stencil is formed around target face 

comprising of 4 cell centres in the bulk and 2 points on the boundary.  Eq. 3.4 should be 

satisfied for the pressures at cell centres. Also polynomial is obliged to satisfy the jump 

conditions of pressure or its gradient for two points on the boundary, thus the impacts of 

discontinuity and complex geometry of immersed interface are reflected in flow 

equations. This method leaves a linear combination of pressures at 4 cell centres 

included in the stencil for the normal pressure gradient (
4

1

j

x j

jY

P
P

x




 
 

 
 ).   

 

Although sharp interface Cartesian method is implemented based on the finite volume 

scheme and assures the mass conservation unlike other variant of IBM family, but it is 

not suitable for porous media flow, because:  

1. Conductivity coefficient   (analogue to permeability) is assumed to be 

continuous everywhere except across the immersed boundary. So this method 
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does not suggest how the local variation of   can be incorporated in 

discretizing the flow equation. While in porous media, pressure field is 

convolved with the permeability field. 

2. In our knowledge, none of variants of sharp interface Cartesian method address 

the problem of multiple intersecting boundaries.  

 

However the basic idea of reshaping the cells affected by immersed boundary in Sharp 

Interface Cartesian Method had been borrowed from the Cartesian Cut Cell Methods.  

This method was initially utilised in the aerospace community to create the boundary-

fitted grids for multi-component incompressible flow problems. Wedan et al. [1983], 

Barber [1992], De Zeeuw et al. [1993] and Berger et al. [1995] have developed adaptive 

Cartesian grid capable of tracking rapid-deforming boundaries. Cartesian Cut Cell 

Method has been applied by Causon et al. [2000, 2001] and Yang et al. [1997, 2000] for 

modelling the shallow water flows. This method avoids step-wise representation of 

irregular boundaries unlike the conventional Cartesian grid, as it deforms the cells 

intersected by boundaries when the boundary is not aligned with grid-lines. Portions of 

those cells located outside the immersed boundary (within the solid phase) will be 

discarded. It means that they will be deleted from the computational grid on which a 

flow equation is discretized. Remaining part of cut cell is retained if its centroid falls 

outside the boundary; otherwise it is merged to one of its adjacent cells having: 

1) Lowest volume among all active cells in the neighbourhood 

2) Largest normal area on common face 

 

The first condition should be satisfied to avoid numerical instabilities due to large 

volume contrast between neighbour cells and the second one assures the flow 

connectivity. One should make a compromise between these two criteria. 

 

Complex geometries of moving boundaries are accommodated by updating the local cut 

cell information on a stationary Cartesian grid. So without any need for general 

regridding, immersed boundaries are reproduced conformally in Cartesian grid with 

boundary-fitted cells. Such a combination of Cartesian cell in the bulk of fluid and 
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boundary-fitted irregular cell adjacent to immersed boundary is much less likely to 

produce non-physical solution than unstructured body-fitted grid. As the corresponding 

solution matrix is sparser than the matrix for fully unstructured grid. 

 

 

Figure 3.2: Left: Merging of partially fluid cell based on criteria of largest normal volume, 

Right: Merging based on criteria of lowest volume, the cells at the end of red arrows are the host 

cells which absorb a partially fluid cell.  

 

Cartesian Cut Cell method creates grids with less sensitivity to high petro-physical 

heterogeneity and permeability anisotropy in terms of producing non-physical solution 

compared with unstructured body-fitted grid. As the later frequently fails in avoiding 

excessively skewed or stretched cells. As shown by Coirier and Powell [1993] results 

obtained from Cartesian Cut Method are remarkably as accurate as solution obtained 

from high-resolution Cartesian grids. Ji et al. [2006, 2008, 2010] have developed a 

hybrid Cut Cell/AMR method for elliptic equation with variable coefficient and 

embedded boundaries. They have used marker points to track non-smooth boundaries 

with a cubic splin. Also Adaptive Mesh Refinement is applied on cut cells to increase 

the solution accuracy and reduce the occurrences of degenerated partial volumes. 

Similar approach had been already implemented by Aftosmis et al. [1997, 1999] for 

modelling the aerodynamic flows around complex geometries.  

 

The general procedure for adapting the Cartesian Cut Cell Method to geological 

structures will be explained in next section.  

 



Chapter 3: Cartesian Cut Cell Method 

 

41 
 

3.2 General Workflow for Reshaping Ill Cells  

The main pre-processing procedure at each step of history matching process is to 

generate a grid conforming to the reservoir boundaries. In SUQIB code “IllCells”   is a 

class in which Cartesian Cut Cell Method has been implemented and it is the program 

responsible for the pre-processing stage. General algorithm for reshaping ill cells is 

explained based on the methods of “IllCells” class.  “IllCells” class gets pure Cartesian 

grid as the inputs and returns ensemble of new conformed cells.  

 

3.2.1 The Interacting Data Structures 

“IllCells” class interacts with three main data structures: the grid, the interfaces and the 

reservoir boundaries. 

 

3.2.1.1 The Grid 

At all steps of history matching process, grid is initially structured such that the number 

of (rectangular) cells in X and Y directions and cells spacing in both directions remains 

constant. Grid divisions in both directions are uniform for all cells. It is presumed that 

ratio of axial to vertical extensions for each cell is around ten which accords to average 

cell aspect ratio in commercial reservoir simulators. When grid is initialized, each cell is 

stored in terms of an array containing X and Y coordinates of 4 corner points. Sequence 

of cells is numbered staring from lower most left cell, running right till the end of row 

and then continuing from most left cell in upper row. Also for each cell, directional 

indices (i,j) are set to determine directional numbering in  X and Y directions. 

 

3.2.1.2 The Interfaces 

In two-dimensional sense, each interface is a segment which is shared by borders of two 

adjacent cells. Thus each interface is stored in terms of two pairs: one pair of starting 

and end points of the segment and another pair of indices of two interconnecting cells. 

Horizontal and vertical interfaces are stored in two different data structures named as 

“HInterfaces” and “VInterfaces” classes respectively. When grid is initialized with nX 

and nY divisions in X and Y directions, constructors of “HInterfaces” and 
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“VInterfaces” classes receive cells specification from the grid and assign (nX* (nY+1)) 

and ((nX+1)*nY) interfaces to each class respectively. A pointer to each interface is 

stored in the array of connections for both cells which share this interface. So after 

initialization each cell does share two horizontal and two vertical interfaces with the 

neighbour cells. 

 

3.2.1.3 The Reservoir Boundaries 

In two-dimensional sense, a reservoir boundary can be represented as smooth open 

curves, unless for pinchouts where the boundaries of this structure create a closed curve. 

Two general types of reservoir boundaries can be distinguished in terms of their effect 

on the reservoir compartmentalisation: 

1) Nearly Horizontal Boundaries: which are recognised with the abrupt 

variation of media (rock and fluid) properties in vertical direction, thus they 

truncate the reservoir into compartments mainly extended in horizontal 

direction.  The boundaries of reservoir stratigraphic layers and pinchouts 

belong to this group of boundaries. As cells in reservoir models are 

principally elongated in horizontal direction, the horizontal dimensions are 

shrunk noticeably within the visual grid representation, as a result nearly 

horizontal boundaries might be depicted sharply dipped and seem 

considerably deviated from horizontal trend.  

2) Nearly Vertical Boundaries: which constitute reservoir compartments 

separated from one another in horizontal direction. Faults are best instances 

of this type through which sharp changes of rock properties may or may not 

appear.   

 

Trend of boundary curve can be given as an array of points along with an equation to 

interpolate the boundary trend between these points. Although in SUQIB code different 

classes were implemented for faults, boundaries of reservoir layer and pinchouts, but 

they are all inherited from the same base class “GeoStruct” and benefit from similar 

methods for determining position of arbitrary points with respect to them.  
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Figure 3.3: UML flowchart for “GeoStruct” class and its derived classes (ABC stands for 

abstracts only classes which no object can be instantiated from their base class.) 

 

3.2.2 Finding Cells Defected by Imposition of Reservoir Boundaries 

In a new step of history matching process, one has to update local cut cell information 

according to newly imposed reservoir boundary on stationary Cartesian background. To 

achieve this goal, “IllCells” class uses the information in 3 main involved data 

structures to answer these questions about each cell: 

1) Is boundary cutting through this cell? 

2) If so, how cell is split on two sides of boundary? 

The main information which provides the answers to first question are intersection 

points of interfaces. “InitializeDefectedMap” is a method employed by “IllCells” class 

to intersect horizontal and vertical interfaces versus reservoir boundaries. Indices of 
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both cells which share the same intersected interface is stored in an array which collects 

the ill cells (defected cells). 

 

 

Figure 3.4: UML flowchart for “Illcells” class and its derived classes 

  

3.2.3 Determining the Relative Cut Cell/Boundary Configuration 

To answer the second question, each defected cell is assigned a flag reflecting the 

relative position of boundary with respect to cell interfaces. For example when 
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boundary is entering the cell from left interface and exiting from upper interface, a 

“LtoT” flag is assigned to this cell. Table 3.1 shows sketches for different possible 

cell/boundary geometrical configuration and corresponding flags. “SetUpIBCType” is 

the name of the method implemented in “Illcells” to give each ill cell relevant flag 

based on the intersection points of cell interfaces.  

 

  

LtoT 

 

BtoT 

 

TT 

 

TLtoRR 

  

BtoR 

 

LLtoRR 

 

LtoTtoR 

 

LLtoBR 

 

TtoR 

 

RR 

 

LtoBtoR 

 

BTtoRR 

 

LtoB 

 

LL 

 

LLRR 

 

LLtoBT 

 

LtoR 

 

BB 

 

LLtoTR 

 

LLtoBR 

 

Table 3.1: IB-cell flags assigned for possible boundary-cell geometrical configurations 

 

3.2.4 Splitting the Cells Volume 

Each of ill cells will be decomposed into sub-cells which lie completely on one side of 

boundary only. “BreakTheVolume” is the method invoked by “IllCells” class to 

decompose ill cells. Each sub-cell is assigned a flag (named sub-cell/boundary flag) 

determining position of sub-cell with respect to boundary. Based on the type of 

reservoir boundaries, three main categories are distinguished in terms of splitting the ill 

cells. In figures 3.5, 3.6, 3.7 typical sub-cells remaining after cell decomposition for 

each category has been sketched:  

1) For boundaries mapped as nearly vertical open curves: 
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Cells truncated by trend of fault structures are split into two sub-cells 

with “Left” and “Right” sub-cell/boundary flags respectively. 

 

Figure 3.5: Cells cut through by a nearly vertical boundary 

 

2) For boundaries mapped as nearly horizontal open curves 

Cells truncated by boundaries of reservoir layers are split into two sub-

cells with “Above” and “Below” sub-cell/boundary flags respectively. 

 

Figure 3.6: Cells cut through by a nearly horizontal boundary with open curve 

 

3) For boundaries mapped as nearly horizontal closed curves 

Cells truncated by only one of branches (upper or lower) of closed curve 

representing pinchout boundaries, are treated in a similar way as cells in 

category 2. But the others are decomposed into three sub-cells with 

“Above”, “Inside” and “Below” sub-cell/boundary flags respectively.  
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 Figure 3.7:  Cells cut through by a nearly horizontal boundary with closed 

curves 

 

Intersection points of cells interfaces and the local geometry of reservoir boundaries are 

the information used to determine the corner points of sub-cells and recalculating their 

corresponding volumes. Splitting an ill cell into two sub-cells can be algorithmically 

expressed as following: 

a) Order corner points of ill cell anti-clockwisely starting from lowest most left 

point. 

b) Consider two sub-cells, name them “Left” and “Right” for nearly vertical 

boundaries and “Below” and “Above” for nearly horizontal boundaries. 

c)  Loop over array of corner points of ill cell: 

1) Store n
th 

element of corner points array in “Left” or “Below” sub-

cell. 

2) Before incrementing index of corner points array, check if any of 

intersection points lies on the interface passing through current 

corner point and the next one? 

3) Increment array index by one. If answer of step 2) was correct, assign 

first intersection point to both sub-cells. Then go to step 4), otherwise 

repeat step 1) until condition in step 2) is fulfilled. 

4) Store current element of corner points array in  “Right” or “Above” 

sub-cell. 
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5) Check if another intersection point lies on the interface passing 

through current corner point and the next one. 

6) Increment array index by one. If answer of step 5) was correct, assign 

second intersection point to both sub-cells. Then go to step 7), 

otherwise repeat step 4) until condition in step 5) is met. 

7) Store remaining corner points in “Left” or “Below” sub-cell. 

d) Use triangulation for dividing sub-cells into triangles and calculate their 

volume. 

 

Similar procedure is utilised to split ill cells into three sub-cells. Except that algorithm 

described above is applied in two stages. First stage is the splitting the ill cell respect to 

lower branch of boundary into “Below” and “Above” sub-cells and at second stage 

“Above” sub-cell is decomposed along the upper branch of boundary to create sub-cells 

flagged as “Inside” and “Above”.  

 

3.2.5 Creating New Cells  

“RemedyIllCells” is the method employed by “IllCells” class to create reshaped cells 

following reservoir boundaries. Subject to local orientation of boundary, 

“RemedyIllCells” treats ill cells in two different ways: 

1) For an ill cell whose at least one of its vertical and one of its horizontal 

interfaces are intersected, there exist two ill cells in their immediate 

proximity where one of directional indices (i or j) are incremented or 

decremented by one. Among these two ill cells, one mainly lying on the 

other side of boundary is picked and sub-cells emerging from two neighbour 

ill cells with the same sub-cell/boundary flags are to be integrated with each 

other. Each reshaped cell will inherit the directional indices from the ill cell 

giving its larger sub-cell to the reshaped cell. 

2) For an ill cell whose just horizontal interfaces or vertical interfaces are 

intersected, cells in its vicinity with the same directional index in the 

direction normal to intersected interfaces (j for horizontal interfaces and i for 
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vertical interfaces) are not ill. Larger sub-cell of ill cell is retained with the 

same directional indices as initial ill cell and smaller one is merged into the 

neighbour cell on the same side of boundary.  

 

To fuse two sub-cells or a sub-cell and a cell into a unified cell, following procedure is 

applied (throughout the procedure, we use the term “element” to mention any member 

of corner points array of any cell, also term “summation cell” means the final cell 

created after joining two or more sub-cell together, term “breakage” refers to as any 

point along the common face between neighbour sub-cells at which the slope changes, 

by “match”, we mean the existence of any mutual element of corner points arrays of two 

sub-cells): 

1) Arrange corner points of both sub-cells in trigonometric direction. 

2) Loop over corner points of sub-cell 1.  

a. For each element, loop over corner points of the sub-cell 2. 

b. Compare that element with corner points of sub-cell 2 one by one. 

c. If found any matches, store mutual point in an array called common 

face and break inner loop. 

d. If didn’t find any matches, store the point in the corner points array 

of summation cell. 

3) Loop over corner points of sub-cell 2. 

a. Compare each element with the points of common face. If it didn’t 

match any of them, store it in the corner points array of summation 

cell. 

4) Assess if there is any breakage in the boundary at one of the points of 

common face. 

a. Loop over corner points of sub-cell 1. 

i. Loop over corner points of sub-cell 2. 
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1. If current corner points of sub-cell 1 and sub-cell 2 are 

not on the common face: 

a. Check if both of corner points in trigonometric 

order are after or before first point of common 

face. 

b. If the answer to above question is yes, 

Calculate slope of lines passing through each 

of current corner points and first point of 

common face. 

c. If calculated slopes are not equal, add first 

point of common face to the corner points 

array of summation cell. 

d. Repeat steps a. to c. for the second point of 

common face. 

5) Rearrange corner points of summation cell in anticlockwise order.  

 

Figure 3.8 demonstrates an example of merging two sub-cells when the boundary is 

discontinuous at one of their common corner points. Unlike most works on Cartesian 

Cut Cell method (Popinet et al., 2003, McCorquodale et al., 2001,  Ji et al., 2008), the 

geometric fidelity of reshaped cells to very irregular boundaries is assured by avoiding 

the linear interpolation between the first and last intersection point. Instead the 

geometry of boundary is tracked locally to ascertain conservative cell reshaping.  
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Figure 3.8: Preservation of boundary breakage after cell reshaping 

 

Figures 3.9, 3.10 and 3.11 demonstrate schematically how new cells are created after 

applying “RemedyIllCells” method for ill cells truncated by nearly horizontal open 

boundaries, nearly vertical boundaries and nearly horizontal closed boundaries. 

 

Two cases shown in the left side of figure 3.9 show a horizontal interface shared by two 

adjacent ill cells is intersected by the boundary. Therefore “Above” sub-cells from two 

ill cells are blended form a cell replacing ill cell in the upper row. Similarly reshaped 

cell in the lower row is obtained from merging “Below” sub-cells together. For other 

cases horizontal interfaces of an ill cell are not intersected, thus smaller sub-cell is 

merged into an adjacent perfect cell in the same column located in same side of 

boundary as the smaller sub-cell. For example if smaller sub-cell is above the boundary, 

it will be merged into the cell from upper row, accordingly larger sub-cell (“Below” 

sub-cell) will substitute the initial ill cell in the grid framework.  
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Figure 3.9: Remedied cells emerging after cutting the cells by a nearly horizontal open 

boundary 

 

In first two cases of figure 3.10, two adjacent ill cells are cut through by the boundary at 

one of their vertical interfaces. Therefore both reshaped cells are obtained from 

blending two connected sub-cells lying on the same side of boundary. In two last cases 

of this figure 3.vertical interfaces of an ill cell are not intersected, thus depending on the 

sub-cell/boundary flag of smaller sub-cell, it will be merged into a perfect cell on the 

left or right side of ill cell. Treatment of ill cells intersected with two branches of a 

closed nearly horizontal boundary (shown in figure 3.11) is a kind of generalisation of 

treatment of ill cells cut by an open nearly horizontal boundary. Cell on the side of 

intersected horizontal interface (either at upper or lower column or both) exchanges its 

smaller sub-cell with the sub-cell of target cell located in the same geological layer (the 

same sub-cell/boundary flag).  While the Cell on the side of non-intersected horizontal 

interface (either at upper or lower column or both) receives the adjacent sub-cell of 

target cell which is in trapezoidal shape. Depending on IB-cell flag, any combination of 

these two cases might occur. In all cases, the middle sub-cell of ill cell (with sub-

cell/boundary flag “Inside”) is retained and replaces the initial target cell. 
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Figure 3.10: Remedied cells emerging after cutting the cells by a nearly vertical boundary 

 

 

Figure 3.11: Remedied cells emerging from cells cut by a nearly horizontal closed boundary 

 

To pictorially demonstrate the effects and the implications of Cartesian Cut Cell method 

for most complex cases occurring at the edges of a nearly horizontal closed boundary, 
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we investigate two cases with IB-cell flags of BB and RR. The effects on neighbouring 

cells would be exhibited within the final reshaped grid shown in figures 3.12 and 3.13.  

 

  

Figure 3.12: Reshaped cells by Cartesian Cut Cell method for IB-cell flag of BB, trend of a 

nearly horizontal boundary is shown with green colour imposed on red gridlines.  

 

  

Figure 3.13: Reshaped cells by Cartesian Cut Cell method for IB-cell flag of RR, trend of a 

nearly horizontal boundary is shown with green colour imposed on red gridlines.  

 

3.3 Treating Multiple Intersecting Boundaries 

Several boundaries might coexist in a reservoir model. As long as these boundaries are 

not intersected, general algorithm explained in section 2 is followed to create a reshaped 

grid framework honouring the geometry of reservoir boundaries. However special 

treatments are required to handle models with multiple intersecting boundaries. This 

happens when a nearly vertical boundary like fault is present along with nearly 

horizontal boundaries like pinchouts or reservoir layers. In such models first all nearly 
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horizontal boundaries are imposed into the Cartesian grid and then grid is truncated by 

the trend of the fault structure. Those cells which remained unchanged after imposition 

of nearly horizontal boundaries are mannered according to the algorithm illustrated for 

cutting cells with nearly vertical boundaries. As explained in section 3.2, cells cut by the 

fault are reshaped using neighbour cells located in the same row. But due to local 

geometry of nearly horizontal boundaries, connections of cells conforming to these 

boundaries need to be redefined, which might result in connections between cells from 

two different rows. Cells on both sides of such connections are called non-matching 

cells. With the values expected for the slope of nearly horizontal boundaries and the 

aspect ratio of the cell, maximum difference between indices of non-matching cells in 

vertical direction is one. To distinguish between cells reshaped after imposition of 

nearly horizontal boundaries, each of them is given a flag called reshaped cell type. This 

flag determines: 

1) Either this cell is a non-merged portion of an ill cell or it has created from 

merging portions from two neighbour cells? 

2) Where is the position of boundary relative to the cell which has been aligned 

with that boundary? Either is it below the cell or above the cell? 

 

Figure 3.14 shows typical sketches for non-matching cells and flags assigned to them 

according to their type. Collection of three cells (two non-matching cells along with the 

third non-merged virginal cell connected to both of them) is called “set of cells with 

boundary at the bottom” (SCBB) whenever the lower borders of non-matching cells 

coincides with a reservoir boundary. In contrary “set of cells with boundary at the top” 

(SCBT) refers to as a collection of three cells overlapping a reservoir boundary at upper 

boundary of two non-matching cells. Moreover figure 3.14 represents the different types 

of reshaped cells with blue colour. “bNMF" and “bMF" are the types for cells above 

the boundary, first one for non-merged cells and second one for merged cells. Besides 

“tNMF" and “tMF" are the types for cells below the boundary, first one for non-

merged cells and second one for merged cells. 
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Figure 3.14: Different types of non-matching cells, Left: “SCBB” and Right: “SCBT” 

 

Modified reshaping algorithm for cutting cells with faults has been implemented in 

class “Illcells_fault” which is a derived class from “Illcells”. It does have homonymous 

methods to be applied in a stepwise manner to form boundary adjusted cells.  

 

3.3.1 Determining the Relative Fault-Cell Geometrical Configuration  

Cells whose already been reshaped in order to conform to the boundaries of reservoir 

layers or pinchouts, have at least one of their horizontal interfaces replaced with an 

oblique segment from nearly horizontal boundaries. Also  for merged non-matching 

cells (e.g. those flagged as “bMF” or “tMF” in figure 3.14)  both or one of their 

vertical interfaces is extended by merging with interface in the same line belonging to 

cells from upper or lower row. Therefor in order to obtain local orientation of a nearly 

vertical boundary cutting through the cell, one has to consider following points: 

a) Intersection points of the already imposed boundaries with faults are determined. 

Local geometry of the boundaries at each reshaped cell and the type of that cell 

determine intersections at horizontal or nearly horizontal interfaces.  

b) Intersection points of vertical interfaces with fault trend are calculated. Left and 

right interfaces of reshaped cells located in the same row are serached for 

possible intersection points. Moreover for merged reshaped cells, extensions of 

their vertical interfaces to upper or lower rows should be assessed for possible 

intersection points.   
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Table 3.2 demonstrates typical sketches of reshaped cells truncated by faults and 

relevant cell-boundary flag for each case. In table 3.2, red dotted horizontal line shows a 

horizontal interface shared by two cells which at least one of them is cut by a nearly 

horizontal boundary. Thus after reshaping two cells and fitting their corner points to the 

boundary this horizontal interface disappears and a segment of boundary shared by both 

reshaped cells (coloured with green) turns out to be upper or lower border of reshaped 

cells. Blue or yellow segment cutting through the reshaped cells represents trend of a 

fault. Yellow segments for fault trend are observed for merged reshaped cells when the 

extended part of a vertical interface into upper or lower row is intersected.  

 

    Reshaped                     

cell type  

Cell- 

boundary  

flag   

tMF bNMF bMF tNMF 

BtoR 

 
 

 
 

LtoB 

 
 

 
 

LtoT 

 
 

 
 

TtoR 

 
 

 
 

BtoT 

 
 

 
 

 

Table 3.2: Cell-boundary flags assigned to cells reshaped by boundaries of reservoir layers 
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3.3.2 Splitting the Cells Volume 

To decompose degenerate cells with respect to trend of faults crossing them, an 

algorithm similar to that described in section 2.3 (for reshaping cells cut by non-

intersecting boundaries) is employed. Flags assigned to each ill cell (both reshaped cell 

type and cell/boundary configuration type) determine points at which fault enters or 

exits the ill cell. These two points along with the corner points of degenerate cell are 

passed to “BreakTheVolume” method.  

 

3.3.3 Creating New Cells  

For non-intersecting faults, adjacent cut cells located in the same row exchange their 

smaller portions with each other. When fault cuts cells fitted already to the nearly 

horizontal boundaries, two different case scenarios are expected: 

1) Cut cell and an adjacent cell (either cut or uncut but in the same side of 

smaller sub-cell of cut cell) have the same reshaped cell type. Therefore cells 

are reshaped similar to case of non-intersecting cells. Figure 3.15 

demonstrates an example of matching reshaped cells adjusted to a nearly 

horizontal boundary. Two cells in the lower row are both flagged as “tMF” 

and cells in the upper row are flagged as “bNMF". Thus exchanging the 

sub-cells takes place between cells from the same row. 

 

 

Figure 3.15: Matching reshaped cells cut with fault 

 

2) Cut cell and an adjacent cell (either cut or uncut but in the same side of 

smaller sub-cell of cut cell) have different reshaped cell types. Merged 
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reshaped cell has been extended into the lower or upper row. Thereafter in 

addition to a non-reshaped cell located in the same row, each merged non-

matching cell will be connected to a non-merged cell from upper or lower 

row.  For such a set of two non-matching cells and a virginal cell, there exist 

four cutting states versus fault trend.  

a) Both non-matching cells are cut by fault trend but non-reshaped cell 

remains uncut. The smaller sub-cell of non-merged non-matching cell is 

amalgamated with the larger sub-cell of merged non-matching cell. 

Resultant is a cell with two tilted borders coinciding boundary of a 

reservoir layer and the fault which supplants merged non-matching cell.  

The interface shared by two non-merged cells is extended to truncate 

smaller sub-cell of merged cell. For a “SCBB” (shown in figure 3.16) 

upper and lower portions of this sub-cell are merged respectively into the 

virginal cell and the larger sub-cell of non-merged non-matching cell.   

But for a “SCBT” (shown in figure 3.17) upper and lower portions are 

absorbed by larger sub-cell of non-merged non-matching cell and the 

virginal cell respectively. Black dotted arrows show the direction of 

absorption of smaller sub-cells. 

 

 

Figure 3.16: Cutting status a: SCBB (with “bNMF” & “bMF” flags) 
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Figure 3.17: Cutting status a: SCBT (with “tNMF” & “tMF” flags) 

 

b) All three cells get cut by the fault trend. It is likely that cell-boundary 

flag for the non-merged non-matching cell is “BtoT” and its larger sub-

cell isn’t in same side as larger sub-cell of merged non-matching cell. 

Thus it will be substituted by its larger sub-cell. Smaller sub-cells of non-

reshaped cell and non-merged non-matching cell will be absorbed by 

larger sub-cell of merged non-matching cell. Finally larger sub-cell of 

non-reshaped cell is combined with smaller sub-cell of another non-

matching cell to readjust their connection with fault trend. 

 

 

Figure 3.18: Cutting status b: SCBB (with “bNMF” and “bMF” flags) 
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Figure 3.19: Cutting status b: SCBT (with “tNMF” and “tMF” flags) 

 

c)  Just merged non-matching cell is cut with fault trend. Thus if its smaller 

sub-cell is in the same side of fault as two other cells, it will be replaced 

with its larger sub-cell inheriting both directional indices. But the smaller 

sub-cell is divided into two portions by extension of interface 

interconnecting two uncut cells. For a “SCBB” (shown in figure 3.20) 

upper and lower portions are merged respectively into the virginal cell 

and the non-merged non-matching cell. While for a “SCBT” (shown in 

figure 3.21) they are fused with the non-merged non-matching cell and 

the virginal cell respectively.   

 

 

Figure 3.20: Cutting status c: SCBB (with “bNMF” and “bMF” flags) 
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           Figure 3.21: Cutting status c: SCBT (with “tNMF” and “tMF” flags) 

 

d) The non-reshaped cell and the non-merged non-matching cell are cut 

with “BtoT” flag and the merged non-matching cell remains uncut. 

Among smaller sub-cells of two cut cells at least one of them is in the 

same side of fault as uncut cell. Thus uncut cell will absorb 

interconnected sub-cells from each cut cell. However one of absorbed 

sub-cells might be larger sub-cell of its parent cut cell, but to preserve 

cell convexity, direction of merging should be the same for both sub-

cells.  For a “SCBB” (shown in figure 3.22) or a “SCBT” (shown in 

figure 3.23) larger sub-cell of non-merged non-matching cell is 

interconnected with uncut cell, so it is merged to uncut cell. The virginal 

cell and non-merged non-matching cell are accordingly substituted with 

their retained smaller and larger sub-cells.  

 

 

Figure 3.22: Cutting status d: SCBB (with “bNMF” & “bMF” flags) 
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Figure 3.23: Cutting status d: SCBT (with “tNMF” & “tMF” flags) 

 

3.4 Redefining Cell Connections  

Readjusting borders of cells with reservoir boundaries causes some of horizontal or 

vertical interfaces no longer exist but they are replaced with tilted segments of the 

reservoir boundaries. Moreover conforming the cells to the multiple intersecting 

horizontal and vertical boundaries might result in connections between cells from 

different rows. Such connections (called “non-neighbour connections”) will appear also 

when cells on the hanging wall of a fault are displaced upward or downward. Term 

“non-neighbour connection” signifies connection between cells which do not share any 

common interface in natural cells ordering based on their directional indices.  It means 

for a cell with directional indices (i,j), there are four natural neighbour connections in 

Cartesian grid framework with four cells which only one of their directional indices 

differs from (i,j) by one. Thus natural neighbours of the cell are cells with directional 

indices (i-1,j) , (i+1,j)  , (i,j-1)  , (i,j+1) . Any other connection for this cell is regarded 

as “non-neighbour connection”.  

To clarify how non-neighbour connections are created, consider a small scale two-

dimensional grid shown in figure 3.24 when a curved boundary of reservoir layers and a 

fault are embedded into the grid: 
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Figure 3.24: Nearly horizontal boundary (coloured green) and nearly vertical boundary 

(coloured blue) imposed on Cartesian grid background 

 

Figure 3.25 demonstrates three non-neighbour connections have been created after 

reshaping the grid: 

1. “Face 1”: between cells with indices (3,3) and (4,2). 

2. “Face 2”: between cells with indices (2,3) and (3,4). 

3. “Face 3”: between cells with indices (3,3) and (4,4).                   
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Figure 3.25: Grid reshaped to follow boundaries; Non-neighbour connection (coloured purple) 

 

In figure 3.26 non-neighbour connections coinciding with fault plane have been shown. 

This kind of connections appears after applying fault throw on cells located in hanging 

wall of fault. For example cell with directional indices (2,3) is interconnected to cells 

with indices (4,4) and (4,5).  

 

(2,3) (3,3)

(3,4) (4,4)

(4,2)
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Figure 3.26: Non-neighbour connections due to upward displacement of cell on hanging wall of 

fault (coloured yellow and brown) 

 

The redefined cell connections constitute a set of interfaces (e.g. tilted interfaces or non-

neighbour connections) developed into a buffer layer of cells around the boundaries, 

this calls for multipoint methods of flux approximation. In chapter 4, we will investigate 

more in detail the special constraints which motivate for switching from two-point 

schemes to multipoint schemes for such interfaces. 

 

A new data structure called “TInterfaces” is introduced to represent tilted interfaces 

between cells fitted to the reservoir boundaries. “FindNeighbours” is a method in 

“grid” class which modifies cells connections. Implemented procedure in this method is 

as followings:  

1) For each cell, define two Boolean flags: 

a. “IsBoundaryInNeighbourhood” flag: It is true if and only if the cell or 

any of its natural neighbours have been reshaped. 

(2,3)
(4,4)

(4,5)
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b. “IsIncludedInIrregularMap” flag:  It is true if and only if the value of 

“IsBoundaryInNeighbourhood” flag for the cell or any of its natural 

neighbours is true.  

2) Connections of cells with false “IsIncludedInIrregularMap” flag remain 

unchanged.  

3) Loop over cells with true “IsIncludedInIrregularMap” flag: 

a. Define a data structure called “CellVertices”. Each element of this data 

structure should store a pair of a corner point (key value) and an array 

containing indices of the cells sharing that corner point (mapped value).  

b. Loop over corner points of each cell. If that corner point has not been 

already allocated to “CellVertices”, insert a new element. Otherwise add 

the total index of the cell (i+nX*j) to the array of cells sharing that corner 

point for the already inserted element.  

