
i 

 

ULTRA-FAST SCREENING OF STRESS-SENSITIVE           

(NATURALLY FRACTURED) RESERVOIRS                                            

USING FLOW DIAGNOSTICS 

 

 

LESLY MARICELA GUTIERREZ SOSA 

Submitted for the degree of Doctor of Philosophy 

 

Heriot-Watt University 

Institute of GeoEnergy Engineering School 

June 2023 

 

 

 

 

 

 

The copyright in this thesis is owned by the author.  Any quotation from 

the thesis or use of any of the information contained in it must 

acknowledge this thesis as the source of the quotation or information. 



ii 

ABSTRACT 

 
Quantifying the impact of poro-mechanics on reservoir performance is critical to the 

sustainable management of subsurface reservoirs containing either hydrocarbons, 

groundwater, geothermal heat, or being targeted for geological storage of fluids (e.g., CO2 

or H2).  On the other hand, accounting for poro-mechanical effects in full-field reservoir 

simulation studies and uncertainty quantification workflows in complex reservoir models 

is challenging, mainly because exploring and capturing the full range of geological and 

mechanical uncertainties requires a large number of numerical simulations and is hence 

computationally intensive.  Specifically, the integration of poro-mechanical effects in 

full-field reservoir simulation studies is still limited, mainly because of the high 

computational cost.  Consequently, poro-mechanical effects are often ignored in reservoir 

engineering workflows, which may result in inadequate reservoir performance forecasts.  

This thesis hence develops an alternative approach that couples hydrodynamics using 

existing flow diagnostics simulations for single- and dual-porosity models with poro-

mechanics to screen the impact of coupled poro-mechanical processes on reservoir 

performance.  Due to the steady-state nature of the calculations and the effective proposed 

coupling strategy, these calculations remain computationally efficient while providing 

first-order approximations of the interplay between poro-mechanics and hydrodynamics, 

as we demonstrate through a series of case studies.  This thesis also introduces a new 

uncertainty quantification workflow using the proposed poro-mechanical informed flow 

diagnostics and proxy models.  These computationally efficient calculations allow us to 

quickly screen poro-mechanics and assess a broader range of geological, petrophysical, 

and mechanical uncertainties to rank, compare, and cluster a large ensemble of models to 

select representative candidates for more detailed full-physics coupled reservoir 

simulations. 
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Chapter 1– INTRODUCTION 

1.1 Motivation 

Naturally Fractured Reservoirs (NFR) consists of sediments of rock matrix (e.g., igneous, 

metamorphic, or sedimentary rocks) that were conventionally deposited, however, due to 

conditions of local stress states, pore pressure, fluid-rock mineral dissolution, temperature 

gradient, or tectonic movement over time led to the formation of discontinuities 

(fractures, joints, and faults).  NFR contain crucial underground resources such as 

hydrocarbons, groundwater, or geothermal heat and can be targeted for geological storage 

of fluids (e.g., CO2, H2, natural gas).  In the context of subsurface energy, NFR are the 

most productive type of hydrocarbon reservoirs, it is estimated that NFR contain at least 

60 per cent of the world's remaining oil reserves and 40 per cent of the world's gas reserves 

(Burchette, 2012; Garland et al., 2012).  Quantifying the impact of poro-mechanics on 

reservoir performance is critical to the sustainable management of such subsurface 

reservoirs (e.g., Teufel & Rhett, 1991; Dusseault et al., 1996; Fredrich et al., 1996, 2000; 

Li et al., 2019; White et al., 2014; Yuan et al., 2019).  In NFR, the flow paths and 

permeability enhancements are created by the presence of fractures (Figure 1.1).   

 

 

Figure 1.1.  Examples of naturally fractured carbonate outcrops near Cassis in Provence, France.  These examples 

illustrate vertically extensive joints (a), fracture swarms (b), bed-limited joints (c), and a faulted structure with its fault 

core and damage zone (d).  Each fracture style has different connectivity and transmissivity at different spatial scales 

that hence have a different impact on fluid flow. 
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In NFR, the flow paths are influenced by parameters of the fracture system itself (i.e., 

aperture, spacing, density, orientation), and by the interaction between the evolution of 

the stress fields and the induced changes in fluid pressure occurring during depletion or 

injection.  The disturbance to the present-day stress field due to injection- or production-

induced changes can alter intrinsic properties of the matrix rock and fractures that 

conform to the reservoir, resulting in alterations of the hydraulic connectivity, porosity, 

permeability, relative permeability, and capillary pressure.  (e.g., Bisdom et al., 2016; 

Couples, 2013; Haghi et al., 2018, 2021).  Specifically, fracture apertures can be modified 

locally (e.g., closures or openings) resulting in alterations in the hydraulic connectivity of 

the fracture network (Figure 1.2) and intrinsic properties of the fractured rock (Barton, et 

al., 1985; Bai & Elsworth, 1994; Rossen & Kumar, 1994; Zhang, et al., 2007; Heffer, 

2012; Couples, 2013; Bisdom et al., 2016; Agheshlui, et al., 2018; Haghi et al., 2018; 

2019, 2021).   

 

 

Figure 1.2.  Poro-mechanical effect on the hydraulic aperture of a fracture network and evolution of the water saturation 

in the fracture and rock matrix during water flooding at different in-situ conditions: 𝜎𝑥 = 𝜎𝑦 (a) and 𝜎𝑦 = 3𝜎𝑥 (b). 

Modified after Obeysekara et al., 2018. 

 

The resulting variations in reservoir hydraulic connectivity can be in the form of baffles 

and barriers to fluid flow or in form of local permeability enhancements (Dusseault et al., 

1996; Liu et al., 1999; Chin & Thomas 1999; Szulczewski et al., 2012; Vilarrasa et al., 

2014; Jain et al., 2014; Feng et al., 2016; Wei et al., 2018; Li et al., 2019; Feng et al., 

2019).  This mechanical alteration of reservoir properties may lead to significant 

modifications in reservoir performance (e.g., sweep efficiency, productivity, injectivity, 

breakthrough times, recovery and storability), which need to be quantified for sustainable 

management of geo-energy reservoirs and reservoirs providing storage volume for carbon 

dioxide, natural gas, or hydrogen (Teufel & Rhett, 1991; Dusseault et al., 1996; Fredrich 
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et al., 1996, 2000; Teatini et al., 2011; Rutqvist, 2012; White et al., 2014; Göbel, 2015; 

Feng et al., 2016; Gaite et al., 2016; Goebel et al., 2017; Min et al., 2018; Feng et al., 

2019; Yuan et al., 2019). 

 

In addition, the reservoir performance of NFR is influenced by the combination of the 

different scales of variability of the reservoir properties and their associated uncertainties 

involved in their characterisation (e.g., Marrett, 1996; Stephansson et al., 1996; Odling et 

al., 1999; Ortega et al., 2006; Heffer, 2012; Couples, 2013; Santos et al., 2015; Bisdom 

et al., 2016), which render the characterisation and modelling of NFR challenging.  

Consequently, conducting uncertainty quantification and robust optimisation studies 

(Figure 1.3) for NFR and complex reservoir models is very demanding because exploring 

and capturing the full range of geological and petrophysical uncertainties requires a large 

number of numerical simulations that are numerically intensive, not to mention that the 

addition of mechanical uncertainty increases drastically computational overhead.  

Especially if highly non-linear coupling of poro-mechanical simulations with full-field 

reservoir simulations (e.g.  Black-Oil, compositional, or thermal models) are also 

intended to be analysed.   

 

 

Figure 1.3.  Example of uncertainty quantification within a geological history-matching and robust optimisation 

workflow.  Modified after Almaqbali et al., 2017. 

 

Despite the existence of simplified strategies to link poro-mechanical simulations with 

full-field reservoir simulations (e.g., Kim et al., 2012; Minkoff et al., 2003; Settari & 

Mourits, 1998) and new algorithms developed to accelerate simulations (e.g., Jeannin et 

al., 2007; Pettersen, 2012; Mustapha et al., 2016), the computational overhead for such 
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simulations remains high, which renders their application in uncertainty quantification 

too time-consuming and often impractical.  Consequently, the assessment of how 

uncertain geological, petrophysical and mechanical parameters (e.g., fracture aperture, 

density, orientation, porosity, Young’s modulus) and uncertain flow and mechanical 

conditions (e.g., well-flowing conditions, stress regimes) might affect reservoir 

performance remains limited.  Over-reduction of uncertainties and poor exploration of 

the uncertainty space may arise inadequate reservoir performance forecasts. 

 

The use of practical approaches such as the definition of a single base-case model or the 

selection of multi-deterministic scenarios for subsequent reservoir studies is commonly 

inadequate in complex reservoirs with high uncertainty (e.g., NFR) because these types 

of approaches explore a limited uncertainty space and lack the connection between 

deterministic inputs to statistical outcomes (Bentley & Smith, 2008).  For example, the 

base-case driven type addresses the uncertainty quantification running low-mid-high 

cases of a single reference model; in practice, the mid-case becomes the basis for the 

prediction simulations.  The particular problem of this workflow is that the assessed 

uncertainty space is tiny.  This single model-based type tends to lack the key detail that 

is needed to make economic and operational decisions. 

 

Multi-deterministic scenarios type offers a strong link between the reservoir concepts and 

the model outcomes (Bentley & Smith, 2008).  This technique is based on the 

deterministic selection of technically reasonable and structurally different geological 

scenarios (e.g., different geological concepts and interpretations of the same data) that 

were constructed under a probabilistic approach; this deterministic selection is used then 

to assess the development scenarios.  The disadvantage of this technique is that its non-

statistical nature results in the lack of probabilistic reporting.  Another approach is 

stochastic, this approach offers a wider assessment of the uncertainty space through 

statistical techniques and allows the creation of a substantial number of realisations.  The 

main pitfall of the stochastic approach is that requires hundreds to thousands of realisation 

which is computationally expensive, and also underestimate uncertainty since the model 

ensemble is anchored to a common reservoir scenario and data set.  Consequently, the 

range of possible reservoir responses is often underestimated, and risks and opportunities 

may be assessed inadequately (Bentley & Smith, 2008; Chen et al., 2012; Arnold et al., 

2016).   
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On the other hand, the creation of numerous realisations of the assessed uncertainty 

allows the selection of a representative subset of multiple deterministic scenarios of the 

quantified uncertainty for subsequent studies.  The selected models allow us to evaluate 

how different but probable geological scenarios impact the reservoir dynamics, quantify 

production risks, and adapt the reservoir management accordingly to mitigate these risks 

(Bentley & Smith, 2008).   

 

As technological development has progressed, uncertainty quantification and robust 

optimisation have advanced from a single-deterministic isolated process to ensemble-

based uncertainty quantification workflows (Christie et al., 2006; Chen & Oliver, 2010, 

2011; Arnold et al., 2016).  Although different techniques such as reduced-physics 

models and data-driven methods (e.g., van Essen et al.  2009; Onwunalu et al., 2008; 

Maucec et al., 2011; Caers & Scheidt, 2011; Park et al., 2013; Arnold et al., 2016; Kang 

& Lee, 2020) have been developed to accelerate uncertainty quantification and robust 

optimisation workflows, the computational requirements are still often too high for their 

routine applications.  Consequently, alternative numerical techniques such as streamlines-

based (Datta-Gupta & King, 1995, 2007; Batycky et al., 1997) and grid-based 

(Rasmussen & Lie, 2014; Lie et al., 2015; Møyner, et al., 2015, Shahvali et al., 2012) 

flow diagnostics have been used to accelerate modern reservoir engineering workflows.  

The fundamental idea of flow diagnostics is to quickly and approximately quantify the 

impact of uncertain reservoir heterogeneities and well conditions on fluid flow behaviour 

before commencing more detailed simulation studies.  Because flow diagnostics are based 

on the incompressible pressure equation, Darcy’s law, and steady-state transport 

equations, they are computationally efficient regardless of the grid size and model 

heterogeneity (Rasmussen & Lie, 2014; Møyner, et al., 2015; Spooner et al., 2021).  Flow 

diagnostics approximate reservoir dynamics by computing the time of flight and steady-

state concentration distributions to identify fast and slow-flowing regions in the reservoir 

as well as other metrics to estimate the heterogeneity in the flow field such as connected 

pore volumes, fluid-front distributions, breakthrough times, and well allocation factors in 

a matter of seconds (Figure 1.4) (Møyner, et al., 2015; Kaplan et al., 2017; Spooner et al., 

2019; Watson et al., 2021).   
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Figure 1.4. Time of flight (a) and reservoir influence regions obtained from the steady-state injected- and drained 

concentrations 𝑐 (b), and their subsequent swept and drained regions (c), and advancement of swept and drained fronts 

corresponding to a given pore volume injected (c).  Modified after Møyner et al., 2015.   

 

The computational efficiency of flow diagnostics allows us to quickly rank, compare, and 

screen a large number of models (Kaplan et al., 2017; Spooner et al., 2019; Watson et al., 

2021).  Spooner et al. (2019) have extended the existing grid-based flow diagnostics 

framework (Rasmussen & Lie, 2014; Lie et al., 2015; Møyner, et al., 2015) to account for 

NFR in which fractures provide the dominant permeability (i.e., dual-porosity behaviour).  

Their methodology makes use of the time of flight to identify fast and slow-flowing 

regions in the fracture network and relates them to the rate of fluid exchange between 

fractures and matrix.  In addition, the prediction of the breakthrough times in the 

producers is achieved by calculating the first arrival time of flight of the injected particles 

of a given injector. The first arrival time attributed to the injected particles from a specific 

injector also allows to identify the inter-well regions with the fastest flow paths. 

Consequently, the breakthrough from different injectors is traceable helps identifying 

reservoir regions with high potential of early breakthrough to design proper strategies for 

well placement and flow rate allocation.  

 

Spooner et al. (2019) also proposed the integration of flow diagnostics and clustering 

techniques such as multi-dimensional scaling (Caers & Scheidt, 2011; Scheidt & Caers, 

2009; Park et al., 2013) to efficiently compare, and ultimately select representative 

models from a model ensemble to capture the full range of the quantified geological 

uncertainty for more detailed full-physics traditional reservoir simulations (e.g., Black 

oil, compositional, thermal).  Although the flow diagnostics can be expanded to NFR, 
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they do not account yet for the important link between reservoir poro-mechanics and its 

impact on reservoir dynamic behaviour. 

 

1.2 Research Gap, Hypothesis and Objectives 

There is a lack of fast technologies that accelerate the integration of coupled fluid flow 

and poro-mechanics in uncertainty quantification workflows.  Consequently, poro-

mechanics are often disregarded or only a narrow set of stress-dependent parameters can 

be examined, and as a result, the analysis of the poro-mechanical effect remains limited 

which may result in high uncertainty when forecasting reservoir performance of stress-

sensitive reservoirs. To date, to the best of our knowledge, there are no computationally 

efficient poro-mechanical screening methods that can be deployed to accelerate modern 

uncertainty quantification and robust optimisation workflows.  This PhD thesis 

hypothesises that a fast-screening method that couples flow behaviour and poro-

mechanics will lead to a robust and improved assessment of the reservoir uncertainty and 

a better understanding of the impact of uncertain fracture and matrix properties in the 

flow behaviour.  This PhD thesis intends to develop a computationally efficient screening 

tool for poro-mechanical impact on reservoir dynamic behaviour by integrating first-order 

approximations (i.e., reduced-physics modelling is used to accelerate flow and mechanics 

simulations by simplifying the physics.  The simplification of the underlaying governing 

equations, which originally with the full-order numerical description generally 

represented by second-order partial differential equations, after simplification are then 

represented by first-order partial differential equations as a result of the reduction of the 

number of unknowns or non-linearity relationships between the parameters of the 

equation and the unknowns) of the complex interactions between poro-mechanics and 

hydrodynamics using steady-state coupled poro-mechanics for single- and dual 

continuum and traditional flow diagnostic calculations (Møyner et al., 2015; Spooner et 

al., 2019, 2021).  We aim to develop a sequential poro-elastic coupling between the 

steady-state fluid flow and the rock deformation problem with flow diagnostics.  By 

solving first, the poro-mechanical problem and then executing the computationally 

efficient flow diagnostics, the impact of the change in the reservoir flow field caused by 

the poro-mechanically altered petrophysical properties could be investigated.  The spatial 

distribution of the time of flight and the stationary produced- or injected concentrations 

can then be utilised to quantify the poromechanical effect on reservoir dynamics, flow 
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patterns, fluid-fronts distributions, sweep efficiency, breakthrough time and well inflow 

rates.   