4) Loop again over cells with true “IsIncludedInIrregularMap” flag: 

a. Define a data structure called “CellPossibleNeighbours”. Each element 

of this data structure should store a pair of total index of a cell (key value) 

and an array containing indices of the cells sharing at least one common 

point with that cell (mapped value).  

b. Insert a new element in “CellPossibleNeighbours” with the key value of 

total index of cell. 

c. Loop over corner points of each cell: 

i.  For each corner point, find the element in the “CellVertices” data 

structure with the key value matching it. Add non-redundant cell 

indices stored in mapped value of that element to mapped value of 

newly inserted element in “CellPossibleNeighbours”. 

5) Rearrange elements of “CellPossibleNeighbours” based on their key values in 

ascending order. 

6) Loop over the elements stored in “CellPossibleNeighbours”. 
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a. For the cell with the index equal to the key value of current element 

(called “cell1”), loop over its corner points. 

i. Make a pair of current corner point and next point in trigonometric 

order. Initialize an interface called “face1” with the composed 

pair as its starting and ending points. 

ii.  Loop over the cells with indices stored in the mapped value of 

current element of “CellPossibleNeighbours” (called “possible 

neighbour cells”.  

1. Leave cells with indices less than the key value of current 

element. As they have been already assessed.  

2. For each cell with indices more than the key value of 

current element (called “cell2”), loop over its corner 

points.  

a. Initialize an interface called “face2” with a pair of 

current corner point and succeeding point in 

trigonometric order as its ending points. 

b. Initialize an interface called “face3”. Check if 

“face1” and “face2” are coinciding. If the answer 

is yes, assign “face3” the starting and ending points 

of overlapping segment. Otherwise flag “face3” as 

“NULL”. 

c. If “face3” has not been flagged as “NULL”: 

i. Assign “face3” a pair of indices of 

interconnected cells (“cell1” and “cell2”). 

ii. Compute its slope. Depending on the slope 

store it in the relevant data structure. 

iii.  Return pointers to “face3” to be set in 

interconnected cells. 
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iv. Initialize an interface called “face4” and 

allocate it with the remaining segment of 

“face1” which does not overlap “face2”. 

v. Break the internal loop over corner points 

of “cell2” 

3. If “face4” has been flagged as “NULL”, break the t the 

possible neighbour cells. Otherwise set “face1” equal to 

“face4” and go through internal loop over the corner 

points of the next possible neighbour cell of “cell1”. 

Repeat until “face4” is given “NULL” flag. 

b. Continue until all interfaces connecting corner points of “cell1” are 

determined. 

 

3.5 Application of Cartesian Cut Cell Method for a Complex Set of 

Intersecting Structures 

In this section, we will demonstrate schematically the application of Cartesian Cut Cell 

method for building a partially modified grid over a reasonably realistic model of 

intersecting geological structures. It would be shown how the Cartesian Cut Cell 

method alters the computational grid in the vicinity of the geological structures. Assume 

that a vertical cross section of seismic picked reservoir boundaries (including reservoir 

top and base structures, a pinchout and two faults, shown in figure 3.27) has been given 

and it is desired to impose it on the stationary Cartesian grid in the background and 

truncate the intersected cells. The reservoir layers are assumed to be gently dipped 

(creating nearly horizontal boundaries). Although the sharp medium properties variation 

occurs across the layer or pinchout boundaries, but inside each layer, the petrophysical 

heterogeneity might still exist. Each layer is distinctive in terms of porosity-

permeability relations or the probabilistic specifications of rock property distribution.  



Chapter 3: Cartesian Cut Cell Method 

 

70 
 

 

Figure 3.27: Superimposing a renewed geometry of geological structures (shown with red 

colour) on a pure stationary Cartesian grid in the background 

 

In order to honour the reservoir inherent geology and compartmentalisation, cutting the 

affected cells out of Cartesian grid should be performed in a step-wise manner 

complying with the sequence of geological events that created structures. This means 

that Cartesian grid should be modified in the same time order as geological events and 

geological structures are overlaid on Cartesian grid according to following order: 

1. Sedimentological structures: Sequence boundaries of reservoir layers starting 

from the most underneath one (oldest one) and moving upward until reaching to 

any structure created from erosion. 

2. Erosional structures: The sequence boundaries of possible pinched out layers. 

3. Possible Re-sedimentations: Sequence boundaries of layers deposited over an 

eroded or interrupted depositional layer.  

4. Faulting: The planes of faults extending into previously deposited layers. 

As faults are the latest structures to be laid over the grid, we need to return the sketch of 

geological structures to the state before vertical displacement of stratigraphic layers. In 

this way the horizontal continuity of reservoir layers before faulting is recovered.  
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Figure 3.28: Superimposing a renewed geometry of geological structures returned to the state 

before faulting (shown with red colour) on a pure stationary Cartesian grid in the background 

 

Figures 3.29 to 3.32 show how the grid is truncated through by the reservoir base 

structure, reservoir top structure, pinchout and zero offset faults respectively. Finally 

according to figure 3.33, all the corner points of cells inside the blocks over the fault 

planes are displaced vertically and horizontally over a distance of throw and heave of 

their corresponding fault. The final stage accommodates for the offset created by faults. 

 

 

Figure 3.29: Cutting the reservoir bottom structure through the Cartesian grid 
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Figure 3.30: Cutting the reservoir top structure through the Cartesian grid 

 

 

Figure 3.31: Cutting the pinchout through the Cartesian grid 

 

 

Figure 3.32: Cutting the zero-offset faults through the Cartesian grid 
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Figure 3.33: Applying the offset of faults on cells located over the fault’s planes 

 

The final grid is distinctive in contrast with standard discretisation approaches, as it 

avoids from stair-stepped geological structures produced by structured Cartesian 

gridding, while it is free of curved gridlines developed into the body of grid away from 

boundaries as it is the case in unstructured gridding. 

 

3.6 Priorities of Cartesian Cut Cell Method over Corner Point Grid 

This chapter introduced the application of Cartesian Cut Cell method for adaptation of 

2D grid architecture to updated surfaces of geological structures during history 

matching process. However most commonly used method for representation of complex 

structure in reservoir engineering has been corner point grid. In section 3.1 we rejected 

the choice of a corner point grid for a history matching process of geological structure. 

However even for simulation of a model with fixed geological structure, it is expected 

that Cartesian Cut Cell method results in a more consistent grid honouring the reservoir 

geology with less numerical complexities. Corner point gridding defines each 3D cell as 

the volume restricted between four vertical pillars and eight ending points of these 

pillars. Despite the flexibility of corner point grids, as listed by Aarnes et al. [2008] 

corner point grid geometry leads to some difficulties. We explain preferences of 

Cartesian Cut Cell method in terms of avoiding most of such difficulties. However we 

believe that such improvements are considerable for models of localised gently dipped 

reservoir layering. 
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1. In corner point gridding, at each sedimentary bed the vertical divisions of grids 

get affected by trend of inter-layer boundaries. Therefore each face would be 

aligned either to the trend of geological structures or to an inflected trend with 

arbitrary inclination. While in Cartesian Cut Cell approach only those 

horizontal or vertical faces which are intersected with geological surfaces, are 

replaced with tilted interfaces conforming the geological surfaces. This leaves 

most of cells with faces aligned to the planes of Cartesian coordinates. 

Therefore for most of cells, compact stencils in solution matrix will be obtained. 

This yields a more well-posed solution matrix with less computational efforts 

needed and less possibility of non-physical solutions. 

2. Corner point cells might have zero volume, especially at partially eroded beds 

(e.g. pinchout). As a result non-neighbour connections across the overlapped 

boundaries of eroded beds will be formed. This creates more complex sparsity 

patterns in solution matrix and reduces its well-posedness. While in Cartesian 

Cut Cell method no cell is accommodated for the eroded parts of sedimentary 

beds and non-neighbour connections just occur next to faults. 

3. Degenerate cells with triangular or trapezoidal shapes in 2D grid and polyhedral 

shape in 3D grid may appear in corner point grid geometry. In Cartesian Cut 

Cell method such cells with high aspect ratios (ratio of largest face length to the 

length of smallest face) are merged to one of their adjacent cells (in the same 

geological compartment) in the cost of creating a non-neighbour connection. In 

this way the dependency of discretisation matrix to cell geometry and its 

complexity is reduced. 

 

In the next chapter, it will be shown that more monotonic solutions are obtained for a 

Cartesian grid partially modified to account for introduced structures.  
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Chapter 4 

 

 

 

Extended Enriched Multipoint Flux 

Approximation Method 

 

 

 

This chapter is totally devoted to explain the extended “Enriched Multipoint Flux 

Approximation Method” (extended EMPFA) for reconstruction of flux over the faces of 

cells conformed to the surfaces of geological structures. We first review the works done 

in petroleum industry for solving the mass conservation and Darcy’s equations and then 

introduce in details the extended EMPFA technique. 

 

The main specific goals of this chapter are as followings: 

1. To clarify the motivation for use of a multipoint flux approximation method for 

quadrilateral cells of irregular shape. 
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2. To specify the preference of extended EMPFA method over the conventional 

MPFA methods in the vicinity of faults and pinchouts or for local grid 

refinement. 

3. To testify the improvement of extended EMPFA by using a double-family 

quadrature in terms of increased flexibility to yield resolved monotonic solutions 

per optimised quadrature values. 

4. To demonstrate the convergence and consistency of developed flux 

approximation scheme over models of geological structures. 

 

4.1 The Motivation for Using Multipoint Schemes to Approximate the Flux  

The fluid flow in porous media is modelled with Darcy’s law (  1   V K ). 

Throughout this chapter, any bold symbol refers to as a vector, a tensor or a matrix. In 

Darcy’s law the volumetric velocity vector ( V ) is proportionated to the negative normal 

gradient of potential ( ). The proportionality factor (  1  K ) expresses the media 

flow conductivity and it is directly related to the rock permeability ( K ) divided by the 

fluid viscosity. Rock permeability in general is a tensor, in which the diagonal elements 

define the tendency of rock matrix to conduct the fluid in the same direction as the 

direction of potential drop. On the other hand, off-diagonal terms represent the flow 

conductivities of rock matrix in a direction other than the direction of potential drop. 

xx xy

yx yy

K K

K K

 
  
 

K                                                                                                           (4.1)  

Letting iC  and 
jC  as two adjacent cells of general geometry and 

ijF as their common 

interface, the fluid flux passing through 
ijF  (denoted by 

ijf ) is calculated from 

integration of Darcy velocity over common interface. 

1

ij

T
ij ij

s F

f ds




    n K                                                                                         (4.2) 

In which 
ijn is the unit normal flux on 

ijF . The resultant depends mainly on the 

geometry of common interface. A simple commonly-used equation for one-dimensional 

problems resembling the original Darcy’s law is written as: 
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 1
i jij ij C CF K


  f                                                                                             (4.3). 

In which K  is a kind of harmonic average of permeabilities at cells sharing interface
ijF  

obtained as: 

 1 2

1 2

i j

i j

K K L L
K

L K L K





                                                                                                     (4.4). 

 

 

Figure 4.1: One dimensional transmissibility estimation applicable for stream tube between cell 

centres perpendicular to the interface 

 

Term ijF K is usually called the two point transmissibility and is represented with
ijt . 

For problems of higher dimensions, letting iK  and 
jK as the permeability tensors in 

cells iC  and
jC , the following criteria must be met to express 

ijf by a similar equation 

to Eq. 4.3.  

 The segment  ,i jx x connecting the centres of adjacent cells is orthogonal to the 

common interface
ijF . 

 At least one of eigen-vectors of both iK  and jK  is in the same direction. 

 The segment  ,i jx x is parallel to the predominant common eigen-direction of 

tensors iK  and
jK  (the direction of one of common eigen-vectors making a 

closer angle with the interface
ijF . 

iC
jC

ix
jx

jL
iL

jKiK

ijF
 stream tube
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With these conditions, by letting h

iK and 
h

jK as the eigen-values of iK  and 
jK

corresponding to their common eigen-direction, Eq. 4.4 can be used to calculate the 

average permeability across
ijF . The eigen-vectors of permeability tensor at each point 

are called the principal directions of permeability. Also original full tensor can be 

mapped into a diagonal tensor at a certain rotation angle of original coordinate. If 

everywhere inside the discretized region, each of principal directions of permeability 

tensor are perpendicular to one of axes of coordinates on gridlines, then the grid is 

called K-orthogonal (Heinemann et al., 1991), in effect the flux through all interfaces 

can be obtained with the simple two point flux approximation (TPFA) method. 

 

In petroleum industry, corner point gridding or unstructured gridding (PEBI grids) are 

used to create cells aligned to geological surfaces to accurately represent their 

geometrical features. Therefore K-orthogonality condition is very likely to be violated 

over most cells and general integrated flux over interfaces (Eq. 4.2) no more diminishes 

to TPFA scheme. Using Gauss divergence theorem surface integral in Eq. 4.2 is 

converted to a volume integral over all cells sharing at least one vertex with 
ijF . Letting 

 ,N i j as the set of all cells kC  involved in the volume integration, multipoint flux 

approximation method is inspired by generalizing the two point equation of flux 

approximation as: 

 ,

1
k

k
ij ij C

k N i j

tf
 

                                                                                                   (4.5). 

For general non K-orthogonal and curvilinear grid, there has been an interest to express 

the Darcy’s law in a dimensionless uniform space with coordinates  ,  . In the new 

space, the flux is obtained from: 

  ,
1

ij

ijij

F

f  




    T dΓ                                                                                (4.6), 

in which: 
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 
,  is the potential gradient in dimensionless uniform space given by J , and 

J  is the Jacobian of space transformation (
 

 

,

,

x y

 





J ). 

 
ijT  is called transmissibility tensor (general Piola tensor, Edwards and Rogers, 

1998-A) for interface between cells iC and 
jC  and its elements are given by:  

2 2

11

2 2

22

12

( 2 ) det( )

( 2 ) det( )

( ( ) ( )) det( )

xx yy xy

xx yy xy

xy xx yy

T K y K x K x y

T K y K x K x y

T K x y x y K y y K x x

   

   

       

  

  

   

J

J

J

                                       (4.7). 

  
T

d d dΓ  is the tangential vector drawn on an infinitesimal segment of
ijF . 

                                                   

As explained in chapter 3, Cartesian Cut Cell method creates cells conformed to the 

geometrically complex geological structures. The large scale flow behaviour is 

significantly influenced by geological structures, for example their geometry and 

location determines the main flow paths and connectivity of different part of reservoir 

(Holm et al., 2006). Therefore although most Cartesian cells outlying the geological 

structures remain unchanged, but main concern should be focused on finding a higher 

precision flux approximation scheme in the vicinity of geological structures.  

 

Cartesian Cut Cell method imposes two main kinds of irregularities on cell geometry, 

both causing the violation of required criteria for using TPFA scheme: 

1. In order to honour the inclined surface of faults and pinchouts or the curved 

bedding planes, some of cell’s interfaces become tilted with spatially varying 

inclinations. Even though the intact Cartesian cells are K-orthogonal, the 

segment connecting centres of two adjacent cells sharing a tilted interface is not 

anymore perpendicular interface surface.  In figure 4.2, the tilted interfaces 

substitute a vertical interface (left) and a horizontal interface (right) to conform 

the adjacent cells to the plane of a fault (left) and to the plane of a stratigraphic 

layer (right).  However for almost vertically-dipped faults or very smoothly-
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dipped layers, TPFA still yields a sufficient approximation of flux over the tilted 

interface (Wu and Parashkevov, 2009). 

 

 

Figure 4.2: Tilted interfaces aligned to the surface of geological structures 

 

2. As discussed in chapter 3, the second kind of the cell degeneracy caused by 

Cartesian Cut Cell method is the non-neighbour connections. Such connections 

happen between the cells which naturally do not share any interface based on 

their logical indices. For such a connection, one of cells (called iC ) shares one of 

its faces with two cells (called 
jC  and kC ). Thus the segments connecting the 

centres of cells involved in non-neighbour connection ( ( , )i jC C  and ( , )i kC C ) are 

inclined and can make various angles other than 0with their corresponding 

dominant common eigen-direction of permeability (  1 ,K i jv  or  2 ,K i jv ).  

 

 

Figure 4.3: Non-neighbour connections occurring in the vicinity of a fault (Left) and a 

bedding plane (Right), when the Cartesian Cut Cell method reshapes the rectangular 

cells to conform their faces with the boundaries of geological structures.  
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For non-neighbour connections displayed in figure 4.3, segments between 

centres of connected cells are neither perpendicular to their common interface, 

nor parallel to the predominant common eigen-direction of permeability (

 1 ,K i jv  or  1 ,K i kv ).  

 

The effects of deviated non K-orthogonal grids on accuracy of TPFA scheme for flow 

simulation have been investigated by Wu and Parashkevov [2009]. According to their 

conclusion, for most practical purposes TPFA leaves a relatively small error in 

approximation of horizontal flow, while considerable error in vertical flow is obtained. 

As a common practice in reservoir simulation, faults are represented at angles very close 

to right angle. However for more acute angles of fault inclinations, it is believed that 

accuracy of horizontal flux approximation with two-point scheme is considerably 

reduced as well. This discussion motivates us to employ a suitable multipoint scheme 

inspired by Eq. 4.5 for approximation of flux.  It is worth mentioning that there are 

some researches (e.g. Chen et al., 2008) on application of TPFA for fine scale 

heterogeneous models that show TPFA is not good enough particularly in combination 

with upscaling and it should be extended to non-linear TPFA (NTPFA) which takes into 

account the main pressure gradient direction for transmissibility calculation. NTPFA 

has been successfully applied in conjunction with global or local upscaling techniques.   

 

4.2 Literature Review on Class of MPFA Methods and Related Techniques 

Extensive research in recent decades has been carried out in order to solve mass 

conservation equation in porous media for general grid with full permeability tensor.  

Solving a discretized from of mass conservation equation with a finite volume approach 

requires determination of continuous mass flux through the interfaces between the 

control volumes exhibiting strong permeability discontinuities. In this view control 

volume MPFA method belongs to a broader family of methods called locally 

conservative control volume methods (Klausen and Russell [2004], Edwards and Zheng, 

2008). Locally conservative control volume methods have been designed to circumvent 

the O(1) error imposed by TPFA (the traditional scheme used by most simulators) for 

general non K-orthogonal grids.   
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Most of pioneering works in the class of locally conservative flux-continuous control 

volume methods (e.g. Aavatsmark et al., 1994, 1996, 1998-A, 1998-B, Edwards and 

Rogers, 1994, 1995, 1998, Verma and Aziz, 1997) were introduced for discretization on 

2-D quadrilateral grids for anisotropic heterogeneous permeability fields. MPFA can be 

used for both corner point and cell centred grids, but here we will present our 

explanations of flux approximation schemes for cell centred grids. MPFA is inspired by 

generalization of idea behind TPFA which leads into a harmonic average permeability 

for the interface of two 1-D cells by enforcing potential and flux continuity at interface. 

MPFA is aimed to make involved potentials at all cells sharing at least one vertex with 

the target interface in flux term at that interface. In MPFA potential and flux continuity 

condition are imposed along the sub-interfaces bounded in a volume formed around 

each cell vertex (O) by connecting the centres of cells (Ci) sharing that vertex and the 

midpoints of interfaces sharing that vertex (Mi). This volume which is a polygon in 2-D 

and a polyhedron in 3-D is called interaction region. Clearly each cell is divided into as 

many sub-volumes as the number of its vertices. Dealing with cells of general 

quadrilateral shape, for matching 2-D grids, each interaction region comprises from four 

sub-volumes (or sub-cells) inherited from one of involved cells.  

 

 

Figure 4.4: MPFA, Four interaction regions built on vertices of cell C1; dotted lines connect cell 

centres (shown with filled small circles) to midpoints of corresponding cell interfaces (shown 

with empty small circles) to create the interaction regions around the cell vertices (shown with 

two concentred small circles). 
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MPFA supposes a linear variation of potential at each sub-volume. Each sub-volume 

potential function is determined with three potential (one potential at corresponding cell 

centre and two other at starting and ending points of two sub-interfaces). This leaves 

total of 12 unknown potentials. Imposing potential continuity across the interface 

midpoints (Mi) reduces the degrees of freedom to 8. By applying flux continuity across 

sub-interfaces, one can specify the potentials at midpoints of sub-interfaces in terms of 

potentials at cell centres.  

 

Flux passing through the thi sub-interface evaluated as its facet in thk sub-volume is 

determined from k k k k

i if K   n . With a linear potential variation, constant potential 

gradient at each sub-volume is specified from the potentials at edges of i

bi k iM C M  in 

which bi depends on the trigonometric order of two sub-interfaces: 

1    (  &  1)

0        (  &  1)

1         ( 1 &  4)

1            ( 1 &  4)

i if i k k

if i k k
bi

i if i k k

if i k k

  


 
 

   
   

                                                                          (4.8). 

 

 

Figure 4.5: Linear variation of potential within the 
i

bi k iM C M  triangles (with edges at a cell 

centre and mid-points of two consecutive cell interfaces) is utilised for potential approximation 

throughout whole the interaction region. 
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The vector of potential differences between cell centre ( kC ) and each of mid-interfaces 

( i

biM  or iM ) is obtained from k k

k  X , in which: 

 
Tk

bi k i k                                                                                        (4.9), 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

bi k bi k

k

i k i k

x M x C y M y C

x M x C y M y C

  
  

  
X                                                                  (4.10). 

This gives the discrete potential gradient in sub-volume k as 1k k

k

  X  in which 

1

k


X is expressed as following: 

1
( ) ( ) ( ( ) ( ))1

( ( ) ( )) ( ) ( )

i k bi k

k

i k bi kk

y M y C y M y C

x M x C x M x C


   

  
   

X
X

                                               (4.11). 

Vectors k

biν and k

iν  are defined as the normal vectors on segments k biC M  and k iC M : 

 

 

( ) ( ) ( ( ) ( ))

( ) ( ) ( ( ) ( ))

Tk

bi bi k bi k

Tk

i i k i k

y M y C x M x C

y M y C x M x C

    


   

ν

ν
                                                          (4.12). 

By this notation  kX  is twice of area bounded in triangle bi k iM C M  and constant 

potential gradient is given by
1 k k k

bi i

k

   ν ν
X

. Hence flux at sub-interface iOM  is 

expressed as  k i k bi k

i ik i ik bif       in which: 

/ /

k k k
i bi i i bi
ik

k

K



 

n ν

X
                                                                                                 (4.13), 

/ /

k

i bi i bi k                                                                                                       (4.14). 

Four flux continuity condition on starting and ending points of sub-interfaces writing as 

( )k N k

i if f  describe the MPFA O-method, in which ( )N k  stands for the index of sub-

volume sharing the thi sub-interface with thk sub-volume. Introducing two vectors of 

potentials (  
1 2 3 4
, , ,

T

C C C C C    Φ and  
1 2 3 4
, , ,

T

F M M M M    Φ ) and the vector 

of fluxes (  1 2 3 4, , ,
T

f f f ff ) , final 4×4 system of equations relating potentials at mid-

faces to those as cell centres is expressed as: 
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1 1 2 2C F C F   f A Φ BΦ A Φ B Φ                                                                            (4.15). 

 

From Eq. 4.15, flux vector would be determined as 

 4 4 C C  1 1 2 2 1 1f T Φ B (B -B )(A -A )+A Φ . Described scheme is known as O-method 

reminding the shape of polygon formed by connecting cell and interface points. For 

general grids the O-method does not lead into a symmetric discretized operator and 

hence it is only conditionally convergent [Aavatsmark, 2008, Klausen and Winther, 

2006-B). Conditional convergence of O-method has been conjectured by Klausen and 

Winther [2006-A, 2006-B] and Aavastmark et al. [2007-C]. However according to 

several numerical convergence tests performed on rather rough grids (e.g. Edwards and 

Rogers, 1998-A, Eigestad and Klausen, 2005, Pal et al., 2006-A), MPFA O-method (or 

its variants) shows almost super-linear convergence for the potential and linear 

convergence for the flux on a variety of grid. In 4.5 we will explain more about the 

convergence of a numerical scheme. Apart from the classical problem of accuracy and 

stability (translated in the context of convergence studies), there has been much interest 

in designing variants of MPFA yielding non-oscillatory solutions. MPFA O-method has 

been shown to be suffering from spurious oscillations or spurious extrema at boundaries 

even if scheme converges to the correct solutions (Aavastmark, 2007-A, 2008).  For 

non-linear solutions, monotonicity is not satisfied for whole values of grid aspect ratio 

and anisotropy ratio. Aavstmark et al. [1996, 1998-A] have developed an equivalent 

discretization to MPFA O-method in dimensionless uniform space which is useful for 

studies of monotonicity behaviour. The monotone region is usually specified within a 

unit square diagram. Vertical and horizontal axes of this diagram are 

   11 22 11 22, ,Min T T Max T T  and  12 11 22,T Max T T  respectively. To broaden the 

monotone region, several modifications of MPFA O-method have been presented. 

Though demonstrated by Edwards and Zheng [2008], lying in monotone region is not 

enough to get physically meaningful solutions, but M-matrix regions are the only 

regions where one can claim the solution can be free of spurious oscillations. Firstly M-

matrix conditions for general 9-point schemes were introduced by Edwards [1995] and 

Edwards and Rogers [1998].  The only spatially symmetric scheme was presented in 

Friis et al. [2008]. Also the source of symmetry has been demonstrated Edwards and Pal 

[2008]. 
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MPFA L-method developed by Aavatsmark et al. [2006, 2007-B, 2008] uses the same 

interaction region as O-method, but computation of transmissibilities for each sub-

interface is performed individually by applying the continuity conditions within the 

volume spanning the corresponding sub-interface and one of its neighbour sub-

interfaces. This builds a triangular interaction region (shown in figure 4.5) in which 

potentials and fluxes at starting and ending points of involved sub-interfaces and central 

point of interaction region are unknown. Interaction region is divided into four 

triangular sub-volumes by connecting central point, a cell centre and a mid-interface 

point. Applying the potential and flux continuity conditions across faces between sub-

volumes, two desired fluxes are expressed in terms of potentials at three involved cell 

centres. To select the optimum triangular interaction region (triangle (1) or triangle (2) 

shown in figure 4.6), the quantity 
1 1

1 2S t t   is compared between two interaction 

regions. One with smaller S is selected to obtain transmissibilities of sub-interface

3

1 1O M . Satisfaction of this condition leaves more compact approximation of flux which 

approaches TPFA scheme by minimisation of transmissibility difference between cells 

sharing the proposed interface. As inspected by Aavatsmark [2007-A] and Aavatsmark 

et al. [2008], using MPFA L-method, more sparse solution matrix is obtained leading to 

a broader domain of convergence and monotonicity.  

 

 

Figure 4.6: Two choices of interaction region built on red sub-interface for MPFA L-method; 

Left: Triangle (1), Right: Triangle (2) 
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Extension of L-method for local grid refinement has been studied by Aavatsmark 

[2007-A]. However he has mentioned that 2-D methodology of MPFA L-method cannot 

be easily implemented for 3-D problems.  Moreover choice of triangular interaction 

regions is not generalised and somewhat ad-hoc (Aavatsmark, 2008). Pal and Edwards 

[2007, 2011] achieved analogous schemes to MPFA L-method via triangulations 

favouring permeability anisotropy.  

 

Nordbotten and Eigestad [2005] have developed a MPFA Z-method with a different 

interaction region to achieve more monotonic results on quadrilateral grids especially on 

skewed grid with high aspect ratios.  

 

 

Figure 4.7: Choices of interaction region for Z-method 

 

Interaction region for Z-method comprises of three mid-interfaces, four cell centres and 

two cell vertices. Therefore 12 equation are needed to find 12 degrees of freedom (two 

(potential and flux) per each mid-interface and one (potential) per each cell centre or 

cell vertex). Applying the flux and potential continuity across sub-interfaces and 

potential continuity on cell vertices leaves only two undetermined degrees of freedom. 

One can relate potentials at centres of cells completely located inside the interaction 

region ( 1C  and 4C ) to the potentials at midpoint of two neighbour interfaces and two 

cell vertices based on linear variation of potential. This closes the system of equations 

for desired fluxes. Despite more monotonic results, the extension of this method for 3-D 

problems and non-matching cells still has remained unanswered.  
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Edwards and Rogers [1998-A] introduced the quadrature parameterisation for flexibly 

relocate the flux continuity point on each sub-interface. Full pressure continuity is 

achieved by introduction of an additional auxiliary interface pressure at the common 

corner of the connecting sub-cells defining the flux interaction region, leading to full 

pressure support (FPS). They used the curvilinear coordinate transformation into logical 

rectangular coordinates within the triangles forming by connecting flux quadrature 

points and cell centre at corresponding sub-volume. This allows for expressing potential 

as a linear piecewise function with respect to logical coordinates within each triangle 

(named triangle pressure support (TPS) in Edwards and Zheng, 2008). 

 

 

Figure 4.8: Left: Flux continuity points on sub-interfaces (N, S, E, W); Right: Isotropic 

quadrature parameterisation for triangular flux continuous scheme (TPS) 

 

As Edwards and Rogers [1998-A] have shown with appropriate choose of quadrature (

0 (1/ 2)p  ) the monotonicity characterises of discretized system is enhanced. MPFA 

O-method is regarded as an extreme case of flexible quadrature scheme developed by 

Edwards and Rogers [1998-A], denoted by MPFA O(0)-method by Nordbotten et al. 

[2007] in contrary to MPFA O(0.5)-method with wider monotonicity region.  

 

Edwards and Zheng [2008] developed a new family of flux continuous locally 

conservative schemes motivated by discretization method of Crumpton et al. [1995] 
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which require full continuity of potential across the interface in contrary with the earlier 

schemes based on point-wise flux and potential continuity. They compared their earlier 

flux continuous methods using triangle pressure support (TPS) with the new full 

pressure support  schemes by mapping both formulations onto the more transparent  

control-volume finite element (CVFE, Edwards, 1995, Cai et al., 1997) in the case of a 

spatially cell-wise constant tensor. Moreover the full pressure support method (FPS) 

based on bilinear potential approximation at each sub-volume were introduced in the 

same paper. TPS were shown to have a reduced CVFE quadrature range and leading to 

decoupled (strongly oscillatory) solutions for very anisotropic full permeability tensors. 

While quadrature flexibility of FPS enjoying full CVFE quadrature range allows to 

minimise the spurious oscillations in discrete potential solution. Single-parameter 

family of TPS and FPS schemes were extended by Edwards and Zheng [2010] to more 

robust double-parameter families of flux continuous schemes by allowing use of 

different quadrature points on individual sub-interfaces. They have shown that full 

tensor effects with large off-diagonal values can be properly tackled with appropriate 

choice of quadrature points leading to resolved solutions with minimal oscillations. 

Also the extension of flux continuous schemes (TPS and FPS) to multi-parameter 

families of schemes for 3-D problems has been presented by Edwards and Zheng 

[2011].  

 

Chen et al. [2008] have ascribed the non-physical solutions of MPFA O-method to its 

non-efficiently accurate approximation of potential gradients (in particular y ) within 

sub-volumes. The oscillations would be more severe for large grid aspect ratios (large 

grid divisions in horizontal direction), because a constant linearly interpolated gradient 

between cell centre and the ending point of one of its surrounding sub-interfaces is 

second order accurate only along the segment connecting points used in gradient 

calculation. Propagation of this gradient into the whole sub-volume leads to a poor 

gradient approximation especially close to other mid-interface when xy  is of order or 

greater than
1( , )Max x y   . To achieve more precise potential gradients, they developed 

an enriched version of MPFA (EMPFA) which considers the potential at central point of 

interaction region as another temporary unknown. The potential is interpolated either 

bilinearly within each sub-volume or linearly within each triangle between central point, 

cell centre and the ending point of one of its surrounding sub-interfaces. Zero 
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divergence condition is enforced on central point to give auxiliary equation required for 

deleting added temporary unknown.  

 

It seems that promoted accuracy of EMPFA obtained by increasing the dividing points 

and continuity conditions influences both the convergence and monotonicity matters. 

Higher convergence rates for potential and flux for EMPFA have been reported by Chen 

et al. [2008] compared with MPFA O-method. On the other hand, the monotonicity 

region of EMPFA was shown to be comparable or narrower from that O-method and 

narrower than that of L-method by Aavatsmark [2008]. However as an important 

advantage for a highly anisotropic full permeability tensor which lies outside of 

monotonicity regions of all methods, EMPFA yields much less amplified oscillations. 

This provides an evidence of robustness of EMPFA to leave more physically 

meaningful solutions for very wide range of anisotropy and grid aspect ratio. But in 

further studies performed by Aavatsmark [2008], EMPFA led to strongest boundary 

unphysical extrema for a model with no-flow boundary conditions among variants of 

MPFA method. This can be attributed to the fixed continuity points on sub-interfaces 

(their starting and ending points) and we believe that optimised choice of continuity 

points along sub-interfaces can reduce boundary extrema. This idea is motivated by 

minimal oscillations observed in solution of models having no-flow boundary 

conditions when FPS with anisotropic quadrature points is used (Edwards and Zheng, 

2010). In this thesis we will use an extended version of EMPFA by applying flexible 

continuity points (idea inspired from FPS method). 

 

It is worth pointing out that there are some other schemes from class of locally 

conservative methods for solving elliptic differential equation of mass conservation in 

porous media. Mimetic finite difference (MFD) developed by Shashkov and Steinberg 

[1996] and Hyman and Shashkov [1997] shows promising results for very anisotropic 

highly heterogeneous media. However undetermined monotonicity condition and the 

higher computational cost in contrast with MPFA methods (Alpak, 2010) still has 

remained unresolved. Mixed finite element method (Arbogast et al., 1997, Chou et al., 

2001) has been successfully tested on very distorted 2-D grids, but due to additional 

degree of freedom, it is computationally expensive. Klausen and Russell [2004] have 
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presented comprehensive study of relationships between some these locally 

conservative schemes in terms of their common postulating foundations and method of 

solution.  

 

4.3 Extended EMPFA for General 2-D Quadrilateral Cells 

 

4.3.1 Bilinear Potential Approximation 

In general each two-dimensional sub-volume Ω is regarded as the convex area bounded 

between its vertices. Set of vertices for each sub-volume (SV) includes three or four 

points (Ai) arranged in anti-clockwise order: 

,   i

i

SV A SV                                (4.16). 

A sub-volume of quadrilateral shape can be mapped into a square with unit edges called 

standard reference element. The rule of such a mapping attributes each point inside the 

quadrilateral (located in (x,y) plane) with a unique point inside the unit square (located 

in (ξ,η) plane). It is postulated that: 

 Mapping preserves the order of corner points. 

 Left most and lowest borders of the mapped unit square coincide with the 

principal axes of (ξ,η) plane. 

 

 

Figure 4.9: Mapping quadrilateral from the computational space into the logical space 
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Thus: 

 A1(x1,y1) is mapped onto A1(0,0) in (ξ,η) plane. 

 A2(x2,y2) is mapped onto A2(1,0) in (ξ,η) plane. 

 A3(x3,y3) is mapped onto A3(1,1) in (ξ,η) plane. 

 A4(x4,y4) is mapped onto A4(0,1) in (ξ,η) plane. 

 

Bilinear interpolation can be employed to determine a unique point in (x,y) plane 

corresponding to an arbitrary point (ξ,η) inside the standard reference element.  

      1 2 3 41 1 1 1             r r r r r                                                    (4.17) 

Similarly flow potential inside the sub-volume can be obtained from a linear 

combination of flow potentials at vertices, where the coefficients are bi-linearly related 

to local parametric coordinates (ξ,η).  

      1 2 3 41 1 1 1                                  (4.18) 

Rearranging Eq. 4.17 and remembering r=(x,y), one can find the mapping expression 

for x and y coordinates.  

      

      
1 2 3 4

1 2 3 4

1 2 1 4 1 1 3 2 4

1 2 1 4 1 1 3 2 4

b b b b

a a a a

x x x x x x x x x x

y y y y y y y y y y

  

  

         




        


                                      (4.19)   

Eq. 4.19 provides the definitions for the coefficients of bilinear mapping relations for 

each of computational coordinates:  

 ,  0,1,2,3ia i   for x coordinate 

 ,  0,1,2,3ib i   for y coordinate. 

 

4.3.2 Bilinear Approximation of Potential Gradient 

It is desired to express potential gradient at any point inside the sub-volume or on its 

borders as a function of potentials at vertices. Considering Eq. 4.18, directional 
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derivatives of flow potential in original coordinates (x,y) and logical coordinates (ξ,η) 

are interrelated through the Jacobian matrix of coordinate transformation (

     , ,
,

x y
x y

 
  J ). Jacobian matrix is expressed as: 

 ,

x y

x y
x y

 

 

  
  
 
  

   

J                                                                                                (4.20). 

Thereafter gradient of flow potential in (x,y) coordinates is obtained by: 

 
1

det

y y

x

x x

y

  

  

     
      

    
      

           

J
                                                                      (4.21). 

Directional derivatives of flow potential in (ξ,η) coordinates are computed from Eq. 

4.18 and substituted in Eq. 4.21 to end up with Eq. 4.22 which relates potential gradient 

to the potentials at the sub-volume vertices  1 2 3 4, , ,
T

V     Φ : 

 

   

   

2 4

1

2

3

4

1 11

1 1det

V

y y

x

x x

y

    

   

 



    
                  

                        

Ψ Φ

J
                     (4.22). 

For a specific point (ξ,η), matrix 2 4Ψ  (introduced in Eq. 4.22) is a function of shape of 

sub-volume only, which shows its deviation from a standard unit square. Recalling 

bilinear interpolation of x and y from Eq. 4.4, matrix 2 4Ψ  can be rewritten with a linear 

dependence on local parametric coordinates (ξ,η): 

0 1 2   Ψ Ψ Ψ Ψ                                                                                                  (4.23), 

in which matrices 2 4

i

Ψ  are defined as: 

 
 

 
2 3 3 20

2 3 3 2

0

0

b b b b

a a a a

  
  

   
Ψ                                                                           (4.24),    



Chapter 4: Extended Enriched Multipoint Flux Approximation Method 

 

94 
 

 
   

   
2 4 2 4 2 21

2 4 2 4 2 2

b b b b b b

a a a a a a

    
  

    
Ψ                                                             (4.25), 

   

   
3 4 3 3 3 42

3 4 3 3 3 4

b b b b b b

a a a a a a

    
  

    
Ψ                                                              (4.26). 

Also determinant of Jacobian matrix is expressed in terms of ai and bi coefficients.  

       2 3 2 3 2 4 2 4 4 3 4 3

0 1 2

det

J J J

a b b a a b b a a b b a      J                                              (4.27) 

Finally one can come up with Eq. 4.28 for the potential gradient at any point inside the 

quadrilateral sub-volume: 

 
0 1 2

0 1 2 V
J J J

 

 

 
 

 

Ψ Ψ Ψ
Φ Φ                                                                                       (4.28). 

 

4.3.3 Flux Reconstruction on Sub-volume Faces 

Denoting ∂Ω as the boundary of sub-volume and Γ as an arbitrary segment on ∂Ω, flux 

passing through Γ can be computed from Eq. 4.29: 

 .f d


    K n                                                                                                    (4.29). 

In which n is the unit normal vector on Γ orienting in outward direction. For a tangential 

element dΓ on ∂Ω, one can write: 

d d d    n n n                                                                                                  (4.30).   

Where 
n and 

n are the unit normal vectors drawn on segments with constant   and   

respectively.  

 

 
2 4

2 4

TT
y b b

x a a









    
    

   
n                                                                                   (4.31)                 

 

 
3 4

3 4

TT
y b b

x a a









  
    

     
n                                                                                    (4.32) 
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Using Eq. 4.28 and Eq. 4.30, the flux passing through segment Γ is expressed as:  

0 1 2

1
Vf d d

J J J
  

 


 
       

 Λ Λ Φ                                                          (4.33), 

where: 

  0 1 2

1 4    

  Λ Λ Λ Λ                                                                                         (4.34), 

  0 1 2

1 4    

  Λ Λ Λ Λ                                                                                         (4.35), 

, 0,1,2i i i

  Λ n KΨ                                                                                                (4.36), 

, 0,1,2i i i

  Λ n KΨ                                                                                                (4.37). 

i

Λ  and
i

Λ are functions of geometry of sub-volume and the corresponding segment Γ. 

Figure 4.9 shows that at any faces of standard reference element, one of the logical 

coordinates (ξ or η)is constant. Thus in Eq. 4.33 integration is only performed on 

variable local coordinate over the interval [0,1]: 

0 1 21

0 1 2

0

0 1 21

0 1 2

0

      constant

      constant

V
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J J J
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J J J
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 
 

 

 
 

 

   
   

    
 

  
      





Λ Λ Λ
Φ

Λ Λ Λ
Φ

                                                (4.38). 

 

Here it is desired to construct the flux on any of OMi segments shown in figure 4.5 

which are the common faces between the sub-volumes. Chen et al. [2008] has proposed 

to take the integrand in the Eq. 4.38 out of integral and compute it in logical coordinates 

at the midpoints of interfaces between cells included in the interaction region (Mi). This 

scheme can be regarded as a particular case of flux continuous FPS scheme developed 

by Edwards and Zheng [2008, 2010, 2011] which fulfils the full potential continuity 

along the sub-interfaces. This method picks an arbitrary point on OMi segment 

(excluding point O) called quadrature point and then enforces the fluxes coming from 

both sub-volumes sharing segment OMi to satisfy mass conservation condition. Such a 

family of methods can be referred to as the “flexible point-wise EMPFA” schemes. 
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Table 4.1 shows the fluxes calculated with the flexible point-wise EMPFA scheme, 

when Mi is the quadrature point. Depending on the position of point Mi in the 

trigonometric order of corner points of corresponding sub-volume, it is assigned 

different pairs of local parametric coordinates. Thus fluxes are given for any possible 

pairs of (ξ,η) for point Mi. 

 

ξ η f 

0 0   0 2 0

VJ  Λ Λ Φ  

0 1     0 2 0 2

VJ J   Λ Λ Φ  

1 0     0 1 0 1

VJ J   Λ Λ Φ  

1 1     0 1 2 0 1 2

VJ J J      Λ Λ Λ Φ  

0 0   0 1 0

VJ  Λ Λ Φ  

1 0     0 1 0 1

VJ J   Λ Λ Φ  

0 1   0 2 0 2

VJ J   Λ Λ Φ  

1 1   0 1 2 0 1 2

VJ J J      Λ Λ Λ Φ  

 

Table 4.1: Point-wise fluxes calculated at point Mi 

 

Fluxes given in table 4.1 are the special cases of the double family of FPS schemes 

(Edwards and Zheng, 2008, 2010) with the maximum values of flux quadrature 

parameters. We denote the coordinates of flexible quadrature points within the logical 

space with ˆ ˆ( , )   to differentiate it from the axes of coordinates in logical space ( , )  . 

Flux quadrature parameters can vary from zero to unity and are given their maximum 

values ( ˆ 1   and ˆ 1  ), when the point-wise EMPFA scheme at point Mi is utilised. 

Fluxes obtained with FPS scheme for each sub-interface on its both facets inside two 

sub-volumes are given in table 4.2, in which iSI and iSV respectively stands for sub-

interface index and sub-volume index. Figure 4.10 shows the position of flux quadrature 

parameters on sub-interfaces. 
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Figure 4.10: Flux quadrature parameters  ˆ ˆ,   for FPS scheme 

 

iSI iSV F 

1 
1     0 1 2 0 1 2ˆ ˆ  VJ J J       Λ Λ Λ Φ  

2     0 2 0 2ˆ ˆ  VJ J    Λ Λ Φ  

2 

2       0 1 2 0 1 2ˆ ˆ1 1  VJ J J         Λ Λ Λ Φ  

3       0 1 0 1ˆ ˆ1 1  VJ J      Λ Λ Φ  

3 

3       0 2 0 2ˆ ˆ1 1  VJ J      Λ Λ Φ  

4       0 1 2 0 1 2ˆ ˆ1 1  VJ J J         Λ Λ Λ Φ  

4 

4     0 1 0 1ˆ ˆ  VJ J    Λ Λ Φ  

1     0 1 2 0 1 2ˆ ˆ  VJ J J       Λ Λ Λ Φ  

 

Table 4.2: Flexible point-wise fluxes calculated at flux quadrature position points ( ̂  and̂ ) 

 

On the other hand f can be obtained from integrating on variable parametric coordinate 

(ξ or η) over the interval [0,1]. Local mass conservation implies that net flux passing 

through the common face between two sub-volumes is zero. Equating integrated fluxes 

from both sides of OMi segment, “face-wise” family of EMPFA schemes are obtained. 

 

̂  

 

f4 

̂  

f3 

f2 

f1 

C4 M3 C3 

M2 

O 

M4 

C2 

M1 

̂  

̂  

 

C1
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In table 4.3 and table 4.4, formulas for the face-wise fluxes constructed on OMi 

segments are given per constant values of ξ and η respectively. 

 

ξ F 

0 

2 0J 
 

0 2 0 0 2
0 2

2 0 2 0

1
ln 1 ln V

J J J J J

J J J J
 

         
         

       

Λ Λ Φ  

2 0J 
 

0 2

0 0

1 1

2
V

J J
 

    
     

    
Λ Λ Φ  

1 

2 0J 
 

 
0 1 2 0 1 0 1 2

0 1 2

2 0 1 2 0 1

1
ln 1 ln V

J J J J J J J J

J J J J J J
  

            
                  

Λ Λ Λ Φ  

2 0J 
 

 
 

0 1 2

0 1 0 1

1 1

2
V

J J J J
  

                

Λ Λ Λ Φ  

 

Table 4.3: Face-wise fluxes calculated on OMi segments with constant ξ 

 

η f 

0 

1 0J   

0 1 0 0 1
0 1

1 0 1 0

1
ln 1 ln V

J J J J J

J J J J
 

         
         

       

Λ Λ Φ  

1 0J   
0 1

0 0

1 1

2
V

J J
 

    
     

    
Λ Λ Φ  

1 

1 0J    
0 1 2 0 2 0 1 2

0 2 1

1 0 2 1 0 2

1
ln 1 ln V

J J J J J J J J

J J J J J J
  

            
                  

Λ Λ Λ Φ  

1 0J    
 

0 2 1

0 2 0 2

1 1

2
V

J J J J
  

                

Λ Λ Λ Φ  

 

Table 4.4: Face-wise fluxes calculated on OMi segments with constant η 

 

4.3.4 Enforcing the Full Flux Continuity Conditions on Sub-interfaces  
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Each of quadrilateral sub-volumes of interaction region are independently mapped into 

the standard reference elements. Thereafter each sub-volume has its own local 

parametric coordinates. Sub-volumes are indexed in the trigonometric order starting 

from the lowest most left sub-volume. Sub-volume Ωi will be mapped into a standard 

reference element in (ξ
i
,η

i
) plane. Interaction region is built on a node shared by four 

cells unless for non-matching cells where central node is the common vertex of three 

cells. We derive the flux continuity equations for interaction regions built on matching 

cells and later present the modified equations for interaction regions built on non-

matching cells.  

 

For each interaction region, degree of freedom (DoF) is defined as the number of 

interfaces converging at its central node. Also number of cells sharing the central node 

as their common vertex is represented with DoF
C
. Indexing of intersecting sub-

interfaces follows the trigonometric order starting with sub-interface shared between Ω1 

and Ω2. Thus each sub-interface Γi is defined as the border between two immediate 

adjacent sub-volumes in their trigonometric order: 

i i I                                                                                                                (4.39), 

where: 

1   

0      

C

C

i i DoF
I

i DoF

  
 


                                                                                                 (4.40). 

Satisfying mass conservation on each interface immediately implies: 

i i
i I

 
 
f f                                                                                                              (4.41). 

Γ1 is shared by Ω1 and Ω2. On both sub-volumes, the value of first local coordinate (ξ
i
)

 
is 

constant over this sub-interface. Table 4.5 shows the corresponding constant values of ξ
i
 

or η
i
 for the aspect of each sub-interface located in sub-volume Ωi. Pair of local 

parametric coordinates for a sub-interface obtained from Table 4.5 is then used to 

determine the relevant flux term from tables 4.1 or 4.2 (for the flexible point-wise 

EMPFA scheme) or from tables 4.3 and 4.4 (for the face-wise EMPFA scheme). 
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iSI iSV=i ξ
i
 η

i
 

1 
1 1 0-1 

2 0 0-1 

2 
2 0-1 1 

3 0-1 0 

3 
3 0 0-1 

4 1 0-1 

4 
4 0-1 0 

0 0-1 1 

 

Table 4.5: Local parametric coordinates for both facets of each sub-interface 

 

We denote CΦ and FΦ  as the vector of potentials at cell centres and interfaces 

respectively. Also O  is denoted as the potential at central point of interaction region. 

Using these notations and writing down the flux continuity condition for all four sub-

interfaces inside the interaction region, one would come up with a system of four 

equations which relates CΦ to FΦ  and O .  

1 1 2 2C F O C F O      A Φ BΦ L A Φ B Φ R                                                           (4.42) 

 

4.3.5 Enforcing the Zero Divergence Condition on the Centre of Interaction 

Region  

A1, A2, B1, B2 are 4 4  matrices and L,R are 4 1 vectors. It is desired to calculate flux 

as a linear combination of potentials at cell centres only. Thus potentials at interfaces 

and central point ( FΦ , O ) should be expressed in term of potentials at cell centres (

CΦ ). Another equation is needed to eliminate all five temporary unknowns

 
1 2 3 4
, , , ,F F F F O     . Edwards and Zheng [2008, 2010] and et al. [2008] have 

proposed to obtain the needed auxiliary equation by demanding potential and flux 

continuity at the centre of interaction region O. When point O is neither a source nor a 

sink, differential form of continuity equation is written as:  
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 . 0
O

   K                                                                                                       (4.43). 

Based on Gauss divergence theorem, divergence of vector  K  at point O can be 

reinterpreted as the volume density of its normal outward flux at very small control 

volume surrounding point O. Thus one can write:  

 .

lim 0O

O
O

O

d

V



 


  




 K n

                                                                                       (4.44). 

Thereafter zero divergence condition can be approximately satisfied over any small 

control volume surrounding point O. We construct a control volume ΩO bounded 

between surfaces connecting starting and ending points of sub-interfaces (Mi). Zero 

divergence condition on ΩO would be satisfied on ΩO when it shrinks to point O. 

 lim . 0
O

O

O
d

 


    K n                                                                                          (4.45) 

ΩO tends to point O when its corner points (Di) slip along the sub-interfaces from points 

Mi towards centre of interaction region.  

 

 

Figure 4.11: Left: Control volume ΩO surrounding point O shown with dotted line, Right: ΩO 

shrinking to point O shown with dotted lines 
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Eq. 4.45 implies that the net mass flux passing through the borders of ΩO is zero. 

Thereafter left hand side of Eq. 4.45 is discretized and reinterpreted as the summation of 

fluxes at Di Di+1 segments.  

   
1 2 2 3 3 4 4 0

o o
o

D D D D D D D D
o o

lim . lim 0
   



        K n f f f f                                   (4.46)  

Segment Di Di+1 is inside the (i+1)
th

 sub-volume and parallel to one of its diagonals. 

Denoting  1 2 3 4, , ,
T

i i i i i

V     Φ as the potentials at vertices of i
th

 sub-volume, 

contribution of (i+1)
th

 sub-volume to the flux at point O can be expressed as the flux 

passing through Di Di+1 when Di and Di+1  approach to each other and to point O. 

 1
1 1

1

1 1

O D D
D ,D O D ,D O

lim lim
deti i

i i i i

i

i i

Vd d  


 



 

 


  
       

  


Ψ
f f K n n Φ

J
                        (4.47)  

Points Di are chosen such that at each sub-volume the relative distances of O to Di and 

Di+1 in logical space are equal. Also points Di and Di+1 approach to O on lines with 

constant ξ
i
 or η

i
. Therefore the normal vector drawn on segment Di Di+1 would comprise 

both unit normal vectors equally and is located on ξ
i
=η

i 
line. 

  1
1

1

1

1

O D D
D ,D O

D DO

lim
det i i

i i

i i

i

i

V d
















   
     

   


Ψ
f K n Φ

J
                                                  (4.48)        

          

 

Figure 4.12: Normal outward vector drawn on segment Di Di+1
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Using Eq. 4.48 flux contributions from all sub-volumes are obtained and put into Eq. 

4.46: 

 

 
 o

o

4

o
1

O

lim . 0
det

i

V

i


 

 

   
         

   
 

Ψ
K n K n Φ

J
                                      (4.49). 

Term ε approaches zero as ΩO diminishes to O; but for a very small ΩO with non-zero 

volume, ε is not zero. Thus strong zero divergence condition is reduced to an 

approximate condition which is the fifth equation needed for determining temporary 

unknown potentials in terms of cell potentials. 

 

 
 

4 4

O

1 1
O

ˆ 0
det

i

i

V

i i

f
 

   
      

   
 

Ψ
K n Φ

J
                                                                                  (4.50) 

Where O
ˆ if  is the specific flux entering point O per length of segment Di-1Di. From 

Figure 4.3 it can be easily recognised that normal vector n is obtained from vector 

summation of two unit vectors orienting outward the point O. Each of these unit vectors 

are either in the same or in the opposite direction of  , n n . Equations 4.20, 4.23, 4.31, 

4.32 show matrices Ψ , J and also normal unit vectors  , n n  are all dependent on 

local parametric coordinates at point O. Remembering the trigonometric order of sub-

volume vertices, point O gets different pairs of (ξ
i
,η

i
) at each sub-volume.  

 

i 
i

O  
i

O  n
 O

ˆ if
 

1 1 1    n n

 

    0 1 2 0 1 2 0 1 2

VJ J J             Λ Λ Λ Λ Λ Λ Φ  

2 0 1   n n

 

    0 2 0 2 0 2

VJ J       Λ Λ Λ Λ Φ  

3 0 0   n n
 

  0 0 0

VJ  Λ Λ Φ  

4 1 0    n n

 

    0 1 0 1 0 1

VJ J        Λ Λ Λ Λ Φ  

 

Table 4.6: Local parametric coordinates for centre of interaction region (point O) and 

corresponding specific fluxes
 O

ˆ if
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4.3.6 Modified Continuity Equations for Non-matching Cells 

Once fitting cut cells to the embedded boundaries, it is very often to come up with non-

matching cells. Such cells are also likely to turn up along the fault plane, when cells on 

fault hanging wall are displaced upward or downward. Interaction regions built on 

common vertex of non-matching cells comprise sub-volumes from three cells separated 

with three sub-interfaces. Cells interconnecting through at least one of these interfaces 

are not natural neighbours based on the numbering of Cartesian cells. Figure 4.13 shows 

a typical case of non-matching cells. However there are more complex configurations of 

non-matching cells like non-neighbour connections over the fault plane or the adjacency 

of a large cell on one of its facets to several smaller cells (case in Local Grid 

Refinement). Such cases can be conveniently treated via the general procedure 

explained in this section. In all cases, interaction region is formed by connecting the 

centre of larger cell on one facet to the centres of smaller cells on another facet and then 

to mid-points of three interfaces shared by these three cells. 

 

 

Figure 4.13: Interaction region including non-matching cells shown with dotted lines 

 

Middle points of interfaces of cell 1 shown in figure 4.13 (M1 and M3) in most cases are 

not on the same straight line. In rare cases point O might be a breakage point, but still 

1 3M OM is very close to 180°. Thus sub-volume C1M1OM3 is a degenerated 

quadrilateral. It is divided into two triangular sub-volumes along the segment C1O. 

Linear approximation of potential is then applied on C1M1O and C1OM3. Each 

triangular sub-volume should be mapped into a triangle with unit edges in logical space 

which is considered as the standard reference element.  
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Figure 4.14: Mapping triangle from the computational space into the logical space 

 

Similar assumptions to those proposed for mapping of a quadrilateral would be made. 

Thus: 

 A1(x1,y1) is mapped onto A1(0,0) in (ξ,η) plane. 

 A2(x2,y2) is mapped onto A2(1,0) in (ξ,η) plane. 

 A3(x3,y3) is mapped onto A3(0,1) in (ξ,η) plane. 

Linear expansions of r and Φ inside the triangular sub-volume in terms of ξ and η would 

have the following forms: 

  1 2 31        r r r r
                                                                                       (4.51), 

  1 2 31            
                                                                                 (4.52). 

Eq. 4.51 can be decomposed into two linear interpolations for x and y: 

   

   

1 2 3

1 2 3

1 2 1 3 1

1 2 1 3 1

b b b

a a a

x x x x x x

y y y y y y

 

 

     




    


                                                                             (4.53). 

 

Similar procedure to bilinear potential approximation is followed to produce potential 

gradient inside the triangle as a linear combination of potentials at vertices. 

det( )
V 

Ψ
Φ Φ

J
                                                                                                        (4.54) 

A1

A2

A3

(x,y)

(ξ,η) 1

A1

A3

A2

1
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Where unlike the bilinear potential approximation, matrix Ψ  and Jacobian matrix J  are 

functions of coefficients of (x,y) linear interpolation and have dependency neither on ξ 

nor η. In general bilinear interpolation for this case might still work in some cases.  

 

 
2 3 3 20

2 3 3 2

b b b b

a a a a

  
   

   
Ψ Ψ                                                                           (4.55) 

  2 2

3 3

,

yx
a b

x y
a byx

 

 

 
    

    
   

  

J                                                                       (4.56) 

Depending on trigonometric order of triangle vertices, sun-interfaces (in figure 4.13: 

segments OM3 and OM1) lie on one of two principal axis of logical space or on the 

hypotenuse of standard reference triangle. Sub-interfaces linear flux then can be 

expressed as: 

0 01 1

0 0

0 0

Vd d
J J

 
 

 
    

 
 
Λ Λ

f Φ                                                                                                    (4.57). 

Where 
0

Λ  and 
0

Λ  are defined with equations 4.36 and 4.37. One can simply attain Eq. 

4.58 flux derived with face-wise EMPFA scheme. Using flexible point-wise EMPFA 

with quadrature point at ending point of sub-interface (the middle point of primal 

interface) would lead into the same equations. 

 

 

0

0

0

0

0 0

0

              0

             0

     1

V

V

V

J

J

J





 





 

 



 

 

 
  


Λ
Φ

Λ
f Φ

Λ Λ
Φ

                                                                                             (4.58)  

Once writing down flux continuity condition for three sub-interfaces, one would come 

up with an equation similar to Eq. 4.20 but with coefficient matrices of different 

dimensions: 

3 3 3 1 3 3 3 1 3 1 3 3 3 1 3 3 3 1 3 1

1 1 2 2C F O C F O

               A Φ B Φ L A Φ B Φ R                         (4.59). 
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To eliminate potential at point O, again the zero convergence condition is applied on an 

auxiliary control volume surrounding the centre of interaction region. Figure 4.15 shows 

how such a control volume can be built for non-matching cells. 

  
 

 

Figure 4.15: Auxiliary D1D2D3D4 control volume used to satisfy zero convergence at O 

 

Arbitrary Di points are selected on OMi segments such that i iOD OM , except D4 

which is located at distance 1OC  from the centre of interaction region. Therefore each 

DiDi+1 segment is parallel to MiMi+1 segment in logical space, where M4 is replaced 

with C1 for non-matching cells. This fact implies that normal vector on segment DiDi+1 

would be equated to normal vector on  MiMi+1 segment which is a vector combination 

of unit normal vectors ( n and n ). Then by letting   approaches to zero, Eq. 4.50 can 

be applied as the fifth equation needed. This general procedure can be implemented for 

full tensor and general geometry problems. However a general FPS scheme for cell-

centred triangular grid (with possible non-matching cells) has been developed by Friis 

and Edwards [2011]. 

 

4.4 Discussion of Monotonicity and Stability of extended EMPFA 

All the control volume methods explicitly express flux terms of continuity equation in 

porous media as the linear combination of cell potentials in cell centred grids (or vertex 

potentials in corner point grids). Equation  . Q  K with non-negative 

D4

D3

M3

C1

M1
C2

C3

D1

D2

M2



Chapter 4: Extended Enriched Multipoint Flux Approximation Method 

 

108 
 

Dirichlet (or first-type) boundary condition ( 0   on   ) or Neumann boundary 

condition (   cte on   ) is discretized, leading to a system of equation: 

AΦ=B                                                                                                                     (4.60), 

where A and B  matrices are the discretized format of operator  .   K  and the 

source term (Q) over the computational grid respectively. As Aavatsmark [2002], 

Nordbotten [et al 2005, 2007] and Lipnikov et al. [2011] stated, discretized system of 

equation would satisfy monotonicity condition if and only if the inverse of matrix A  

has elements all greater than zero. Satisfying 
1

, 0i j

 A  would ensure obtaining non-

negative potentials if a positive source term and boundary condition has been imposed. 

Although a positive 
1A  does not guarantee elimination of all spurious oscillations, but 

for moderate anisotropic heterogeneous permeability field on grids with small aspect 

skew, it gives stable potentials. However as Aavatsmark [2002] and Eigestad et al. 

[2002-A] stated, instability may happen for strong permeability anisotropy and 

heterogeneity and high grid skewness. A sufficient condition for preventing the spurious 

extrema presented by Edwards and Rogers [1998], Eigestad et al. [2002-A], Edwards 

and Zheng [2008] and Lipnikov et al. [2011] is that A  is an M-matrix. Positive definite 

or monotone matrices with non-positive off-diagonal elements are M-matrices. 

Aavastmark [2002], Nordbotten [et al 2007] have conjectured that M-matrix condition 

is too restrictive for MPFA O-method and positive off-diagonal elements might be 

present unless grid is K-orthogonal (Heinemann et al., 1991). However whenever A is 

strictly diagonally dominant for at least one row and A  is irreducible, following set of 

conditions is sufficient for A to be an M-matrix.  

,

,

,

0 

0 ,   

0 

i i

i j

i j

i

i

i j j i

i


 


  

  



A

A

A

                                                                                                (4.61) 

 

According to Edwards and Zheng [2008], local maximum principle (Caffarelli and 

Carbe, 1995) can be fulfilled with an M-matrix which ensures the stability of solution. 

Because in absence of source terms ith potential is obtained from 
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   , , ,

( )

1 i i i j i j

j i j

 A A  which shows 
,i i is a weighted average of potentials at adjacent 

cells. Clearly weights are positive and sum to unity. Thus non-physical solutions are 

prohibited, because 
,i i  is bounded between minimum and maximum potential in 

neighbourhood: 

, ,

min , max

i i i i

i i                                                                                                    (4.62). 

 

Several schemes were introduced to reduce sensitivity to spurious oscillations where the 

M-matrix conditions are violated. Among them, flux and matrix splitting scheme 

introduced by Edwards [1999, 2000, 2001] and Aavatsmark [2002] and developed more 

by Pal and Edwards [2006-B, 2006-C] were shown to yield stable results for highly 

anisotropic full permeability tensors. In this method contributions of flux terms related 

to immediate neighbours are implicitly incorporated into system of equation, while the 

explicit cross flux terms are inserted in system of equation. As this method creates a 

similar architecture of solution matrix to that for TPFA, the restrictions on monotonicity 

are alleviated. Moreover the solution matrix of resulting semi-implicit scheme is sparser 

and has smaller condition number resulting in higher computational efficiency. 

Generally flux splitting schemes are more preferable in contrast with grid optimisation 

techniques (Mlacnik and Durlofsky, 2006) because of imposed maximum principle. In 

this research we employ flux splitting technique to improve stability and consistency of 

results for problems suffering restricted M-matrix conditions. More detailed information 

about flux splitting method is given in Appendix A.  

 

4.4.1 M-matrix Condition of extended EMPFA for Spatially Constant 

Permeability Tensors on Parallelogram Grid 

As the parametric determination of fluxes for varying permeability tensors is tedious, 

most studies of monotonicity or M-matrix conditions have been limited to spatially 

constant K tensors. Monotonicity is strictly a one-dimensional concept when discussing 

the numerical solution, so it is not appropriate for analysing the solutions of multi-

dimensional problems, as the saddle points might occur. However the only known 

condition that can ensure a solution consistent with a physical solution that is absent of 
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spurious oscillations is the M-matrix condition.  The crucial conditions for a general 

single parameter family of MPFA schemes to have M-matrices were first presented in 

Edwards [1995] and Edwards and Rogers [1998]. While the same single family 

parameter M-matrix conditions are presented by Nordbotten [et al 2007], the earlier 

presentations of the conditions are not cited by Nordbotten [et al 2007]. These 

conditions are derived cell-wise allowing a cell-wise constant variation in the tensor 

(Edwards, 1995), this is also explained in Edwards and Zheng [2008] in the context of 

single-parameter family of FPS schemes. More general M-matrix conditions are 

presented in Edwards and Zheng [2010] for double-parameter family in 2-D and in 

Edwards and Zheng [2011] for multi-family M-matrix conditions in 3-D. Nordbotten [et 

al 2007] investigated the solution matrices for general 9-point schemes in homogenous 

or inhomogeneous media and derived the sufficient criteria of discrete monotonicity. 