 

Once the intended poro-mechanically informed flow diagnostics are developed and 

validated, we aim to implement them along with data-driven methods (e.g., proxy model 

and clustering analysis) in an uncertainty quantification workflow.  The intended 

methodology will extend, improve and accelerate traditional uncertainty quantification 

workflows by assessing a broader and more diverse uncertainty domain as a larger 

number of models and realisations of geological, petrophysical and mechanical 

uncertainty are enabled to be explored.  The uncertainty quantification can subsequently 

be used to rank, compare, and cluster model ensembles to select a much smaller sub-set 

of representative and geologically meaningful models.  These representative models can 

then be investigated in more detail in further, computationally intensive full-physics 

coupled reservoir simulations.  The proposed framework seeks to become an efficient 

complement to traditional reservoir simulation and uncertainty quantification workflows 

and is implemented as open-source code in the MATLAB Reservoir Simulation Toolbox 

MRST (Lie, 2019).  The objectives of the proposed poro-mechanically informed flow 

diagnostics encompass the following specific goals: 

 

I. To establish the conceptual model and coupling strategy that link steady-state 

mechanical deformation with the fluid flow for a poro-elastic continuum model 

approach. 

II. To enable poro-mechanical alteration of fracture and matrix properties, and multi-

phase flow properties within the proposed hydrodynamical-poro-mechanical 

coupling. 

III. To assess the impact of poro-mechanically affected fracture and matrix properties, 

and multi-phase flow properties on fracture-matrix fluid exchange and flow within 

the fracture network. 

IV. To implement an improved uncertainty quantification workflow that enables us to 

assess a broader range of hydrodynamical-poro-mechanical scenarios using poro-

mechanically informed flow diagnostics and Artificial-Neural-Network (ANN)-

based proxy models. 

V. To reduce bias in the uncertainty estimation by executing thousands of Monte 

Carlo realisations using ANN-based proxy models of poro-mechanically 

informed flow diagnostics 
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VI. To demonstrate, using two case studies, how uncertainty quantification workflows 

can be improved when exploring a model ensemble encompassing a broad range 

of hydrodynamical-poro-mechanical scenarios. 

VII. To integrate cluster analysis in the proposed methodology to identify a suitable 

set of representative models from the ensemble without reducing uncertainty in 

reservoir performance predictions. 

VIII. To adopt a fully reproducible research methodology and publish the computer 

codes to generate all our numerical experiment. This work will release all relevant 

code as open-access plugin within MRST.  

 

1.3 Structure of the Thesis 

The thesis is organised into the following 7 chapters: 

 

Chapter 1, the current chapter, presents the motivation for the PhD thesis and discusses 

the objectives and expected outcomes. 

 

Chapter 2 provides the theoretical basis for the hydrodynamical-poro-mechanical 

coupling with flow diagnostics.  The chapter will further review NFR including their 

importance, origin, and characterisation.  The implication of stress-induced changes in 

reservoir properties on flow and transport processes will be discussed and the 

corresponding modelling approaches will be reviewed.  Finally, the chapter provides an 

overview of uncertainty quantification, including the application of flow diagnostics and 

data-driven methods. 

 

Chapter 3 introduces the definition, methodology, and validation of a new discretisation 

scheme, the Vertex Approximate Gradient (VAG) scheme.  The chapter further 

demonstrates the robustness of VAG when calculating pressures and fluxes for reservoir 

models that are based on unstructured grids and uses flow diagnostics to compare results 

for VAG to other discretisation techniques.   

 

Chapter 4 introduces the hydrodynamical-poro-mechanical coupling with flow 

diagnostics for single-porosity models. The approach is validated using a commercial 

simulator and its application is demonstrated for a widely used reservoir model, the 
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SPE10 benchmark case (Christie & Blunt, 2001).  This chapter is based on Gutierrez-

Sosa et al., 2020 and 2022. 

 

Chapter 5 describes the extension of the poro-mechanically informed flow diagnostics to 

dual-porosity systems.  The approach is applied and demonstrated using a simple box 

model for illustrative purposes and an analogue model for a fractured carbonate reservoir, 

the Amellago Model (Shekhar et al., 2014).  This chapter is based on Gutierrez-Sosa et 

al., 2021. 

 

Chapter 6 deploys the poro-mechanically informed flow diagnostics in an uncertainty 

quantification workflow for NFR using ANN-based proxy modelling.  This extended 

uncertainty quantification approach is demonstrated using model ensembles based on a 

simple box model and the Amellago Model.  Clustering is applied to various metrics 

obtained from the flow diagnostics to identify a suitable subset of representative models 

that can appropriately cover the original uncertainty range of the original ensembles.   

 

Chapter 7 reviews the key findings of this PhD thesis, discusses the contributions to 

current reservoir engineering workflows and makes recommendations for further research 

in this field.  
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Chapter 2– LITERATURE REVIEW 

2.1 Importance of Naturally Fracture Reservoirs 

Naturally Fractured Reservoirs (NFR) are important for their contribution to underground 

resources and geological storage of fluids.  NFR can contain hydrocarbons, groundwater, 

or geothermal heat and can be targeted for the storage of carbon dioxide (CO2), hydrogen, 

natural gas or industrial waste (Goldscheider et al., 2010; Montanari et al., 2017; Bauer 

et al., 2017; Amid et al., 2016; Raza et al., 2017).  For example, in the framework of 

underground resources, aquifers contained in naturally-fractured carbonate reservoirs 

supply approximately 25% of the world’s population with drinking water (Hartmann et 

al., 2014; Chen et al., 2017) Furthermore, in the context of subsurface energy, extensively 

fractured carbonate reservoirs are the most prolific type of hydrocarbon reservoirs; it is 

estimated (Burchette, 2012; Garland et al., 2012) that contain 60% of the world's 

remaining oil reserves and 40% of the world's gas reserves.   

 

On the other hand, the current challenges to tackling global energy supply and the 

international climate goals established in the Paris climate agreement (UNFCCC, 2015) 

and examined in the Special Report on Global Warming of 1.5°C (IPCC, 2018) have 

positioned conventional reservoirs and NFR as comprehensive resources to support 

decarbonization and energy transition.  The implementation of carbon dioxide removal 

(CDR) technologies intends to help achieve the threshold global warming of 1.5 to 2 

degrees Celsius and net-negative emissions after 2050 (UNFCCC, 2015; IPCC, 2018).  

The geological storage of CO2 is one CDR technique that has been successfully 

implemented and is already in operation in diverse large-scale projects (Korbøl & 

Kaddour, 1995; Torp & Gale, 2004; Aydin et al., 2010; Reeves, 2001; Saghafi et al., 

2007; Gunter et al., 1997; Gozalpour et al., 2005; Liu et al., 2013; Ajayi et al., 2019).  The 

IPCC estimates that fossil fuels with carbon capture and geological storage (CCS) and 

bioenergy with carbon capture and geological storage (BECCS) have the potential to 

mitigate and remove up to 8 billion tonnes of CO2 per year by 2050 (Rogelj et al., 2018; 

Shell, 2022).  To put this number into perspective, in 2020 the global energy-related CO2 

emissions were 30.6 billion tonnes (IAE, 2020).  Currently, there are 135 CCS 

commercial facilities around the world, of which 71 started their development in 2021 

(Global CCS Institute, 2021).  It is estimated that the global CCS industry must grow by 

more than a factor of 100 by the year 2050 to achieve the 2°C target as the average global 

warming.  This implies the construction of 70 to 100 facilities a year (Global CCS 



 

12 

Institute, 2021; Townsend et al., 2020).  In addition, several studies (Pacala & Socolow, 

2004; Celia et al., 2015; Ringrose et al., 2021) have estimated that at least 3,500 projects 

of the magnitude of the offshore CO2 Capture and Storage Sleipner project in the North 

Sea would be required to help to reduce one-tenth of the global temperature increase.  

Consequently, the utilisation of NFR to meet the demand of geological sites for large-

scale CDR has been considered to address the mitigation of climate change (Raza et al., 

2017; Civile et al., 2013; Shedid & Salem, 2013; March et al., 2017, 2018). 

 

The current context of energy transition and decarbonisation has become the driving 

mechanism for essential changes in business activities (e.g., long-term strategic planning, 

allocation of resources, policies, technology, operational models, and economics).  While 

the subsurface energy industry keeps its traditional core businesses, it also invests part of 

the revenue to fund its net-zero goals (Shell, 2022).   

 

In the short span of time and for the next decades, the geoengineering applied to the 

sustainable development of conventional reservoirs and NFR for both net-zero and hard-

to-abate sectors will demand more than ever accurate characterisation and modelling to 

carry out an adequate risk assessment to ensure successful technical, operational and 

economic feasibility. The main concern when characterising and modelling an NFR is to 

assess to what extent the presence of fractures influences the flow behaviour and hence 

recovery or storativity.  The understanding, characterisation, and modelling of NFR are 

difficult because of their geological, structural, and mechanical complexity.  Hence, 

forecasting how fractures influence the production or injection operations is challenging 

and subject to significant uncertainty.  Therefore, sound reservoir management assisted 

by efficient yet reliable reservoir simulation and uncertainty quantification is fundamental 

to mitigating the risk of induced seismicity, subsidence, uplift, caprock failure, fault 

reactivation, or changes in flow paths (Teufel & Rhett, 1991; Dusseault et al., 1996; 

Fredrich et al., 1996, 2000; Teatini et al., 2011; Göbel, 2015; Feng et al., 2016; Gaite et 

al., 2016; Goebel et al., 2017) of projects involving geo-energy and geological storage of 

fluids.  In this work naturally fractured carbonate reservoirs containing hydrocarbons are 

the focal point.  However, the numerical approaches and methodologies developed can 

be applied to conventional reservoirs and NFR containing other resources such as water 

or heat, or being targeted for storage of CO2 or hydrogen (H2).  Due to the current 

limitation on the applicability of the proposed methodology (i.e., steady-state conditions), 

the application of our approach is mainly limited to enhanced oil recovery, since flow 
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diagnostics simulations assume that the reservoir models are managed by producer and 

injectors, and only the pressure gradient generated between injector-producer well pairs 

is accounted for the deformation of the system. On the other hand,  process as geological 

storage of CO2 and H2 requires to model pressure diffusion and corresponding 

deformation on overpressure conditions over time, which is still not possible in our 

current implementation, which can be extended in future work.  

 

2.2 Fracture Genesis and Characterization 

Fractures are mechanical breaks in rocks that create discontinuities across the rock at all 

scales.  Different types of fractures exist with their intrinsic geometries, mechanical 

effects, and fluid flow properties.  Fractures can be classified, based on the nature of their 

genesis, into three geological classes: (1) tensile fractures or joints, (2) shearing fractures 

or faults, and (3) closing fractures or pressure solution surfaces (Figure 2.1).  Tensile 

fractures, also known as joints, can be defined as rough surfaces that are separate from 

each other in a direction perpendicular to the surfaces (i.e., normal displacement 

discontinuity).  These fractures are also referred to as mode I fractures in engineering 

fracture mechanics (Lawn & Wilshaw, 1975).  Shear fractures typically referred to as 

faults, are shear displacement discontinuities in which the fracture surfaces move parallel 

to each other.  This relative movement between surfaces to the fracture front can be either 

perpendicular (mode II fractures) or parallel (mode III) (Figure 2.2).   

 

 

Figure 2.1.  Example of a naturally fractured carbonate outcrop near Cassis in Provence, France (a), which exhibits three 

types of fractures at different scales, i.e., open and permeable joints, faults, and stylolites (b) and impermeable (closed) 

fractures due to mineral precipitation (c). 
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Figure 2.2.  Representation of an elastic rock mass containing a single fracture describing the different fracture modes 

(Lawn & Wilshaw, 1975).  The resulting stress distribution across the fractured rock mass for each fracture mode 

representation assumes linear-elastic fracture mechanisms under the effect of the acting load 𝜎.  Modified after Bower, 

2012. 

 

Fractures can present a combination of these fracture modes due to complex 

deformational histories.  In nature, combinations of any type of displacement 

discontinuities may occur.  The most common displacements, however, are faulted joints 

and jointed faults.  These combinations have different fracture geometries and internal 

structures due to different processes represented by their corresponding models of 

deformation (Figure 2.3).  Therefore, the associated stress fields vary between fractures 

and faults (Figure 2.2).  

 

Pressure solution surfaces (i.e., stylolites) consist of fractures in sedimentary rocks that 

are joined together by solution at the contact surfaces of grains.  The mechanical 

behaviour of stylolites is opposite to that of tensile fractures (Fletcher & Pollard, 1981) 

(Figure 2.3). 

 

 

Figure 2.3.  Illustration of the differences between joints and stylolites (a) and the impact of stylolites on reservoir flow 

(b).   
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The difference between the stress fields associated with the origin of fractures and faults 

allows us to characterise their initiation, propagation, interaction, and termination, as well 

as the distributions of related adjacent structures.  Outcrop analogues are often used to 

understand the origin and evolution of fracture patterns.  The creation and propagation of 

fractures generally occur when the stresses exceed the rock strength.  Stress fields are 

always present in the Earth’s crust and are generated through lithostatic pressure, fluid 

pressure, tectonic forces, thermal changes, and geological processes (e.g., folding, 

volcanic activity, salt intrusion).  Creating a representative and meaningful fracture model 

requires establishing a relationship between the stresses and what causes a certain fracture 

pattern (Borg & Maxwell, 1956; Gallagher et al., 1974).  The world stress map is often 

used to identify stresses in the subsurface, along with borehole data (e.g.,  breakouts). 

 

Fracture characteristics are governed by the lithological and mechanical characteristics of 

the fractured rock mass, loading conditions and interactions with neighbouring fractures.  

Fracture sets consist of nearly parallel fractures of the same type and age.  Fracture sets 

can be described by their physical characteristics such as areal and vertical extent, the 

spacing or density of their fractures and their orientation.  This information can be used 

to assess the connectivity between individual fractures.  The physical connectivity of the 

fractures has an impact on fluid flow and transport.  In a fracture network, the open 

fractures enhance fluid flow while the closed fractures impede flow. 

 

Fracture aperture is defined as the size of the opening measured normal to the fracture 

walls and influenced by the current stress state.  The original fracture opening is rarely 

preserved in the reservoir because it is subject to evolving stress fields (Bisdom et al., 

2016). Figure 2.4 illustrates how different stress fields impact fracture aperture 

distributions in the same fracture network and subsequent flow behaviours. 
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Figure 2.4.  Impact of stress changes in critically stressed fracture networks from Brazil, assuming different empirical 

relationships that link stress to fracture aperture (power-law scaling (top row), linear elastic fracture model (middle 

row) and Barton-Bandis model (bottom row).  Note the vastly different aperture distributions, pressure fields, and flow 

rates.  changes.  Modified after Bisdom et al., 2016.   

 

The complexity and uncertainty of all the attributes, processes and mechanisms (e.g., 

elastic properties of the rock, the thickness of the fractured layers, strain magnitude, strain 

rate, loading cycle, etc.) involved during the formation of fractures and the resulting 

fracture patterns render the prediction of fracture characteristics difficult (Guo et al., 

2017; Bai & Pollard, 2000; Becker & Gross, 1996; Doolin & Mauldon, 2001; Helgeson 

& Aydin, 1991). The interaction between fractures affects their effective lengths, spacing 

and clustering, and therefore their physical connectivity.  These fracture sets are key for 

fluid flow due to their areal extent, and connectivity.  Adjacent fractures may overlap and 

link fractures over a wide range of scales (Figure 2.5).  The geometry of overlap and the 

existence of connecting fractures is mainly influenced by the state of stress (Thomas & 

Pollard, 1993).  The hydraulic connectivity of a fracture network is influenced by today’s 

stress field.  Orientation of fracture sets is crucial to characterise the anisotropy of the 
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hydraulic properties of the fractured rock.  The lack of well-connected fractures leads to 

poor hydraulic connectivity of the fracture network. 

 

 

Figure 2.5.  Different fracture patterns were observed at outcrops in Orgon (a), Fontaine-de-Vaucluse (b), and Cassis 

(c) in the Provence in France.  The different fracture patterns are expected to impact flow behaviours in different ways. 

 

To summarise, this subsection highlighted that fracture geometry, fracture architecture, 

and the present-day state of stress are the main elements that control fluid flow in 

fractured rocks.  Physical characteristics of fractures such as fracture density or any 

measurement of fracture abundance, orientation, aperture, and length will define critical 

characteristics of the fluid flow and transport (Figures 2.4 and 2.5).  Fracture densities 

impact the connectivity of the fracture network.  Orientation of fracture sets characterises 

the anisotropy of the hydraulic properties of the fractured rock.  Fracture aperture defines 

the capacity of the fracture to allow fluid to flow through itself.  Vertical and horizontal 

fracture lengths determine the degree of the spatial connectivity that a fracture or a 

fracture set may have across the reservoir (Figure 2.5).  The goal of fracture 

characterisation is to incorporate the fundamental physical characteristics of fractures into 

representative and geologically meaningful conceptual models to predict fluid flow and 

transport behaviour. 

 

2.3 Fracture Properties and Fluid Flow 

From a hydrodynamical point of view, fractures provide flow capacity.  The size and 

spatial distribution of apertures in a fracture determine the volumetric flow rate that can 

be transported through the fracture (Louis, 1969; Oron & Berkowitz, 1998; Berkowitz, 

2002; Jaeger et al., 2006; Brown, 1987).  Interconnected fracture apertures define a 

percolation network (fluid pathways).  The topology of the flow path in a fracture network 

is defined by the geometrical properties and the asperities of the fractures.  Geometrical 

properties and asperities establish the link between the hydraulic and mechanical 



 

18 

properties of a fracture (Pyrak-Nolte & Nolte, 2016).  The asperities on the fracture planes 

control the mechanical properties of the fracture, such as fracture stiffness (Liu, 2005; 

Hudson & Liu, 1999; Barton et al., 1985).  Under the effect of applied stresses, fracture 

stiffness plays an important role in the deformation of the fracture topology.  The resulting 

deformed topology generated by non-uniform contacting asperities under applied stresses 

results in fluid flow and transport changes due to flow restrictions or localised 

improvement in connectivity of the fracture network (Zambrano et al., 2019).  The effect 

of the reduction or closure of the fracture flow paths on the fracture flow can be modelled 

using explicit or implicit approaches.  Explicit approaches consider the geometry of the 

contact points of two asperities (Mindlin & Deresiewicz, 1953; Brown & Scholz, 1986; 

Hertz, 1881; Wang & Sharma, 2017), while implicit approaches idealise fractures as two 

smooth-parallel plates and consider the existence of asperities using the hydraulic 

aperture instead of the mechanical fracture aperture (distance between the two fracture 

surfaces) or by including a friction factor (Tsang, 1992; Witherspoon et al., 1980; Louis, 

1969; Parrish, 1963; Brown, 1987; Zimmerman & Bodvarsson, 1996).  This work 

assumes modelling of fracture structure as idealised two smooth-parallel plates. We 

assumed for such purpose incompressible and steady-state flow between the idealised two 

smooth-parallel plates, which states that the pressure gradient in the fracture can be 

related to the mean velocity (Witherspoon et al., 1980; Zimmerman and Bodvarsson, 

1996), which in turn can also be represented in terms of fluid flow, which is popularly 

known as the cubic law due to its ubiquity in modelling fracture flow.  The deformation 

of the fractures is considered through the mass deformation derived at the fracture scale 

using a representative control volume which implies the use of micromechanics.  In the 

proposed implementation, we look at the fractured porous rock starting from a 

microscopic description (micromechanics) and then relating macroscopic quantities to 

microscopic ones (macromechanics).   The assumptions of the idealised smooth-parallel 

plates imply that: (1) the flow is steady-state, (2) the average aperture can be locally 

approximated by parallel plates regardless the surface roughness, (3) the inertial forces 

are negligible, (4) the flow is laminar, and (5) the rock mass is impermeable.  The latest 

assumption for impermeable fracture walls is readdressed by the inclusion of a matrix-

fracture fluid exchange term (e.g., Berkowitz, 1989) to allow modelling of flow in 

fractured porous media. More details about the implementations and modelling of flow 

and deformation will be presented in Sections 2.8 and 2.9.  

 

https://www.sciencedirect.com/science/article/pii/S0309170822000665#b32
https://www.sciencedirect.com/science/article/pii/S0309170822000665#b37
https://www.sciencedirect.com/science/article/pii/S0309170822000665#b37
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2.4 Induced Changes in Fracture Systems 

Changes to a fracture network can be caused by four key processes, namely (1) 

deformation through changes in stresses in the fractured rock, (2) modification of the 

fluids contained in the fracture network, (3) addition of proppants into fractures, and (4) 

fluid-rock mineral dissolution or mineral precipitation within the fractures.  These 

processes can occur naturally but are also induced by pressure and temperature alterations 

due to production operations.  In this work, special attention is given to the alterations 

induced by changes in effective stress focusing exclusively on rock deformation before 

the failure point (i.e., increase or closure of fracture apertures).   

 

2.4.1 Alterations of the Fracture Network due to Induced Changes in Effective Stress 

Effective stress defines the type of mechanical behaviour (e.g., compaction, expansion, 

or dilation) that a fractured or unfractured rock mass will experience.  The effective stress 

𝝈′ relates the difference between normal stress 𝝈 acting on the fractures and the fluid 

pressure 𝑝 (Terzaghi, 1925, 1936) (Equation 2.1).  A reduction in fluid pressure increases 

the effective stress and may result in the strengthening of the rock mass and closing of 

fractures.  An increase in fluid pressure can lead to the opening of fractures and may result 

in irreversible changes in fracture network properties (i.e., failure) (Figure 2.6). 

 

In the subsurface, in in-situ conditions, the normal stress is the component of the total 

stress perpendicular to the fracture plane, and the shear stress acts parallel to the fracture 

plane (Figure 2.7). Shears stresses in fractures can lead to large changes in fracture aperture 

due to dilation caused by the relative motion of the two fracture surfaces (Figure 2.7).  

Relative motion and dilation are affected by the magnitude of normal stress, fracture 

roughness, and the stiffness of the rock matrix and the solid material inside the fracture. 

 

Changes in effective stress acting on a fractured rock mass deform the rock mass and 

change the fracture aperture and pore space (Figure 2.7).  In fractured rocks, four types of 

deformation can arise (1) opening or closing of the fractures due to fluid pressure 

alteration, (2) creation and extension of fractures resulting from fluid pressure increase, 

(3) fracture deformation or failure consequence of the change in the stress state, and (4) 

thermal deformation of fractures. 

 

 𝝈′ = 𝝈− 𝑝. (2.1) 
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Figure 2.6.  Schematic illustrates the interaction between normal stress, effective stress and pore pressure before 

commencing operations (a), after production (b) and injection (c). 

 

 

Figure 2.7.  Response of fractures to depletion-induced changes in stress under the three fracture modes and their 

corresponding type of fracture permeability sensitivity.  Modified after Smart et al., 2001. 

 

A common characteristic of fracture deformation is hysteresis during stress loading and 

unloading (Bandis et al., 1981).  For stiff fractures with smooth fracture surfaces, 

hysteresis is produced when loading mismatched opposing fracture surfaces which results 

in moderate realignments of the fracture surfaces or failure of fracture asperities.  

Consequently, the geometry of the surface that is subjected to the load is modified, which 

causes a different load deformation curve (Figure 2.8).  Fracture deformation usually is 

non-linear elastic (Pyrak-Nolte et al., 1987).  Elastic non-linearity results from the non-

uniform contact of asperities in some portions of the fracture surfaces, causing an increase 

in fracture stiffness when the fracture is subjected to normal stress (Pyrak-Nolte & Nolte, 

2016; Hopkins et al., 1987; Pyrak-Noltea & Morrisa, 2000).  Although stiff fractures with 

smooth fracture surfaces have elastic deformation, soft materials (e.g., clay or muddy 

content) present in the fractures can cause inelastic behaviour resulting in plastic 

deformation and creep. Inelastic behaviour can cause a mismatch between fracture 
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surfaces, leading to additional flow pathways and a hysteresis effect (Figure 2.8).  The 

degree of elastic behaviour during fracture deformation is key to determining to which 

extent flow properties are independent of stress history.   There are many modes of failure 

of rocks as presented in Section 2.2, however, they can be broadly classified in 2 types: 

the ductile failure and brittle failure.  There is a gradation from strictly brittle (brittle 

fracture) to strictly ductile (plastic flow) in rocks.  As described previously in Section 2.2, 

fractures can present a combination of diverse fracture modes (e.g., tensile and shearing, 

model I, II and III) due to complex deformational histories. In nature, combinations of 

any type of displacement discontinuities may occur. The most common displacements, 

however, are faulted joints and jointed faults, which generally are associated to brittle 

failure, that is, failure through extension fractures and shear fractures.  The most common 

and at some degree more realistic model of fractures in rocks is represented by a non-

linear elastic behaviour (González-Velázquez, 2018) with sequential loading/unloading 

cycle (Figure 2.8).  In nature, ductile fracture can occur and is always preceded by plastic 

deformation, however the ductility level needed to consider a fracture as ductile (i.e., 

amount of plastic deformation before fracture) has no an standard criterion, and in general 

is determined by judgment (Zakavi, et al., 2022). 

 

The advantage of a simplified fully elastic fracture deformation is that the flow properties 

in the fracture are dependent on the present stress state (National Research Council, 1996) 

reducing the complexity of the modelling of fractures and its evolution.  This PhD thesis 

only considers the elastic behaviour of fracture deformation.   

 

 

Figure 2.8.  Stress-strain curve for a linear elastic fracture (a), a typical non-linear elastic fracture (b), a linear elastic 

brittle fracture (c), a non-linear elastic fracture exhibiting energy dissipation resulting in non-linear loading and 

unloading curves (d), and hysteresis cycle of non-linear elastic fractures with strain-rate dependency (f). 
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2.4.2 Alteration in Effective Stress due to Fluid Pressure Changes 

Injection and production operations change the fluid pressure in the fractures and hence 

effective stress acting on the fractures.  The largest fluid pressure changes are always 

observed near the wellbore and this region is where the highest deformation, and 

consequently largest impact on fluid flow, can be expected.  Under transient flow 

conditions (i.e., when the fluid pressure in the fractures is different from the fluid pressure 

in the rock matrix), effective stress may differ between the fractures and these two 

domains   

 

2.4.3 Impact of Alteration in Effective Stress on Fracture Aperture 

Changes in effective stress affect the three major factors that contribute to the alteration 

of the fracture permeability; the mean fracture aperture, roughness and contact area 

(Witherspoon et al., 1980; Tsang & Witherspoon; 1983; Zimmerman & Bodvarsson, 

1996). This work is limited to the change in permeability due to stress-altered fracture 

aperture. The strong dependency of the fracture permeability on the fracture aperture 

makes it a stress-dependent property so that deterioration or enhancement of overall 

fracture permeability may occur (Bisdom et al., 2016; Couples, 2013; Heffer, 2012; 

Obeysekara et al., 2018).  An increase in effective stress may close the aperture and 

reduce the permeability of the fractures, whilst a decrease in effective stress may increase 

the fracture aperture and permeability (Figure 2.7).  Since stress fields are not isotropic, 

changes in effective stress cause anisotropy in the flow field because fracture networks 

deform in an anisotropic manner.  For example, Bisdom et al. (2016) illustrated this 

behaviour using a fracture network mapped in outcrop analogues and investigated how 

different aperture-stress relationships (e.g., power-law frequency scaling, linear elastic 

fracture mechanics, and the Barton-Bandis model) impact the evolution of fracture 

apertures, fracture network connectivity, and ultimately fluid flow (Figure 2.4). Note that 

changes in fracture interconnectivity below the critical limit for fluid percolation (Figure 

2.4) induce significant anisotropy in the flow patterns.  The heterogeneity of critically 

stress fracture apertures in a fracture network generates complex patterns of flow (e.g. 

connectivity of high permeability regions with stagnant zones or hydraulically isolated 

zones). 
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2.4.4 Poro-mechanical Impact on Stress-Sensitive Flow for NFR 

Fractures are the main flow conduits or enhancers of permeability in NFR. Smart et al. 

(2001) suggested three types of stress-dependent fracture permeability to be considered 

when modelling large-scale reservoir development strategies (e.g., depletion, water 

flooding).  Type 1 involves closure or aperture of fractures due to applied normal stress. 

Type 1 considers that the fracture can only dilate or contract (e.g., opening or closing of 

fracture aperture) resulting in high or low permeability conduit accordingly (Figure 2.7). 

Type 2 and 3 consider the effect of the shear stress. Shear stresses have little influence on 

fracture permeability unless the fracture displaces or fails (Figure 2.7). This PhD thesis 

will only focus on type 1. 

 

Extensive literature has shown the influence of stress-dependent properties (i.e., 

permeability and porosity) and its implication on the development strategies and reservoir 

management of NFR. For example, poro-mechanically affected properties have impacted 

preferred directionality in waterflooding, well productivity and injectivity and overall 

production performance, changes in mobile oil in place, and ultimate recovery (Heffer et 

al., 1994; Jin et al., 2000; Heffer 2012; Smart et al., 2001).  Most recently, Ahmed & 

Al-Jawad et al. (2020) conducted a poro-mechanical study of an actual gas condensate 

fractured carbonate reservoir using a two-way coupling strategy between hydrodynamical 

and poro-mechanical simulations. This study investigated how induced alteration in 

effective stress due to production operations significantly changed reservoir properties in 

the fracture and rock matrix (Figure 2.9).  They showed that the changes in the reservoir 

properties had a significant impact on important features of the reservoir performance 

(Figure 2.10) (e.g., reservoir productivity, flow patterns, sweep efficiency, breakthrough 

times and recovery). This PhD thesis develops a tool that can complement and accelerate 

reservoir engineering workflows as that presented by Ahmed & Al-Jawad et al. (2020) 

using a fast and computational efficient poro-mechanical screening.   
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Figure 2.9.  Schematics of reservoir models showing how key petrophysical properties are impacted by depletion when 

accounting for poro-mechanics.  Modified after Ahmed & Al Jawad et al., 2020. 
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Figure 2.10.  Reservoir performance at field level (upper row) and well level (lower row) when considering poro-

mechanical effects and when ignoring them.  Modified after Ahmed & Al Jawad et al., 2020. 

 

2.5 Prediction of Stress-Sensitive Flow 

To some extent, hydrodynamical-poro-mechanical coupling physically exits in all 

reservoirs.  The poro-mechanical effect does not always substantially impact the reservoir 

behaviour but when it does, significant and severe changes can occur (e.g., flow paths, 

induced seismicity, subsidence, uplift, caprock failure).  This PhD thesis is focused on 

the assessment of the effect of poro-mechanics at the reservoir scale, in such a way that 

relates the interlinked influences of the subsurface fluid movement due to fluid removal 

or injection to changes in porosity, permeability, fluid pressure and in-situ rock stresses, 

and quantifies how these changes can affect the reservoir performance (i.e., productivity 

and injectivity).  Under these circumstances, the poro-mechanical effect cannot be 

ignored and need to be identified and investigated. Coupled numerical simulations 

between hydrodynamics and poro-mechanics enable us to approximate the effect of the 

interaction between rock deformation and fluid flow.  The fluid flow is linked to rock 

deformation through changes in stress-dependent petrophysical properties (e.g., porosity 

and permeability).  The deformation is linked to the fluid flow through adjustments in 

effective stress due to the pore pressure changes.  The rigorous solutions of coupled 

hydrodynamical-poro-mechanical simulations solve simultaneously the fluid flow and 

the stress field, as well as the corresponding quantification of the dependencies between 

these processes.  The modelling of such coupled simulations requires the conceptual and 

mathematical representation of the physics involved during the processes of fluid flow 

and rock deformation.  The following subchapters will encompass the mathematical and 

numerical models of the constitutive equations required to represent fluid flow-

deformation in NFR. 
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2.6 Classification of Naturally Fractured Reservoirs 

The naturally occurring fractures present in NFR can act either as: (1) main flow path in 

a system with dominant rock matrix storage, (2) barriers or baffles, (3) enhancers of the 

permeability in a reservoir with good rock matrix porosity and permeability, and (4) 

contributor of both fluid flow conduits and storage in tight rocks (van Golf-Racht, 1982; 

Aguilera, 1995; Nelson, 2001; Lonergan et al., 2007).  Nelson (2001) categorised the 

NFR based on the contribution of the fractures to the overall storage and flow capacity of 

the reservoir.  The classification of fractured reservoir types is divided into Type I, II, III 

and IV (Figure 2.11), and described as: 

 

Type I: Fractures provide both storage capacity and fluid-flow pathways.  The fractured 

are contained within an impermeable tight rock matrix.  The economic and technical 

feasibility of these types of reservoirs depends on the attainable storage volume of the 

fractures.  Examples of these types of reservoirs include fractured basement reservoirs 

(e.g., Trice et al., 2019; Bawazer et al., 2018), which are not exclusive to petroleum 

systems but also common in geothermal systems. 