Although apparently these criteria are less restrictive than general M-matrix conditions, 

but they can only ensure that a positive solution is obtained for a positive 
1A . Crucially 

it has not been proven and is generally not known that a scheme with just a monotone 

matrix will yield a solution free of spurious oscillations; it means that just monotonicity 

does not yield a local maximum principle as for an M-matrix. However as shown in 

Edwards and Zheng [2010], the monotone property is enough to prevent fundamental 

decoupled solution modes occurring, which are an important source of non-physical 

solutions. Moreover the criteria derived by Nordbotten [et al 2007] are non-linear with 

respect to off-diagonal elements of A . This complicates the monotonicity analysis of 

MPFA schemes.  

 

In our research, restrictions imposed on M-matrix conditions by grid skewness and non 

K-orthogonality are to some extent mitigated. Because the proposed Cartesian Cut Cell 

approach would remove the necessity to conform the gridding to the geological layering 

and allows to create a Cartesian grid with axes overlapping with principal axes of 

permeability. Thus grid can be K-orthogonal mostly everywhere and the chance for 

disposing of non-physical solutions would be considerably increased. Nevertheless this 

does not apply to upscaled models from very heterogeneous fine scale permeability 

maps or models with sharply-dipped layers. Moreover in case of non-localised 

geological layering with too many layers of different orientations, Cartesian Cut Cell 

approach would leave grid with cells mostly deformed similar to the unstructured 
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gridding. Thus K-orthogonality is not preserved and M-matrix conditions are still 

restrictive for getting physical solutions.  

 

Consider uniform parallelogram grid, one can recognise that bilinear relation of 

computational and logical coordinates on each cell’s interface vanishes to a linear 

relation between corresponding coordinates ( 1 2 3x a a a     and 1 2 3y b b b    ). It 

means that mapping first rescales and normalizes the computational grid, then rotates 

the principal axes of grid to a rectangular grid and finally translates it such that first 

point is located on origin of coordinates in logical space. In effect the non-linear 

couplings of transmissibility term are avoided. Three auxiliary parameters U, V, W are 

defined as following which recall the elements of transmissibility matrix in uniform 

reference space (Eq. 4.7): 

 

 

 

2 2 0

3 3 3 3

2 2 0

2 2 2 2

0

2 3 3 2 2 3 2 3

2

2

( ) ( )

h v hv

v h hv

hv v h

U b K a K a b K J

V a K b K a b K J

W K a b a b a a K b b K J

  

  

   

                                                        (4.63). 

 Then one can express 
i

Λ  and
i

Λ  for 0,1,2i   from Eq. 4.36 and Eq. 4.37 as: 

 

 

 

0 0

1 0

2 0

0

    

    

J U W U W

J W W W W

J U U U U







   

  

  

Λ

Λ

Λ

                                                                               (4.64). 

 

 

 

0 0

1 0

2 0

0

      

   

J V W W V

J V V V V

J W W W W







   

  

  

Λ

Λ

Λ

                                                                               (4.65). 

 

It can be easily shown that for this simple case face-wise EMPFA scheme is equivalent 

to flexible point-wise EMPFA with quadrature points at the middle of sub-interfaces (

ˆ 1 2   and ˆ 1 2  ). Thus we analyse the M-matrix condition for point-wise EMPFA 

with arbitrary quadrature points. The resulting A, B, C, D, L, R matrices mentioned in 

Eq. 4.20 are obtained as followings: 
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 
 

ˆ(1 ) 0 0 0

ˆ0 1 0 0

ˆ0 0 1 0

ˆ0 0 0 (1 )

U

V

U

V









 
 

 
  

  
 

  

A                                                   (4.66), 

 
 

ˆ ˆ(1 ) 0 0

ˆ ˆ1 0 0

ˆ ˆ0 1 0

ˆ ˆ0 0 (1 )

U W U

V V W

U U W

V V W

 

 

 

 

   
 

   
  

   
 

   

B                       (4.67), 

 

 
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ˆ0 (1 ) 0 0

ˆ0 0 1 0

ˆ0 0 0 1

ˆ(1 ) 0 0 0

U

V

U

V









  
 

  
  

 
 

 

C                                                    (4.68), 

 
 

ˆ ˆ(1 ) 0 0

ˆ ˆ0 1 0

ˆ ˆ0 0 1

ˆ ˆ0 0 (1 )

U W U

V W V

U W U

V V W

 

 

 

 

   
 

   
  

   
 

   

D                       (4.69), 

ˆ ˆˆ ˆU W V W U W V W          
 

L                                                        (4.70), 

ˆ ˆˆ ˆU W V W U W V W          
 

R                                                       (4.71). 

 

Writing down the zero convergence condition over the auxiliary control volume would 

lead to: 

 
 

1

2
O FV U V U

U V
 


Φ                                                                          (4.72). 
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By means of Eq. 4.72 dependency of Eq. 4.42 on O  is removed and it is reduced to a 

similar format as the MPFA O-method. Thus the transmissibility matrix can be 

computed from    
-1

T = A + B B - D C- A  and sub-interfaces fluxes are expressed as: 

   

   
   

   

1

2

3

4

ˆ ˆ ˆ ˆ2 2

ˆ ˆ ˆ ˆ2 21

ˆ ˆ ˆ ˆ4 2 2

ˆ ˆ ˆ ˆ2 2

C

C

C

C

U W U W U W U W

V W V W V W V W

U W U W U W U W

V W V W V W V W

   

   

   

   

                                                                

1

2

3

4

f

f

f

f

                                                                                                                                                                                        

(4.73). 

 

A whole cell interface consists of two sub-interfaces from two neighbour interaction 

regions. Thus in order to set up mth row of A , fluxes over 8 sub-interfaces are obtained 

from applying EMPFA on 4 interaction regions built on corner points of mth cell with 

directional indices of (i,j). Assuming nx and ny as the number of divisions in x and y 

directions, one can set up table 4.7 for the non-zero element of mth row of A . This table 

is comparable with tables obtained by Edwards and Zheng [2010] for double-parameter 

family of FPS schemes.   

 

Figure 4.16: Cells in the immediate neighbourhood of mth cell contributing to mth row of A  

 

m
1m

1m

ym n
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Figure 4.17: Orientation angles of main axes of parallelogram grid  ,X Y with respect to the 

Cartesian coordinates  ,X Y  

 

Directional indices Entry of A  Point-wise EMPFA 

 1, 1i j   , 1xm m n A   1 1ˆˆ
4 2

U V W     

 , 1i j   , xm m nA   1 ˆˆ
2

V U V     

 1, 1i j   , 1xm m n A   1 1ˆˆ
4 2

U V W     

 1,i j  , 1m mA   1 ˆˆ
2

U U V     

 ,i j  ,m mA     ˆˆ2 U V U V     

 1,i j  , 1m mA   1 ˆˆ
2

U U V     

 1, 1i j   , 1xm m n A   1 1ˆˆ
4 2

U V W     

 , 1i j   , xm m nA   1 ˆˆ
2

V U V     

 1, 1i j   , 1xm m n A   1 1ˆˆ
4 2

U V W     

 

Table 4.7: Entries of mth row of A  with point-wise EMPFA (quadrature points  ˆ ˆ,   ) 

X

Y

XX


YX


X

Y
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These coefficients are in accordance with the formalism of the double family fluxes 

with Control Volume Finite Element Method (CVFE) developed by Edwards and Zheng 

[2010]. CVFE methods are presented and developed by Edwards [1995, 1998-B, 2000]. 

The local CVFE coordinates  ,   are defined with a bilinear mapping over whole the 

quadrilateral interaction region.  

 

 

Figure 4.18: Local CVFE coordinates defined on built on four cells sharing vertex O 

 

 

Figure 4.19: Flux quadrature points expressed in terms of local CVFE coordinates 
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As shown in figure 4.18, in general CVFE cannot cover the possible irregularities of 

four sub-cells included in the interaction region, when it is used for cell centred grid. 

However for corner point grid, the primal quadrilateral cell is itself an interaction region 

which is conformally is mapped into local CVFE coordinates. Edward and Zheng 

[2008] and Durlofsky [1994] stated that CVFE is locally conservative but does not 

assure the flux continuity when permeability is discontinuous across the interfaces. So 

although CVFE is not well-suited for flow modelling in porous media, but for constant 

permeability fields, but flux continuous schemes can be reformulated in terms of a more 

transparent nine-point CVFE scheme. Edwards and Zheng [2008, 2010, 2011] have 

presented single, double and multiple families of CVFE schemes corresponding to 

isotropic and anisotropic quadrature points respectively. As defined by Edwards and 

Zheng [2010], anisotropy of quadrature points is recognised with non-equal quadrature 

points on sun-interfaces involved in interaction region ( ˆ ˆ  ).  

 

The positive-definiteness of solution matrix ( A ) has been proved by Edwards [1995] 

for those created with CVFE scheme and by Edwards and Pal [2008] for single-

parameter family of MPFA schemes by demonstrating the positivity of corresponding 

discrete cell energy (
TΦ AΦ ) conditioned to a spatially constant elliptic transmissibility 

tensor (
2

12 11 22T T T  or equivalently 2W UV ). Also symmetry of solution matrix can 

be investigated by calculating the corresponding entry of transposed solution matrix (

, ,

T

i j j iA A ) per each off-diagonal entry of mth row of A  given in table 4.7. One can 

diagnose the following set of equalities between four pairs of off-diagonal entries of mth 

row of A , this implies the symmetry of solution matrix.  

, 1 , 1

, ,

, 1 , 1

, 1 , 1

x x

x x

x x

m m n m m n

m m n m m n

m m n m m n

m m m m

   

 

   

 

 






 

A A

A A

A A

A A

                                                                                                (4.74) 

 

In accordance to Edwards and Zheng [2008], flexible point-wise EMPFA scheme 

results in symmetric positive definite solution matrix for constant tensors. According to 
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Edwards and Zheng [2010], the non-positivity of off-diagonal entries is assured by 

holding the following conditions: 

 

 

 

 

, 1

,

, 1

, 1

1 ˆˆ 0
2

1 ˆˆ 0
2

1 1ˆˆ 0
4 2

1 1ˆˆ 0
4 2
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m m
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m m n

m m n

U U V

V U V

U V W

U V W

 

 

 

 





 

 


    


     


     


     


A

A

A

A

                                                                      (4.75).  

The M-matrix conditions derived in Edwards and Zheng [2010] for the double-

parameter family of EMPFA schemes are stated here in Eq. 4.76, where 

11 22 12, ,  U T V T W T  
 
and 2/ˆ,2/ˆ   . 

   
1 ˆˆ ,
2

W U V Min U V                                                                                    (4.76) 

 

Thus for small or zero off-diagonal coefficient of mapped transmissibility matrix  W , 

M-matrix condition would be maintained with proper choice of flux quadrature points

 ˆ ˆ,  , such that term    ˆˆ1 2 U V   satisfies the obtained inequality. For face-wise 

EMPFA ( ˆ ˆ1 2, 1 2   ), the M-matrix conditions are expressed as: 

    

  

1)   , , 3

2)  1 4

Max U V Min U V

W U V



 
                                                                             (4.77). 

 

Second condition of Eq. 4.77 is restrictive on off-diagonal elements of mapped 

transmissibility tensor and it is very likely to be violated in presence of strong 

permeability anisotropy and large grid aspect ratio, moreover for ratios of maximum to 

minimum diagonal greater than 3, two matrix coefficients related to immediate 

neighbours of cell (i,j) (both either in vertical direction or horizontal direction 

depending on maximum diagonal) would be non-negative.  
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As Edwards and Zheng [2008, 2010, 2011] stated, one essential inequality obtained 

between the lower and upper bounds of term   ˆˆ1 2 U V   (  ,W Min U V ) 

ascertains the tensor ellipticity (
2W UV ). This condition is likely to be violated in 

presence of highly anisotropic permeability fields coupled with high grid aspect ratios. 

For specific case of uniform rectangular grid the ellipticity condition of transmissibility 

matrix in logical space reduces to the ellipticity condition of permeability matrix in 

computational space ( 2

hv h vK K K ). As we discussed in chapter 3, Cartesian Cut Cell 

approach accommodates a permeability tensor in computational grid with zero or small 

off-diagonal entries (  ,hv h vK Min K K ) even in the vicinity of complicated cross 

beddings (curved boundaries of layers, pinched out layers or reservoir top and bottom 

structures), as it leaves a Cartesian grid with axes of coordinates aligned to the principal 

axes of permeability tensor. Though for sharply dipped anticline reservoirs with layers 

oriented with respect to the horizontal axis ( 10
XX

  ), the principal axes of measured 

permeability tensor are expected to be conforming to the coordinates attached to the 

layer direction. Consequently off-diagonal elements of rotated permeability matrix in 

coordinates of Cartesian grid are non-zero. Non-zero cross terms in permeability tensor 

are retained and might be amplified after upscaling of an anisotropic heterogeneous 

permeability field (Lee et al., 1998, Wen et al., 2000). As in this thesis we will restrict 

our modelling to gently dipped bedding layers with orientation angles less than 5 , the 

natural coordinate for permeability tensor can be considered the same as that of grid 

architecture. Therefore the off-diagonal term of permeability tensor can be set zero.  

 

Therefore, the simplified diagonal and off-diagonal terms of mapped transmissibility 

matrix for the range of problems studied in this thesis, will be expressed as:  

 

 

 

2 2 0

3 3

2 2 0

2 2

0

2 3 2 3

h v

v h

v h

U b K a K J

V a K b K J

W a a K b b K J

 

 

  

                                                                                     (4.78). 

The inequality for the upper bound of term    ˆˆ1 2 U V   is fulfilled if and only if: 
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   

   

ˆ1 ˆˆ   ,
ˆ2 2

ˆ1 ˆˆ   V ,
ˆ2 2

U
U V U if U Min U V

V

V
U V V if Min U V

U


 




 




    



     
 

                                                (4.79). 

 

To specify the optimum values of quadrature points, one can set one quadrature 

parameter and obtain the other one. A simple choice is to let term   ˆˆ1 2 U V   tends 

to its upper limit. So one assign let the quadrature parameter multiplying the minimum 

diagonal term approaching one and select the other quadrature parameter from the 

interval allowed by the obtained inequality: 

 For  ,U Min U V , ̂  approaches to one, while ̂  varies in the interval 0,
U

V

 
 
 

.  

 For  ,V Min U V , ̂  approaches to one, while ̂  varies in the interval 0,
V

U

 
 
 

.  

A specific choice would be obtained by letting the variable quadrature parameter 

(multiplier of maximum diagonal term) approaching to its allowable upper limit (

   , ,Min U V Max U V ). As stated by Edwards and Zheng [2008, 2010], the resulting 

variable quadrature parameter would approaches zero, when    , ,Min U V Max U V  

decreases in presence of an almost isotropic permeability field ( h vK K ) and very large 

grid aspect ratio (  2 3 1a b  ). The coefficients of this scheme (called H/I-support 

scheme in terminology of Edwards and Zheng, 2008, 2010) for both choices of 

maximum diagonal have been given in table 4.8.  
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Figure 4.20: Optimum quadrature points, Left: H-support scheme   ˆ ˆ1, V U    for 

 ,V Min U V  and Right: I-support scheme   ˆ ˆ, 1U V    for  ,U Min U V  

 

Directional indices H-scheme (  ,V Min U V ) I-scheme(  ,U Min U V ) 

 1, 1i j   
1 1

2 2
V W   

1 1

2 2
U W   

 , 1i j   0  V U   

 1, 1i j   
1 1

2 2
V W   

1 1

2 2
U W   

 1,i j  U V   0  

 ,i j  2U  2V  

 1,i j  U V   0  

 1, 1i j   
1 1

2 2
V W   

1 1

2 2
U W   

 , 1i j   0  V U   

 1, 1i j   
1 1

2 2
V W   

1 1

2 2
U W   

 

Table 4.8: Entries of mth row of A  with H/I-schemes to fulfil M-matrix conditions 

 

f4

f3

f2

f1

C4 M3 C3

M2

O

M4

C2

M1

f4 f3 f2

f1

C4 M3 C3

M2

O

M4

C2

M1

V
U

V
U

U
V

U
V



Chapter 4: Extended Enriched Multipoint Flux Approximation Method 

 

121 
 

Moreover the condition for the lower bound of term    ˆˆ1 2 U V   would be met by 

constraining the off-diagonal term to be bounded by the half of minimum diagonal term.  

 ,
W U

W Min U V
W V

 
  


                                                                                    (4.80) 

These conditions would reduce to two quadratic inequalities with respect to
3x a   and

2y b   as the parameters determining the grid skewness (grid deviation from the state 

of rectangular Cartesian grid). 

2 2

3 2 3 3 2 3

2 2

2 3 2 2 2 3

( ) 0 

( ) 0

v v h h

h h v v

K a a K a b K K b b

K b b K b a K K a a

   

   
                                                                        (4.81) 

These inequalities would be held for all values of 3a and 2b , if: 

2 2 2

1 2 3 3 2

2 2 2

2 3 2 2 3

4 4 0  

4 4 0

v h v v h

h h v v h

a K b K K b b K K

b K a K K a a K K

    

    
                                                                  (4.82). 

We now define a new parameter    
2

2 3 v ha b K K  as a dimensionless measure of 

grid aspect ratio  2 3a b  and anisotropy ratio  v hK K . Criteria in Eq. 4.76 would be 

met if the following conditions for   is satisfied:     

1

3

2

2

3

1
1

4

4 1

a

a

b

b





   
        


  
     

  

                                                                                                  (4.83). 

22a  and 32b  express the extension of parallelogram cell in horizontal and vertical 

directions ( X and Y ) respectively. So they are attributed to the maximum difference of 

x-coordinate and y-coordinate along the cell in the respective direction of Cartesian 

coordinates (
2 2 1a x x x   ,

3 4 1b y y y   ). On the other hand 32a  and 22b  give 

respectively the maximum x-coordinate difference of cell in vertical direction (

 3 4 1a x x x   ) and maximum y-coordinate difference of cell in horizontal direction 

(  2 2 1b y y y   ). Thus ratios  3 2a a  and  2 3b b  provides measurements of grid 
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skewness in horizontal and vertical directions respectively. Knowing the variation 

ranges of   
1

3 21 a a


  and   2 31 b b , one can determine the range allowed for 

such that Eq. 4.76 and consequently M-matrix conditions are satisfied.  

 

In models honouring the geological structures, non-zero 2b is obtained at cells 

conforming to the surface of beddings not aligned to the horizontal direction ( X ). 

Remembering the maximum value of 
XX

  for bedding layers proposed to be modelled 

in this thesis ( 5 ), 
2b would have a maximum of 2 2tan(5 ) 0.1a a  . Also non-zero 

values of 3a turn up at cells conforming to surface of non-vertical fault. Faults usually 

are dipped at small angles with respect to vertical direction. Obviously 
3a reaches its 

maximum value of 3b  for the minimum value of fault dip angle which is assumed 45 .   

 

 

Figure 4.21: Maximum values of 3a and 3b corresponding to the minimum fault dip and 

maximum bedding dip (top picture) and Minimum values of 3a and 3b corresponding to the 

maximum fault dip and minimum bedding dip 

2 22 2(tan(5 ) )b a 

22a

 max
XX

 min
YX


32b

3 32 2(tan(45 ) )a b 

2 22 2(tan( 5 ) )b a  

22a

   min max
XX XX

     2
max min

YX YX
  

32b

3 32 2(tan(45 90 ) )a b  
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From the discussion above, the variation ranges of terms   
1

3 21 a a


 and   2 31 b b  

are determined as followings: 

1 1 1

3 3 3

2 2 2

2 2 2

3 3 3

1 1 1

1 0.1 1 1 0.1

b a b

a a a

a b a

b b b

             
                               

          
                   

          

                                                           (4.84). 

Resulting inequalities removes the dependency of desired M-matrix condition to 3a and 

2b  and reduces it to a relation in terms of anisotropy ratio and cell aspect ratio only. 

Eventually M-matrix condition of proposed H/I schemes is expressed as: 

H/I schemes developed for reservoir models having diagonal permeability tensor would 

satisfy M-matrix conditions for a parallelogram grid, if: 

1
1 2

2 2 2

3 3 3

1
1 4 1 0.1

4

v

h

Ka a a

b b K b


        

                   

                                                        (4.85). 

 

The optimum range of cell aspect ratio  2 3a b  fulfilling the M-matrix conditions can 

be obtained by manual assessment of Eq. 4.85 for different values of cell aspect ratio at 

a given anisotropy ratio or by simultaneous solving both inequalities. In table 4.9 the 

allowable ranges of cell aspect ratio for four typical values of anisotropy ratio are given. 

 

h

v

K

K

 
 
 

 2

3 min

M matrix

a

b



 
 
 

 2

3 max

M matrix

a

b



 
 
 

 

1 1.21 1.81 

10 2.16 4.63 

100 5.53 8.28 

1000 - - 

 

Table 4.9: Allowable ranges of grid aspect ratio at different orders of magnitude of anisotropy 

ratio for H/I scheme 
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With trial and error, one can determine   308h vK K  as the upper limit of anisotropy 

ratio at which a range of grid aspect ratio fulfilling the M-matrix condition can be 

found. Though at higher anisotropies, M-matrix range of aspect ratios includes values 

less than unity which is not applicable, as the reservoir models are extended hundreds or 

thousands meters in horizontal direction, while usually their vertical extension is less 

than tens of meters. What makes the aspect ratio larger is the demand for representation 

of different layers having different rock properties with small grid divisions in vertical 

direction. Failure to maintain the upper limit of   prevents from obtaining acceptable 

aspect ratios for highly anisotropic fields from Eq. 4.85. Accordingly this means that 

cross term of Piola tensor is not less than minimum diagonal ( ( , )W Min U V ).  

 

It can be shown that for a wide range of reservoir simulation problems ( , )Min U V U . 

From Eq. 4.63 (written for non-zero cross permeability) and propositions made for grid 

skewness, one can show that: 

   

   

max 2 2 min min

3

min 2 2 max max

2

1 cot 2 cot

1 tan 2 tan

v hv
h YX YX

h h

h hv
v XX XX

v v

K K
U b K

K K

K K
V a K

K K

 

 

 
   

 

 
   

 

                                                (4.86). 

Remembering the constraint imposed by tensor ellipticity proposition on upper limit of 

cross permeability ( hv h vK K K ), extreme values of diagonal element of mapped 

transmissibility are expressed as: 

 

 

2

max 2 min

3

2

min 2 max

2

1 cot

1 tan

v
h YX

h

h
v XX

v

K
U b K

K

K
V a K

K





 
   

 

 
   

 

                                                                          (4.87).                                                                                     

Thus V is the maximum diagonal of mapped transmissibility matrix, if max minU V and 

hence grid aspect ratio must meet the following condition: 
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 

 

min

2

3 max

cot

tan 1

h

YX

v

h

XX

v

K

Ka

b K

K





 
 

 



                                                                                        (4.88). 

Away from the root of denominator of Eq. 4.87 (occurring at  maxtan v hXX
K K  ), 

choosing an adequately large grid aspect ratio (which is common in the reservoir 

simulation), Eq. 4.87 is satisfied and V becomes the maximum diagonal. 

 

Edwards and Zheng [2008, 2010] have developed optimal support scheme applicable to 

any tensor which leads to an M-matrix for cross term ( , )W Min U V . Quadrature 

points are chosen such that absolute value of cross term tends to its upper M-matrix 

limit (   ˆˆ1 2 U V  ). This leads to a 7-point scheme (given in table 4.10) which is 

either diagonally upward positive-angle support for positive W or diagonally downward 

negative-angle triangle support for negative W. 

 

Directional indices 0W   0W   

 1, 1i j   W  0  

 , 1i j   V W   V W   

 1, 1i j   0  W  

 1,i j  U W   U W   

 ,i j   2 2U V W    2 2U V W   

 1,i j  U W   U W   

 1, 1i j   0  W  

 , 1i j   V W   V W   

 1, 1i j   W  0  

 

Table 4.10: Entries of mth row of A  with optimal support scheme 
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According to tables 4.8 and 4.10, using H/I scheme or optimal support scheme for 

highly anisotropic non-diagonal tensors ( ( , )W Min U V U  ) is likely to yield two 

positive off-diagonal coefficients depending on the sign of W . A beneficial choice for 

such tensors is the extreme anisotropic quadrature scheme proposed by Edwards and 

Zheng [2010]. In this approach only the lower limit of M-matrix condition (Eq. 4.76) is 

supposed to be fulfilled. So quadrature parameters are selected such that term 

  ˆˆ1 2 U V   approaches to    1 2 ,Max U V . Quadrature parameter multiplying the 

maximum diagonal is maximised, while the quadrature multiplying the minimum 

diagonal is set to zero. Such a scheme results in stencil of coefficients different from 

that of H/I scheme given in table 4.11. As a preference, unlike the H/I scheme and 

optimal support scheme, extreme anisotropic quadrature scheme is not dependent on 

individual diagonal values of mapped transmissibility matrix and is specified only with 

the maximum diagonal.   

 

The resulting coefficients for all non-immediate neighbours (  1, xi j n  ,  1, xi j n  , 

 1, xi j n  ,  1, xi j n  ) are strictly positive. However for ( , ) 2 ( , )Max U V Min U V

, a pair of coefficients for immediate neighbours (  1,i j  &   1,i j  or  , xi j n  & 

 , xi j n )   are positive. As expressed by Edwards and Zheng [2008, 2010, 2011], this 

observation motivates for defining Quasi M-matrix (QM-matrix) with at maximum two 

positive off-diagonal elements violating the M-matrix conditions.  

 

Edwards and Zheng [2008, 2010] have applied extreme anisotropic quadrature scheme 

for several examples of 2-D models having strong anisotropic full permeability tensors 

and have shown that sharply resolved potential fields with ignorable spurious 

oscillations can be obtained even beyond the M-matrix condition bounds (for whole 

ellipticity region) if the solution matrix matches the quasi positive QM-matrix criteria. 

Thus strong M-matrix conditions for a physical and monotonic solution of elliptic 

equation of potential in porous media can be mitigated to weaker quasi positive QM-

matrix condition which requires: 
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 

 

ˆ , ( , )   

ˆ , ( , )  

1
( , )

2

V Max U V

U Max U V

W Max U V

 

 







                                                                                             (4.89).         

In which  ,   is the Kronecker delta function returning unity for   and zero for 

any other values of . Such a criterion still preserves the ellipticity condition. 

 

Directional indices  ,V Min U V   ,U Min U V  

 1, 1i j   
1 1

4 2
U W   

1 1

4 2
V W   

 , 1i j   
1

2
V U   

1

2
V  

 1, 1i j   
1 1

4 2
U W   

1 1

4 2
V W   

 1,i j  
1

2
U  

1

2
U V   

 ,i j   2U V   2U V  

 1,i j  
1

2
U  

1

2
U V   

 1, 1i j   
1 1

4 2
U W   

1 1

4 2
V W   

 , 1i j   
1

2
V U   

1

2
V  

 1, 1i j   
1 1

4 2
U W   

1 1

4 2
V W   

 

Table 4.11: Entries of mth row of A  with extreme anisotropic quadrature scheme  

 

For the reservoir models studied in this thesis with the assumption proposed for 

maximum grid skewness (figure 4.21) and cross permeability, it can be easily 

demonstrated that    1 2 ( , ) 1 2W Max U V V  . The maximum value of W  obtained 

for 3 3a b  and 2 20.1b a  is 2 3( 0.1 )v ha b K K , while the minimum value of V obtained 
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for 2 0b   is 2

2 va K . To satisfy QM-matrix condition, maximum value of W  should be 

less than half of minimum value of V . Therefore: 

2

3

2 1 0.1 h

v

Ka

b K

 
  

 
                                                                                                   (4.90). 

This condition allows high aspect ratios for any anisotropy ratio. However for any other 

grid skewness (arbitrary values of max

XX
  and min

YX
 ), the derivation is completely similar 

and after a few manipulations we come up with the general form of Eq. 4.90 for more 

skewed grids ( min 45
YX
    and max 5

XX
   ) which is written as: 

   min max2

3

2 cot tan h

YX XX

v

Ka

b K
 

 
  

 
                                                                        (4.91). 

This shows that the lower bound of allowable grid aspect ratio is larger for more skewed 

grids. However QM-matrix condition still allows for high grid aspect ratios.  

 

4.5 Numerical Experiments on Convergence and Monotonicity of extended 

EMPFA 

Convergence of a numerical method implies that the numerical solution approaches to 

the reference solution as the cell divisions tend to zero. However when an analytical 

solution is not available as a result of complexity of a PDE or ODE, one can consider 

the numerical solution for a highly refined model as the exact solution. Thus the error 

estimates at coarser grids (lower resolutions) can be obtained by computing both square 

and infinity norms of difference of solution from exact solution over all grids. A 

convergence study is performed with computing the error norms for coarser grids with 

successively doubled cell divisions. Then if trend of errors ( 2

epL or epL ) is descending for 

a descending trend of cell divisions ( x , y ), then the numerical scheme is convergent 

and consistent: 

 
min

min

2

2 2

,
lim 0

e

x x

y y

L x y

x y 

 

 


 
                                                                                             (4.92). 

Numerical scheme is said accurate of order n and has a convergence rate of n, if: 
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    min

min

lim , ,
ne

x x

y y

L x y O Min x y
 

 

                                                                          (4.93). 

Assuming grid spacing is successively divided by factor 1   to achieve higher 

resolutions, convergence rate or the accuracy order can be obtained from: 

 

 

,
log

,

e

e

L x y
n

L x y


   
     

                                                                                         (4.94).                                                                                                                              

 

As a common practice error norms are calculated for both potential and normal fluxes 

which are expressed as: 

 
1/2

2
.

2

1/2
2

.

2

ex

i i i
ep i

i

i

ex

e e
e

eev

e

e

V

L
V

f f
Q

e
L

Q





     
   
  
  


   
   
     
 
 
 









                                                                                  (4.95). 

In which iV  stands for volume of thi cell, e is the normal area of interface e  belonging 

to  (space of interfaces) and eQ represents the volume associated with interface e

(volume of interaction region including interface e  for EMPFA and volume 

encompassed between centres of cells sharing interface e  for TPFA). Also infinity 

norms of errors are defined by  .ep ex

i i
i

L Max     and  .ev ex

e e
e

L Max f f    for 

potential and normal velocity respectively.  

 

Initially we perform some simple fundamental convergence tests against the analytical 

solutions in order to reassure about the trustworthy function of extended EMPFA 

scheme when the boundaries are translated into the grid using the Cartesian Cut Cell 

method. The grid types created by Cartesian Cut Cell method are employed to verify the 

discretisation on grid is correct. The simple 2D model would be a unit square including 



Chapter 4: Extended Enriched Multipoint Flux Approximation Method 

 

130 
 

a pinchout-like structure with Dirichlet boundary conditions on left and right walls and 

no flow (Neumann) boundary conditions on top and bottom faces as pictorially 

demonstrated in figure 4.22. We investigate the 1-phase incompressible flow of oil at 

steady state conditions with negligible gravity effects. The grid is initially modified 

from pure Cartesian to conform to the pinchout-like structure.  

 

For the first test we assume the linear potential ( ax by c    ) with a, b, c determined 

from given boundary conditions, the permeability tensor is assumed constant and 

diagonal throughout the domain with anisotropy ratio (ratio of horizontal permeability 

to and vertical permeability) of 100:1. Potential and velocity are calculated over a 

sequence of four grid resolutions from 64×64 to 8×8 and then compared with analytical 

solutions to obtain the error. The second order error norms of potential and velocity 

have been plotted in figure 4.23 exhibiting convergence rates of 1.93 and 1.33 for 

potential and velocity respectively.  

 

 

Figure 4.22: Left: Simple 2D model used for convergence tests with analytical solutions, Right: 

The same model but with permeability discontinuity employed for the third test 
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Figure 4.23: Convergence rates of Potential and Velocity for model shown in figure 4.22 with 

uniform permeability and assumption of linear potential solution 

 

For the second case we keep the same model, but a quadratic solution (

2 2ax by cx dy e      ) is assumed for potential, where a, b, c, d, e are computed 

from given boundary conditions. The corresponding convergence plots for potential and 

velocity are plotted in figure 4.24.  
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Figure 4.24: Convergence rates of Potential and Velocity for model shown in figure 4.22 with 

uniform permeability and assumption of quadratic potential solution 

 

As potential and velocity are approximated at higher accuracy by using quadratic 

solution compared with linear potential, larger error norms and smaller convergence rate 

are obtained from second test. However still almost second order convergence rate for 

potential is obtained, while accuracy order for numerical velocity solutions declines to 

1.33 indicating a super-linear convergence.  

 

For third test, we embed a permeability discontinuity into the permeability field at 

centre line x=1/2 (as shown in figure 4.22-right). For the solution we use the same 

quadratic solution as one used by Edwards and Rogers [1998]: 

2 2

2 2

                      1/ 2  

   1/ 2

l l

r r r r

c x d y x

a b x c x d y x

  
  

   
                                                                   (4.96). 

Permeability tensor is given by: 
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50 0
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x
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 

 
 

   
 

K                                                                                         (4.97).               