 

Type II: The flow capacity of the system is provided by the fractures, and the fluid storage 

capacity is mostly supplied by the rock matrix.  However, the permeability of the rock 

matrix is incapable to provide fluid flow by itself.  The rock matrix exchanges fluids to 

the surrounding fracture network, while the fractures transport the fluids across the 

reservoir.  This behaviour is characteristic of classic NFR.  For this type of reservoir, the 

effectiveness of production and injection wells highly depends on the interception of the 

fracture network.  One example of this reservoir type is the Cantarell field in Mexico. 

 

Type III: Fractures help improve the permeability of a rock matrix with good porosity 

and permeability.  The rock matrix can both transfer fluids to the surrounding fracture 

network and flow by itself along with the continuity of the reservoir.  This type of 

reservoirs has good reservoir connectivity and can sustain high well flow rates.  Several 

reservoirs in the Arab-D formation of the Ghawar field in Saudi Arabia (Phelps & Strauss, 

2001) are some examples of Type III reservoirs. 

 

Type IV: Fractures do not provide significant additional porosity or permeability, the 

rock matrix dominates the flow and storage capacity. However, fractures create 

anisotropy across the system in form of baffles or barriers to fluid flow.  In this type of 
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reservoirs, structural features and pressure-solution structures (i.e., closed stylolites) may 

contribute to reservoir compartmentalisation (Figure 2.3) (Finkel & Wilkinson, 1990; 

Alsharhan & Sadd, 2000).  Examples of these types of reservoirs are some reservoirs 

located in the Niger Delta basin in the Gulf of Guinea and the Puerto Ceiba field in 

Mexico (Cosultchi et al., 2012; Ejeke et al., 2017).   

 

 

Figure 2.11.  Classification of naturally fractured reservoirs.  Modified afer Nelson, 2001. 

 

The identification of the type of fractured reservoir and its characteristics is important for 

the conceptualisation of the reservoir model that will be used to support reservoir 

management decisions (e.g., optimum well locations, borehole trajectories, completion 

zones, flow rates, etc.).  Each type of NFR may require a different development strategy 

and modelling approach (Al-Afaleg & Ershaghi, 1993; van Golf-Racht, 1994; Sun & 

Pollitt, 2021).  For example, type I reservoirs may exhibit a rapid decline in production 

rate and tend to have early water and gas coning due to drastic pressure depletion. For the 

type II reservoirs, the well placement aims to intercept the fracture network to ensure 

productivity. For type III reservoirs, channelling of fluids into the fractures may result in 

unexpected short breakthrough times and uneven sweep of the reservoir during the 

flooding process. For type IV reservoirs excessive anisotropy may lead to unfavourable 

sweep efficiency in the flooding process. 
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Since NFR consist of heterogeneous material and are subjected to different in situ 

conditions (e.g., depth, pore pressure, temperature, and stress states) across their spatial 

extension, they can be classified as a mixture of the different types of fractured reservoirs. 

This mixture of different NFR types in a single fractured reservoir will require further 

analysis to select adequate reservoir modelling. Naturally fractured carbonate reservoirs 

lean towards the type II and III reservoirs.   

 

2.7 Transport and Flow Patterns in Fractures 

Transport, flow patterns and connectivity in fracture networks have been investigated 

with tracer experiments (micro-scale) and tracer tests (macro-scale) (Abelin et al., 1987; 

Skagius & Neretnieks, 1986; Tsang & Tsang, 1989; Tsang et al., 1991; Yahara & Tokita, 

2010). The tracer transport (i.e., distribution and concentration) is mainly controlled by 

three elements: hydraulically-connected fracture networks, rock matrix diffusion and 

channelling. 

 

Channelling comprises transport in fracture channels (i.e., enlarge fracture intersection) 

or channelised transport (i.e., narrow pathways of least flow resistance in variable-

aperture fractures).  Channelised transport varies accordingly to the flow direction and 

does not require the presence of fracture channels (Tsang & Tsang, 1989).  When flow is 

channelised in a fracture, the fluid may move into substantial stagnant or slow-flow 

regions of the fracture.  Tracer transported through the channels can diffuse into the 

stagnant regions, and also diffuse from connected fractures into unconnected or dead-end 

fractures.  Most importantly tracer can diffuse into the rock matrix when matrix porosity 

is significant in comparison to that in the fracture.  The diffusive process causes the 

retardation of the apparent movement of the tracer compared to that of the host fluid.  

Typically, when running a tracer test, the long duration of the test implies significant 

diffusion into stagnant regions and fracture-matrix fluid exchange. Under the assumption 

of conservative tracer and immiscible flow in an isothermal system (i.e., no involvement 

of adsorption, chemical reactions, and dispersion), advection and diffusion are the two 

mechanisms that control the transport process in a fractured system. 

 

In fractured rocks, the heterogeneities of the system affect differently the fluid flow and 

transport process.  For example, during a tracer test, the effect of the system heterogeneity 

on fluid flow (fluid-front advance) tends to be smoothed with dispersion and diffusion.  
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In contrast, for tracer transport, the effect of heterogeneities is not smoothed because 

advection commonly dominates the process.  The distribution of the velocity field is 

critical for modelling fluid flow and transport. 

2.8 Conceptual Model for Flow and Transport in Fractured Porous Media 

Several approaches exist to model flow in fractured systems; the type of flow model 

depends on how the fractured medium is conceived.  Fractured reservoirs can be modelled 

using equivalent continuum models (implicit approach), discrete fracture networks 

(explicit approach) and hybrid techniques (combination of explicit and implicit 

approaches).  The continuum approach models the porous media of rock matrix and 

fractures as idealised homogeneous equivalent continua with averaged properties.  

Discrete fracture network models explicitly individual fracture attributes or equivalent 

fracture attributes in the model.  Hybrid techniques combine elements of both DFN and 

continuum approximations (Figure 2.12).  

 

 

Figure 2.12.  Model conceptualisations for a fractured rock (a) represented by an equivalent porous medium (high 

fracture intensity zones represented by regions of high permeability) (b), a dual-porosity model (c), a discrete fracture 

model (major fractures are explicitly modelled) (d), and a hybrid model (dual-porosity approach is built using properties 

of the fractures obtained from the discrete fracture modelling). 

 

2.8.1 Continuum Model 

In the equivalent continuum model, the heterogeneity of the fractured rock is modelled 

by assigning uniform properties to a limited number of flow regions.  The discontinuous 

character of the rock mass is neglected.  Individual fractures are neglected unless their 

scale is large enough to be considered as a separate flow region (e.g., areally extensive 

fracture network).  This modelling approach is based on the representative elementary 

volume (REV).  This means that micro-scale properties of a porous medium are 
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represented by an equivalent continuum of a larger scale using average properties. Hence, 

the petrophysical properties (e.g., permeability and porosity) of the rock mass are 

represented by a volume-averaged behaviour of many fractures. The REV (Figure 2.13) 

must satisfy to be large enough to avoid oscillations of the average properties, and small 

enough to honour the spatial correlation of these properties (Bear, 1972).  Hence, the main 

challenges of continuum models are the scale at which the REV is valid for the averaging 

of properties.  

 

 

Figure 2.13.  Representative elementary volume (REV).  Modified after Bear, 1972. 

 

The most common types of equivalent continuum models for fractured media are the 

single- and dual- porosity models (Figure 2.14). In single-porosity models, the flow and 

storage capacity are assumed to only occur in one of the two porous media, either 

fractures or rock matrix.  The porous medium of the fractured system is assumed to have 

a continuous distribution of a single type of porosity and hence a single permeability.   

 

Dual-porosity models are a subset of dual-continuum models. They consider that both 

fracture and rock matrix contribute to the overall fluid flow and transport of the whole 

system.  The fractured rock is represented by two overlapping continua, and both continua 

are considered porous media with different hydraulic and hydro-mechanical 

characteristics (Barenblatt et al., 1960).  Dual-porosity models account for the delay in 

the hydraulic response of the fractured rock caused by the fracture-matrix interaction.  

Fracture-matrix fluid exchange (i.e., diffusion of mass between fractures and rock matrix) 

becomes important when matrix porosity is significantly greater than fracture porosity or 
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when long time scales are considered.  The hydrodynamical implication of fracture-

matrix fluid exchange is represented using dual-porosity models. 

 

 

Figure 2.14.  Flow representation using continuum model conceptualisation of the naturally fractured reservoir 

classification. 

 

Equivalent continuum models can represent all the NFR types described earlier in this 

chapter (Figure 2.12).  The flow behaviour of type 1 reservoirs and other fractured 

reservoirs can be modelled using a single-porosity/single permeability approach when 

fracture densities are high and matrix blocks are small, such that there is no distinction 

between the fluid contained in the fractures or the rock matrix.  Type II reservoirs are 

generally conceptualised using dual-porosity/single-permeability models.  The flow 

behaviour of type III can be modelled through the dual-porosity/dual permeability 

approach.  Type IV can be represented with a single porosity approach/single 

permeability approach. 

 

2.8.1.1 Single-Porosity Models 

In single-porosity models, the effective porosity of the fractured system and the 

permeability of the open fractures are crucial to model fluid flow and transport.  The 

permeability of the equivalent porous medium is adjusted to consider the effect of the 

fractures in the fluid flow (Berre et al., 2019).  This implies that the magnitude and 

orientation of the effective permeability tensor 𝐤 considers the properties of the flow-
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dominant fractures and the fracture networks. Hence, the 𝐤 accounts for the influence of 

both fractures and rock matrix.  Assuming single-phase flow, the average velocity field 

is given by 

 

 𝐯 = −
𝐤

𝜇
(∇𝑝 − 𝜌𝐠), (2.2) 

 

where 𝐤 is the equivalent permeability for a given REV.  Note that the approach is 

identical to the classical upscaling of heterogeneous porous media.  The fluid flow and 

mass conservation equation in the equivalent porous media under transient conditions is 

defined as 

 

 ∇ ∙ [
𝐤𝜌

𝜇
(∇𝑝 − 𝜌𝐠)] + 𝑞 =

𝜕

𝜕𝑡
(𝜙𝜌), (2.3) 

 

where 𝑡 is the time, 𝜙 is the equivalent porosity, and 𝑞 is a source/sink term.   

 

2.8.1.2 Dual-Porosity Models  

Several geometrical idealizations of fluid flow for dual-porosity models have been 

proposed (e.g., Warren and Root, 1963; Kazemi, 1969).  Warren and Root (1963) 

represented the fractured rock as orthogonally connected fractures that cross a set of 

identical parallelepipeds. The parallelepipeds represent the rock matrix blocks (Figure 

2.15).  This standard representation is referred to as the “sugar cube model”.  Note that the 

dual-porosity approach may lead to over-simplification of the fracture network geometry.  

 

 

Figure 2.15.  Model conceptualisation of a fractured rock using idealised dual-porosity sugar cube model (a) and 

representing the interaction between matrix and fractures in terms of flow and transport (b). 
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The fracture-matrix fluid exchange is modelled using empirical mass transport 

coefficients.  In dual-porosity models, the continuity equation for fluid flow consists of 

two sets of equations that describe fluid flow through the fracture network and fluid flow 

in the rock matrix blocks.  The transport equation follows the mass balance principle as 

for the continuity equation. Assuming only advective and diffusive transport (Figure 2.15). 

The fluid and transport equations are given by  

 

 𝜕

𝜕𝑡
(𝜙𝛼𝜌𝛼)⏟      

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

+ ∇ ∙ [
𝐾𝛼𝜌𝛼

𝜇𝛼
(∇𝑝𝛼 − 𝜌𝛼𝑔𝛼)]⏟              
𝐹𝑙𝑢𝑥

+ 𝑞𝛼⏟
𝑆𝑜𝑢𝑟𝑐𝑒/𝑠𝑖𝑛𝑘

+ 𝑇𝛼⏟
𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒−𝑚𝑎𝑡𝑟𝑖𝑥 𝑡𝑟𝑎𝑛𝑓𝑒𝑟

= 0, (2.4) 

 𝜙𝑒𝛼
𝜕𝑐𝛼

𝜕𝑡⏟    
𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

+ ∇ ∙ 𝜙𝑒𝛼v𝑐𝛼⏟      
 𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 

− ∇ ∙ (𝐷𝑚𝑒𝛼
𝜙𝑒𝛼∇𝑐𝛼)⏟            

 𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒

+ 𝑞𝛼⏟
𝑆𝑜𝑢𝑟𝑐𝑒/𝑠𝑖𝑛𝑘 

+ 𝑇𝛼⏟
𝐹𝑟𝑎𝑐𝑡𝑢𝑟𝑒−𝑚𝑎𝑡𝑟𝑖𝑥 𝑡𝑟𝑎𝑛𝑓𝑒𝑟

= 0, 
(2.5) 

 

where 𝑇 corresponds to the fluid transfer rate representing the fluid exchange between 

the continua. The 𝑇 is constrained by the principle of mass conservation (e.g.,  𝑇1 = −𝑇2).  

A positive sign describes outflow from and a negative sign indicates inflow into the 

matrix.  Subscript 𝛼 can take the values: 1 for matrix and 2 for fractures.   

 

Equations 2.4 and 2.5 model the dual-porosity dual-permeability behaviour.  This implies 

that both rock matrix and fractures conduct fluid flow.  Also, fluid can be transported 

globally through the rock matrix by advection and diffusion.  For example, if part of the 

fluid has diffused into the matrix blocks, the other part can continue flowing through the 

rock matrix in a direction transverse to the diffusion when advection is present.  On the 

other hand, dual-porosity/single-permeability behaviour assumes that the fluid flows 

primarily through the highly permeable fractures.  The rock matrix blocks provide the 

storage capacity and can be envisioned as sources or sinks for diffusion between the 

surrounding fractures (Figure 2.15).  The mathematical model for fluid flow and transport 

is reduced such that the flux and advective terms for the rock matrix blocks are neglected 

in Equations 2.4 and 2.5. 

 

2.8.1.2.1 Transfer Function 

In the flow and transport process, the transfer function models the fluid exchange between 

the rock matrix and fractures.  In oil and gas reservoirs, the recovery of fluids from the 

rock matrix to the fractures takes place through different recovery mechanisms that can 

act independently or simultaneously.  The five major recovery mechanics are driven by 

fluid expansion, viscous forces, capillary imbibition, gravity drainage and diffusion 
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(Figure 2.16).  The overall transfer rate is thus defined by the collective contribution of 

each recovery mechanism.   

 

 

Figure 2.16.  Schematic of zoning of a naturally fractured reservoir (a) and its different recovery processes: gravity 

drainage (b), capillary imbibition (c), viscous displacement (d), fluid expansion (e), and diffusion (f).   

 

Several formulations of the transfer rate function have been proposed.  Warren and Root 

(1963) presented the first explicit form for the transfer term.  They assumed single-phase 

flow, fluid expansion and pseudo-steady state (Equation 2.6).  Fracture-matrix fluid 
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exchange is based on the average potential difference with a proportionality constant 

named shape factor 𝜉.  The shape factor accounts for the geometric shape of the block 

matrix that is involved in the fluid exchange (e.g., effective fracture-matrix interface area, 

and effective-characteristic matrix length). The 𝜉 describes the rate of fluid exchange.  In 

common practice, the 𝜉  is used as a weighting / tunning factor of the transfer rate between 

the fractures and rock matrix. 