With the coefficients computed from the same boundary conditions, quadratic solution 

is determined and compared at 4 different resolutions with numerical solutions. The 

resulting convergence plots are depicted in figure 4.25. 

  

 

Figure 4.25: Convergence rates of Potential and Velocity for model shown in figure 4.22 with 

discontinuous permeability and assumption of quadratic potential solution 

 

It seems that discontinuity of permeability results in a bit smaller convergence rates, 

however almost second order accurate solution of potential and super-linear accuracy of 

velocity solution guarantees the reliable function of employed gridding/flux 

approximation technique (Cartesian Cut Cell/extended EMPFA) for discontinuous 
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permeability fields and non-Cartesian boundaries. So the numerical solution over very 

refined domains of more complex models can be utilised as an alternative of exact 

analytical solutions. 

 

Now we want to investigate the convergence of extended EMPFA scheme (applied 

anisotropic extreme quadrature) for a 2D model including geological features that their 

structural uncertainties will be studied in next chapters (faults, pinchout and bedding 

layers). It is a cross section of a reservoir with three stratigraphic layers (middle one is a 

pinched out layer). Model has been extended 1000 ft in horizontal direction and its 

normal width is 112 ft. No-flow boundary condition is imposed and there are two 

injection and production wells at left and right model extremes with well pressures of 

150 psia and 50 psia.  Permeability tensor is diagonal throughout the model with 

variation shown in table 4.12: 

 

Layer  hK Darcys   vK Darcys   volume
volume

  

1 0.1 0.001 0.15 

2 0 0 0.02 

3 0.4 0.004 0.25 

 

Table 4.12: Rock properties for benchmark model; layers indexed from deepest one 

 

 

Figure 4.26: Horizontal permeability map overlaid on gridding of benchmark model 
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In addition to error estimates for whole the model, we calculate the error norms over the 

cells reshaped by Cartesian Cut Cell Method (to conform to the surfaces of geological 

structures) and specify the respective error norms with “GS” superscript. Numerical 

solution of a refined model with 1600 divisions in x direction and 320 divisions in y 

direction is regarded as the exact solution. The discrete norms of errors calculated at 

lower resolutions (obtained by successively doubling the grid spacings) have been given 

in tables 4.13 and 4.14 for potential and velocity respectively. Almost second order 

convergence rates have been obtained for whole model and for buffer zone around 

geological structures. This demonstrates the favourable functionality of extended 

EMPFA to yield solutions over the buffer zone around geological structures with 

accuracies comparable to those over intact Cartesian cells, while the cells in the buffer 

zone suffer from skewness, non-neighbour connections and localised large volume 

contrast  (as shown in figure 4.26). 

 

N  xN  yN  epL  2

epL  Rate  ( )ep GSL  2( )ep GSL  GSRate
 

2000 100 20 7.9344 4.2358  7.9344 6.8319  

8000 200 40 2.1318 1.0536 2.01 2.1318 1.8531 1.88 

32000 400 80 0.6253 0.2743 1.95 0.6253 0.5137 1.85 

128000 800 160 0.1868 0.0709 1.93 0.1868 0.1530 1.77 

 

Table 4.13: Squared and infinity norms of error for potential along with convergence rates 

calculated over whole model and cluster of irregular cells individually 

 

N  xN  yN  evL  2

evL  Rate  ( )ev GSL  2( )ev GSL  GSRate
 

2000 100 20 0.0615 0.0293  0.0615 0.0526  

8000 200 40 0.0334 0.0149 0.97 0.0334 0.0303 0.79 

32000 400 80 0.0177 0.0073 1.02 0.0177 0.0162 0.91 

128000 800 160 0.0101 0.0038 0.94 0.0101 0.0090 0.84 

 

Table 4.14: Squared and infinity norms of error for velocity along with convergence rates 

calculated over whole model and cluster of irregular cells individually 
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Maximum local errors are expected to emerge in the vicinity of geological structures. In 

accordance with this anticipation, infinity norms of potential and velocity are equal for 

both whole model and buffer zone. Despite the super-convergence of potential, velocity 

is only convergent of order one. However convergence rate of velocity over the buffer 

zone is almost comparable to that for whole model; this indicates extended EMPFA can 

provide approximation of flux across interfaces in the zone geometrically affected by 

structures with precisions as good as those for flux obtained by TPFA across unaffected 

interfaces. 

   

The numerical solution obtained for the coarsest model in the convergence study 

(depicted in figure 4.27) and one more refined model (depicted in figure 4.28) exhibits a 

well resolved pressure distribution which is free of any spurious oscillations. 

Implications of such a solution are more highlighted when we consider no flow 

boundary conditions imposed along the external boundaries and also on the plane of 

pinchout; extended EMPFA effectively avoids any unstable extrema. Remembering 

unfavourable performance of EMPFA against no flow boundary reported by 

Aavatsmark [2008], this again signifies that using flexible quadrature of FPS scheme 

can enhance considerably monotonicity behaviour of EMPFA solutions. This 

guarantees consistent and stable numerical results for the range of 2-D problems 

proposed to be dealt with in this thesis.   

 

 

Figure 4.27: Numerical solution of pressure for the lowest resolution examined in convergence 

study 
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Figure 4.28: Numerical solution of pressure for one further refinement in contrast to coarsest 

examined model 

 

In order to assure the vigorousness of extended EMPFA to yield minimal oscillatory 

solutions, we analyse the solutions of benchmark model with different schemes of 

extended EMPFA and MPFA-O. Nine sets of solutions are obtained for combinations of 

three typical anisotropy ratios (10,100,1000) and three permeability heterogeneity 

contrasts (P.H.C.) between permeable layers (1,10,100). An ideally monotonic scheme 

is expected to lead into a potential distribution varying between the potentials imposed 

at the bottom holes of injection and production wells. So we define a dimensionless 

cell-wise potential 
r .

. .

p od

D inj prod

  
   

  
 which varies in the interval [0,1]. To measure 

the unphysical solution, we use the quantities proposed by Aavatsmark [2008] which 

are defined as: 

 
min

1 max

D

D


 

  
 

 which determines the amplitude of spurious oscillations and 

approaches zero for  a monotone solution. 

     2 max max ,max 1D D       which determines the strength of 

unphysical extrema on the boundary of model ( ). 

 

In tables 4.15 to 4.23, quantities 1  and 2  obtained by various schemes studied in this 

chapter have been given for nine specific cases of anisotropy and heterogeneity. 
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 1  
2  

MPFA O-Method -0.021 0.000 

Face-wise Extended EMPFA  -0.001 0.009 

Optimal Support Scheme -0.004 0.003 

H/I scheme -0.005 0.007 

Anisotropic Quadrature Scheme -0.001 0.001 

 

Table 4.15: Unphysical solution measuring parameters for . . . 1P H C   and   10h vK K   

 

 1  2  

MPFA O-Method -0.087 0.003 

Face-wise Extended EMPFA  -0.003 0.029 

Optimal Support Scheme -0.011 0.017 

H/I scheme -0.014 0.024 

Anisotropic Quadrature Scheme -0.002 0.004 

 

Table 4.16: Unphysical solution measuring parameters for . . . 1P H C   and   100h vK K   

 

 1  2  

MPFA O-Method -0.364 0.019 

Face-wise Extended EMPFA  -0.017 0.079 

Optimal Support Scheme -0.046 0.066 

H/I scheme -0.059 0.143 

Anisotropic Quadrature Scheme -0.009 0.027 

 

Table 4.17: Unphysical solution measuring parameters for . . . 1P H C   and   1000h vK K   
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 1  
2  

MPFA O-Method -0.034 0.001 

Face-wise Extended EMPFA  -0.002 0.017 

Optimal Support Scheme -0.008 0.005 

H/I scheme -0.007 0.016 

Anisotropic Quadrature Scheme -0.002 0.002 

 

Table 4.18: Unphysical solution measuring parameters for . . . 10P H C   and   10h vK K   

 

 1  2  

MPFA O-Method -0.162 0.006 

Face-wise Extended EMPFA  -0.010 0.033 

Optimal Support Scheme -0.031 0.023 

H/I scheme -0.045 0.037 

Anisotropic Quadrature Scheme -0.007 0.005 

 

Table 4.19: Unphysical solution measuring parameters for . . . 10P H C   and   100h vK K   

 

 1  2  

MPFA O-Method -0.383 0.026 

Face-wise Extended EMPFA  -0.027 0.117 

Optimal Support Scheme -0.065 0.091 

H/I scheme -0.103 0.148 

Anisotropic Quadrature Scheme -0.018 0.031 

 

Table 4.20: Unphysical solution measuring parameters for . . . 10P H C   and   1000h vK K   
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 1  
2  

MPFA O-Method -0.069 0.004 

Face-wise Extended EMPFA  -0.005 0.029 

Optimal Support Scheme -0.021 0.013 

H/I scheme -0.015 0.040 

Anisotropic Quadrature Scheme -0.003 0.006 

 

Table 4.21: Unphysical solution measuring parameters for . . . 100P H C   and   10h vK K   

 

 1  2  

MPFA O-Method -0.231 0.020 

Face-wise Extended EMPFA  -0.028 0.118 

Optimal Support Scheme -0.073 0.063 

H/I scheme -0.058 0.157 

Anisotropic Quadrature Scheme -0.019 0.019 

 

Table 4.22: Unphysical solution measuring parameters for . . . 100P H C   and   100h vK K   

 

 1  2  

MPFA O-Method -0.566 0.098 

Face-wise Extended EMPFA  -0.085 0.315 

Optimal Support Scheme -0.217 0.140 

H/I scheme -0.306 0.439 

Anisotropic Quadrature Scheme -0.077 0.074 

 

Table 4.23: Unphysical solution measuring parameters for . . . 100P H C   and 

  1000h vK K   

 

Analysing the information provided by this through study of unphysical solutions leads 

into the following conclusion: 
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1. Although unphysical solutions are intensified by increasing both anisotropy and 

heterogeneity ratios, but the influence of anisotropy augmentation is more 

severe. 

2. In terms of minimal spurious oscillations, the priority of EMPFA schemes with 

respect to MPFA O-method is obvious, implied by much smaller 1 . Among 

different extended EMPFA schemes, face-wise scheme and anisotropic 

quadrature scheme are more favourable due to remaining consistent at very high 

anisotropy and heterogeneity with oscillation amplitude less that 8% of true 

physical solution range. 

3. Regarding the matter of boundary extrema, MPFA-O leaves good results for the 

wide range of anisotropy and heterogeneity, while excluding anisotropic 

quadrature scheme, extended EMPFA schemes tend to exhibit stronger 

unphysical extrema on the boundary. However, anisotropic quadrature scheme 

on the whole provides physical solutions on the boundary comparable to or 

slightly better than MPFA-method ones. 

 

Our key finding is that anisotropic quadrature scheme is the most optimal method 

among studied schemes and enjoys the benefits of MPFA O-method and extended 

EMPFA schemes simultaneously. The result is in accordance with Edwards and Zheng 

[2010] who showed anisotropic quadrature scheme stays out of strong oscillations in the 

bulk and unphysical extrema on the boundary for whole the QM-matrix region.  

 

4.6 Robustness of extended EMPFA for Non-matching Cells 

Apart from monotonicity and convergence of extended EMPFA, its robustness for 

handling non-matching cells should be assured. In this regard, several limitations for 

conventional MPFA methods are well-known; however we will demonstrate that these 

deficiencies are not inherent to extended EMPFA schemes. As mentioned by 

Aavatsmark [2007-A], Aavatsmark et al. [2001] and Eigestad et al. [2002-B], MPFA O-

method has an unfortunate effect for triangular interaction regions built on non-

matching cells when two involved sub-interfaces builds a straight line. 
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Figure 4.29: Triangular interaction region for non-matching cells 

 

Aavatsmark et al. [2001] showed that if permeability within one of cells contributing to 

the interaction region ( 3C ) approaches zero, then MPFA O-method returns very small 

transmissibility for the interface between permeable cells ( 1C and 2C ) in contrast with 

expected transmissibility (TPFA transmissibility reduced by a factor of relative 

displacement) . For zero permeability at one of involved cells, predicted transmissibility 

by MPFA O-method on interface of permeable cells vanishes completely. In general 

MPFA O-method yields almost identical transmissibilities across two interfaces 

building a straight line, even the permeability varies between hanging cells ( 1C and 3C ) 

(Aavatsmark, 2007-A). To ensure true representation of reservoir inter-layer 

connectivity in vertical and horizontal directions, this deficiency should be 

circumvented.  To accomplish this aim, Aavatsmark et al. [2001] and Eigestad et al. 

[2002-B] have proposed a larger interaction region by inclusion of two more cells ( 4C

and 5C ) above and below of cell on other side of hanging cells. Such a scheme is not 

favourable due to reduced sparsity of solution matrix and subsequent elevated problems 

in terms of convergence and monotonicity. We believe that added degree of freedom 

and more precise approximation of potential in extended EMPFA can prevent from 

unfortunate effect over non-matching cells. In this section, we will show that extended 

EMPFA yields consistent transmissibilities over non-matching cells in the vicinity of 

faults or pinchouts. 

 

1C
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2C

4C 3 0K C 

5C
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Figure 4.30: Triangular interaction region over non-matching cells; 1 2M M  on the fault plane, 

dotted arrows shows the fluxes through semi-interfaces 

 

Assuming 3( )C K 0  in figure 4.29, flux continuity equations along with zero source 

condition at central point are expressed as: 
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                                                          (4.98). 

 

Thus no constraint on flux with respect to potential at impermeable cell is entailed and 

the flux across the only active interface will be uniquely determined in terms of 

potentials at centres of two permeable cells ( 1 11 1 12 2f t t    ). When 11 12t t , extended 

EMPFA reduces to a TPFA scheme. The generalised TPFA transmissibility between 

cells i and j commonly used in commercial reservoir simulators is expressed as: 

1
11

ji

i j

i i j j

t K K


               

a da d

d d d d
                                                                   (4.99), 

in which a is the normal areal vector of interface and id is the vector connecting centre 

of cell i  to the centre of cell face which the interface with desired transmissibility 

belongs to that.  
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We pay attention that TPFA computes flux across fault plane from TPFA

e exf   n
Av  and 

does not take into account Cartesian velocity in y direction. However as shown for 

inclined interface in figure 4.30, true normal velocity across fault is obtained by 

algebraic addition of projected values of Cartesian velocities vectors  , )( x yv v  on 

normal direction to the inclined sub-interface. This leads into the expression: 

         1 cos , sinv
x y h x

h

K
sign K

K
    

  
        

  
nv                            (4.100), 

in which: 

  sign   is +1 for negative fault slopes and -1 for positive fault slopes.  

  ,x y    is the tangent of the angle which potential drop vector ( ) builds 

with x direction and equals to ratio  y x  .  

 

 

Figure 4.31: Sub-interface not aligned with none of principal directions of K-tensor 

 

The term          cos , sinv h x ysign K K         giving the ratio of true 

normal velocity to the velocity in x direction determines how reasonably TPFA 

approximates the flux across the inclined sub-interface. As long as 1  , TPFA 

transmissibilities remain acceptable. This happens for small   or in the other word for 

almost vertically oriented faults. Moreover apart from anisotropy ratio and sign of fault 

slope,   is greatly impressed by the preferred direction of potential gradient vector. 

e


y

n
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

nv
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Although fluid mainly flows in horizontal direction, but regarding the gravity potential 

acting in vertical direction and very thin grid vertical divisions compared to horizontal 

ones, in most cases 
y  is greater or comparable to x . However, at high speeds of 

fluid flow,  ,x y    is decreased and even drops below unity.  For the range of 

synthetic problems dealt with in this thesis, we found  ,x y    lies within a narrow 

interval of  4,6 . Variation of   for typical values of anisotropy ratio and  ,x y    

has been depicted in figure 4.31 over a range of   covering the maximum fault 

inclination ( 0 ,45  ).  

 

 

Figure 4.32: Ratio of true normal velocity to horizontal velocity across fault plane; Top: 

faults with negative slope, Bottom: faults with positive slope 

 

TPFA formulation (Eq. 4.97) calculates the flux over surface normal to line connecting 

cell centres, thus   can approximately gives the ratio of true flux to TPFA flux. 

Therefore extended EMPFA leads to good approximations of e ef   n

n Av  on fault 

plane, if ratio of its calculated flux to TPFA

ef  is almost equal to  . To numerically testify 

the robustness of extended EMPFA for non-matching cells, we use the benchmark 

model represented in section 4.5. Within this model we specify all sub-interfaces along 

the fault planes which are involved in triangular interaction regions with at least one 

impermeable cell from pinched out layer. We denote NNCQ  as the space of all 
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problematic sub-interfaces (  NNC NNC

ii
Q e ). The consistency of fluxes predicted by 

extended EMPFA over non-neighbour connections is examined by comparison between 

extended EMPFA and TPFA in terms of transmissibilities computed over all 

NNC NNC

ie Q . For each NNC

ie , we define two parameters  and   as: 

       11 12

e EMPFA
NNC TPFA

i e e e e
NNC
ie

e t t t


          which measures how 

well fluxes computed by extended EMPFA match to the true fluxes.  

       11 12 11 12, ,NNC

i NNC
ie

e max t t min t t   which measures how effectively 

extended EMPFA takes into the account sub-interface inclination and unequal 

distances of cell centres from sub-interface.  

In our benchmark problem, the average value of   is estimated as: 

 For fault with positive slope ( 25   ): 0.88   

 For fault with negative slope ( 30   ): 0.90   

 

 Minimum Average Maximum 

 NNC

ie  0.82 0.87 0.94 

 NNC

ie  1.14 1.32 1.61 

 

Table 4.24: Ranges of parameters measuring extended EMPFA robustness over non-neighbour 

connections in the vicinity of faults 

 

From the information given in table 4.24 for the ranges of parameters  and  , one can draw 

the following conclusions:  

1. Extended EMPFA successfully predicts flux for challenging sub-interfaces 

aligning to fault plane. Because      0.9 ,1.1NNC NNC NNC

i ie Q e      which 

indicates EMPFA transmissibilities never diminish even in presence of 

impermeable sub-cell present in interaction regions and calculated flux always 

remain in a relatively narrow margin about true flux. 
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2. Vertical permeability is relevantly incorporated into transmissibility calculations 

over inclined interfaces by extended EMPFA, resulting in smaller flux compared 

with TPFA (    1NNC

iavg e   ) and more reflective translation of fault 

geometry into the flow simulation even for problematic sub-interfaces.  

3. Extended EMPFA provides more accurate approximations of potential gradients 

for linear or bilinear potential fields in comparison with TPFA. Because it leads 

to   1NNC

ie   for NNC NNC

ie Q  which ensures unequal distances of cell centres 

to the sub-interface is properly translated into the approximated x . While 

TPFA leaves equal transmissibilities regardless of the interface inclination or the 

distance of two cell centres to the interface.  
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Chapter 5 

 

 

 

Modelling and Quantification of 

Structural Uncertainties for 

Nonintersecting Geological 

Structures 

 

 

 

Several synthetic models including lone uncertain surfaces will be presented in this 

chapter. The history matching will be performed on their corresponding structural 

parameters and the Bayesian inference framework will be employed to determine the 

updated uncertainty intervals for the geometry of geological structures.  

 

The main specific goals of this chapter are: 
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1. To justify the feasibility of proposed hybrid Cartesian Cut Cell/extended 

EMPFA approach for tackling the varying geometry of some characteristic 

geological structures of different topologies (e.g. gently-dipped versus sharply 

dipped structures or open versus overlapping structures) during the history 

matching process.  

2. To show the benefits of introduction the reservoir engineering analysis of 

dependency of flow on structures geometry for following purposes: 

a. To choose an optimised mode of sampling algorithm (Neighbourhood 

Algorithm) in terms of exploitation or exploration. 

b. To improve the interpretations made based on posterior inference results. 

c. To differentiate among geological structures in terms of impact of their 

corresponding uncertainties on the static or dynamic reservoir 

characteristics.  

 

In this chapter, we will perform history matching and uncertainty quantification for 

three 2-D benchmark model offering the typical single uncertain structures. In figure 

5.1, the schematic diagrams of these sample-of-proof models have been shown, where 

the uncertain structure in each model is marked with red colour. 

 

 

Figure 5.1: Benchmark models of 2-D uncertain structures proposed to be studied in 

this chapter along with their influences on reservoir state and performance 

Case 1:
Uncertain Top and Base Horizons
Affecting:
1) Manily reservoir volume
2) Slightly gravitational flow potential

Case 2:
Uncertain Fault
Affecting:
1) Manily reservoir flow interconnectivity 
2) No effect on reservoir volume

Case 3:
Uncertain Pinchout
Affecting:
1) Manily reservoir volume
2) Considerably reservoir flow 
interconnectivity
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The relevant details of flow simulator and fluid and rock properties used in the 

benchmark models studied in this chapter have been provided in Appendix A. The 

general flowchart we have developed for history matching and quantify the 

uncertainties of geological structures has been depicted in figure 5.2.  

 

 

Figure 5.2: The general procedure for history match and uncertainty quantification of 

geological structures assisted by hybrid Cartesian Cut Cell/extended EMPFA approach 

 

5.1 Modelling the Uncertainty of Top and Bottom Reservoir Horizons  

 

5.1.1 Case Description 

Sample structural 

parameters using a 

stochastic method (e.g. 

NA) from prior uncertainty 

range and generate 

multiple modelds.

Determine 

intersections

of embedded reservoir 

boundary with 

Cartesian gridlines

Conservatively 

reshape cells 

to conform 

them to the 

boundaries

At each corner point 

belonging to at least one 

reshaped cell, use 

extended EMPFA  to 

compute flux multipliers; 

for other corner points 

use TPFA 

Using computed 

multipliers, discretize 

operators of flow 

equations and 

set up system of 

equation.

Compare production profiles 

obtained from simulation using 

hybric Cartesian Cut 

Cell/extended EMPFA aaproach 

with observed data 

Advance 

discretized 

equations in time.  

Take knowledge of 

structural geology 

influencing reservoir 

performance.

Encapsulate geometry of  

each geological structure   

into a set of parameters, 

defining a reservoir 

boundary

Check the parameter 

combinations that 

the new structures 

are geologically 

possible.

History Match: Generate geologically consistent models 
and match the geometry with observations.  

Uncertainty Quantification: Update 

the probabilities of structural 

models using evaluated misfits. 

Determine the credible intervals for STOIIP 
and recovery in terms of p10,p50,p90. 

Apply a monte-carlo simulation method 

like NAB to build full surfaces of posterior 

probabilities in parameters space.
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Aim is to determine the uncertainty constraints of top and base structures for a two 

dimensional cross section of a reservoir. It is assumed that the top and the bottom 

horizons have been already determined from converting the significant horizons 

distinguished in seismic time map into the depths. Although the reference model of 

reservoir is the most likely one obtained from seismic, but due to the uncertainties 

associated with seismic data acquisition, interpretation and time-depth conversion, the 

curvature and the depth of model horizons are questionable. Reservoir thickness is 

assumed to vary along the model extension. There is only one oil-bearing layer bounded 

between top and base structures and no aquifer or gas cap is in contact with oil layer. 

Model has been extended 1000 ft in horizontal direction and its normal width is 112 ft. 

It has been discretized into a 100×20×1 grid, so it is merely a two dimensional model. 

  

 

Figure 5.3: Initial uniform pressure of 100 psia over the reference model 

 

Reservoir is assumed to have uniform connate water saturation of 0.10 and uniform 

initial reservoir pressure is 100 psia. Two injection and production wells have been 

drilled in left and right extremes of model respectively. No flow condition is enforced 

on all boundaries of reference model. Porosity is assumed to be uniform and constant 

throughout the reservoir with value and 0.20. Also horizontal and vertical permeabilities 

are uniform and equal to 0.20 Darcys and 0.04 Darcys respectively.  
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We assume depths of model measured at the bottom of injection and production wells 

are 199.83 ft and 199.17 ft respectively. Assuming the depth of 200 ft as the datum, top 

and base horizons can be determined in terms of their height with respect to the datum. 

Thus each realization of any reservoir horizons (including top and bottom structures and 

boundaries of reservoir layers) is created by assigning height values to arbitrary points 

along the model extension. Interpolating between points with given heights should be 

done conditioned to depths measured at wells to build a horizon realization.  

             1 2 1 , ,..., , , Prn n i iHorizon realisation z x z x z x z x z Inj z od              (5.1)  

 

5.1.2 History Matching of Horizon Parameters  

There is no observed data for this synthetic model, thus we propose two arbitrary sets of 

heights for the top and base horizons as the truth case. Considering the uncertainties of 

seismic horizon picking, truth case cannot be attained. It can be assumed that the 

discrepancy between true horizon and seismic picked horizon is given by stochastic 

perturbations imposed on each horizon height. 

   reference horizon true horizon random perturbation                                            (5.2) 

 

Denoting  true

iz x  as the true horizon height,  ref

iz x  as the height of reference horizon 

and  ie x  as random perturbation or noise all evaluated at ix , one may write: 

     ref true

i i iz x z x e x                                                                                            (5.3). 

 

Due to multiple interacting sources of error in seismic and restricted knowledge about 

them, a margin of error might be assigned to seismic picked horizons. Hopefully true 

heights would lie in this prior confidence interval with radius of  iR x  around seismic 

picked height.  

         ,true ref ref

i i i i iz x z x R x z x R x                                                                 (5.4) 
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A constant radius of 2.0 is assigned for the confidence interval of each height for both 

top and base horizons. In figures 5.4 and 5.5 the prior confidence intervals for base and 

top horizons along with true and seismic picked horizons has been depicted.  

 

 

Figure 5.4: Prior range for the base horizon 

 

 

Figure 5.5: Prior range for the top horizon 

 

Table 5.1 gives the height perturbations at 7 locations along the horizontal extension of 

model for base and top horizons. Zero perturbation is assigned at 
0 15 x ft  and 

8 985 x ft  to obey the depths of top and base horizons picked at wells. Reference 

model has 39302 STB of Stack Tank Oil Initially In Place (STOIIP) which shows 
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following seismic picked horizons results in overestimating of STOIIP by 7% compared 

with true model with STOIIP of 36826 STB. 

 

( )ix ft  15 125 250 375 500 625 750 875 985 

 sin ( )ba

ie x ft  0 -1.85 -1.29 0.71 -1.35 1.02 -1.39 -1.45 0 

 ( )top

ie x ft  0 1.59 1.76 -0.34 1.28 1.44 -0.47 -0.63 0 

 

Table 5.1: Stochastic perturbations imposed on heights of base and top reservoir horizons 

 

Production profiles provided by running in-house simulator (SUQIB) for the model with 

true horizons are considered as the observed data to be matched.  It resembles a real 

field case where field observations are used to history match the reservoir horizons. 

Clearly prior confidence interval should be wide enough to ensure history matching 

leads into finding the true horizons. Letting upper bound of prior top horizon and lower 

bound of prior base horizon would give the maximum model thickness and 

consequently maximum oil in place. Accordingly minimum model thickness is obtained 

letting lower bound of prior top horizon and upper bound of prior base horizon. 

 

Production well is opened to flow at time 0 t Days with bottom hole pressure set at 50 

psia, while water is injected steadily with well injection pressure of 150 psia. 

Production histories of water and oil phases for true horizons have been depicted in 

figures 5.6 and 5.7, where the gap between production profiles corresponding to the 

models with maximum and minimum thicknesses from prior uncertainty range clearly 

delineates the prior unconstrained uncertainties with the recovery forecasts.  
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Figure 5.6: Variation of water production profile in prior range for top and base horizons 

 

 

Figure 5.7: Variation of oil production profile in prior range for top and base horizons 

 

Heights sampled through the prior range of horizons with any optimisation technique 

(Neighbourhood Algorithm here) are passed to SUQIB which updates model horizons 

and run the simulation. Objective is to minimise the following misfit function which is a 

normalised measure of difference between observed and simulated production data: 

                                                 (5.5), 

where the standard deviation values for oil and water rates ( and ) are set to 1 

STBD which is approximately 5% of average oil and water production rates. The 

   
2 2

2 2
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Optimization method employed here is Neighbourhood Algorithm (NA) (Sambridge, 

1999-A) with the input parameters given in table 5.2.  

 

   Iterations Total Simulations 

100 14 2 115 1700 

 

Table 5.2: NA input parameters for history matching of top and bottom horizons 

 

 

Figure 5.8: Convergence of NA in history matching of top and base horizons  

 

As shown in figure 5.8, misfit value approaches zero. Lowest misfit of 0.024 is obtained 

after 1650 simulations. History matched top and base horizons have been depicted along 

with true horizons in figure 5.9. Model with the lowest misfit have STOIIP of 36899 

STB which is in a very good agreement with true model with 36826 STB oil originally 

in place. Also trends of true horizons are intimately followed by the best model except 

far away from wells in the middle of axial interval where the curvature of horizon does 

have the least effect on simulated potential field and consequently on production. 

Observed spurious uplifting at  has almost the same dimensions for 

both top and base horizons, thus it does have a negligible impact on STOIIP.   

isn
sn rn

 500 ,750 x ft ft
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Figure 5.9: Best model compared with true model, top: Base horizon, bottom: Top horizon 

 

Also spatial variation of layer thickness along the horizontal axis has been displayed for 

both history matched model and truth case in figure 5.10. The average thickness value is 

almost the same for both models (18.49 ft for history matched model and 18.47 ft for 

truth case). However the highest discrepancies between layer thicknesses happen after 

the spurious uplifting at  750 ,875x ft ft , where the fluctuating thickness of truth case 

is not well reproduced with the averaged thickness trend of history matched model.   

 

 

Figure 5.10: Best model compared with true model in terms of layer thickness 
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We can examine the quality of history matched models in terms of curvature of horizons 

trend. The curvatures of each horizon trends can be calculated from: 

 
 

  
3

2 2
1

i

i

i

z x
x

z x








                                                                                                (5.6).                                    

The curvatures have been compared between truth case and the history matched model 

for the base horizon in table 5.3 and for the top horizon in table 5.4. The relative errors 

of curvature are also given in these tables which are calculated as: 

. . . .

. .
. . ( )(%) 100

T C H M

T C
rel err

 





                                                                           (5.7). 

 

( )ix ft  125 250 375 500 625 750 875 

 
. . 310

T C

i top
x   -0.9906 1.2449 -1.3114 1.2975 -0.9937 0.5697 0.0941 

 
. . 310

H M

i top
x   -0.8559 0.9443 -1.1921 1.7736 -1.7683 0.8783 0.1363 

. . ( )(%)rel err 
 

13.5 24.1 9.1 36.6 77.9 54.2 44.9 

 

Table 5.3: Spatial variation of curvatures for top horizon along the horizontal direction 

compared between true and history-matched models 

 

( )ix ft  125 250 375 500 625 750 875 

 
. . 3

sin
10

T C

i ba
x   1.2053 

-

1.7855 
1.9320 -1.3600 0.7430 -0.9258 0.9913 

 
. . 3

sin
10

H M

i ba
x   1.2976 

-

1.5842 
1.3432 -0.4067 -0.6376 0.3714 0.3351 

. . ( )(%)rel err 
 

7.6 11.3 30.5 80.1 185.8 140.1 66.2 

 

Table 5.4: Spatial variation of curvatures for base horizon along the horizontal direction 

compared between true and history-matched models 
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As expected, the maximum relative error for both horizons occurs at the point of 

spurious uprising ( 625 x ft ). The problem is more severe for base horizon as the 

history matched model gives curvatures with directions opposite of true ones around the 

spurious uprising point (  500 ,875 x ft ft ). Also comparatively smaller errors close to 

the injection and production wells are observed. This implies that the potential field and 

consequently flow behaviour are more influenced by the curvature of horizons in the 

vicinity of sources or sinks. However moving away from left extreme (injection well) 

the relative errors for both horizons are increased which indicates the reduced sensitivity 

of water front advancement to the horizons curvatures. In general the effective 

gravitational force imposed on water front is influenced in the first place by the layer 

thickness and secondarily by the local curvatures of top and base horizons. The 

production profiles are strongly dependent on the sweep efficiency of water front; thus 

the closer the points to the injection well the more the contribution of their 

corresponding curvatures to the production profiles. This explains the better history-

matched curvatures close to the injection well in contrast with production well. 

Generally one might conclude that volume bounded between top and base horizons 

influences dominantly the production, while curvatures predicted for horizons are 

plausible just near wells. Also history matched model is likely to yield a flattened 

spatial variation of thickness in case of reaching local minima.  

 

Convergence regions of uncertain heights have been depicted individually for base and 

top horizon in figure 5.11 and 12 respectively. Red dotted horizontal line shows centre 

of convergence region, while true heights have been marked with black dotted arrows.  