 

 𝑇 = 𝜉
k1

𝜇
(�̅�1 − 𝑝2), (2.6) 

 

where 𝜉 is the shape factor, k1 matrix permeability, 𝜇 is the fluid viscosity, 𝑝 the pressure, 

and subscript 1 stands for matrix and 2 for fracture. 

 

Numerous improvements have been developed over the years for the Warren-and-Root 

(WR) transfer function for which the involvement of various recovery mechanisms and 

definition of the shape factor have been implemented.  Extensions for the WR formulation 

have included multi-phase flow accounting for capillary, gravity, and viscous forces,  and 

pseudo-steady-state matrix-fracture diffusion (Kazemi et al., 1976; Gilman & Kazemi, 

1983; Gilman, 1986; Quandalle & Sabathier, 1989; Coats, 1989).   

 

The pseudo-steady-state assumption in the WR-based transfer functions arises two 

difficulties for the modelling of the recovery behaviour; at an early time the rate of the 

recovery is underestimated and consequently, the ultimate recovery is misrepresented, 

especially for systems with dominant gravity drainage (Abushaikha & Gosselin, 2008). 

(Figure 2.17).  The transfer functions have constantly been expanded to reproduce early- 

and late- time behaviour of the rock matrix recovery (e.g., Rangel-German et al., 2010; 

Ishimoto, 1988; Lim & Aziz, 1995; Chang, 1995; Penuela et al., 2002; Wang et al., 2018).  

The physics-based transfer functions are derived from analytical or semi-analytical 

solutions that describe the physical behaviour of the fluid flow and transport process (e.g., 

Sarma & Aziz, 2004; Zimmerman et al., 1993; Lu et al., 2008; Di Donato et al., 2007).  

The physics-based transfer function can calculate the transfer rate associated with each 

recovery mechanism (i.e., fluid expansion, capillary imbibition, gravity drainage, and 

diffusion) and approximate more accurately the recovery behaviour at all time scales 

(Figure 2.17).   
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Figure 2.17. Matrix recovery comparison between WR-based and physics-based transfer functions considering moderate 

and dominant gravity effect for a mixed wet oil and gas system.  Modified after Abushaikha & Gosselin, 2008. 

 

Most of the physics-based transfer functions that model recovery by the capillary-driven 

imbibition (e.g., Di Donato et al., 2007) stem from Aronofsky’s model (Aronofsky et al., 

1958).  Aronofsky’s model (Equation 2.7) approximates the recovery of the matrix block 

at any given time 𝑡 as a function of the ultimate recovery 𝑅𝐹∞  and the transfer rate constant 

𝛽.  

 

 𝑅𝐹(𝑡) = 𝑅𝐹∞(1 − 𝑒
−𝛽𝑡). (2.7) 

 

The transfer rate constant describes the speed at which fluids can be exchanged between 

the fracture and the matrix. The 𝛽 accounts for the static and dynamic effects that 

influence the recovery behaviour.  The 𝛽 can model spontaneous imbibition (Maier et al., 

2013; Schmid & Geiger, 2012, 2013; March et al., 2016; Samimi et al., 2012) and gravity 

drainage (March, et al., 2017, 2018; Aghabarari et al., 2020).  Schmid & Geiger, (2013) 

developed a universal formulation for 𝛽 based on a general analytical solution for 

spontaneous counter-current imbibition.  This analytical solution applies to arbitrary 

values of fluid properties, petrophysical properties of diverse rock types and wettability.  

The universal transfer rate coefficient 𝛽 is defined as  

 

 𝛽 = (
2𝐴

𝐿𝜙1
)
2

, (2.8) 

 

where 𝐴 represents the amount of water imbibing the rock matrix at a given time, 𝐿 is the 

characteristic length for the matrix block obtained from Ma et al.’s (1995) model. The 𝛽 

is obtained numerically because 𝐴 requires non-linear iterations for the computation of 

the fractional flow 𝐹(𝑆𝑤).  Since this PhD thesis is focused on waterflooding process, we 

assume the recovery of the rock matrix is dominantly driven by spontaneous imbibition.  
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Given that 𝛽 is a constant that does not change over time, the coefficients are computed 

only once which saves computing time. 

 

2.8.2 Discrete Network Models 

Discrete Fracture Network (DFN) models provide a more detailed representation of the 

fracture geometry and distribution in the reservoir.  DFN models represent rock masses 

separated by discontinuities at different scales (Dershowitz et al., 2000).  A DFN model 

represents fractures and faults as planar surfaces in three dimensions according to their 

topological and physical characteristics (Figure 2.12).  The population of properties and 

attributes of the fracture network in DFN models relies on spatial statistics of measured 

data (e.g., fracture orientation, geometry, fracture transmissibilities.) which can be used 

to create deterministic or stochastic realizations of fracture networks with the same spatial 

properties.  The stochastic fracture model can generate fracture networks when data of 

the fracture location, size and orientation are scarce or not known directly, but can be 

inferred from statistics (e.g., Dershowitz & Herda, 1992).  DFN models assume that all 

the fluid flow occurs in the fracture network (e.g., the surrounding matrix is 

impermeable).  Fluid flow through the network is computed with standard numerical 

techniques.  The DFN models are much more data-demanding (e.g. statistical data ) than 

continuum models and can be computationally intensive.   

 

2.8.3 Hybrid Model 

The inherent advantage of DFN models in providing approximates of large-scale fracture 

permeability and porosity based on measured field data allows us to obtain reasonable 

estimates of the continuum properties at a large scale.  The hydraulic properties 

(permeability, effective porosity, shape factor, mean fracture spacing) obtained from the 

DFN model can be upscaled (e.g., Oda 1986; Cottereau et al., 2010; Decroux & Gosselin, 

2013; Elfeel et al., 2013) into the reservoir simulation grid.   The upscaled fracture 

properties are then integrated into the continuum model with the standard rock matrix 

description of petrophysical properties.  The resulting continuum model (Figure 2.12) 

provides a better dynamic representation of the fracture porous medium, which can be 

also calibrated using measured dynamic data.  The hybrid model combines the benefits 

of the continuum and discrete models (Bourbiaux et al., 2002; Cacas et al., 1990a; 1990b), 

but is also limited by their major issues (e.g., data-demanding modelling of fracture 

networks and the applicability of the REV). 
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2.9 Conceptual Model for Mechanical Deformation in Fractured Porous Media 

When accounting for solid deformation and flow in porous media, the coupling between 

changes in stress fields and fluid pressure can be modelled through the linear poro-elastic 

theory (Biot, 1941; 1955, 1956).  Several models have been proposed to establish the link 

of the dual-porosity type models with the theoretical framework of the poro-elastic theory 

(Aifantis, 1977, 1980; Wilson & Aifantis, 1982; Khaled et al., 1984; Beskos & Aifantis, 

1986).  These models use phenomenological equations that describe load-deformation 

and fluid-percolation response through constitutive coefficients.  The constitutive 

coefficients and their intrinsic properties can be obtained from experimental, analytical 

and numerical approaches (e.g.,  Berryman & Wang, 1995; Khalili & Valliappan, 1996; 

Loret & Rizzi, 1999; Berryman & Pride, 2002; Berryman, 2002; Khalili & Selvadurai, 

2003; Khalili, 2003).  Ashworth & Doster (2019b) establish a guideline that supports the 

selection of constitutive and coupling coefficient models that will be involved in the 

mathematical model that links the poro-elastic behaviour with fluid flow in dual-porosity 

models.  Ashworth & Doster’s (2019b) guideline considers the fracture stiffness, 

composite module definitions and conditions of pressure coupling between the fractures 

and the rock matrix to define the adequate coefficients. 

 

The proposed methodology presented in this PhD thesis models poro-mechanics adopting 

a dual-continuum poro-elastic representation within the macroscopic framework of 

Coussy (1995, 2005).  The methodology uses the micromechanical constitutive equations 

proposed by Ashworth & Doster (2019a) to relate how macroscopic stress and strain 

distribute between individual constituents of a composite material (rock matrix and 

fractures).   

 

2.9.1 Macroscopic Constitutive Model: Overall Response of the Composite Material 

While a dual-porosity system contains two domains with different poro-elastic 

behaviours, i.e., the fractures and rock matrix, the macroscopic constitutive models for 

reservoir only consider the composite poro-mechanical behaviour of the two continua.  

The composite poro-mechanical behaviour can be obtained through homogenisation (e.g., 

Grant, 1997).  In the following, we summarise the key features of this model. 
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2.9.1.1 Linear Poro-elastic Theory 

Based on the fundamentals developed by Biot (1941; 1955, 1956) and Coussy (1995, 

2004), the poro-elastic theory for dual-porosity type models describes the superposition 

of two overlapping poro-elastic continua.  It is assumed an isothermal perfectly elastic 

composite medium, i.e., linear, reversible, and mechanical behaviour with small 

deformation and isotropic material, and quasi-static deformation.   

 

 

The momentum conservation equation is given by 

 

 𝛻 ∙ 𝝈 + 𝜌𝐛𝐟𝐟 = 0, (2.9) 

 

where 𝝈 = 𝝈′ − 𝛼𝑝𝐈  is the total Cauchy stress, 𝝈′ is the effective stress, 𝛼 is the Biot 

coefficient of the composite 𝛼 = 𝑏1 + 𝑏2 = 1 −
𝐾𝑑𝑟

𝐾𝑠
, 𝑝 is the fluid pressure, 𝐈 is the 

identity matrix.  The bulk density of the continuum is represented by 𝜌, and 𝐛𝐟𝐟 is the 

body forces.   

 

The linear interaction between stress and strain is expressed as 

 

 𝝈 = 𝑪: 𝛆(𝐮) − 𝛼𝑝𝐈, (2.10) 

 

where 𝑪 is the tensor of the elastic drained coefficients, 𝛆 is the strain tensor and 𝐮 is the 

displacement field of the global response of the composite.  Note that the convention used 

considers compaction as positive.  Under the assumption of small deformation, the 

linearized strain tensor is a symmetric part of the displacement gradient and is defined by 

the symmetrized gradient operator as  

 

 𝛆(𝐮) =
1

2
(𝛻𝐮 + 𝛻𝑡𝐮), (2.11) 

 

Substituting Equations 2.9 and 2.10 into Equation 2.11 formulates the mechanical problem 

in terms of the displacement, leading to the governing equation of solid deformation 

expressed in terms of the displacement field given by  

 

 𝐺𝛻2𝐮 + (𝐺 + 𝜆)𝛻𝛻 ∙ 𝐮 = −𝛼𝐈𝛻𝑝 − 𝜌𝐛𝐟𝐟, (2.12) 
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where 𝐺 = 𝐸(2(1 + 𝜈))
−1

 is the shear modulus,  𝜆 = 𝐸𝜈(1 + 𝜈)−1(1 − 2𝜈)−1 is the 

Lamé constant with Young’s modulus 𝐸 and the Poisson’s ratio 𝜈 of the composite 

(matrix and fractures). 

 

 

2.9.1.2 Fluid-Flow and Poro-mechanics 

Assuming isothermal steady-state single-phase fluid flow in a deformable dual-porosity 

continuum (i.e., the solid velocity is non-zero, 𝐯𝑠 ≠ 0), in which the fluid flows primarily 

through the highly permeable fractures.  Based on the principles of mass conservation 

and Darcy’s law for the fluid and solid phase (Verruijt, 1969; Cooper, 1966; Bear & 

Bachmat, 1990; Jaeger et al., 2006), the governing equations are given by  

 

 𝛻 ∙ (𝜌𝑓𝑖𝐯𝑖) + 𝜌𝑓𝑖𝑞𝑖 = 0, (2.13) 

  

 𝛻 ∙ [𝜌𝑠𝑖(1 − 𝜙𝑖)𝐯𝑠𝑖] = 0, (2.14) 

 

The Darcy’s law given as  

 

 𝐯 = −
𝐤

𝜇
(∇𝑝 − 𝜌𝐠𝛻𝑧), (2.15) 

 

expresses fluid flow relative to the solid phase flow as 

 

 𝐯i −𝜙𝑖𝐯s𝑖 = −
𝐤𝒊

𝜇𝑖
∙ (𝛻𝑝𝑖 − 𝜌𝑓𝑖𝐠𝛻𝑧). (2.16) 

 

Here 𝜌 is the density, 𝐯 is Darcy’s velocity, 𝐯𝑠 is the solid velocity, 𝜙 is the porosity, 𝐤 is 

the intrinsic permeability, 𝜇 is the dynamic fluid viscosity, 𝐠 is the gravity vector, 𝑧 is the 

vertical coordinate, 𝑞 is a source/sink term, and the subscripts 𝑓 and 𝑠 refer to the fluid 

and solid, respectively.  The subscript 𝑖 refers to the continuum 1 for matrix and 2 for 

fractures. 
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Assuming steady-state conditions and incompressible fluid flow, combining Equations 

2.14 and 2.16, and substituting 𝛻 ∙ 𝐯𝑠𝑖 = 0 into Equation 2.16, yields the standard pressure 

equation (here for the fractures): 

 

 𝛻 ∙ [
𝐤2

𝜇2
𝛻 (𝑝 − 𝜌𝑓2𝐠𝛻𝑧)] + 𝑞2 = 0. (2.17) 

 

Equations 2.12 and 2.17 represent the macroscopic constitutive model for steady-state fluid 

flow and solid deformation for dual-porosity models.  Note, that due to the steady-state 

condition Equations 2.12 to 2.17 do not involve time-dependent terms (i.e., 𝜕𝑢 𝜕𝑡⁄ =

0, 𝜕𝑝 𝜕𝑡⁄ = 0. Hence, no transfer function that equilibrates fluid pressure between 

fractures and matrix. (i.e., 𝑝 = 𝑝1 = 𝑝2), and fluid flow occurs only through the 

permeable fractures.   

 

2.9.1.3 Micromechanics: Effective Stress and Strain of Matrix and Fractures. 

Micromechanics relates to how macroscopic stress and strain distribute between 

individual constituents of a composite material (e.g. rock matrix and fractures).   Here, 

the composite has two poro-elastic materials, where each material has its own constitutive 

model.  The material properties of a composite are homogenised as a function of the 

volume fraction and the structure of its constituents.  The homogenisation technique 

characterises the conditions of the distribution of the strain and stress in the system, e.g.,  

uniform deformation (isostrain) and uniform stress (isostress) in matrix and fractures 

(Figure 2.18).  Under isostrain conditions, the material properties are linearly related to the 

volume fractions (Equation 2.18) and computed using the Voigt average (Voigt, 1889). 

Under isostress conditions, the Reuss average (Reuss, 1929) describes a non-linear 

relationship between the material properties and the volume fractions (Equation 2.19).  

The homogenised values of elastic properties are bound by the isostrain and isostress 

conditions (Figure 2.18). 

 



 

42 

 

Figure 2.18. Schematic description of isostrain (a) and isostress (b) conditions and their relationship with the composite 

properties. 

 

 𝑋𝑐 = 𝑣1𝑋1 + 𝑣2𝑋2, (2.18) 

 𝑋𝑐
−1 = 𝑣1𝑋1

−1 + 𝑣2𝑋2
−1. (2.19) 

 

where 𝑋𝑐 is any elastic property of the composite (e.g.  bulk modulus and Young’s 

modulus) that is a function of the same intrinsic elastic properties 𝑋1 and 𝑋2 of the 

continuum 𝑖 = 1 (rock matrix) and 𝑖 = 2 (fractures), and 𝑣1 = 𝑉1
0 𝑉0⁄  and 𝑣2 = 𝑉2

0 𝑉0⁄  

are the volumes fractions for the continuum 𝑖.   

 

The effective stress of each continuum can be derived using the mixture theory (e.g., 

Aifantis, 1977; 1980; Wilson & Aifantis, 1982; Khaled et al., 1984; Beskos & Aifantis, 

1986; Borja & Koliji, 2009). In mixture theory, the volume fractions are used in the 

formulation of effective stress for each continuum using the principles of the REV.  

Hence, the macroscopic stress and strain tensors can be related to their constitutive micro 

stress and strain fields through the volume averaging operator as 

 

 𝜎 = �̅� = 𝑣1�̅�1 + 𝑣2�̅�2, (2.20) 

 𝜀 = 𝜀̅ = 𝑣1𝜀1̅ + 𝑣2𝜀2̅, (2.21) 

 

where 𝜎 and 𝜀 represents the macroscopic stress and strain fields.  The terms �̅� and 𝜀 ̅ e 

specified as �̅�𝑖 =
1

𝑉𝑖
∫ 𝑠𝑖(𝑥)𝑑𝑉𝑉𝑖

 and 𝜀�̅� =
1

𝑉𝑖
∫ 𝜀𝑖(𝑥)𝑑𝑉𝑉𝑖

.  The parameter �̅�𝑖 is the mean 

stress fields and 𝜀�̅� is the average volumetric strain of continuum 𝑖. 
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Under steady-state conditions, the micromechanics (Dormieux et al., 2006) of the 

constitutive model for each continuum 𝑖 is expressed as 

 

 𝑑𝜎 = 𝐾𝑑𝑟𝜀 − (𝑏1 + 𝑏2) 𝑑𝑝, (2.22) 

 𝑑𝜙1 = 𝑏1𝜀 + (
1

𝑁1
+
1

𝑄
) 𝑑𝑝, (2.23) 

 𝑑𝜙2 = 𝑏2𝜀 + (
1

𝑄
+

1

𝑁2
) 𝑑𝑝, (2.24) 

 𝑑𝜙1 = 𝑣1 (𝑏1𝜀1̅ +
1

𝑁1
∗ 𝑑𝑝), (2.25) 

 

where 𝐾𝑑𝑟 and 𝐾𝑠 are the drained bulk and shear moduli of the composite, and 𝑏1 and 𝑏2 

are the effective Biot’s coefficients.  The constitutive relations between intrinsic 

properties of each continuum and the coefficients models 𝑏1, 𝑏2, 
1

𝑁1
, 
1

𝑁2
 ,
1

𝑄
, 
1

𝑁1
∗ are defined 

based on the Ashworth & Doster’s (2019a) selection criterion for isostrain or isostress 

conditions. 

 

When considering isostress conditions in a poro-mechanical study, the microscopic strain 

field model for the matrix 𝜀1̅ and fractures 𝜀2̅ is determined by combining Equations 2.23 

and 2.25 and involving the volume averaging presented in Equation 2.21.  Note that 

Equation 2.25 completes the micromechanics model (Equations 2.22 to 2.25) through the 

link between the change in matrix porosity 𝑑𝜙1, the deformation of the effective 

behaviour of the matrix 𝜀1̅ and the macroscopic strain field of the composite 𝜀 (Ashworth 

& Doster, 2019a).  The microscopic strain fields for the matrix and the fracture are 

modelled as 

 

 𝜀1̅ =
1

𝑏1
{
1

𝑣1
[𝑏1𝜀 + (

1

𝑁1
+
1

𝑄
)𝑑𝑝] −

1

𝑁1
∗ 𝑑𝑝}, (2.26) 

 𝜀2̅ = (𝜀 − 𝑣1𝜀1̅)𝑣2
−1. (2.27) 

 

In summary, from the solution of the macroscopic deformation of the composite 

(Equation 2.12) subsequent computations are carried out to obtain the volumetric and 

effective strains for the rock matrix and fractures (Equations 2.26 and 2.27).  
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2.10 Stress-Dependent Properties of the Fractured Rock 

The stress-deformation behaviour of the fractured reservoir rock causes changes in the 

pore structure of the intact rock and the fractures.  These changes lead to alteration in 

storativity (fracture and matrix porosity), connectivity (fracture aperture, fracture and 

matrix permeability and effective porosity) and multi-phase flow properties(relative 

permeability and capillary pressure). 

 

2.10.1 Stress-Dependent Fracture Properties  

Experimental and numerical relationships among flow rate, fracture aperture and 

permeability have shown that the flow rate and poro-mechanically altered fracture 

aperture exhibit a cubic-law relationship (Bear, 1972; Snow, 1968; Louis, 1969; White & 

Morrison, 1999). The fracture permeability of an idealised set of parallel fractures with 

planar openings, constant aperture, uniform spacing and laminar fluid flow is defined as  

 

 𝐤𝟐
ini =

𝑏3

12𝑠
. (2.28) 

 

The cubic law (Equation 2.28) states that the fracture permeability is controlled by the 

mean aperture 𝑏 and the fracture spacing 𝑠.  Several models have modified the cubic law 

to model poro-mechanically altered fracture permeability resulting from the induced 

change in fracture aperture ∆𝑏 (e.g., Elsworth, 1989; Bai et al., 1997, 1999; Zhang et al., 

2004, 2007).  The modified cubic law accounts for the effect of the total deformation of 

the composite ∆𝐮 on the fracture permeability by incorporating the effect of the elastic 

displacement in the matrix ∆𝐮1 and across the fracture ∆𝑏 on the s and 𝑏 (Figure 2.19).  The 

simplest form to model stress-dependent fracture permeability was derived by Elsworth 

(1989) and is expressed as  

 

 𝐤𝟐(𝐮) =
1

12𝑠
(𝑏 + ∆𝑏)3 with ∆𝑏 = (𝑠 + 𝑏)∆𝛆2. (2.29) 

 

By factorising the initial fracture permeability 𝐤𝟐
ini from Equation 2.29  

 

 𝐤𝟐(𝐮) = 𝐤𝟐
ini (1 +

∆𝑏

𝑏
)
3

. (2.30) 
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Figure 2.19.  Representation of the deformation across rock matrix blocks and fractures of the coupled dual-porosity 

continuum and its impact on the change of fracture aperture and spacing from initial conditions (a) to conditions after 

deformation (b and c). 

 

The modified cubic-law models for stress-dependent fracture permeability differ from 

each other in their definition of the aperture change (Equations 2.30 to 2.34), most notably 

in how these models allocate displacement between the fracture spacing and the aperture 

(Figure 2.19).  Some models estimate the displacement in the fracture assuming 

deformation occurs in the fracture independently of the matrix rock (Bai et al., 1997), and 

others use relationships between the strains of the composite and the fractures to link the 

deformation between matrix and fractures (Bai et al., 1999; Zhang et al., 2004, 2007).   

 

Authors Aperture Change Permeability Model 

 (m) (m2) 

Bai et al.  (1999) ∆𝑏 =
𝑏

𝑏
+
𝑠

𝑏
∆𝜺2 +

(𝑠 + 𝑏)

𝑏
∆𝜺 [𝒌𝟐(𝒖)]𝑖 = [𝒌𝟐

𝑖𝑛𝑖]
𝑖
{1 + ∑

∆𝜺𝑗

𝑏𝑗
[
𝐸(𝑠𝑗+𝑏𝑗)

𝐸+𝑠𝑗𝐾𝑛
]𝑗≠𝑖 }
3

, (2.31) 

Bai et al.  (1997) 
∆𝑏 =

𝑠

𝑏
∆𝜺2 +

𝑏

𝑏
∆𝜺2  [𝒌𝟐(𝒖)]𝑖 = [𝒌𝟐

𝑖𝑛𝑖]
𝑖
[1 + ∑

(𝑠𝑗+𝑏𝑗)[∆𝜺2]𝑗

𝑏𝑗
𝑗≠𝑖 ]

3

, (2.32) 

Zhang et al.  (2007)  
∆𝑏 = 𝑏∆𝜺2 + 𝑠∆𝜺2 + 𝑠∆𝜺1  [𝒌𝟐(𝒖)]𝑖 = [𝒌𝟐

𝑖𝑛𝑖]
𝑖
{1 + ∑ ∆𝜺𝑗 [1 +

∆𝜺1𝑗

𝐾𝑛𝑏𝑗
+
∆𝜺1𝑗

𝐾𝑛𝑠𝑗
]𝑗≠𝑖 }
3

, (2.33) 

Zhang et al.  (2004)  

∆𝑏 = (𝑠 + 𝑏)∆𝜺 −
𝑠

𝑏
∆𝜺1  [𝐤𝟐(𝐮)]𝑖 = [𝐤𝟐

𝑖𝑛𝑖]
𝑖
{1 + ∑ (𝑠𝑗 + 𝑏𝑗)∆𝜺𝑗 −

𝑠𝑗

𝑏𝑗
∆𝜺1𝑗𝑗≠𝑖 }

3

, (2.34) 

Table 2.1:  Stress-Dependent Fracture Permeability Models. 

 

where 𝐤𝟐 is now a function dependent on the deformation as indicated by the argument 

𝐤𝟐(𝐮), 𝐤𝟐
𝑖𝑛𝑖 is the initial fracture permeability, and 𝐾𝑛 is the fracture normal stiffness.  

The subscript 𝑖 represents the principal directions of the permeability tensor and the 
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subscript 𝑗 represents the orthogonal directions with respect to 𝑖.  Note that the limiting 

condition for all the presented fracture permeability models is (𝑏 + ∆𝑏)3 ≥ 0, which 

cancels the possibility of non-physical values (fractures overclosure). The poro-

mechanical change in fracture porosity can be calculated using Equation 2.24.   

 

2.10.2 Stress-Dependent Matrix Properties  

Several empirical models based on experimental and theoretical methods (e.g., Tortike & 

Farouk, 1993; Bai & Elsworth, 1994; David et al., 1994; Evans et al., 1997) are available 

to describe the relationship between permeability/porosity and stress for an intact rock 

matrix.  The simplest approach to account for the stress dependency between permeability 

and the deformation of the pore structure of the rock matrix is through the relationship 

between the poro-mechanically altered permeability and porosity (Figure 2.20).  In this 

approach, the changes in the pore structure resulting from the deformation of the rock 

matrix are assumed to be reflected in the porosity. Such that the poro-mechanically 

porosity can be obtained as a function of the normalised change of the volumetric strain 

(Equation 2.35) (Tortike and Farouq, 1993; Li et al., 2006).   

 

 

Figure 2.20.  Stress/strain sensitivity of the permeability of an intact rock which displays the typical curve for sandstones 

and some carbonates.  Taken from Smart et al., 2001. 

 

The well-established Kozeny-Carman equation (Kozeny, 1927; Carman, 1956) models 

the relationship between porosity and permeability considering an ideal representation of 

the pore system with a cubical grain shape and packing while the opening of the pore 

space is represented by stacking sections of capillary tubes.  MacMinn et al. (2016) 

normalised the Kozeny-Carman equation to include the effect of stress-dependency on 
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the matrix permeability (Equation 2.36).  The normalised Kozeny-Carman equation 

preserved the qualitative characteristics of the original equation while enabling the initial 

permeability and porosity to be imposed autonomously.  The relationships between 

volumetric, porosity and permeability of the rock matrix are given by 

 

 𝜙1(𝐮) =
𝜙1
𝑖𝑛𝑖−∆𝛆𝒗1

1−∆𝛆𝒗1
, (2.35) 

 𝐤𝟏(𝐮) = 𝐤1
𝑖𝑛𝑖 [

(𝜙1(𝐮))
3
(1−𝜙1

𝑖𝑛𝑖)
2

(𝜙1
𝑖𝑛𝑖)

3
(1−𝜙1(𝐮))

2], (2.36) 

 

where ∆𝛆𝒗1 is the change in matrix volumetric strain, 𝜙1
𝑖𝑛𝑖 is the initial matrix porosity, 

and 𝜙1(𝐮) and 𝐤1(𝐮) are the updated stress-dependent matrix porosity and permeability, 

respectively. The  𝐤1
𝑖𝑛𝑖 represents the initial matrix permeability.  For simplicity, induced 

anisotropy in permeability is neglected, and Equations 2.35 and 2.36 assume compaction 

to be positive.  The normalised Kozeny-Carman equation represents the qualitative 

behaviour of the permeability reduction when the updated porosity 𝜙1(𝐮) decreases.  

Note that the updated permeability 𝐤1(𝐮) becomes undefined when the updated porosity 

tends to unity. These behaviours represent the two end-members for poro-mechanics. 

 

Various models have been proposed to represent the stress dependency between the 

porosity-permeability relationship.  Kozeny-Carman-based models, such as the one 

described in Equations 2.36 and 2.37, are limited to specific geometries of the pores space 

(e.g., cubical packing).  On the other hand, other permeability models make use of more 

complex representations of the deformation of the pore structure through concepts like 

the Hertzian elastic contact (Timoshenko, 1934; Gang, 1978). These types of models 

consider the deformation of the pore structure as a function of the change in the mean 

grain size instead of the commonly used pore size (e.g., Kozeny-Carman-based models).  

An example of these models is Bai & Elsworth’s (1994) permeability model for intact 

rock (Equation 2.38).  Other types of models are the empirical approaches based on the 

porosity and compressibility concept (e.g., the relationship between bulk volume, pore 

volume and pressure change). They can be used and adjusted to represent the desired pore 

space according to laboratory test data. For example, Equation 2.39 can use a laboratory-

obtained exponent “n” to represent appropriately the porous space of actual formations 

(e.g., n=10 for sandstones, n=3 for an ensemble of flat channels) (Nikolaevskiy, 1996).  

Like in the case of fracture permeability the choice of permeability law will influence the 
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fluid flow and poro-mechanical response, because the pressure gradient in the reservoir 

model is inversely proportional to the permeability, and the pressure gradient is coupled 

to the poro-mechanics of the system.  All the permeability models presented in Equations 

2.30 to 2.39 (Tables 2.1 and 2.2) for fractures and intact rock have been implemented in 

MRST. 

 

Authors Permeability Model 

  (m2) 

Kozeny-Poiseuille 
𝐤𝟏(𝐮) = 𝐤1

𝑖𝑛𝑖 [
(1−

𝑑𝜙1
𝜙1(𝐮)

)
3

1+𝑑𝜙1
], 

where 𝑑𝜙1 can be defined using Equation 2.35 or 2.23 

(2.37) 

Bai & Elsworth (1994) 𝐤𝟏(𝐮) = 𝐤1
𝑖𝑛𝑖 {1 +

1

2
[
9(1−𝑣2)

2
(𝜋∆𝛆1)

2]

1

3
}

2

. (2.38) 

Polynomial Law Function 
𝐤𝟏(𝐮) = 𝐤1

𝑖𝑛𝑖 [
𝜙1(𝐮)

𝜙1
𝑖𝑛𝑖 ]

𝑛

, 

where 𝑛 is a fitting exponent 

(2.39) 

Table 2.2:  Stress-Dependent Matrix Permeability Models. 

 

2.10.3 Stress-Dependent Relative Permeabilities and Capillary Pressure 

When the pore structure holds the strain imposed, the capillary pressure increases because 

of the reduction in pore dimension (i.e., pore size, porosity) and pore throat size 

distribution.  The poro-mechanical changes in pore structure may lead to shift in the 

imbibition curve due to evolving capillary entry pressure (Figure 2.21).  Reduction in 

porosity could also lead to changes in the saturation of the phases present in the reservoir, 

resulting in the alteration of their relative permeabilities (Figure 2.21).  The changes in 

saturation end points can potentially bias the estimation of mobile hydrocarbon 

saturations and their distribution across the reservoir leading to an erroneous assessment 

of initially immobile hydrocarbon in place and recovery predictions (Smart et al., 2001). 