 

Less discrepancy between true and NA-converged heights for both horizons is observed 

near to the left extreme, where the injection well is drilled. Effective thickness of oil 

bearing formation near to injection well dominantly controls the displacement efficiency 

of water injection. Because remembering water is injected at a constant pressure, 

volumetric injection rate and gravity segregation effects are mainly determined by the 

depths of top and base horizons. A weaker concordance between true and NA-
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converged heights is distinguished near to the right extreme (around the production 

well). Although it is expected to achieve true heights around the production well (where 

the simulated data are extracted from), but spurious uplifting occurred for the fifth 

height on both horizons influences trend of NA-converged height for sixth and seventh 

heights and make them displace a bit upward.  

 

Figure 5.11: Convergence of NA for heights of the base horizon (shown with red colour) in 

contrast with true heights (shown with block dotted arrows) 
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Figure 5.12: Convergence of NA for heights of the top horizon (shown with red colour) in 

contrast with true heights (shown with black dotted arrows) 
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5.1.3 Quantifying the Uncertainties of Reservoir Horizons 

History matching with NA leaves an ensemble of models with horizon heights sampled 

through the prior confidence interval. In general any kind of probability distribution can 

be assigned for the prior confidence interval honouring the nature and the sources of 

uncertainties with horizon heights. In this synthetic problem, a uniform probability is 

proposed over the prior range. To update our beliefs about obtained set of models, it is 

desired to assign revised probability weights to different models with low misfit based 

on the likelihood of models obtained from their misfit values ( ). As 

discussed in Chapter 2, Bayes rule is a powerful tool which relates posterior probability 

distribution (PPD) to prior information and likelihood estimation of models: 

                                                                                 (5.8). 

 

NA-Bayes library written by Sambridge [1999-B] receives set of sampled models with 

their corresponding misfits and returns posterior probability densities (PPD) for each 

model. Obtained incremental probabilities can be converted to cumulative probabilities 

(CDF). This allows doing posterior inference on the ensemble of models provided by 

history matching.  

 

Cumulative posterior probabilities are used to determine credible intervals for each 

parameter; interpolating CDF gives us values corresponding to 10%, 50% and 90% 

probability for each parameter which are referred to as p10, p50, p90 respectively. p10, 

p50, p90 obtained for all parameters are gathered and used to construct base and top 

reservoir horizons. Model built with p10s is most pessimistic model and one built with 

p90s is most optimistic reservoir model. It is believed that the models built with p10, 

p50, p90 heights can schematically represent the bounds of updated credible interval for 

each horizon. 
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In figures 5.13 and 5.14, p10, p50, p90 for the heights of base and top horizons have 

been plotted against the axial position (x).  For both horizons, truth case (coloured with 

purple) is well captured within the credible interval, although it varies alternatively 

between upper and lower bounds. Width of posterior interval defined by 90 10p p  for 

each height has been depicted in figure 5.15 which has a plateau of 2.0 for more than 

half of model extension. Another plateau of almost 2.5 is observed around the fifth 

point. This indicates spurious results due to local minima might end up with higher 

uncertainty after posterior inference.  

 

 

Figure 5.13: Posterior credible interval for base horizon compared with truth case 

 

 

Figure 5.14: Posterior credible interval for the top horizon compared with truth case 

 

-5

-3

-1

1

3

5

0 125 250 375 500 625 750 875 1000

p10 for base horizon

p50 for base horizon

p90 for base horizon

True base horizon

Horizontal Distance (ft)

H
e

ig
h

t 
(f
t)

14

16

18

20

22

24

0 200 400 600 800 1000

p10 for top horizon

p50 for top horizon

p90 for top horizon

True top horizon

Horizontal Distance (ft)

H
e

ig
h

t 
(f
t)



Chapter 5: Modelling and Quantification of Structural Uncertainties for 

Nonintersecting Geological Structures 
 

164 
 

 

Figure 5.15: Difference between bounds of credible interval for base and base horizons 

 

However remembering the width of prior confidence interval which is 4.0 for all 

heights, posterior interference leaves an uncertainty range narrowed down by 47.5% and 

45.5% for the base and top horizons respectively compared with prior ranges. Clearly 

less uncertainty is anticipated when NA is run on a more explorative mode. Variation of 

heights of top and base horizons would immediately alter size of reservoir, so one can 

investigate uncertainty with oil volume by plotting CDFs versus STOIIP for respective 

model. This has been depicted in figure 5.16, in which the effect of posterior inference 

on reducing uncertainty of STOIIP is apparent. The wide prior range of STOIIP 

between the models with minimum and maximum thickness has been updated to a 

marginal range of [35708 STB, 39762 STB].  

 

 

Figure 5.16: Posterior cumulative probability distribution on prior range of STOIIP 
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As shown in figure 5.17, STOIIP of Truth Case (T.C.) (36826 STB) lies between bounds 

of updated credible interval[ 10 36796 ,  90 37904 ]p STB p STB  , while STOIIP for 

reference model (with seismic picked horizons) falls outside the credible interval.  

 

 

Figure 5.17: Posterior CDF on posterior credible interval of STOIIP 

 

Water and oil production profiles were depicted in figures 5.18 and 5.19 for models 

built with extreme values of posterior credible interval (p10, p90) along with the true 

model. Comparing with figures 5.6 and 5.7 (WWPR and WOPR for prior range) 

clarifies the considerable contribution of Bayesian inference to diminish variability of 

production profiles caused by structural uncertainties of horizons. 

 

 

Figure 5.18: Water production for the updated credible interval 
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Figure 5.19: Oil production for the updated credible interval 

 

In order to compare the STOIIP uncertainty reduction values for different 

exploration/exploitation modes of NA, we perform the history matching and uncertainty 

quantification for different values of  r sn n  and for each  ratio, calculate the 

narrowing index of STOIIP uncertainty interval as defined by Eq. 5.9:  

90 10
 . . 1 100

p p
narrowing index Nar Idx

Max Min

  
    

 
                                             (5.9).  

The results of this compartive study given in table 5.5.  

 

 r sn n  Nar. Idx. (%) 

(1/1) 6.60 

(1/3) 6.92 

(1/5) 7.11 

(1/7) 7.23 

(1/9) 7.49 

(1/11) 6.53 

 

Table 5.5: Variation of narrowing index of STOIIP credible interval against 

exploration/exploitation modes of NA 
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Results clearly imply that smaller values of  r sn n  ratio (more exploititive NA modes) 

leads into more enhancement in STOIIP prediction, as NA would refine the sampling 

through regions with very good fit into the production data and creates a more compact 

ensemble which is less scattered throughout the parameter space and consequently a 

narrower credible interval for STOIIP is obtained. However it seems that for  r sn n  

ratios less that (1/10), the parameter space is not properly explored by algorithm and 

some good fitting regions around the truth case are not revisited, as a result narrowing 

indices would decline by decreasing  r sn n  ratio under (1/10).  

 

5.2 Modelling the Uncertainty of Faults  

Faults are considered as the planar discontinuities across the volume of rock that 

significantly displace the stratigraphic layers. By definition, two sides of a normal fault 

are called hanging wall and foot wall; hanging wall belongs to block occurring above 

the fault plane and foot wall belongs to block located above the fault plane (Bordie et 

al., 2007). During the faulting process, some pieces of rocks from either hanging wall or 

foot wall are broken, crushed and dragged alongside the fault plane (Sperrevik et al., 

2002). Resulting material (fault gauge) is spread over the fault surface and 

accommodates for a flow sealing effect along the fault plane. In addition sub-scale 

fractures normal to the faulting plane are developed into the hanging and foot walls. 

Thus fault in reality is not a plane, but has a thickness varying along the fault surface. 

These fractures and non-uniform distribution of fault gauge over fault surface allows for 

cross flow leakage through the fault opening.  

 

As stated by Knipe [1997] and Manzocchi et al. [1999], in general flow in reservoir 

simulation is influenced by faults in two ways: 

1. Fault displacements juxtapose different stratigraphic layers of likely high 

permeability discrepancy. Therefore the horizontal reservoir interconnectivity is 

altered by fault throw. Moreover fault inclination allows for an increased effect 

of gravity force on flow especially in the vicinity of fault plane. As a result, fault 
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inclination can have a positive or negative impact on the reservoir vertical 

interconnectivity depending on the inclination angle. 

2. The altered transmissibility across the fault plane due to the fault gauge and 

related fractures in faulted zone causes that fault acts as barrier or conduit for 

fluid flow. Thus the main flow paths throughout the porous rock are impressed 

by faulting pattern and geometry.  

 

In reservoir simulation the alteration of transmissibility across the fault plane and the 

possibility of cross leakage is represented with transmissibility multipliers defined for 

both sides of fault and for both direction ( /

/x yTM   ) which correct the fluxes at each face 

coinciding with the fault plane ( / / /

/ / /*
fault

x y x y x yf TM f      ). As a common practice in 

order to history-match the faults, only the fault transmissibility multipliers are varied 

and its geometry remains fixed. In this thesis we are focused on structural uncertainties, 

thus transmissibility multipliers are kept constant and history matching is carried out to 

find optimised models of fault geometry. Obviously simultaneous variation of fault 

geometry and transmissibility multipliers makes it much harder to isolate the special 

flow effects imposed by fault geometry and consequently leaves less constrained 

geometrical uncertainties of fault. 

 

5.2.1 Case Description 

Model is a two dimensional cross section of a reservoir with a single fault cutting 

through the oil bearing formation. Model dimensions are 1000 ft length by 20 ft height 

by 112 ft width which has been discretized into a 100 20 1   grid. Similar to model 

described in Case 1, model does not include any aquifer or gas cap. Initial reservoir 

pressure is uniform and equal to 100 psia.  

 

5.2.2 History Matching of Fault Geometrical Properties 

The reference model contains a normal fault which divides the reservoir into two 

blocks, one on the hanging wall of fault on its left side and one on the foot wall of fault 
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on its right side. Fault surface is assumed to be determined from the considerable 

discontinuity appearing in seismic time maps. Considering faults as the geological 

objects extended mainly in vertical direction, poor vertical resolution of seismic and the 

noisy nature of seismic data makes geometrical properties of seismic picked fault 

uncertain. Prior uncertainties for each geometrical property of fault (position, dip and 

displacement) can be represented with prior confidence intervals. Width of prior 

confidence intervals are determined from the width of zone within the fault trend can be 

reasonably picked (Irving, 2010-B).  

 

Here in order to investigate the effect of fault uncertainty on flow inter-connectivity two 

single layer and multi layer model with similar dimensions and true fault geometry.  

 

5.2.2.1 Multi-layer Model 

Model contains six layers of alternating high and low permeabilities. In table 5.6, 

permeabilities and porosities for each layer has been given where the layers are indexed 

upward starting from the deepest layer.  

 

Layer  hK Darcys   vK Darcys   volume
volume

  

1 0.3 0.06 0.25 

2 0.05 0.01 0.10 

3 0.5 0.1 0.25 

4 0.05 0.01 0.10 

5 0.8 0.16 0.25 

6 0.05 0.01 0.10 

 

Table 5.6: Rock properties for multi-layer model containing fault 

 

5.2.2.2 Single-layer Model 
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Oil bearing formation consists of a single layer of uniform porosity 0.20. Horizontal and 

vertical permeabilities are uniform and equal to 0.20 Darcys and 0.04 Darcys 

respectively. 

 

Production data are employed to enhance our knowledge about the fault geometry and 

narrow down the range of structural uncertainties for fault. Simulated production 

profiles obtained from running simulation on truth case are considered as the observed 

data. In our knowledge no other methodology can simultaneously update all the 

geometrical properties of fault (position, dip, throw) during history matching. Fault in 

the truth case has the following set of geometrical specifications:   

 

X-coordinate of fault entrance point (ft) 780 

Fault slope (ft/ft) 2.0 

Fault throw (ft) 4.65 

 

Table 5.7: Fault geometrical specifications for truth case 

 

 

 

Figure 5.20: Permeability map for multilayer faulted model 
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Transmissibility multipliers (given in table 5.8) which determine the degree of fault 

interconnectivity are assumed to be constant over the fault surface on both walls and in 

both vertical and horizontal directions.  

 

xTM 
 0.8 

xTM 
 0.8 

yTM   0.8 

yTM   0.8 

 

Table 5.8: Directional transmissibility multipliers on both sides of fault 

 

The prior uncertainty ranges for geometrical fault specification are listed in table 5.9: 

 

X-coordinate of fault entrance point (ft) 350-950 

Fault slope (ft/ft) 1.25-6.25 

Fault throw (ft) -2.0-8.0 

 

Table 5.9: Prior guess of uncertainty ranges for each fault geometrical parameter 

 

Injection well and production well start to flow at time 0 t Days with bottom hole 

pressures set at 150 psia and 50 psia respectively. Oil and water production histories for 

both multi-layer and single layer models with true fault geometry have been depicted in 

figures 5.21 and 5.22. Because of complexity of relation between geometrical fault 

specifications and resulting potential field, unlike the uncertain horizons, it is not 

straightforward to determine variation range of production due to structural fault 

uncertainties. But faults with geometrical specifications picked at extremes of prior 

uncertainty ranges can be used to rebuild models offering the maximum fault 

geometrical uncertainties. Production profiles obtained from these models have been 

plotted in figures 5.23 and 5.24 for multi-layer model and in figures 5.25 and 5.26 for 

single layer model.  
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Figure 5.21: WOPR for truth cases of faulted models 

 

 

Figure 5.22: WWPR for truth cases of faulted models 

 

 

Figure 5.23: Prior uncertainties of oil production for multi-layer faulted model 
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Predicted production profiles on prior ensemble of fault uncertainties are much more 

spread for multi-layered model compared with single layer model. This indicates 

stronger influence of fault displacement and deformation on potential field and 

consequently flow behaviour in multi-layered model than single layer model.  

 

 

Figure 5.24: Prior uncertainties of water production for multi-layer faulted model 

 

 

Figure 5.25: Prior uncertainties of oil production for single-layer faulted model 
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Figure 5.26: Prior uncertainties of water production for single-layer faulted model 
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the impact of fault geometry on potential and flow field. Thus as shown in figures 5.23 
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produced at a higher rate (and water breaks through earlier). Moreover larger fault 

throw eventuates in less possibility of gravity segregation when displacing phase 

(water) enters the block on foot wall side. This explains higher production sensitivity to 

fault throw in multi-layered model.  
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space is explored enough, a narrower posterior uncertainty range is expected for fault 

throw in contrast with fault location and dip. 

 

It is demanded to match the geometry of fault to the production profiles obtained from 

simulation on truth cases of both models subject to minimisation of misfit function 

defined in Eq. 5.5. Input parameters for NA employed for history matching are given in 

table 5.10: 

 

isn  
sn  rn  Iterations Total Simulations 

300 6 3 120 1020 

 

Table 5.10: NA input parameters for history matching of fault geometry 

 

Misfit values for both faulted models have been plotted in figure 5.27 versus 

simulations performed on models built with NA optimised fault geometries. Average 

misfit value is 15.73 when NA optimises multi-layer model which is much higher than 

corresponding value of 0.034 for single layer model. Moreover late NA convergence to 

misfits less than unity for multi-layer model contrary to early convergence for single 

layer model signifies the substantial dependency of production on fault geometry in 

layered models.  

 

 

Figure 5.27: NA convergence for history matching on both faulted models 
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Lowest misfits of 0.019 and 0.003 are obtained after 1009 and 881 runs for multi layer 

and single layer models respectively. Best NA optimised models were depicted along 

with the truth cases of multi-layer and single layer models in figures 5.28 and 5.29. 

 

For multi-layer model, history matched values of fault location and fault throw are 

almost identical to true values. While a significant difference is observed between 

history matched and true values of fault dip which manifests the fault dip as the 

parameter with the least influence on production. For single layer case, fault location 

and throw values obtained for model with lowest misfit are close to the true values, but 

not as close as multi-layer case.    

 

Figure 5.28: Maximum likelihood model compared with truth case for multi-layer model 
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Figure 5.29: Maximum likelihood model compared with truth case for single layer model 

 

For both faulted models, history matched fault slope is considerably far from the true 

value. As shown in figure 5.30, less fault slope ensues into a larger vertical component 

of flux vector across the fault surface which enhances the vertical sweep efficiency and 

increases the production rate. Therefore the production discrepancy resulted from a fault 

with larger throw compared with truth case (history matched models) can be mitigated 

by increasing the fault slope such that the same gravity potential is exerted across the 

fault plane. However augmented impact of increased fault throw on production 

behaviour in multi layer model should be compensated with a larger fault slope. Thus 

history matching leaves a larger fault slope in multi layer model in contrast with single 

layer model.  

 

Indeed the gravity force imposed on the fault plane is much less influenced by fault 

slope compared with fault throw. Therefore in best history-matched models, fault throw 

with negligible difference from truth case is accompanied with fault slope with large 

discrepancy from the true slope. From this discussion fault dip is regarded as the most 

difficult fault geometrical parameter to be history matched. 
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Figure 5.30: Increased vertical flux across fault plane due to reduced fault dip 

 

NA sampling histories for individual fault geometrical parameters have been depicted in 

figures 5.31, 5.32, 5.33. Centre of NA convergence intervals and the true parameters 

were displayed with red dotted straight line and the block dotted arrow respectively. For 

multi-layer model, NA convergence intervals become as narrow as ones for single layer 

model after much more simulator runs. This confirms the conclusion drawn by the 

sensitivity analysis of fault geometry. The volume and the complexity of the impact of 

fault geometry on the flow behaviour are amplified by imposing more heterogeneity. 

Thus it is more likely for NA to get stuck in local minima in the multi-layer model. 

Yellow dotted line in figure 5.31 shows occurrence of a local minima for fault throw 

(the most influential fault parameter).  

 

Figure 5.31: History matching trail over both faulted models for fault location 
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Figure 5.32: History matching trail over both faulted models for fault dip 

 

Figure 5.33: History matching trail over both faulted models for fault displacement 

 

Cross sections of misfit surfaces for both faulted models were plotted in figure 5.33 

against fault throw. Several local minima are observed for multi-layer model, while 

single layer model has a much simpler misfit surface with a unique global minimum 

about 4.97. This reveals that true reservoir vertical and horizontal interconnectivities for 

multi-layer model are likely to be reproduced by several juxtaposition statuses of 

bedding layers from different depths. However the stochastic nature of employed 

optimisation algorithm (NA) and a balanced explorative-exploitative mode of NA (

 / 1/ 2r sn n  ) ensures to achieve a good sampling and relief from local minima.   
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Figure 5.34: Misfit surface for faulted models showing local minima for multi-layered model 

 

5.2.3 Quantifying the Uncertainties of Fault 

Ensemble of models sampled through the space of fault parameters is utilised by NAB 

routine to reconstruct the posterior probability densities. Thereafter posterior Bayesian 

inference determines the interpolated p10 and p90 values as the bounds of credible 

intervals and p50 as the median for each fault geometrical parameter.  

 

Figure 5.35: CDF for fault location used to determine bounds of posterior credible interval 

 

Figure 5.36: CDF for fault slope used to determine bounds of posterior credible interval 
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Figure 5.37: CDF for fault throw used to determine bounds of posterior credible interval 

 

Credible intervals for individual parameters have been displayed on CDF plots for both 

reference faulted models in figures 5.35, 5.36 and 5.37. True fault geometrical 

parameters for both models lie within the credible interval. 

 

 p10 p50 p90 Mean T.C. 

Single 

layer 

Model 

Xs (ft) 423.1 647.1 893.8 653.0 780.0 

Slope (ft/ft) 1.64 3.55 5.63 3.70 2.00 

Throw (ft) 0.01 3.50 7.07 3.55 4.65 

Multi 

layer 

Model 

Xs (ft) 562.8 754.1 844.5 741.4 780.0 

Slope (ft/ft) 1.85 3.85 5.13 3.60 2.00 

Throw (ft) 4.48 5.99 7.49 5.86 780.0 

 

Table 5.11: Bounds of posterior credible interval, median and mean vs. true values 

 

CDF varies relatively linearly with respect to geometrical parameters in single layer 

model, indicating incremental probabilities (PPDs) have been distributed almost equally 

around the middle point of prior confidence interval with a relatively large standard 

deviation. This is also evidenced by the fact that mean and p50 values calculated for 

each parameter are closefitting to the middle point of corresponding prior range. While 

for multi-layer model, CDF have a completely non-linear behaviour over the prior range 

of fault parameters, such that the main bulk of CDF values lies to the right of middle 

point, specifically for the fault throw and location. Also noticing small CDF over the 

left half-range (values less than middle point of prior confidence interval), more 

probable data in the posterior are frequently concentrated around the mean value in right 
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half-range. As a result smaller standard deviations and narrower credible intervals are 

attained for multi-layer model compared with single layer model. Narrowing index 

defined by the percentage of contraction of uncertainty range after posterior inference 

along with corresponding values of standard deviation have been given per each 

parameter for both faulted models in table 5.12.  

 

Model Single layer Model Multi layer Model 

Parameters Xs  Slope  Throw  Xs  Slope  Throw  

Narr. Idx. (%) 21.55 20.20 29.40 53.05 34.40 69.90 

Std. Dev. 164.5 1.44 2.59 105.1 1.19 1.47 

 

Table 5.12: Percentage of uncertainty reduction per each parameter for faulted models 

 

The maximum shrinkage of prior uncertainty range occurs for the fault throw in multi 

layer model emphasising predominant role of height offset imposed by fault on 

production in multi layer model. In accordance with the sensitivity analysis performed 

on fault parameters, updated credible intervals are broader in single layer model.     

      

For both faulted models, negative fault throws have been deleted from the posterior 

credible interval. It is due to completely different flow behaviour for the negative 

throws. At negative throws, gravitational force opposes the flow potential for both 

phases when they enter from left downthrown block to the right block, while at positive 

throws the flowing potential is supported by gravity force across the fault plane. 

Accordingly considerably smaller production rates are expected for negative throws. 

 

In order to schematically represent the variation of fault geometry within the posterior 

credible interval, one can rebuild models combining the p10, p50 and p90 values of 

fault parameters. The extreme geometrical uncertainties can be seen for two faults one 

built with p10 values and another built with p90 values. Figures 38 and 39 show the 
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representational comparison between the truth case and the models obtained from 

combinations of values on the bounds of credible intervals.  

 

 

Figure 5.38: Truth case vs. models with extreme posterior structural uncertainties for multi layer 

model 

 

The proficiency of posterior inference can be testified with re-evaluating the variation 

range of predicted productions over updated uncertainty ranges. Combining fault 

parameters arbitrary picked from the bounds of corresponding credible intervals (p10 or 

p90) would end up with 8 models offering the maximum posterior uncertainties. The 

narrower the range of production profiles for such a set of models implies the more 

confined the posterior uncertainties after posterior inference.  
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Figure 5.39: Truth case vs. models with extreme posterior structural uncertainties for single 

layer model 

 

Updated range of uncertainties of oil and water production has been depicted in figures 

5.40 and 5.41 for multi layer model and in figures 5.42 and 5.43 for single layer model. 

Even for the multi-layer model with diverse production profiles at prior, almost 

coinciding production profiles are obtained for the representative ensemble of extreme 

posterior uncertainties which confirms the functionality of Bayesian inference for 

constraining large scale uncertainties like fault.  
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Figure 5.40: Posterior uncertainties of oil production for multi-layer faulted model 

 

 

Figure 5.41: Posterior uncertainties of water production for multi-layer faulted model 

 

 

Figure 5.42: Posterior uncertainties of oil production for single-layer faulted model 
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Figure 5.43: Posterior uncertainties of water production for single-layer faulted model 

 

5.3 Modelling the Uncertainty of Pinchouts  

According to geological definition, pinchouts are recognised with reduction in bed 

thickness resulting from down-lapping or on-lapping stratigraphic sequences. Thus it 

can be considered as an incomplete layer which is terminated with thinning or tapering 

out (pinching out) against adjacent geological formations. Depending on the nature of 

layers confining the pinched out layer, pinchout can act as a flow barrier or creates a 

favourable geometry for a reservoir trap. Here we consider impermeable pinched out 

layers encompassed with permeable oil bearing formations. Figure 5.44 shows typical 

instances of pinchouts. 

 

 

Figure 5.44: Left: on-lapping stratigraphic layers, Right: down-lapping stratigraphic layers 

(taken from Temistochles Rojas, 2010) 
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Pinchout geometry can be described with an elongated eclipse with high contrast 

between major and minor diameters. Therefore it is a rational approximation to 

represent the pinchout with two almost degenerate triangles with equal bases located 

one on another upside down. Angles at vertices of bases are very small, such that 

pinchout has been extended along the over-lapping bases of two triangles termed as the 

transverse or the major axis of pinchout. As figure 5.45 shows a pinchout can be 

uniquely specified with (x,z) coordinates of 4 points: 

 Head point: the point on transverse axis with smallest x coordinates 

 Tail point: the point on the transverse axis with largest x coordinates 

 Apogee point: Obtuse-angled vertex of upper triangle 

 Perigee point: Obtuse-angled vertex of lower triangle 

 

 

Figure 5.45: Typical pinchout geometry determined with its 4 vertices 

 

Therefore 8 parameters (x and z coordinates of vertices) can define the pinchout. During 

history matching of a pinchout, optimisation algorithm picks values from the prior range 

of each parameter. In case of any interference between the prior ranges of coordinates of 

a pair of pinchout vertices, it is likely to come up with non-meaningful pinchouts. For 

example for prior ranges of [100,500] and [400,800] for x coordinate of pinchout head 

and tail points respectively, optimisation algorithm might pick 480 and 450 for x 

coordinate of head and tail, obviously a pinchout with head point preceded by tail point 

is not feasible. Thus to remove correlations resulting from such interferences, x and z 

coordinates of pinchout vertices are re-encapsulated to come up with a new pinchout 

parameterisation as represented in figure 5.46: 

 xH: x coordinate of pinchout head point from the coordinates origin 

 hH: Height of pinchout head point with respect to the datum 
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 rA: Angle between pinchout major axis and x axis 

 TL: Horizontal distance between head and tail points of pinchout 

 uHA: Opening angle of upper triangle at head point 

 lHA: Opening angle of lower triangle at head point 

 uTA: Opening angle of upper triangle at tail point 

 lTA: Opening angle of lower triangle at tail point 

 

 

Figure 5.46: Pinchout parameterisation with head point coordinates, total length and 5 angles 

 

5.3.1 Case Description 

Model is a two dimensional cross section of a reservoir with three stratigraphic layers. 

Model dimensions are 1000 ft length by 20 ft height by 112 ft width which has been 

discretized into a 100 20 1   Cartesian grid. Heights of reservoir top and base horizons 

are given in table 5.13.  Initial grid would be extended upward and downward and then 

using Cartesian Cut Cell method it is reformed to accommodate top and base horizons. 

Similar to model described in Cases 1 and 2, model does not include any aquifer or gas 

cap. Initial reservoir pressure and initial connate water saturation are uniform and equal 

to 100 psia and 0.1 respectively.   
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( )ix ft  15 125 250 375 500 625 750 875 985 

 sin ( )ba

ih x ft  -1.13 -5.97 -3.31 -6.05 -2.07 -0.82 -1.67 -4.70 -1.84 

 ( )top

ih x ft  20.36 22.45 24.98 21.47 20.14 23.09 19.89 20.65 22.43 

 

Table 5.13: Heights of top and base horizons for pinched out model 

 

5.3.2 History Matching of Pinchout Geometry 

The pinched out model contains three layers of different petrophysical properties as 

given in table 5.14. The second layer is a pinched out layer, such that at injection and 

production wells drilled at left and right extremes of model just two stratigraphic layers 

are detected. Its negligible permeability causes it has a sealing effect against the flow.  

 

Layer  hK Darcys   vK Darcys   volume
volume

  

1 0.15 0.03 0.15 

2 0.00000002 0.000000004 0.02 

3 0.25 0.05 0.25 

 

Table 5.14: Rock properties for layers of the model containing pinchout 

 

Uncertainty with the pinchout geometry comes from the similar sources to those of the 

top and base reservoir horizons, as the upper and lower branches of pinchout are 

recognised within a margin of error from the visible boundaries in seismic time map. 

 

Here a pinchout with the geometrical specifications given in table 5.15 is considered as 

the truth case. The prior range of uncertainties per each parameter has been provided in 

this table as well. Top and bottom branches of pinchout get confluent together away 

from the pinchout body and overlap with the boundary of layers confining the pinchout 

subjected to the depths picked at wells.  
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Pinchout parameters Truth case Prior range 

xH (ft) 180.0 50-250 

hH (ft) 6.5 5.5-8.5 

rA (°) 0.15 -0.25-0.25 

TL (ft) 500.0 300-700 

uHA (°) 1.15 0.6-1.6 

lHA (°) 0.35 0.0-0.6 

uTA (°) 1.10 0.6-1.6 

lTA (°) 0.40 0.0-0.6 

 

Table 5.15: Truth case and prior uncertainty ranges for pinchout geometrical parameters 

 

Obtained production data after running the simulator on truth case are employed as the 

observed data. History matching is then conducted to find an optimised geometry of 

pinchout which reproduces the most fitting production profiles to the observed data. 

Similar to cases 1 and 2 injection well and production well are opened to flow at time 

0 t Days with bottom hole pressures set at 150 psia and 50 psia respectively and the 

production history is recorded for 1500 Days. Oil and water production histories for the 

true pinchout geometry have been depicted in figure 5.48.  

 

 

Figure 5.47: Permeability map for the truth case of model containing pinchout 
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Figure 5.48: Production history for the true pinched out model 

 

To determine the impact of prior pinchout uncertainties on production behaviour, one 

has to set up an ensemble of priorly probable models. Production profiles obtained from 

such an ensemble can represent satisfactorily the prior uncertainties with prediction of 

production history, if the variation of geometrical parameters in the ensemble covers 

properly the corresponding prior ranges. Here all parameters affecting the size of 

pinchout (uHA, lHA, uTA, lHA, TL) are encapsulated into one parameter termed as 

pinchout size (S). Thus the prior representative ensemble is created with 16 pinchouts 

with parameters picked at the extremes of prior ranges for each of 4 parameters (S, 

X(xH), H(hH), R(rA) ). Oil and water production profiles for this ensemble are shown 

in figures 5.49 and 5.50 respectively in which “m” and “M” stand for the minimum and 

maximum of relevant prior range (e.g. Xm=50 ft , XM=250 ft).  

 

Remembering studied pinchout as a low-porosity impermeable layer, the minimum 

pinchout size would be corresponding to maximum volume of oil in place. Because as 

pinchout shrinks, boundaries of two more high-porosity permeable layer extends. 

Consequently maximum oil production and earliest water breakthrough are attained for 

the minimum pinchout size. Also production behaviour at minimum pinchout size (Sm) 

is not noticeably influenced by other parameters, as almost similar production profiles 

are obtained for different combinations of head point location and rotation angle 

alternating between the extremes of relevant prior ranges.  
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Figure 5.49: Prior uncertainties of oil production for pinched out model 

 

 

Figure 5.50: Prior uncertainties of water production for pinched out model 

 

On the other hand for the maximum pinchout size (corresponding to the minimum 

priorly probable STOIIP) production profiles are very diverse. This indicates the 

elevated dependency of flow behaviour on head point location and rotation angle with 

enlarging the pinchout (increasing the interior angles and total length). Among them a 

large discrepancy is observed between two pinchouts having the minimum head point 
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height and minimum rotation angle. Closer one to the injection well (xHmin=50 ft) 

results in highest production rates and third earliest water breakthrough among 

pinchouts of maximum size, whilst one with maximum distance from injection well 

(xHmax=250 ft) ends up the lowest production rates and latest water breakthrough. 

Impermeable pinchout enforces the water front to decompose into two semi-fronts 

moving above and below the pinchout. We define two “water semi-fronts" as the 

moving fronts of fluid got separated from each other at head point of a pinchout and 

stay unconnected along the impermeable body till the tail point point. However 

pinchout as a flow barrier prevents gravity from re-unifying semi-fronts until the tail 

point and would enhance sweep efficiency in upper layer. The longer the distance that 

water front has to traverse before reaching pinchout, the more gravity segregation 

occurs and consequently water front deviates more its piston-like shape, Thereafter the 

semi-front formed in upper layer would be thinner in contrast with pinchout closer to 

the injection well, so more porous more permeable upper layer is not properly swept 

and smaller displacement efficiency and production rates are achieved. Also as shown 

in figure 5.51, faster advancement of water semi-front in upper layer and earlier 

breakthrough is expected for the closer pinchout to the injection well.  

 

 

Figure 5.51: Saturation maps for pinchouts of maximum size and different xH @ t=1000 Days 

 

Variation of head point height and the rotation angle displaces the boundary between 

lower and upper layers and consequently makes one layer shrunk and another expanded. 