 

 

Figure 2.21.  Schematic of the conceptual interpretation of changes in capillary height and saturation end points due to 

poro-mechanical effect (a) along with core-scale experimental and numerical results representing the poro-mechanical 

effect on the capillary pressure (b) and the relative permeability (c) curves.  Modified after Smart et al., 2001, and 

Haghi et al., 2019. 
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Haghi et al. (2018) suggested constitutive relationships, based on experimental 

observations and theoretical considerations. They quantify changes in relative 

permeability and capillary pressure as a function of stress.  This model assumes that the 

rock fabric does not change with stress and only the pore volume changes.  The model 

introduced by Haghi et al. (2018) for fractured carbonates is given by  

 

 𝜙𝑡(𝐮) =  𝜙1(𝐮)[𝟏 − 𝜙2(𝐮)] + 𝜙2(𝐮), (2.40) 

 𝐤𝒕(𝐮) =  ∑ [𝐴𝑟𝑖 (
∑ 𝐿𝑗
𝑚
𝑗=1

∑
𝐿𝑖

𝐤𝒋(𝐮)
𝑚
𝑗=1

)]𝑛
𝑖=1 ∑ 𝐴𝑟𝑖

𝑚
𝑖=1⁄ , (2.41) 

 𝑃𝑐(𝐮) = 𝑃𝑐
𝑖𝑛𝑖√

𝐤𝑡
𝑖𝑛𝑖

𝐤𝑡(𝐮)
√
𝜙𝑡(𝐮)

𝜙𝑡
𝒊𝒏𝒊 , (2.42) 

 𝑆𝑤𝑖𝑟𝑟(𝐮) = 𝑆𝑤𝑖𝑟𝑟
𝑖𝑛𝑖 [−12.15 + 13.15 (

𝑃𝑐(𝐮)

𝑃𝑐
𝑖𝑛𝑖 )], (2.43) 

 𝑆𝑛𝑤𝑟(𝐮) = 𝑆𝑛𝑤𝑟
𝑖𝑛𝑖 [−2.75 + 3.75 (

𝑃𝑐(𝐮)

𝑃𝑐
𝑖𝑛𝑖 )], (2.44) 

 𝑘𝑟𝑤𝑚𝑎𝑥(𝐮) = 𝑘𝑟𝑤𝑚𝑎𝑥
𝑖𝑛𝑖 [38.52 + 37.52 (

𝑃𝑐
𝑖𝑛𝑖

𝑃𝑐(𝒖)
)], (2.45) 

 𝑘𝑟𝑛𝑤𝑚𝑎𝑥(𝐮) = 𝑘𝑟𝑛𝑤𝑚𝑎𝑥
𝑖𝑛𝑖 [1.001 + 0.001 (

𝑃𝑐
𝑖𝑛𝑖

𝑃𝑐(𝐮)
)]. (2.46) 

 

Here 𝜙𝑡 and 𝐤𝑡 are the total porosity and permeability of the composite material, 𝐴𝑟𝑖 and 

𝐿 are the area and length of continuum 𝑖 of a given grid block, respectively.  Subscript 𝑛 

represents the number of the continuum in a plane normal to the flow direction and 𝑚 

represents the plane parallel to the flow direction.  𝑃𝑐 is the capillary pressure, 𝑆𝑤𝑖𝑟𝑟 is the 

irreducible saturation of the wetting phase 𝑤, 𝑆𝑛𝑤𝑟is the residual saturation of the non-

wetting phase 𝑛𝑤, and 𝑘𝑟𝑚𝑎𝑥  is the maximum value of the relative permeability.  

Superscript 𝑖𝑛𝑖 refers to the initial condition of the properties.  Similar to Haghi et al.  

(2018), the starting relative permeability curves are given by the Brooks and Corey 

relation (Brooks & Corey, 1966) as 

 

 𝑘𝑟𝑤(𝐮) = 𝑘𝑟𝑤𝑚𝑎𝑥(𝐮) ∙ (𝑆𝑤
∗ )𝑛𝑤(𝜆(𝐮)), (2.47) 

 𝑘𝑟𝑤(𝐮) = 𝑘𝑟𝑛𝑤𝑚𝑎𝑥(𝐮) ∙ (1 − 𝑆𝑤
∗ )𝑛𝑛𝑤(𝜆(𝐮)), (2.48) 

 

where 𝑛𝑤 and 𝑛𝑤 are power exponents as a function of the pore size distribution index 

𝜆(𝐮) obtained by linear regression of the l𝑛(𝑆𝑤
∗ ) − 𝑙𝑛(𝑃𝑐(𝐮)) relation and the 𝑆𝑤

∗  is the 
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normalised wetting phase saturation.  It is acknowledged  that other relative permeability 

models are available (e.g., Kerig & Watson, 1986; Lomeland et al., 2005) and that the 

proposed hydrodynamical-poro-mechanical coupling is independent of the choice of 

model used to characterise the stress-dependent relative permeabilities and capillary 

pressure curves.  This semi-analytical model that accounts for stress-dependent relative 

permeabilities and capillary pressure was also implemented in MRST (Chapter 5). 

 

2.11 Forecasting of Reservoir Performance under Uncertainty for NFR 

The description of heterogeneity in fractured rocks, the limited understanding of how 

fracture properties are distributed in the subsurface, the influence of stress states on 

parameters of the fracture system and their associated uncertainties involved in their 

characterisation, greatly affect our ability to integrate the interaction of these elements 

and their impact on the prediction of reservoir performance (Aguilera, 1999; Allan & Sun 

2003; Agar et al., 2013; Agar & Geiger, 2015).  Although diverse techniques at different 

reservoir scales are employed to characterise parameters of the fracture network., e.g., (1) 

core analysis, (2) borehole data derived from wireline logs, (3) direct measurements from 

outcrop analogues, (4) transient well testing and (5) seismic surveys (e.g., Bosworth et 

al., 2012; Sagi et al., 2013; Leonide et al., 2012; Murray & Montgomery, 2012; Slightam, 

2012; Sotelo Gamboa et al., 2016).  The measurement constraints of these techniques 

(Figure 2.22), the lack of measurements, or simply unrepresentative sampling cause 

uncertainties which are transferred to the modelling process.   
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Figure 2.22.  Naturally fractured carbonate outcrop near Gignac in Provence, France (a) depicting the characterisation 

of the investigated area through geophysical logging at a real scale (b) and showing the actual depth of investigation 

and vertical resolution of the logging and core sampling (c). 

 

Similarly to the characterisation issues, the limitations of the model design and 

methodologies give rise to a new set of uncertainties (Bentley, 2016).  For example, 

limitations of numerical schemes to solve flux in complex grid geometries obliged to 

simplify the geometrical representation of geological structures in the grid of the reservoir 

simulation model.  These simplifications may induce in some cases lack of 

representativeness in the calculation of fluid distribution and flux fields.  On the other 

hand, the use of industry-standard numerical schemes to solve for flux beyond the 

applicability of their formulation (e.g., grid non-orthogonality, permeability anisotropy) 

may arise significant inaccuracy in the approximated flux solution.  Biased estimations 

of flux across the reservoir model may result in misleading predictions of reservoir 

performance. 

 

On the other hand, the uniqueness of the reservoir model is always something to be 

considered when characterising and modelling under uncertainty. There may be several 

possible models involving different combinations of geometry and properties of matrix 

and fractures that reproduce the field measurements.  Exploring and capturing the full 
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range of geological, petrophysical and mechanical uncertainties generally requires the use 

of computationally intensive numerical modelling (e.g., Bentley, 2016; Scheidt & Caers, 

2009; Park et al., 2013).   

 

Reservoir numerical simulation is widely used in the industry to perform prediction of 

reservoir performance under different conditions of the variability of engineering factors, 

and geological, petrophysical and mechanical parameters.  The numerically predicted 

performance is usually utilised to quantify the uncertainty ranges associated with the 

estimates (e.g., hydrocarbon volumes, expected production, and reserves) that will 

support risk mitigation, capital investment and reservoir management decisions. 

 

2.12 Discretisation Schemes and Flux Solution  

Modelling of realistic representation of complex geological structures and wellbore 

geometries requires the use of polyhedral cells and complex connectivity of the grid cells 

(Ponting, 1989; Skoreyko et al., 2003; Verma & Aziz, 1996; Brewer et al., 2015; 

Klemetsdal et al., 2017; Ding, 2019).  Unfortunately, the formulation of the commonly 

used numerical schemes for reservoir flow simulation (e.g., finite volume methods with 

TPFA scheme) is conditionally consistent and susceptible to carrying significant 

inaccuracies when applied to geometries where their formulation was not conceived.  

Standard and widely used numerical techniques such as two-point flux approximations 

(TPFA) schemes are conditioned by the grid orthogonality.  Those schemes require the 

grid blocks of the reservoir model to be nearly perfect cubes with the permeability tensor 

aligned with the grid orientation (𝐤 −orthogonality) to ensure convergence to the solution 

of the pressure and flux fields (Robertson, 1978).  Ensuring 𝐤 −orthogonality for a 

geomodel that conforms complex geological features (i.e., intersecting faults, fractures, 

erosion surfaces, pinchouts) and well trajectories (e.g., multi-branched, horizontal, highly 

deviated wells) is a challenging task because structural representativeness is difficult to 

achieve with standard grids (i.e., corner point gridding) (Figure 2.23).   
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Figure 2.23.  Geometrical representation of a Y-shaped fault (a and b), and a multi-lateral well (c and d) using structured 

grids (left-hand side) and unstructured grids (right-hand side). Modified after Samier & Masson, 2017, and Lux et al.,  

2016. 

 

Standard flow discretisation schemes impose constraints to the gridding of the geomodel 

to meet 𝐤 −orthogonality to avoid grid-orientation effects and convergence issues.  In 

reality, achieving full 𝐤 −orthogonality is a challenge because real reservoir models have 

anisotropic and heterogeneous permeability distributions.  The simplification of the 

reservoir gridding may introduce significant errors, misrepresenting complex geological 

features (i.e., intersecting faults, fractures, erosion surfaces, pinchouts) and misleading 

the influence of the geological variability on flux estimations (Eydinov et al., 2006; 

Hamd-Allah et al., 2020).  The inaccuracy of the flux distribution (Figure 2.24) can 

compromise the reliability of the predicted reservoir dynamic performance to support 

reservoir management decisions (e.g., infill well placement, injection patterns).  

 



 

54 

 

Figure 2.24.  Comparison of oil saturation distribution obtained using a structured grid with two-point flux 

approximations (TPFA) scheme (a), an unstructured grid with multi-point flux approximation (MPFA) scheme (b), and 

an unstructured grid with vertex approximate gradient (VAG) scheme (c).  Modified after Samier & Masson, 2017.   

 

In recent years, significant work has been conducted to find consistent and convergent 

schemes to extend the application of standard schemes to complex grid geometries for 

structure and unstructured grids.  Flux discretisation schemes such as multipoint, mixed 

and mimetic approximations have been proposed to solve general polyhedral grids  

(Aavatsmark, 2002; Brezzi & Fortin, 1991; Brezzi et al., 2005a; 2005b; Nilsen et al., 

2012).  The industry standard scheme for discretisation of flow equations is the two-point 

flow approximation (TPFA).  This scheme is flow conservative; however, it is 

conditionally consistent and is susceptible to grid-orientation effects.  TPFA scheme is 

more susceptible to inadequacy caused by grid-orientation effects when the principal 

direction of the permeability tensor does not align with the vectors joining the pressure 

points (Figure 2.25) used in the discretisation stencil (e.g., non 𝐤 −orthogonality).  The 

TPFA scheme may result highly inaccurate when 𝐤 −orthogonality is not satisfied (e.g., 

Aavatsmark, 2007; Wu & Parashkevov, 2009).   
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Figure 2.25.  Visualisation of degrees of freedom and spatial subdivision on TPFA (a), MPFA-O (b), Mimetic finite 

difference (c) and VAG (d) schemes to approximate pressure and flux solutions. 

 

The recent vertex-approximate gradient (VAG) scheme and the more-mature multi-point 

flux approximation (MPFA) provide numerical schemes dependent on multi-point 

stencils (Figure 2.25). Multi-point stencils account robustly for the directionality of the flow 

using a gradient approximation.  The MPFA scheme keeps the same number of unknowns 

as the TPFA scheme but has a denser stencil.  The improvement in the gradient 

approximation for both MPFA and VAG schemes provides better approximations of flow 

solution than that obtained from the two-point flux approximation (TPFA).  The 

improvement in the directionality of the flow extends the application of these schemes to 

complex non-orthogonal structured and unstructured grids.  In contrast, in the mimetic 

scheme, auxiliary pressure points are used to approximate the solution (Figures 2.25).  The 

mimetic finite difference (MFD) scheme keeps the auxiliary pressure points as primary 

unknowns and does not require explicitly reconstructing the flux of sub control volumes 

like in the case of the MPFA and VAG schemes.  The MFD scheme can be applied to 

diverse types of grid geometries and be adaptable to reproduce other discretisation 

schemes (e.g., TPFA and MPFA) on simple grids (Kuznetsov & Repin, 2003; Lie et al., 

2012). Multi-point and mimetic schemes are consistent and convergent on non-

orthogonal grids; however, this leads to full transmissibility matrices. 

 

The advantage of the VAG scheme on unstructured complex grids over other numerical 

schemes is the robustness of the approximation of the flux gradient.  The VAG-

approximated fluxes connect each cell to its vertices which enables the approximation to 

account for more possible directions of the flux.  VAG-approximated fluxes are always 
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conservative, coercive, and consistent on general polyhedral meshes and for general 

heterogeneous anisotropic permeability tensor (Eymard et al., 2011a, 2012b). 

 

2.14.1 Discrete Flux Approximation of the Numerical Schemes 

The construction of the different numerical schemes starts with the choice of the suitable 

degrees of freedom to represent adequately discrete scalar, vector and tensor fields on a 

grid cell that will give solution to the mathematical model.  The degrees of freedom can 

be associated with diverse grid elements (e.g., vertices, edges, faces and cell centroids).  

The differences and limitations among diverse numerical schemes depend on the choice 

of the degrees of freedom (Figure 2.25), and the assumption and techniques used in their 

formulations to reconstruct the flux solution. 

 

In this PhD thesis, the mathematical model for the flux problem is represented by the 

incompressible Darcy flux continuity equation.  Assuming a simplified set of single-

phase flow equations on an open bounded subset of polyhedral Ω ⊂ ℝ𝑑 with external 

boundary 𝜕Ω = Ω̅ Ω⁄ ., whose external boundaries can be subjected to pressure (Dirichlet) 

or flux (Neumann) boundary conditions.  The flux problem is described by the system of 

equations 

 

 {
∇ ∙ 𝐯 = 𝑓,       where 𝐯 = −Λ∇𝑝    𝑖𝑛 Ω ⊂ ℝ𝑑

𝑝 = 0,                                             𝑜𝑛 𝜕Ω  
, (2.49) 

 

Where 𝐯 is the Darcy velocity, 𝑝 is the pressure (unknown), and Λ = 𝐤 𝜇⁄  is the hydraulic 

diffusivity operator that involves the permeability tensor 𝐤 and the fluid mobility 𝜇.  The 

term 𝑓 is a volumetric sink/source term.   

 

For the introduction of the numerical schemes consider Figure 2.25 as a reference for the 

notation.  Let assume a grid domain 𝑀 that consists of the set of control volumes 𝐾 with 

constant permeability 𝐤.  Each control volume 𝐾 ∈ 𝑀 is composed of the vertices 𝑆 ∈

𝒱𝐾, faces 𝜎 ∈ ℱ𝐾 and each face is also composed of a set of vertices 𝑆 ∈ 𝒱𝜎.  Let assume 

two control volumes 𝐾 ∈ 𝑀 and 𝐿 ∈ 𝑀 with cell centroids 𝑥𝐾 and 𝑥𝐿, respectively.  𝐿 is 

connected to the control volume 𝐾 by the mutual interface 𝜎 ∈ ℱ𝐾 with orientation given 

by the normal vector 𝒏𝐾,𝐿 pointing from cell 𝐾 to 𝐿 (Figure 2.25).  Similarly, 𝒄𝐾,𝐿 denotes 

the vector that connects the cell centroids 𝒙𝐾 to 𝒙𝐿.   

 

https://www.sciencedirect.com/topics/computer-science/continuity-equation
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For the solution of the problem described in Equation 2.49, let denote 𝑝 = (𝑝𝐾)𝐾∈𝑀 as the 

vector of pressure values in each control volume.  Assuming the flux occurring between 

the two neighbouring grid blocks 𝐾 and 𝐿 can be approximated by the discretised Darcy 

flux F𝐾,𝐿(𝑝).  The fluxes F𝐾,𝐿(𝑝) are therefore assumed to be linear combination of the 

discrete pressures 𝑝𝑁, with 𝑁 ∈ 𝐻𝐾,𝐿 where 𝐻𝐾𝐿 is the set of all the neighbouring control 

volumes of both control volumes 𝐾 and 𝐿 used to approximate the discrete flux as: 

 

 𝐅𝐾,𝐿(𝑝) = ∑ 𝑨𝐾𝐿
𝑁 (𝑝𝐾 − 𝑝N)𝑁∈𝐻𝐾,𝐿 , (2.50) 

 

where the coefficients 𝑨𝐾𝐿
𝑁  are the transmissibilities of the flux 𝐅𝐾,𝐿(𝑝).  Equation 2.50 

represents a generalised form of the cell-based discrete flux for the mass-conservative 

schemes. The structure of Equation 2.50 will be used as a reference to present the 

approximations of each scheme (i.e., TPFA, MPFA, MFD, and VAG scheme) to facilitate 

further comparison. 