Remembering the porosity and permeability contrast between two oil bearing layers, 

this would alter production rates and breakthrough times. Indeed their influences on 

production history would be much more perceptible in case of larger porosity and 

permeability contrasts between the layers surrounding the pinchout. 
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History matching seeks models minimising the misfit function defined in Eq. 5.5. NA 

with the following set of input parameters is employed to optimise pinchout geometry: 

isn  
sn  rn  Iterations Total Simulations 

200 16 8 150 2600 

 

Table 5.16: NA input parameters for history matching of pinchout geometry 

 

Figure 5.52 shows the decreasing trend of misfits proving the convergence of NA which 

leaves an average misfit value of 1.23 after 2600 runs of simulator.  

 

 

Figure 5.52: Convergence of NA in history matching of pinchout 

 

History matching finds the best model after 2547 runs of simulator with the misfit of 

0.016. The geometrical pinchout specifications of the maximum likelihood model and 

truth case has been compared schematically in figure 5.53 and the models built with 

these pinchout geometries have been shown in figure 5.54. Closefitting accordance 

between maximum likelihood model and truth case is observed with respect to their 

head point location and total length. Also the horizontal location of head point in 

history-matched model satisfactorily approaches the corresponding true value.  
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Figure 5.53: Pinchout geometry compared between the best model and the truth case 

 

 

Figure 5.54: Schematic comparison between maximum likelihood and true pinched out models 

 

Extent of upper layer influences flow behaviour more than lower layer extent, because 

STOIIP and overall flow conductivity are mainly provided by more porous more 

permeable layer (upper layer). Therefore production profiles are more sensitive to upper 

opening angles than lower angles, as their variation displaces the boundaries of upper 

layer. This explains why upper opening angles in maximum likelihood model are very 

similar to corresponding values in truth case, while there exist larger discrepancies 

between lower opening angles in best model and truth case. However summation of 

interior opening angles at head and tail points ( oA=uHA+lHA+uTA+lTA ) in best 
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model (1.96°) is slightly less than corresponding value for the truth case (2.0°) which 

countervails to some extent larger total length of best model (TL=505 ft) in contrast 

with truth case (TL=500 ft) and leads into almost the same pinchout size. Accordingly 

maximum likelihood model leaves an STOIIP of 48508 STB which is just 0.02% above 

its true value.  

 

If truth case holds a pinchout thicker or as thick as its confining layers (like the pinchout 

of maximum prior size discussed here), STOIIP defined by the pinchout geometry of 

NA-optimised models determines the misfit from observed data and the side-effects of 

pinchout geometry on gravity force or disturbing the water front become indistinct. 

Thereafter the uncertainty in pinchout geometry increases, because different sets of 

pinchout parameters having the same pinchout size would lead into almost the same 

misfits regardless of pinchout location (xH, hH) and individual parameters defining 

pinchout orientation and inclination (rA, opening angles).    

 

NA-sampled values of pinchout parameters have been individually plotted versus runs 

of simulator in figure 5.55. Centre of NA convergence range per each parameter has 

been tagged with red dotted straight line, while black dotted arrows show true 

parameters. Narrowest convergence range is obtained for the pinchout total length with 

the true value coinciding with its centre. A bit wider convergence range but still with 

the centre matching the true value has been achieved for head point height. This would 

rank the total length and head point height as the first and second simplest parameters to 

be history matched which respectively control pinchout dimension and the proportion of 

upper and lower layers from total reservoir thickness. Slightly larger difference between 

centre of convergence range and the true value have been observed for x-coordinate of 

head point and rotation angle, while still NA converges in a relatively narrow range. 

 

 

 

 

http://dico.isc.cnrs.fr/dico/en/search?b=2&r=countervail
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Figure 5.55: History matching trail for the pinchout geometrical parameters 

 

Broad convergence regions for all interior opening angles might be attributed to their 

convolved impacts on pinchout dimension, gravity potential and thicknesses of upper 

and lower confining layers. Though among them, narrowest convergence range and 

smallest difference between centre of convergence range and true value are obtained for 

upper tail angle. Increase in upper tail angle affects: 

truehH

truexH

truelTAtrueuTA

truelHAtrueuHA

trueTL

truerA
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1) The pinchout dimension and upper layer thickness resulting in reduced 

production rates and delayed water breakthrough, 

2) The contribution of gravity potential to advancement of upper water semi-front 

after apogee point resulting in more efficient displacement and higher 

production rates. (The higher “uTA”, the more favourable downward slope and 

the faster water front advancement) 

 

These conflicting effects make production behaviour be more sensitive to upper tail 

angle in contrast with other opening angles and consequently lead into simpler history 

matching of upper tail angle.   

 

However the predominant effect of opening angles is on pinchout dimension, thus 

production profiles are relatively unbiased to the pinchout opening directions at head 

and tail points. Total opening angles at head and tail points (HA and TA) are defined as 

the sum of upper and lower ones at corresponding points. History matching trails for 

total opening angles depicted in figure 5.56 demonstrate rather narrow NA-convergence 

ranges with their centres closefitting to the true values. This certifies the smaller 

uncertainty associated with total opening angles compared with individual directional 

opening angles.   

 

Figure 5.56: History matching trail for the pinchout opening angles at head and tail points 

 

5.3.3 Quantifying the Uncertainties of Pinchout 

trueTAtrueHA
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Posterior probability densities calculated with NAB routine are converted to CDF 

values. CDF values have been plotted over the prior uncertainty ranges of each 

parameter in figure 5.57, where the bounds of posterior credible interval (interpolated 

p10 and p90 values), the posterior median (interpolated p50) were displayed. It clearly 

shows true values have been captured within the relevant credible intervals.  

 

Low sensitivity of production to directional opening angles (except upper tail angle) is 

re-affirmed by linear variation of their corresponding CDFs over the prior ranges which 

is induced by proximity of mean values to the prior ranges mid-points and large 

standard deviations. So the posterior data are almost evenly distributed around the mean 

value and posterior inference does not considerably deduct the uncertainties associated 

with directional opening angles. CDF curves for other parameters are mainly skewed to 

the right of middle point of prior ranges, where the true values are located. The most 

compacted CDF curve is observed for the pinchout total length in which CDF varies 

from 0% to 100% in almost a quarter of prior uncertainty range. Narrowing index along 

with the values of variation coefficient, kurtosis and skewness for PPD have been given 

in table 5.17 per each parameter.  

 

 xH hH rA TL uHA lHA uTA lTA 

NI (%) 54.98 34.15 58.96 76.30 24.28 32.97 42.56 26.66 

CV (%) 19.92 10.40 75.93 7.03 23.94 49.73 20.17 50.28 

Kurt -0.58 -0.52 0.36 0.07 -1.01 -1.09 -0.39 -1.28 

Skew -0.01 0.50 -0.68 0.23 0.00 -0.10 0.10 0.00 

 

Table 5.17: Important statistical measures calculated for pinchout geometrical specifications 

 

The maximum percentage of uncertainty reduction occurs for the total length where the 

posterior credible interval is less than one-fourth of prior confidence interval, while 

more than 50% constriction of prior confidence interval for rotation angle and head 

point x-coordinate signifies their diagnosable impact on production behaviour. As an 

exception, uncertainty range for upper opening angle at tail point has been narrowed 

down by more than 40%. 
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Figure 5.57: CDF for pinchout parameters used to determine bounds of credible interval 

 

Representative models of pinchout built with combining the p10 values of each 

parameter or the p90 values, are shown in figure 5.58 along with the truth case and a 

pinchout comprised from median values (p50 values). As shown pinchout built with 
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medians, approximately conforms to the truth case such that its slightly smaller interior 

opening angles have been counterbalanced with its larger total length. Such a small 

difference between the truth case and model built with medians implies that values in 

the posterior uncertainty ranges are almost evenly distributed around the true values.  

 

 

Figure 5.58: Pinchout geometry compared among the models built with p10s, p50s, p90s and 

the truth case 

 

Reservoir models created with pinchout geometries shown in figure 5.58 are depicted in 

figure 5.59 to display the dimensions of pinchouts in different cases relative to other 

layers. Also one can see how other layers are influenced by resizing or displacing the 

pinchout. As anticipated almost identical values of STOIIP are obtained for truth case 

and model built with medians.  
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Figure 5.59: Truth case versus models with extreme posterior structural uncertainties for 

pinched-out model 

 

To examine the impacts of posterior inference on restricting the production 

uncertainties, a representative ensemble offering the extreme geometrical uncertainties 

in credible intervals is constructed. Obtained oil and water production profiles shown in 

figures 5.60 and 5.61 show a much narrower variation range in contrast with similar 

profiles provided at prior. Although the gap between profiles for minimum and 

maximum pinchout size is still retained, but it has been shrunk to about 20% of its 

initial value.  
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Figure 5.60: The posterior uncertainties of oil production for pinched out model 

 

 

Figure 5.61: The posterior uncertainties of water production for pinched out model 

 

Pinched out layer has a very small value of porosity, so as shown in figure 5.59, 

variation of its geometry and location results in considerable alteration of oil volume. 

To investigate the uncertainties associated with oil volume CDF values are plotted 

against the corresponding STOIIP. In figure 5.62, CDF values are given over the prior 

uncertainty range. Compacted CDF curve expresses the impact of posterior inference on 
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narrowing down the STOIIP uncertainty range to a marginal interval of 

[45345 , 49768 ]STB STB .  

 

 

Figure 5.62: CDF distribution on prior range of STOIIP for pinched out model 

 

As depicted in figure 5.63, STOIIP of truth case falls within the bounds of posterior 

uncertainty range of STOIIP  10 47963.33 , 90 48958.25 p STB p STB   and agrees 

with median value of STOIIP ( 50 48484.12 p STB ).  

 

 

Figure 5.63: CDF distribution on posterior range of STOIIP for pinched out model 
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5.4 Comparative Study of Improvement in Reservoir Forecasting With 

Different Gridding and Flux Approximation Approaches  

The preference of our hybrid Cartesian Cut Cell/extended EMPFA (CCC/EEMPFA) 

over the conventional approaches can be testified by comparing the corresponding 

uncertainty quantification results. Here we perform the history matching and uncertainty 

quantification on the similar pinchout geometry as studied in sections 5.3. The previous 

results are compared with those obtained for two other approaches:  

a) Structured stair-stepped gridding with TPFA (SSS/TPFA) 

b) Corner point grid geometry with MPFA O-method (CPG/MPFAO) 

We take note that history matching (HM) and uncertainty quantification (UQ) are 

accomplished using stochastic methods of sampling through the uncertain parameters 

space, in effect comparison between different approaches must be made based on 

several repetitive runs of the history matching and uncertainty quantification processes 

for each approach. We carry out the history matching and uncertainty quantification 15 

times for each gridding/flux approximation approach and make our inferences and 

judgements based on average values obtained from these 15 runs of HM and UQ. To 

numerically demonstrate the fulfilment of main propositions of history matching, we 

need to compare three approaches in terms of their variation of numerical errors over 

ensemble of models created in history matching. The approach with least variance of 

numerical error is the most preferable, because it leads into more reliable history 

matching results due to keeping the numerical errors almost equal over the ensemble of 

models. The convergence studies in the same way as section 4.5 are performed on the 

models created during history matching with three approaches.  

 

Numerical 

Approach 
Mean(

2

epL ) Variance(
2

epL ) Mean(
2

evL ) Variance(
2

evL ) 

CCC/EEMPFA 4.26 0.73 0.032 0.0033 

SSS/TPFA 4.19 0.63 0.025 0.0031 

CPG/MPFAO 4.81 1.54 0.039 0.0075 

 

Table 5.18: Variation of Potential and Velocity error norms over the models created during 

history matching process 
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The mean and the variance of error norms for three sets of models simulated with 

different approaches have been given in table 5.18. As shown in table 5.18, Cartesian 

Cut Cell/EEMPFA approach leaves small variance of error norms comparable to that of 

stair-stepped gridding with TPFA, while for corner point geometry with MPFA O-

method the error norms are spread over a wider range. This re-affirms that corner point 

geometry creates models with different gridding patterns and different trends of 

numerical error. However Cartesian Cut Cell method brings about minimal 

modifications to the structured gridding and in effect allows varying comfortably the 

structural geometry without altering the numerical errors. Moreover the mean value of 

error norms for our hybrid approach and stair-stepped gridding with TPFA are almost 

the same. This implies that using optimised quadrature parameters for extended EMPFA 

applied on degenerate irregular cells leads into as precise results as those of TPFA over 

the regular Cartesian cells.  

 

Considering the fact that Cartesian Cut Cell method/EMPFA approach can translate 

conformally the evolving pinchout geometry into the grid without significantly 

disturbing the numerical error, it is anticipated that the best quality of history matching 

and uncertainty quantification results are obtained for this approach. We compare three 

approaches in terms of enhancement of forecasts on reservoir oil in place and 

production. The representative ensemble offering the extreme geometrical uncertainties 

after posterior inference (as described in section 5.3) is created for three approaches and 

the oil and water production profiles for these three ensembles (similar to figures 5.60 

and 5.61) are calculated. The averaged difference between highest and lowest rates is 

regarded as a measure of reduced posterior production uncertainties. Also the posterior 

uncertainty over oil in place can be obtained from CDF distribution versus oil volume 

and the Width of updated Credible Interval (WCI) is used as a measure of any approach 

proficiency for narrowing down the STOIIP uncertainty.  Table 5.19 gives these 

measures of updated uncertainty ranges for each approach.  
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Numerical 

Approach 
WCI(qw) WCI(qo) WCI(STOIIP) 

CCC/EEMPFA 2.28 3.55 1034 

SSS/TPFA 3.21 4.37 1191 

CPG/MPFAO 3.58 5.16 1286 

 

Table 5.19: Measures of widths of updated credible intervals for different numerical approaches 

 

The key finding of this table is that our Hybrid Cartesian Cut Cell/EMPFA approach 

can improves significantly the reservoir forecasting. As it provides narrower uncertainty 

intervals of fluid production and STOIIP compared to conventional numerical 

approaches. We believe such an enhancement can be explained with: 

a)  Ability of Cartesian Cut Cell method to decouple the pinchout geometry from 

its mapping onto the grid. 

b) Promoted accuracy of numerical fluxes provided by extended EMPFA over 

irregular cells in the vicinity of geological structure.  

In effect, we believe that our hybrid Cartesian Cut Cell/EMPFA approach can assist to 

come up with more reliable reservoir forecast with highly reduced structural 

uncertainties. It certifies the correct response of simulation outputs to the alteration of 

structures geometry, therefore the quality of optimisation results is improved and the 

chance that history matched geological models be good representatives of subsurface 

structures is increased. The augmented quality of misfit response surface would boost 

the reliability of posterior inferences made on ensemble of history matched models.  
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Chapter 6 

 

 

 

Modelling and Quantification of 

Structural Uncertainties for 

Multiple Intersecting Geological 

Structures 

 

 

 

In Chapter 5, the uncertainty quantification framework equipped with the hybrid 

Cartesian Cut Cell/EMPFA approach was employed to perform history matching on 

several synthetic models of single geological structures and investigate the relevant 

structural uncertainty. In this chapter we extend the application of our proposed method 

for history matching and uncertainty quantification of more complex models including 

any arbitrary combinations of typical geological structures (faults, pinchouts, bedding 

layers). 
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The specific goals of this chapter are as followings: 

1. To show the practicability and robustness of using hybrid Cartesian Cut 

Cell/EMPFA approach to history match of more realistic proof-of-concept 

structural models with possibility of geological structures intersection. 

2. To study the impact of combined structural uncertainties on history matching 

results by comparing with models of lone structures. 

3. To investigate the uncertainty of predictions made by an ensemble of history-

matched models. 

4.  To comprehend the importance of interpretation of the posterior inference 

results with reservoir engineering analysis of dependency of flow behaviour to 

different structural parameters. 

 

The general flowchart for quantifying the structural uncertainties of multiple 

intersecting structures is almost the same as one for single structures (as depicted in 

figure 5.2 in chapter 5), with slight modifications in applying the Cartesian Cut Cell 

method for reshaping cells affected by introducing the new geometrical instances of 

structures at each step of history matching. The modified flowchart for multiple 

intersecting structures has been given in figure 6.1. Unlike the current state of art for 

handling structural uncertainty, our approach would provide the narrowed down 

credible intervals for STOIIP and recovery as well as pictorially confining the 

variability in shape and topology of geological structures. Moreover conventional 

approaches of Uncertainty Quantification suffer from the need for general regridding or 

disturbing the grid architecture for a structure evolving during history matching process.   
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Figure 6.1: The general procedure for history match and uncertainty quantification of multiple 

intersecting geological structures assisted by hybrid CCC/EEMPFA approach 

 

6.1 Simultaneous Quantification of the Uncertainties of Reservoir Layer 

Boundaries and Faults  

 

6.1.1 Case Description 

Sample structural 

parameters using a 

stochastic method (e.g. 

NA) from prior uncertainty 

range and generate 

multiple modelds.

Starting from deepest 

nearly horizontal 

boundary, determine 

their intersections

with Cartesian gridlines

Conservatively 

reshape cells 

to conform 

them to the  

nearly 

horizontal 

boundaries

At each corner point 

belonging to at least one 

reshaped cell, use 

extended EMPFA  to 

compute flux multipliers; 

for other corner points 

use TPFA 

Using computed 

multipliers, discretize 

operators of flow 

equations and 

set up system of 

equation.

Compare production profiles 

obtained from simulation using 

hybric Cartesian Cut 

Cell/extended EMPFA aaproach 

with observed data 

Advance 

discretized 

equations in time.  

Take knowledge of 

structural geology 

influencing reservoir 

performance.

Encapsulate geometry of  

each geological structure   

into a set of parameters, 

defining a reservoir 

boundary

Check the parameter 

combinations that 

the new structures 

are geologically 

possible.

History Match: Generate geologically consistent models 
and match the geometry with observations.  

Uncertainty Quantification: Update 

the probabilities of structural 

models using evaluated misfits. 

Determine the credible intervals for STOIIP 
and recovery in terms of p10,p50,p90. 

Apply a monte-carlo simulation method 

like NAB to build full surfaces of posterior 

probabilities in parameters space.

Apply each nearly vertical 

boundary individually and 

determine their intersections 

with gridlines and new tilted  

interfaces conforming to nearly 

horizontal boundaries

Conservatively reshape 

cells to conform them 

to the nearly vertical  

boundaries, based on  

critria of minimum cell 

skewness
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Uncertainty constraints of all uncertain intersecting surfaces of a multi-layered faulted 

reservoir model are demanded.  The model is a two-dimensional vertical cross section 

of a reservoir comprised of three stratigraphic layers of different porosities and 

permeabilities and varying thicknesses along the axial extension of the model. Reservoir 

has been cut through with two normal faults with opposite slopes such that both faults 

dip towards the centre of middle block which is on the footing wall side for both faults. 

Middle block is depressed because of up-thrown blocks on the hanging walls of both 

faults. Model has been extended 1000 ft in horizontal direction and its normal width is 

112 ft. The initial uniform pressure and connate water saturation are 100 psia and 0.1 

respectively. Two injection and production wells have been completed on the left and 

right extremes of the model. In table 6.1, permeabilities and porosities for each layer has 

been given where the layers are indexed upward starting from the deepest layer.  

 

Layer  hK Darcys   vK Darcys   volume
volume

  

1 0.1 0.02 0.15 

2 0.2 0.04 0.20 

3 0.3 0.06 0.25 

 

Table 6.1: Rock properties for uncertain multilayer faulted model 

 

 

Figure 6.2: Horizontal permeability map for multilayer faulted model 
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6.1.1.1 Parameterisation of Boundaries of Reservoir Layers  

Trend of layer boundaries is recognised from significant horizons detected in seismic 

map or interpolated from available outcrop data. Considering the straight plane passing 

through the picked depths of each layer boundary as the reference trend, seismic picked 

trend of layer boundary is fluctuating around reference trend, creating extrema with 

respect to the datum. Half width of prior uncertainty range for height of each point is 

assumed to be given by the height difference between the seismic-picked trend and 

straight reference trend. In this way variation of heights within the prior confidence 

interval is limited to one side of reference straight trend. Consequently the typical shape 

of layer boundary is preserved as like as the seismic-picked trend and just its 

peakedness changes such that the extrema get amplified or get rounded.  This is shown 

in figure 6.3. 

 

 

Figure 6.3: Variation of layer boundary with altering the amplitude at extrema 

 

However the prior uncertainty ranges at each point are dependent on the local deviation 

of seismic-picked trend from straight reference trend. So one can write: 

         - 0.9 spt srt

i i i iprior range half width x R x h x h x                                     (6.1), 
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in which  spt

ih x  and  srt

ih x  stand for the height of seismic-picked trend and straight 

reference trend at ix . According to Eq. 5.2 given in Chapter 5, the seismic-picked layer 

boundary is obtained itself from random perturbation imposed on the true layer 

boundary. Hopefully true layer boundary lies within the prior uncertainty range when 

the optimisation algorithm employed in history matching process finds a trend with 

deviations from seismic-picked trend equal to the negative of the already imposed 

perturbations at corresponding points.  It means: 

         ,true spt spt

i i i i ih x h x R x h x R x                                                                 (6.2). 

 

The seismic-picked heights, imposed perturbations and the radius of prior uncertainty 

ranges some 'ix s  in the horizontal extension of reservoir are given in tables 6.2, 6.3, 

6.4, 6.5 for layer boundaries 1 to 4 indexing upward from base horizon to top horizon.   

 

( )ix ft  15 250 500 750 985 

 ( )spt

ih x ft
 -1.13 -3.31 1.07 -3.67 -1.94 

 ( )ie x ft  0 0.69 1.01 -0.25 0 

 ( )iR x ft  0 1.78 2.34 1.73 0 

 

Table 6.2: Seismic-picked trend of 1st layer boundary along with corresponding prior ranges 

 

( )ix ft  15 250 500 750 985 

 ( )spt

ih x ft
 5.85 7.59 8.84 6.01 7.43 

 ( )ie x ft  0 0.24 1.14 -0.13 0 

 ( )iR x ft  0 1.22 1.98 0.93 0 

 

Table 6.3: Seismic-picked trend of 2nd layer boundary along with corresponding prior ranges 
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( )ix ft  15 250 500 750 985 

 ( )spt

ih x ft
 13.27 15.69 13.87 10.86 12.64 

 ( )ie x ft  0 -0.38 0.59 1.06 0 

 ( )iR x ft  0 2.31 0.82 1.73 0 

 

Table 6.4: Seismic-picked trend of 3rd layer boundary along with corresponding prior ranges 

 

( )ix ft  15 250 500 750 985 

 ( )spt

ih x ft
 20.86 23.88 20.04 18.76 22.43 

 ( )ie x ft  0 -0.50 1.08 -0.55 0 

 ( )iR x ft  0 2.37 1.44 2.96 0 

 

Table 6.5: Seismic-picked trend of 4th layer boundary along with corresponding prior ranges 

 

The true values of geometrical specifications of fault-1 and fault-2 along with their 

corresponding prior uncertainty ranges are listed in table 6.6 and table 6.7: 

 

 Truth case Prior range 

X-coordinate of fault entrance point (ft) 250 100-450 

Fault slope (ft/ft) 2.0 1.25-6.25 

Fault throw (ft) 6.4 0.0-10.0 
 

Table 6.6: Truth case and prior guess of uncertainty ranges for fault-1 in multi-layer model 

 

 Truth case Prior range 

X-coordinate of fault entrance point (ft) 845 600-950 

Fault slope (ft/ft) -2.5 -6.25--1.25 

Fault throw (ft) 4.6 0.0-10.0 
 

Table 6.7: Truth case and prior guess of uncertainty ranges for fault-2 in mutli-layer model 

 

The transmissibility multipliers are assumed to be constant along the faulting plane and 

equal to 0.80 for both faults. Though assessing of fault uncertainty would be restricted 

to its geometry and doesn’t include transmissibility multiplier unlike most works on 

uncertainty quantification of faults.  
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6.1.2 History Matching of the Geometry of Layer Boundaries and Faults   

The production profiles obtained from running the simulator for the truth case is 

regarded as the observed data and neighbourhood algorithm is employed to sample 

through the prior uncertainty ranges of all parameters and seek for models minimising 

the discrepancy with the observed production data. Input parameters of NA are given in 

table 6.8: 

 

is
n  sn  rn  Iterations Total Simulations 

500 20 10 500 10500 
 

Table 6.8: NA input parameters for simultaneous history matching of faults and layer 

boundaries 

 

Lowest misfit of 0.171 has been achieved after 10469 simulations, while NA leaves an 

average misfit of 301 over all models. Comparing this with the average misfits obtained 

in Chapter 5 for the history match of single uncertain surfaces, raised uncertainty due to 

convolved uncertainties of multiple intersecting surfaces would be signified. Maximum 

likelihood model has been depicted along with the truth case in figure 6.4. Model with 

the lowest misfit have STOIIP of 44526 STB closely fitting to true value of 44660 STB 

oil originally in place. Geometry of fault-2 has been better history matched compared to 

fault-1, resulting in a throw of 4.53 ft against the true value of 4.60 ft and x-coordinate 

of 730 ft against the true value of 845 ft. One can attribute this to shorter distance of 

fault-2 to the production which makes the fault-2 more influential on the flow 

behaviour. 

 

History matched fault-1 has a totally different geometry from the truth case, but it has 

the same impact on flow behaviour. Because while the smaller throw of maximum 

likelihood model reduces gravity potential easing the oil displacement, shorter distance 

of fault-1 from the injection well causes the water front before considerable gravity 

segregation enters the second block through a larger contact surface between segments 

of more porous more permeable upper and middle layer. This would counterbalance the 

negative impact of smaller throw on flow and makes water front advances faster 
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through the second block. Also it is noticeable that in the maximum likelihood model, 

segments of upper and middle layers in the second block are thicker than same layers in 

the truth case. Remembering the higher permeability of these two layers compared with 

the lower layer, their higher thickness deducts the gravity segregation and enhances the 

vertical sweep efficiency in the second block. 

 

 

Figure 6.4: Maximum likelihood model vs. truth case for uncertain faults and layer boundaries 

 

Indeed discrepancy between the history matched model and truth case is more 

remarkable in comparison with what has obtained for single uncertain surfaces in 

Chapter 5. This indicates that the history matched models become less trustable when 

the number of uncertain surfaces desired to be history matched increases. As the total 

resultant flow behaviour can be explained with different sets of geometry of uncertain 

surfaces and it cannot be interpreted with single independent impacts of individual 

surfaces. Evidently wider posterior credible intervals are anticipated for the multiple 

uncertain surfaces.  
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One can filter the ensemble of sampled models by NA by narrow margins about the true 

values to find the model with the closest set of geometrical parameters to the truth case. 

Thus we start with small values of [0,1]  and search in the ensemble for the models 

whose all heights are in the interval        1 , 1true true

j i j ih x h x      for 1,2,3i   and 

1,2,3,4j  . Although individual heights with arbitrary small distance from true height 

can be found, but even by increasing   to unity, we didn’t find any model with heights 

confined in desired margins all together. This demonstrates the difficulty of history 

matching of heights highlighted by considering the well-balanced  r sn n  ratio which 

should expectedly allows for good exploration of search space. However taking into 

consideration the stronger impact of layer thicknesses on flow rather than boundary 

heights, we change the filter to narrow margins about the true thicknesses 

       1 , 1true true

j i j iTH x TH x     . For 0.8  , we can find 39 models with desired 

thicknesses. Among these models we are interested in one with closest set of fault 

parameters (FP) to true parameters, thus we need to minimise the least square term 

 
2, 3

2
,

1, 1

j i
j j true

i i

j i

FP FP
 

 

  over the ensemble of 39 models. We pay attention that the model 

with minimised difference from true fault parameters has relatively small misfit of 28. 

The model has been compared schematically with truth case in figure 6.5.  
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Figure 6.5: Most geometrically similar model to the truth case compared with truth case for 

uncertain faults and layer boundaries 

 

This model has been obtained after 154 iterations of NA. Its very close STOIIP to the 

truth case and small misfit implies that this model is in the low misfit region of high-

dimensional parameter space. However, very few models with similar layer thicknesses 

and fault parameters can be found in the history matching output ensemble. This recalls 

the similar situation for IC-fault model studied thoroughly by Erbas [2007] where the 

misfit surface have sharp local minima with respect to fault throw which makes 

sampling algorithms entrapped in regions far from low misfit regions of a 3-D 

parameter space. Considering local minima becomes much more problematic for higher 

dimensions of parameter space, we believe similar phenomena occurs for NA here and 

possible local minima prevent from refining properly the region around the closest 

model to truth case found in initial iterations. We believe in this problem misfit surface 

has local minima with respect to fault parameters specially fault-1 which conduct the 

sampling toward regions with poor match to structures of truth case. This observation 

motivates the need for using more powerful sampling or optimisation algorithms 

Truth Case

STOIIP= 44660 STB

Most similar model to truth case

Misfit=28
STOIIP= 44180 STB
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capable of navigating the search space in a way that less entrapment occurs despite the 

curse of dimensionality and the matter of local minima. 

 

NA sampling trails of uncertain heights have been depicted individually for layer 

boundaries in figures 6.6, 6.7, 6.8, 6.9. Red dotted horizontal line shows centre of NA-

convergence range, while true heights have been marked with black dotted arrows. 

 

Figure 6.6: History matching trail over the heights of 1st layer boundary 

 

Figure 6.7: History matching trail over the heights of 2nd layer boundary 

 

Figure 6.8: History matching trail over the heights of 3rd layer boundary 
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Figure 6.9: History matching trail over the heights of 4th layer boundary 

 

More precise interpretation can be made on the history matching trails drawn for the 

resultant layer thicknesses as depicted in figures 6.10, 6.11, 6.12. NA converges to 

models with first layer thinner than the truth case over the second and third block 

located after first height-estimating point 1x , while converged second layer is thicker 

than the truth case in the middle of model axial extension .This would retard the gravity 

segregation for the water front when it enters the second block and compensates the 

reduced potential due to smaller offset of fault-1 in contrast with truth case. 

Remembering longer distance of fault-2 from the production well in the NA-converged 

models, before reaching the water front to the fault-2, a larger oil volume remains 

unswept in the third block in contrast with truth case. Considering depression of second 

block against the third block, water front is likely to advance mostly through the less-

porous lower layers of the third block. However this negative effect on displacement 

efficiency is countervailed with larger thickness of 3
rd

 layer at third block and smaller 

thicknesses of two other layers.  

 

Figure 6.10: History matching trail for the thickness of 1st layer 
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Figure 6.11: History matching trail for the thickness of 2nd layer 

 

Figure 6.12: History matching trail for the thickness of 3rd layer 

 

Figure 6.13: History matching trail of entrance location for both faults 

 

Figure 6.14: History matching trail of fault slope for both faults 
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Figure 6.15: History matching trail of throw for both faults 

 

6.1.3 Quantifying the Uncertainties of Faults and Layer Boundaries 

NAB routine is conducted to reconstruct the posterior probability densities and then 

posterior Bayesian inference is done for determining the bounds of credible interval 

from the CDF values obtained from integrating the posterior probability densities. For 

layer boundaries, trends passing through the p10s and p90s can schematically display 

the bounds of posterior range of uncertainty for the corresponding. As shown in figures 

6.16 to 6.19, truth case lies mostly within the credible interval.  

 

 

Figure 6.16: Posterior credible interval for the 1st layer boundary compared with truth case 
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Figure 6.17: Posterior credible interval for the 2nd layer boundary compared with truth case 

 

 

Figure 6.18: Posterior credible interval for the 3rd layer boundary compared with truth case 
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Figure 6.19: Posterior credible interval for the 4th layer boundary compared with truth case 

 

A spurious down-thrusting of credible interval with respect to truth case happens for the 

2
nd

 layer boundary around the middle of model axial extension. Similar phenomenon is 

observed for the 3
rd

 boundary close to the right extreme of model. This indicates that 

displacing the boundary between two less permeable layers in the second block does not 

affect considerably the production for maximum likelihood models. Truth cases of 1
st
 

and 4
th

 layer boundaries (reservoir top and base horizons) are captured completely 

within their corresponding credible intervals. One can interpret this as the immense 

impact of top and base horizons geometry on the production behaviour in comparison 

with other layer boundaries. As the reformation and displacement of reservoir horizons 

may extend the reservoir into the non-porous rock formation or shrink the reservoir by 

leaving out some parts of porous rocks, while changing the inter-layers boundaries just 

increase or decrease the porosity values of active cells. Therefore what dominantly 

controls the STOIIP and production profiles is the total thickness of reservoir confined 

within the first and last layer boundaries.  

 

Indeed narrower credible intervals are expected for top and base horizons in contrast 

with inter-layers boundaries. However as the porosity contrast (and probably 

permeability contrast) increases between layers sharing a boundary, STOIIP and 

production behaviour become more sensitive to variation of that layer and posterior 
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inference leaves less uncertainty over its geometry. This is somehow the case for the 

pinchout where its overlapping boundaries are too influential on flow like top and base 

horizons. The narrowing indices for the heights per each horizon (defined by Eq. 5.7 

from chapter 5), are given per each layer boundary in table 6.9.  

 

x-coordinate 1 250 x ft  2 500 x ft  3 750 x ft  

Nar. Idx. (1
st
 layer boundary) (%) 39.50 53.02 54.76 

Nar. Idx. (2
nd

 layer boundary) (%) 37.02 63.54 57.73 

Nar. Idx. (3
rd

 layer boundary) (%) 55.91 38.13 55.84 

Nar. Idx. (4
th

 layer boundary) (%) 55.63 34.75 59.29 

 

Table 6.9: Percentage of uncertainty reduction for each height per each boundary 

 

Generally smaller narrowing indices are obtained in the middle of model axial 

extension, demonstrating the reduced effect of layers geometry on production. Two 

large narrowing indices (coloured as red in table 6.9) occur for 2
nd

 and 3
rd

 boundaries 

where the true height is located outside the credible interval, implying that narrowed 

down updated credible interval might be a result of inability of misfit variables to 

monitor the impacts of variation of corresponding uncertain parameter. For example 

here, an observation well drilled in the middle of model axial extension can monitor the 

water saturation build-up and take more effectively the impacts of inter-layers 

boundaries into the consideration.  

 

Figure 6.20 represents a schematic comparison between the truth case and models 

offering the extreme variations of uncertain surfaces after posterior inference. STOIIP 

for three typical models built with p10s, p50s and p90s are in a very narrow range 

around the true STOIIP. Such a remarkable agreement indicates that the flow behaviour 

dictated by imposed faults into the models is more influenced with the SOTOIIP.  
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The throw of “fault-1” lies outside the credible interval. In case of more precise location 

of faults determined by seismic, it is very likely that throw of fault-1 is captured within 

the credible interval. On the other hand, throw of fault-2 is captured within the credible 

interval. In general, due to small permeability contrast between bedding layers, the 

impact of fault throw on reservoir interconnectivity and hence flow behaviour would be 

reduced. So it is expected that the truth case of closer fault to the production well has 

more significant influence on flow behaviour. 
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Figure 6.20: The variation of uncertain boundaries and fault within the credible interval 
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6.2 Simultaneous Quantification of the Uncertainties of Pinchouts and 

Faults 

  

6.2.1 Case Description 

It is desired to simultaneously quantify the structural uncertainties of intersecting 

surfaces of pinchout and fault. The model is a two-dimensional vertical cross section of 

a reservoir containing a pinched out layer with reduced porosity of 0.02 and a negligible 

permeability of 0.00000002 Darcy. Rock properties for two stratigraphic layers 

confining the pinchout have been set constant and equal together. Their corresponding 

porosity and permeability are 0.20 and 0.20 Darcy. Two normal faults with positive 

offsets separate the oil bearing formation into three blocks, such that the middle block 

has been downthrown. Model dimensions in horizontal and normal directions are 1000 

ft and 112 ft, while model thickness varies in axial direction according to fixed heights 

of top and base horizons given in table 6.10. Two injection and production wells are 

opened to flow on the left and right extremes at well flowing pressures of 150 psia and 

50 psia respectively.  

 

( )ix ft  15 125 250 375 500 625 750 875 985 

 s ( )ba e
ih x ft  0.13 -0.06 1.58 -0.93 1.7 1.18 1.66 0.71 0.43 

 ( )top
ih x ft  19.36 18.02 17.58 18.74 17.87 17.12 17.66 18.09 19.43 

 

Table 6.10: Heights of top and base horizons for faulted pinched out model 

 

Tables 6.11 and 6.12 provide the true values of two faults parameters and their 

corresponding prior uncertainty ranges, where “fault-1” and “fault-2” stand for faults 

closer to the left and right extremes respectively. Narrower uncertainty ranges are 

selected for fault parameters in contrast with multi-layer model discussed in section 6.1.  

Also in table 6.13, the truth case and prior uncertainty ranges of involved pinchout have 

been given.  
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 Truth case Prior range 

X-coordinate of fault entrance point (ft) 256 150-350 

Fault slope (ft/ft) 1.38 1.0-2.0 

Fault throw (ft) 4.35 2.0-6.0 
 

Table 6.11: Truth case and prior ranges for fault-1 in pinched out faulted model 

 

 Truth case Prior range 

X-coordinate of fault entrance point (ft) 828 750-900 

Fault slope (ft/ft) -0.78 -1.25--0.75 

Fault throw (ft) 4.53 1.0-5.0 
 

Table 6.12: Truth case and prior ranges for fault-2 in pinched out faulted model 

 

Pinchout parameters Truth case Prior range 

xH (ft) 173.0 50-250 

hH (ft) 6.03 5.5-8.5 

rA (°) -0.15 -0.25-0.25 

TL (ft) 500.0 350-650 

uHA (°) 0.83 0.7-1.2 

lHA (°) 0.22 0.1-0.4 

uTA (°) 0.90 0.7-1.2 

lTA (°) 0.21 0.1-0.4 

 

Table 6.12: Truth case and prior ranges for pinchout in pinched out faulted model 

 

6.2.2 History matching of Pinchout and Fault Geometrical Specifications 

Oil and water production profiles are obtained for truth case in a period of 1500 Days. 

Effects of uncertainties with fault and pinchout on predicted production profiles can be 

investigated with running the simulator for models enjoying the extreme values on prior 

uncertainty ranges. Production profiles for two representative models offering the 

maximum structural uncertainty along with the observed profiles are depicted in figures 

6.21 and 6.22 for oil and water phases respectively.  
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Figure 6.21: Variation of WOPR in prior uncertainty ranges for faulted pinched out model 

 

 

Figure 6.22: Variation of WWPR in prior uncertainty ranges for faulted pinched out model 

 

Higher production rates and earlier breakthrough are corresponding to minimum 

pinchout extent leading to maximum STOIIP, however fault parameters picked at their 

minimum prior ranges have  much less effect of production behaviour. This might be 

verified by very similar production rates from models having the minimum pinchout 

size combined with alternating values of fault parameters on extremes of prior ranges.  
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However it seems that at a fixed set of pinchout parameters, water breakthrough time is 

dependent mainly on the throws of two faults, while it is influenced at a smaller order of 

magnitude by the locations of faults. The larger throws of fault-1 and smaller throws of 

fault-2 eventuate in earlier breakthrough. Because such a combination of offsets for two 

faults maximizes the gravity potential reserved for both phases and accelerates the 

advancement of water front. Also a delay in water breakthrough is predicted when the 

faults are displaced away from the wells at extremes of models. Closer fault-1 to the 

injection well exerts the gravity potential provided by positive offset on a more piston-

like water front, so both semi-fronts moving in layers encompassing the pinchout move 

faster in second block. One the other hand, remembering the negative slope of fault-2, 

water front has to overcome the counteractive gravity potential along the fault-2 plane 

when it enters the third block. Thereafter closer fault-2 to the production well is 

equivalent to a water front decelerated by negative slope of fault-2 in a shorter distance 

before entering the production well, so water front breaks through earlier. Constant rock 

properties throughout the layers confining the pinchout make the impacts of fault 

geometry on potential field more distinctive and interpretable.  

 

The following set of input parameters of NA has been employed to sample through the 

prior uncertainty ranges and minimize the misfit function: 

 

is
n  sn  rn  Iterations Total Simulations 

200 20 10 150 3200 
 

Table 6.13: NA input parameters for simultaneous history matching of faults and pinchout 

 

NA finds a maximum likelihood model after 3089 iterations with a misfit of 0.21, while 

it returns an average misfit of 182 over all models. Smaller average misfit in contrast 

with the multi-layer faulted model (discussed in section 1) indicates that production 

profiles are much more influenced by the variation of pinchout geometry rather than by 

variation of permeable layers thicknesses and as a result NA finds the maximum 

likelihood models after less number of simulations. In figure 6.23, the parameters of 
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maximum likelihood model have been compared with the true parameters within the 

scaled prior range. “PO”,”F1”,”F2” stand respectively for pinchout, fault-1 and fault-2.   

 

 

Figure 6.23: Comparison between parameters of maximum likelihood model and truth case 

within the relevant scaled prior ranges 

 

The best closefitting agreements are observed pinchout total length, pinchout rotation 

angle and the location of fault-1. The good matching of first parameter (PO-TL) is 

explained with its substantial effects on pinchout extent (and consequently STOIIP). On 

the other hand PO-rA determines the thickness of layer beneath the pinchout at constant 

values of interior pinchout angles, such that if PO-rA is negative, the larger the absolute 

value of rotation angle leads into the thinner lower layer and leaves larger proportion of 

STOIIP in the layer above the pinchout. Thus at more negative PO-rA, less gravity 

segregation and higher vertical sweep efficiency are anticipated.  In contrary more 

positive PO-rA results in smaller vertical sweep efficiency, because in addition to a 

thicker lower layer, counter-clockwise rotated pinchout enforces the upper water semi-

front to overcome an elevated gravity barrier.  

 

Very good match of fault-1 location and acceptable match for location of fault-2 are 

explained with their considerable influence on deviation of water front from piston-like 

shape. Also a relatively good match for PO-uTA is obtained in contrast with other 
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pinchout opening angles. As we discussed in Chapter 5, this is due to remarkable 

contribution of downward oriented geometry of upper pinchout branch on advancement 

of water front in upper layer.  

 

However summation of interior opening angles for maximum likelihood model (2.38  ) 

is a bit larger than corresponding value for truth case (2.16  ). So remembering almost 

identical PO-TL for M.L. and T.C. models, a larger pinchout extent and consequently 

smaller STOIIP is expected for M.L. model. This can be seen in figure 6.24 where the 

geometries of maximum likelihood model and truth case have been compared. 

Maximum likelihood has been assigned for a model with larger F1-Throw and smaller 

F2-Throw compared with truth case, thus better vertical sweep efficiency is anticipated 

for M.L. model. This can explain how M.L. model with smaller STOIIP (32449 STB) in 

contrast with true STOIIP (32551 STB) can reproduce the observed production profiles.  

 

 

Figure 6.24: Maximum likelihood model vs. truth case for uncertain faults and pinchout 

 

6.2.3 Quantifying the Convolved Structural Uncertainties of Faults and 

Pinchouts 

Truth Case

STOIIP= 32551 STB

Model with lowest misfit

STOIIP= 32449 STB
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Posterior Bayesian inference is performed on CDF values constructed by running NAB 

routine to create updated uncertainty envelops for each uncertain parameter. In figures 

6.25 and 6.26, cumulative posterior probability has been plotted over the prior 

uncertainty ranges. All true values of fault-1 and pinchout lie within the updated 

uncertainty range, while for fault-2 true values of slop and throw are not captured within 

the bounds of credible interval. This observation and relatively narrower credible 

intervals for fault-1 in contrast with fault-2 demonstrates more profound dependency of 

flow behaviour on geometry of fault-1. What makes fault-1 more influential than fault-2 

is it closeness to the pinchout, such that: 

1. Fault-1 is intersected with the pinchout. So at a fixed geometry of pinchout, the 

location and throw of fault-1 control the effective conductivity across the fault 

plane, as their variation changes the thickness of pinched out layer at fault plane. 

While at fault-2 plane regardless of its geometry the flow conductivity remains 

constant. 

2. Sealing effect of pinchout prevents downward cross flow between layers 

confining the pinchout, so gravity potential provided by the positive offset and 

positive slope of fault-1is translated into the flow behaviour more remarkably 

compared with negative gravity potential reserved by fault-2. Because more 

efficient displacement in upper layer closer to fault-1 is expected.  

3. Throw of fault-1 determines the height offset between two interrupted portions 

of pinchout in first and second blocks. At higher throws of fault-1, it is more 

likely that water semi-fronts formed in first block reunify in the second block 

and continue to advance in upper layer along the pinchout body. Thus oil in 

layer beneath the pinchout remains unswept and depending on relative 

thicknesses of pinchout confining layers, displacement efficiency would be 

impacted.  
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Figure 6.25: CDF for geometrical parameters of fault-1 and fault-2 used to determine their 

corresponding Bayesian credible interval 
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Figure 6.26: CDF for geometrical parameters of pinchout used to determine their corresponding 

Bayesian credible interval 

 

However for pinchout all true values of geometrical parameters have been captured 

within the credible interval. The narrowest credible interval among them is observed for 

TL and hH. Narrow credible interval for the total length of pinchout is explained with 

its considerable impact on the pinchout size and consequently on oil in place. The 

height of head point determines the vertical thickness of lower permeable layer in the 

middle block exposed to lower semi-front, as at a constant throw of fault-1 the higher 

the head point of pinchout would be equivalent to thicker connection between left and 

middle block across the lower permeable layer and consequently a more efficient oil 
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displacement across the lower permeable layer is expected, while at lower values of hH 

it is more likely that lower semi-front moves above the pinchout in the middle block and 

leaves oil in the lower permeable layer unswept leading to a delayed gravity segregation 

and better displacement in upper layer. However the convolved impacts of other 

pinchout parameters on flow behaviour especially in presence of two faults makes their 

individual influences less recognisable and results in almost linear variation of their 

corresponding CDF at posterior along the parameter interval. For example in absence of 

any other intersecting fault, more downward rotated pinchout (more negative rA) has a 

single impact on reduction of gravity segregation and better oil displacement in upper 

layer, On the contrary in presence of an intersecting fault (fault-1) more negative rA 

facilitates advancement of lower semi-front above the pinchout and increases the chance 

for remaining oil unswept in lower permeable layer. 

 

A schematic comparison of truth case with models built with p10, p50, p90 values of 

geometrical parameters of uncertain surfaces has been given in figure 6.27. A good 

agreement is observed between truth case and model built with p50s in terms of 

STOIIP, while model built with p50s is less elongated in horizontal direction, but has 

larger opening angles. Also model built with p50s provides relatively good 

approximations of fault-1 parameters.  

 

Effects of simultaneous pinchout and faults uncertainties on oil in place can be 

investigated with plotting CDF of models in posterior versus their corresponding 

STOIIPs (depicted in figure 6.28). Reduced uncertainty over STOIIP ([p10=31969 

STB,p90=33117 STB]) is remarkable, but in comparison with  an uncertain pinched out 

model devoid of intersecting fault, less narrowing of credible interval after posterior 

inference is attained. This demonstrates that although reservoir volume is not dependent 

on fault geometry, but in presence of any uncertain surface which affects the volume of 

oil bearing layers, fault geometrical uncertainty impacts the posterior forecasts of oil 

volume in the place. This is mainly because the impression of flow behaviour from 

geometry of pinchouts or other layers gets obscured with introduction of any 

intersecting fault. Such an elevated uncertainty results in less updated information taken 
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from history-matched models and consequently wider ranges of Bayesian credible 

intervals 

 

 

Figure 6.27: Extreme variation of uncertain faults and pinchout within the credible interval 

compared with truth case 
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Figure 6.28: CDF distribution on posterior range of STOIIP for pinched out faulted model 

 

The augmented uncertainty due to the inclusion of sharply-dipped structures can be seen 

by comparing the posterior variation ranges of oil and water production (depicted in 

figure 6.29 and 30) by the relevant prior ranges (depicted in figures 6.21 and 6.22). The 

reduction of gap between highest and lowest rates at posterior compared with prior is 

evaluated about 40% of prior gap. Remembering the shrinkage the of relevant gaps for 

the pinched out model (discussed in section 5.3.3 of chapter 5) to 20% of its prior value, 

one can conclude that as the structural complexity increases, the posterior inference 

leaves less confined uncertainty ranges and hence less reliable forecasts can be made 

about the production profiles.  

 

 

Figure 6.29: Variation of WOPR in the posterior credible interval for faulted pinched out model 
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Figure 6.30: Variation of WWPR in the posterior credible interval for faulted pinched out model 

 

The general conclusion of this chapter is that history matching of geological structures 

becomes intensely harder when combinations of intersecting uncertain structures are 

involved in history matching problem. We believe that more robust optimisation 

techniques can handle more effectively the raised uncertainty of multiple intersecting 

structures.  
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Chapter 7 

 

 

 

Conclusions and Future Works 

 

 

 

Our main aim in this research was to handle large scale reservoir uncertainties in terms 

of their modelling and quantification. The research was conducted towards the design of 

an approach assisting the dynamic variation of uncertain structures during the history 

matching process to study the corresponding structural uncertainties. The proposed 

hybrid Cartesian Cut Cell/EMPFA approach removes the necessity for rebuilding the 

reservoir model at each step of history matching process and gives the flexibility to 

handle geological structures of normal geometrical complexities coming about in 

petroleum reservoirs. Indeed there is the potential to extend the work beyond this thesis 

for tackling more complex geological structures like intersecting fault, discrete fracture 

networks or very sharply dipped bedding planes. Such a helpful tool was implemented 

in terms of a C++ computer program (SUQIB) including a convolved grid pre-processor 

and reservoir simulator for 2-D models. This program supersedes the commercial 

reservoir simulators in the general uncertainty quantification framework previously 

developed at Heriot-Watt University and makes it capable to handle structural 

uncertainty problems. Such an improvement is more highlighted knowing that no other 

approach yet has been introduced for automatic history matching of geological 

structures without disturbing the reservoir model. While in our proposed approach the 

geometry of geological structures is decoupled from its representation onto the 

computational grid. Cartesian Cut Cell method lets the reservoir model to be fixed to a 
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Cartesian background grid during the history matching process and incorporates the 

updated geometries of geological structures at each step of history matching into the 

reservoir model with displacing and reforming the immersed boundaries as the 

representation of uncertain geological surfaces on grid.  

 

The robustness and functionality of proposed approach have been testified by 

performing history matching and uncertainty quantification for several 2D models 

possessing some typical geometrically parameterised geological structures. Both cases 

of models having single structure or multiple intersecting structures have been studied.  

 

In this chapter, we summarise the undertaken works and put forward the conclusions 

drawn from our research. Also we recommend some promising directions of research as 

the future works. 

 

7.1 Key Findings  

Our key findings will be presented in two parts: (1) Performance of Hybrid Cartesian 

Cut Cell/EMPFA approach, (2) Concluding remarks about the uncertainties of large 

scale structures.  

 

7.1.1 Performance of Hybrid Cartesian Cut Cell/EMPFA Approach 

Difficulties of flow simulation for models involving geological structures arise from 

their complex geometries which complicates the well resolved mesh generation. Apart 

from drawbacks of using body-fitted regridding techniques for history matching of 

geological structures (discussed in details in chapter 1, 3), they might eventuate in very 

ill-posed solution matrices. Strongly curved interfaces coupled with high grid aspect 

ratios turn up in the vicinity of geological structures and body-fitted gridding spreads 

this undesirable grid geometry into the bulk of reservoir far from any geological 

structures. Moreover the strong heterogeneities of petrophysical properties across 

geological structures and high permeability anisotropies increase the condition number 
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of solution matrix as a measure of difficulty of its solving. The proposed Hybrid 

Cartesian Cut Cell/extended EMPFA approach can relieve some of these problems and 

possibly provides a more easily solvable solution matrix.  

 

The main advantages brought by Cartesian Cut Cell are as followings: 

1. When it is applied for history matching of geological structures, it guarantees the 

fulfilment of a main proposition of uncertainty quantification framework which 

assumes almost equal simulation errors for the ensemble of sampled models. 

Also by removing the need for general regridding, it accelerates the process. 

This saving of computational time would be more remarkable in case of 3D 

models involving more complex geological structures. 

2. Cartesian cut cell method restricts the occurrence of strongly deformed cells to 

the immediate adjacency of structures and prevents from spreading out the 

complex geometry of geological structures into the bulk of reservoir model 

where the media is well represented with rectangular Cartesian grids. Therefore 

the total number of cells exhibiting curved faces would be considerably reduced. 

As a result usual “Two Point Flux Approximation” with proven monotonicity 

can be used for most of cells instead of using complex flux reconstruction 

schemes like “Multipoint Flux Approximation” or “Mimetic Finite Difference” 

with limited and conditional monotonicity. Resulting solution matrix with much 

smaller condition number is more likely to yield a physical solution free of 

spurious oscillations.  

3. Multiple intersecting geological structures are properly incorporated into the 

grid with subtle implementation of Cartesian cut cell method. Multistep cutting 

the cells out of Cartesian grid by geological structure follows the same 

consequence of geological events creating structures (sedimentation, erosion, 

faulting, folding). Therefore reservoir Compartmentalisation is well honoured by 

cut cells.  

4.  The emergence of unfavourable grid geometries with practically zero volume 

and very high grid aspect ratio is avoided by “Cell Merging” idea in the cost of 

obtaining few non-neighbour connections. As a result stability of solution would 

be increased by avoiding such large volume contrasts between neighbour cells. 
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Complex patterns of structures intersections, sharply dipped beddings with sudden 

curvature change along their planes (wavy beddings) or very faulted zones can increase 

the geometrical complexity of reservoir model and leads to a dramatic increase in the 

possible cell-boundary intersection states. A successful implementation of Cartesian Cut 

Cell Method requires the comprehensive identification of all these possibilities in a way 

that a geometrically consistent breakage of Cartesian cells into their sub-cells belonging 

to different compartments is assured. The general idea of “Cell Merging” can be 

adapted for any degree of complexity to create geology honouring cells with favourable 

grid aspect ratios even in presence of intersecting structures (e.g. fault intersecting 

pinchout, fault intersecting layer boundaries and so forth). For example small cut cells 

with bilinear or highly curved faces (e.g. cells in the vicinity of extreme points of a 

pinchout) can be merged to an adjacent cell to reduce the overall cell skewness. 

 

The degeneracy of reformed cells after truncating them with the surface of geological 

structure necessitates the use of a multipoint flux approximation technique. We 

employed a modified version of Enriched Multipoint Flux Approximation with 

promoted accuracy due to assigning individual bilinear potential distributions 

throughout the sub-volumes of cells sharing a common vertex. This scheme was 

demonstrated to be very beneficial for flow simulation on geological models as 

explained in followings: 

1. It was shown that with suitable choice of quadrature parameters for a point-wise 

EMPFA scheme, monotonic results with negligible spurious oscillations can be 

obtained for a wide range of anisotropies and grid aspect ratios. We have 

verified that for the studied typical structures (as the good representatives of 

subsurface reality), QM-matrix criteria can be met by using “Extreme 

Anisotropic Quadrature”. 

2. EMPFA scheme was shown to be convergent and consistent over a benchmark 

model involving all geological structures studied in this thesis. Super-linear and 

linear convergence rates were obtained for potential and flux approximation 

respectively. Although error estimates calculated over the irregular cells (cells 

cut by geological surfaces) were larger than corresponding values for whole the 

region, but almost the same convergence rates as corresponding values 

calculated over whole the model are obtained for irregular cells. Thus EMPFA 
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can maintain desirable accuracy comparable to second order accuracy of finite 

volume method over Cartesian grid even for complex geological structures.   

3. Using EMPFA, the unfortunate effect of other MPFA approaches (MPFA-O, 

MPFA-L) on non-matching cells is avoided and obtaining non-zero 

transmissibility and consequently non-zero flux is assured for any face shared by 

two cells having non-zero permeability. Such an advantage is more highlighted 

along the fault plane or along the pinchout surface, where even if permeability at 

each of involved cells diminishes to zero, a non-zero flux is obtained across the 

face shared by active cells. As a result, the overall reservoir interconnectivity 

which is substantially affected by faults geometry in horizontal direction and by 

pinchout geometry in vertical direction will be precisely translated into the flow 

simulation. 

 

All discussed advantages of extended EMPFA are very beneficial in the context of 

uncertainty quantification. The promoted accuracy in flux approximation certifies the 

correct response of simulation outputs to the alteration of structures geometry. 

Therefore the quality of optimisation results is improved and the chance that history 

matched geological models be good representatives of subsurface structures is 

increased. Moreover the reliability of posterior inferences made on ensemble of history 

matched models will be boosted because of a misfit response surface with augmented 

quality. It is expected that consistent credible intervals are obtained for the geometrical 

parameters of different structures (narrower credible intervals for more effective 

parameters and wider ones for less effective parameters).   

 

7.1.2 Concluding Remarks about the Uncertainties of Large Scale 

Structures 

We have used general uncertainty quantification framework equipped with Cartesian 

Cut Cell/EMPFA approach to history match and quantify the structural uncertainties of 

several benchmark models involving some typical geological features like fault, 

pinchout and layer boundaries. The results were presented in Chapter 5 for non-

intersecting structures and in Chapter 6 for multiple intersecting structures. The 

conclusions presented in the followings although were made based on these synthetic 
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cases, but they are applicable for more complex models as well, because the studied 

models include two-dimensional projections of most geological features found in 

underground reservoirs.  

1. Geometry of sharply dipped geological structures (faults or wavy bedding 

truncations) primarily influences the overall horizontal reservoir 

interconnectivity, while the vertical interconnectivity is mainly impressed by the 

geometry of gently dipped structures (pinchouts, non-steep bedding layers). On 

the other hand, due to high anisotropy ratios  h vK K  governed in petroleum 

reservoirs, flow takes place mostly in horizontal direction through the cell 

thinner interfaces. As a result individual geometrical parameters of faults are 

more easily history matched compared with those of pinchouts or reservoir 

horizons and accordingly their corresponding uncertainties are more 

considerably reduced after posterior inference. 

2. Production predictions are significantly influenced by the volume of oil in place 

(STOIIP) which is dictated only by the location of gently dipped geological 

structures especially top and basin horizons. Therefore the average depth along 

trend of history matched layer boundaries (especially top and basin horizons) 

well concurs with the truth case. This accordance is amplified for the thickness 

of individual layers (especially for the total reservoir thickness bordered between 

top and basin horizons). On the contrary, the history matched local geometry 

(local curvature, local orientation, etc) of gently dipped geological structures 

differs a lot from truth case. In this regard, following points are worth 

mentioning: 

a. Accumulative impact of geometrical parameters determines the volume 

of oil in place, therefore models having different geometries of 

geological structures but comprising the same volume of oil in place 

display similar production behaviours. As a result: 

i.  STOIIP predicted by history matching is reliable and prior 

uncertainty of reservoir volume is substantially reduced after 

posterior inference.  

ii. Uncertainty over individual geometrical parameters (like the 

depths along the bedding planes) is not narrowed down too much 

after posterior inference. However one can regroup these 

parameters in a way that resulting parameters are more 
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representative of volume enclosed by structure rather its 

geometry, such a re-parameterisation is likely to be ensued by 

faster convergence of history matching and narrower credible 

intervals for individual geometrical parameters.  

iii. Uncertainty over the local geometry of bedding planes becomes 

more sever far away from wells and spurious down-throwing or 

uplifting might be developed, where local geometry is almost 

ineffective on production.  

b. Running the optimisation method in a more exploitative mode is more 

preferred for bedding planes or pinchouts, as it would improve the 

quality of STOIIP prediction by refining the sampling through regions 

with very good fit into production data.  

3.  The impact of fault geometry on overall reservoir interconnectivity (especially 

in horizontal direction) is intensified as the permeability contrast between 

reservoir layers is increased.  Therefore the fault uncertainty reduction after 

posterior inference is more remarkable for models with stronger cross 

permeability contrasts.  However the optimisation of fault geometry for layered 

models is an ill-posed problem and is likely to be entrapped at local minima. 

Thus more explorative modes are recommended for fault history matching in 

layered models with stronger cross permeability variation.  

4. Among fault parameters, fault throw is well history matched and its 

corresponding uncertainty interval is more narrowed down, explained by its 

more significant impact on reservoir interconnectivity. However fault location is 

likely to be predicted with an acceptable approximation, especially in presence 

of uncertain beddings or pinchouts, where the location of fault affects both 

reservoir compartmentalisation and interconnectivity. Fault dip is the most 

difficult parameter to be history matched which still remains uncertain after 

Bayesian inference. However for higher reservoir thickness and stronger cross 

layer permeability contrast, better prediction of fault dip is expected due to 

elevated impact of fault dip on reservoir horizontal interconnectivity.  

5. Pinched out (eroded) layers might impose a very strong permeability disparity in 

vertical direction which dramatically alters the horizontal reservoir 

interconnectivity. As a result, true local geometry of pinchouts is more likely to 

be predicted with narrowed down uncertainty in comparison with axially 
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extended layers. Therefore apart from the volume enclosed by pinchout, the 

predicted values of the horizontal location, the depth and the orientation of 

pinchout are expected to adequately approximate the true values.  

6. The discrepancy among production profiles for an ensemble of models picked 

from posterior credible interval can show how well the structural uncertainties 

have reduced. Production profiles for this ensemble are overlapping and 

converging to the observed production profiles when uncertain structures only 

affect the oil in place (like top and bottom horizons). However when structures 

affecting reservoir interconnectivity are introduced into the framework of 

uncertainty quantification, production profiles tend to diverge. This shows that 

the inherent uncertainties associated with sharply-dipped structures (faults) are 

more persistent and the forecasts performed based on posterior inference made 

on these structures remains wider uncertainty ranges relative to less inclined 

structures.  

7. As the complexity of structural system rises, its associated uncertainty increases 

as a result of superposition of uncertainties of individual geological structures 

especially in case of networks of intersected sharply-dipped and gently-dipped 

structures. Due to convolved and unrecognisable impacts of intersecting 

structures on flow behaviour, fault uncertainties broadens uncertainty ranges for 

reservoir volume and future production rates, even though reservoir volumetric 

factors are not affected by faulting pattern and geometry.  

 

Uncertain Structures in 

Synthetic models 

STOIIP Estimation 

Enhancement 

Recovery Forecast 

Enhancement 

Top and Basin Horizon 7.2% 0.4% 

Fault - 16.2% 

Pinchout 7.6% 21.5% 

4 Layer + 2 Fault 11.7% 36.8% 

Pinchout +2 Fault 9.3% 28.6% 

 

Table 7.1: Narrowing indices given for uncertainty ranges on STOIIP and recovery after 

posterior inference maid on studied models having structural uncertainties 
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The overall conclusion of this thesis is that taking the structural uncertainties into 

account can considerably improve the reliability of our estimates about the volume of 

oil in place. Moreover reduction of uncertainties about the geometry and location of 

geological structures substantially helps to make unfailing decisions about field 

development plans like infill drilling, water flood scenarios or enhanced oil recovery 

strategies. Adjustment of tuning parameters of optimisation methods and interpretation 

of posterior inference outcomes must be carried out with an exhaustive reservoir 

engineering analysis on uncertain geological structures.  

 

7.2 Future Work 

Our recommendations about the open scopes of research beyond this PhD are listed as 

below: 

1. The future research should be focused on more realistic models and hence the 

implemented Cartesian Cut Cell method should be extended to three-

dimensional problems.  For this aim all the different possibilities of boundary-

cell cutting status must be determined. However to reduce the dependency of 

flux reconstruction on the geometry of degenerate cells which complicates 

achieving monotonic potential distributions, it is recommended to adapt EMPFA 

method for problems with discontinuities across irregular boundaries. For this 

purpose, trilinear potential approximation must be enforced throughout each 

sub-cell cut by boundaries. The corresponding trilinear coefficients should be 

obtained by fulfilling the flux and potential continuity condition across several 

points along the boundary plane enclosed between faces of corresponding parent 

cell. It seems that ideas inspired by the Sharp Interface Finite Volume developed 

by Oevermann et al. [2006, 2009] can be utilised to increase effectiveness of 

EMPFA scheme for flux computing over cells cut by boundaries with reduced 

necessity to explicit reshaping of cut cells.  

2. In this thesis we studied the layered reservoirs with vertical porosity and 

permeability variations. However for fully heterogeneous models, the effects of 

displacing and deforming the reservoir boundaries (geological structures) on the 

geostatistical simulations must be investigated. It seems that geostatistical 

simulation should be performed on individual compartments enclosed by 
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reservoir boundaries independently. Nevertheless recreating the permeability 

realisations at each step of history matching must be avoided by mapping from a 

permeability distribution at a reference representation of each compartment to an 

updated geometry of corresponding compartment. 

3. To extend this work for a given fine scale model, it is recommended to 

reconstruct fluxes in coarse scale by means of Variable Compact Multipoint 

Method developed by Gerritsen et al. [2006], Lambers et al. [2008] and Chen et 

al. [2009]. This scheme when is combined with a local or global upscaling 

method yields upscaled adjusted by enforcing the M-matrix condition for the the 

resulting solution matrix. However the method works well only for a certain 

range of problems away from very high anisotropy ratio and large off-diagonal 

terms of full tensor. Reduced simulation error due to well translated sub-grid 

heterogeneity into the coarse scale is another advantage of this method.  

4. Any future research moving toward more realistic models has to consider 

putting more geological realism into the initial prior knowledge of geological 

structures and possibly multiple prior structural realisations.  
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