 

2.12.1 Two-point Flow Approximation (TPFA) Scheme 

The TPFA scheme approximates the flux F𝐾,𝐿(𝑝) using only the pressures at the cell 

centroids 𝑥𝐾 and 𝑥𝐿. given by 

 

 𝐅𝐾,𝐿(𝑝) = 𝑨𝐾𝐿(𝑝𝐾 − 𝑝L), (2.51) 

 𝑨𝐾𝐿 = (𝑨𝐾,𝐿
−1 + 𝑨𝐿,𝐾

−1 )
−1

, (2.52) 

 

where 𝐀𝐾𝐿 is the transmissibilities of the flux 𝐅𝐾,𝐿(𝑝).  Despite the TPFA scheme being 

always coercive and monotone, is conditionally consistent for k-orthogonal grids 

(Aavatsmark, 2007; Wu & Parashkevov, 2009). TPFA discretisation gives diagonal 

transmissibility matrices which are not convergent for general grids. 

 

2.12.2 Multi-point Flux Approximation (MPFA) Scheme 

The MPFA scheme is a cell-centred approximation like the TPFA scheme but with the 

difference that MPFA uses an extended stencil defined for more than two points (Figure 

2.25).  The unconditional consistency of the MPFA scheme requires solving much denser 

linear systems equations than those obtained from the TPFA scheme. 
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Several constructions of the MPFA scheme have been proposed in the last two decades.  

In this work, we limit ourselves to describing the MPFA-O method (Aavatsmark, 2002).  

The MPFA-O scheme defines an interaction region 𝜖𝐾,𝑆 (Figure 2.25) around each node 

𝑆 ∈ 𝒱𝜎∈𝐾 that belongs to the face that connects the cell centroids 𝒙𝐾 and 𝒙𝐿.  Inside each 

interaction region, a new set of sub control volumes 𝜖 is defined. The MPFA-O scheme 

defines the basis functions of the pressure for each 𝜖𝐾,𝑆. This scheme imposes pressure 

continuity at the centroids 𝒚𝜎 and flux continuity across the faces 𝜎 ∈ ℱ𝜖𝐾,𝑆 of each sub 

control volume 𝜖 ∈ 𝜖𝐾,𝑆 defined in the interaction region.  The MPFA-O scheme defines 

the gradients of the basis functions in terms of the cell pressure 𝒑𝐾.  Ultimately, the cell 

pressure is approximated by summing the fluxes across all the faces 𝜎 ∈ ℱ𝜖𝐾,𝑆 inside the 

interaction region and by imposing flux conservation.  The scheme can be expressed in a 

variational formulation (Angelas et al., 2009) as  

 

 F𝐾,𝐿(𝑝) = ∑ ∑ ∑ 𝑨𝐾,𝑆
𝜖,𝜖′(𝑝𝐾,𝑆

𝜖′ − 𝑝𝐾)(𝑝𝐾,𝑆
𝜖 − 𝑝𝐾)𝜖′∈𝜖𝐾,𝑆𝜖∈𝜖𝐾,𝑆𝐾∈ℳ . (2.53) 

 

The flux in the face defined by 𝒙𝐾 and 𝑺 of the sub control volume 𝜖 is given by 

 

 𝐹𝐾,𝑆
𝜖 (𝑝) = ∑ 𝑨𝐾,𝑆

𝜖,𝜖′(𝑝𝐾,𝑆
𝜖′ − 𝑝𝐾)𝜖′∈𝜖𝐾,𝑆 , (2.54) 

 

where 𝐴𝐾,𝑆
𝜖,𝜖′

 is the coefficient of transmissibilities of the inner and outer faces that form 

the sub control volume 𝜖 with common vertices 𝒙𝐾 and 𝑆.  

 

The flux in the vertex 𝑆 of control volume 𝐾is given by 

 

 F𝐾,𝑆(𝑝) = ∑ 𝐹𝐾,𝑆
𝜖 (𝑝)𝜖∈𝜖𝐾,𝑆 (𝑝𝐾,𝑆

𝜖 − 𝑝𝐾). (2.55) 

 

The MPFA-O scheme satisfies flux conservation as 𝐹𝐾,𝑆
𝜖 (𝑝) = 𝐹𝐿,𝑆

𝜖 (𝑝) if 𝜖 = [𝑆, 𝒚𝜎]. 

 

Finally, rewriting Equation 2.53 through the substitution of Equation 2.54 in Equation 2.55 

and expressing the discretised flux as the cell-centred approximation 

 

 F𝐾,𝐿(𝑝) =  ∑ [
1

2
∑ 𝐹𝐾,𝑆

[𝒙𝑘 ,𝒚𝜎](𝑝)(𝑝𝐾 − 𝑝L) +𝑆∈𝒱𝜎

1

2
∑ 𝐹𝐾,𝑆

[𝑆,𝒚𝜎](𝑝)(𝑝𝐾 − 𝑝L)𝑆∈𝒱𝜎 ]𝜎∈ℱ𝜖𝐾,𝑆
. (2.56) 
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2.12.3 Mimetic Finite Difference (MFD) Scheme  

Mimetics schemes (Brezzi et al., 2005a, 2005b; Lipnikov et al., 2014) reformulate the 

discretised mathematical model of the flux and pressure problems (Equation 2.49) in terms 

of first-order differential operators (e.g., 𝒈𝒓𝒂𝒅, 𝒅𝒊𝒗, 𝒄𝒖𝒓𝒍) and their duality relationships 

(e.g., 𝒈𝒓𝒂𝒅 = −𝒅𝒊𝒗, 𝒅𝒊𝒗 = −𝒈𝒓𝒂𝒅).  The mimetic method uses notions of discrete 

spaces formulated through inner products, primary operators, derived operators, and 

duality properties.  The duality relationships ensure the preservation of the physics and 

the analytical properties (e.g., conservation laws) of the mathematical model with the 

established differential operators.   

 

The mimetic scheme is defined in terms of a local inner product 𝜧𝐾 or equivalently the 

inverse of the permeability matrix 𝑨𝐾.  Consequently, the discretised Darcy’s law can be 

written as (Aarnes et al., 2007)  

 

 𝜧F𝐾(𝑝) = 𝒆𝑝𝐾 − 𝑝𝜎, F𝐾(𝑝) = 𝐀𝐾(𝒆𝑝𝐾 − 𝑝𝜎), (2.57) 

 

where 𝜧𝐾 = 𝐀𝐾
−1, 𝒆 = (1, . . . ,1)𝑇 and 𝑝𝜎 is the pressure at the face centroid (Figure 2.25).  

The MFD uses discrete pressure and fluxes associated with the cell and face centroids, 

respectively.  In a first-order mimetic method the pressure is approximated by a piecewise 

linear function on each grid cell.  This linear pressure can be expressed in the form 𝑝 =

𝒙 ∙ 𝒂 + 𝑏 with a constant vector 𝒂 and a scalar 𝑏, resulting in the Darcy velocity expressed 

as 𝐯 = −𝚲𝒂.  Let denote 𝒏𝜎 as the normal vector to the face σ, and 𝐜K,yσ as the vector 

pointing from cell centroid 𝒙𝑘 to the face centroid 𝒚𝜎 (Figure 2.25).  Using this notation 

the flux and pressure drop from cell centroid to face centroid are given by  

 

 F𝐾 = −𝒏𝜎𝚲𝐾𝒂, (2.58) 

 𝑝𝐾 − 𝑝𝜎 = 𝒄𝐾,𝑦𝜎 ∙ 𝒂, (2.59) 

 

By substituting Equations 2.58 and 2.59 into Equation 2.57, the condition of consistency 

for the local inner products is defined as 

 

 𝑴𝐾
𝜎𝑵𝐾

𝜎𝒌𝐾
𝜎 = 𝑪𝐾,𝑦𝜎

𝜎  𝑎𝑛𝑑  𝑁𝐾
𝜎𝚲𝐾

𝜎 = 𝑻𝐾
𝜎𝑪𝐾,𝑦𝜎

𝜎 , (2.60) 
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where 𝑁𝐾
𝜎 = (|𝜎𝐾,1|𝑛𝜎,1, . . . , |𝜎𝐾,𝑛|𝑛𝜎,𝑛)

𝑇
, 𝐶𝐾,𝑦𝜎

𝜎 = (𝑐𝐾,𝑦𝜎,1
𝜎,1 , . . . , 𝑐𝐾,𝑦𝜎,n

𝜎,𝑛 )
𝑇

.  Any valid first-

order mimetic approximation of the inner products can be expressed as (Aarnes et al., 

2007; Aarnes & Efendiev, 2008) 

 

 𝜧𝐾 =
1

|𝐾|
𝑪𝐾𝚲𝐾

−1𝐂𝐾
𝑇 +𝑴𝑠𝐾 , (2.61) 

 

where 𝜧𝑠 is a matrix defined such that 𝜧 is consistent and symmetric positive definite.  

The matrix 𝜧𝑠 allows for mimicking the physical and mathematical properties of the flux 

and pressure problem.  The family of valid solutions must have the form presented in 

Equation 2.61, which is the formulation used in MRST (Klemetsdal et al., 2017; Lie et al., 

2012). 

 

2.12.4 Vertex-approximate gradient (VAG) scheme 

The VAG scheme is a vertex-based approach that generates multi-point stencils, the 

particularity of the VAG scheme is that it keeps the cell-centred unknowns for the 

discretisation.  The construction of the piecewise constant discrete gradient requires the 

subdivision of the control volume 𝐾 into a sub mesh (𝑀𝐾,𝑆)𝐾∈ℳ, 𝑆∈𝑉𝐾
 defined by 

triangular surfaces for 2D grids and tetrahedral for 3D grids (Figure 2.25).  The fluxes 

estimated by the VAG scheme connect each cell of the grid that shares a mutual vertex 𝑆 

with the control volume 𝐾 (Figure 2.25).  The variational formulation of the scheme 

(Eymard et al., 2012a) is expressed   

 

 F𝐾(𝑝) =  
1

2
∑ ∑ ∑ 𝐴𝐾

𝑆,𝑆′(𝑝𝑆 − 𝑝𝐾)(𝑝𝑆′ − 𝑝𝐾)𝑆′∈𝒱𝐾  𝑆∈𝒱𝐾𝐾∈ℳ . (2.62) 

 

The VAG formulation satisfies flux conservation as 

 

 F𝑆,𝐾(𝑝) = −F𝐾,𝑆(𝑝), (2.63) 

 F𝐾,𝑆(𝑝) = ∑ 𝐴𝐾
𝑆,𝑆′(𝑝𝐾 − 𝑝𝑆′)𝑆′∈𝒱𝐾 . (2.64) 

 

The VAG schemes lead to sparse flux stencils compared to the cell-centred MPFA fluxes.  

The computation of the transmissibility 𝐴𝐾
𝑆,𝑆′

of all the fluxes depends on the defined 

tetrahedral submesh of each control volume K and on a 𝑝1 interpolation over the 
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triangular finite elements of the submesh 𝑀𝐾,𝑆 (Eymard et al., 2011a, 2012a, 2012b).  

More details about the formulation of the VAG scheme and its implementation are 

discussed in Chapter 3. 

 

2.13 An Uncertainty Quantification Workflows for NFR 

High uncertainty in the characterization and modelling of reservoirs results in non-unique 

solutions of reservoir models and their respective predictions.  Exploring and capturing 

the full range of geological, petrophysical and mechanical uncertainties generally requires 

the use of computationally intensive numerical modelling (e.g., Scheidt & Caers, 2009; 

Park et al., 2013).  Full-physics numerical models are based on first principles (e.g., 

physical equations) that represent most of the processes and mechanisms involved in the 

physical phenomena of interest that are studied.  They are solved using numerical 

algorithms. The underlying detailed physics of full-physics models offer the advantage 

of being more general and robust but tend to be cumbersome and their numerical solution 

is often computationally intensive.  Reduced-physics representations and data-driven 

techniques (e.g., machine learning techniques) have been implemented to support full-

physics numerical simulations to alleviate the computational burden and computing time.  

They accelerate the investigation of reservoir predictions and uncertainty ranges and 

further guide the reduction of uncertainty in the estimation of reservoir performance.  

Reduced-physics models imply the simplification of the physics process using 

assumptions or modelling only some portions of the dominant physics involved.  In this 

PhD thesis we refer to the particular case of reduced-physics models that are used to 

transform the set of second-order partial differential equations used in traditional 

reservoir simulators into first-order ordinary differential equations (e.g., streamlines, flow 

diagnostics, material balance models, capacitance-resistance models).  The reduced-

physics model presented in this thesis assumes steady-state conditions (i.e., 

incompressible flow, perfect voidage replacement, non-linearity involved by viscous 

contrasts, fluid density, and negligible capillary and gravity forces), for which there is no 

time dependency and the incompressible flow is driven by pressure gradients between 

injectors and producers. The deformation of the system caused by those changes in 

pressure gradients is considered through changes in effective stress at micro and macro 

scale for the fracture and matrix assuming a poro-elastic framework using 

micromechanics and macromechanics (for more details refer to Sections 2.9.1, 2.14.2 and 

5.2.2).  These models are limited to applications that align with the assumptions and 
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dominant physics used for their definition; in this case the implementation is limited to 

processes of injection and production in the reservoir model (e.g., injection patterns for 

enhanced oil recovery) subjected to the flow diagnostics framework.  The advantage of 

reduced-physics models over data-driven models is that their approximations are based 

on physical relationships, which enable them to be employed with greater confidence for 

studies that involve moderate extrapolation (e.g., outside of the domain for which they 

were assumed or history matched) (Molinari & Sankaran, 2021; Sayarpour et al., 2009; 

Cao, et al., 2015; Guo et al., 2018; Albertoni and Lake 2003).  Note that the 

simplifications implied a loss of accuracy, which needs to be balanced between the 

increment in computational speed and the representativeness of the predictions obtained 

from those models.   

 

Data-driven models are usually constructed using solely data.  They understand and 

determine the causality relationships, correlations and data patterns between the input and 

output variables using learning algorithms. The learning algorithms can be supervised or 

unsupervised. In supervised learning, a relationship between a parameter of interest and 

several dependent variables is obtained from training data.  The supervised learning 

models are used to predict outcomes using different sets of input variables (e.g., proxy 

modelling).  In unsupervised learning, the patterns between the input variables are learned 

using techniques such as cluster analysis, multi-dimensional scaling, independent, and 

principal component analysis.  Unsupervised learning is used to categorise, group and 

organized data to understand their variability and dissimilarity.  Unsupervised learning 

techniques such as cluster analysis have been applied in reservoir modelling and 

characterisation, and uncertainty and optimisation workflows of model ensembles (e.g., 

ensemble-based data assimilation methods) for data reduction, categorisation, ranking, 

comparison and screening of representative models to support and accelerate detailed 

analysis for strategic decision-making (Evensen 2007; Aanonsen et al., 2009; Emerick & 

Reynolds, 2013; Jung et al., 2018; Conjard & Grana, 2021, Alvarado et al., 2002; 

Cheraghi, et al., 2021).  In data-driven models, the modelling and understanding of the 

underlying physics are not required to determine the relationships.  The accuracy of data-

driven methods is compromised when their predictions are extrapolated outside of the 

historical training data (e.g., preferably within stationary ranges included in the training 

population statistics).  This pitfall can be overcome by updating the model using refined 

training to cover broader patterns. Data-driven models along with engineering judgement 
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offer high computational speed and are very advantageous to help guide timely 

management decisions. 

2.13.1 Data-driven Methods in the Proposed Uncertainty Quantification Workflow  

This PhD thesis proposes the use of the intended simplified-physics method (i.e., our 

proposed poro-mechanically informed flow diagnostics) along with data-driven methods 

(e.g., proxy modelling and cluster analysis) to accelerate and support uncertainty 

quantification and robust optimisation workflows for hydrodynamical-poro-mechanical 

studies.  The integration of the data driven-methods in the proposed approach intends: (1) 

to extend and accelerate the exploration of the multi-parameter space by applying 

artificial-neural-network (ANN) based proxy modelling build on poro-mechanically 

informed flow diagnostics simulations and (2) identification of patterns and correlations 

for clustering, ranking, comparison and screening of representative and meaningful 

models or scenarios that represent either the quantified uncertainty or the optimised 

objective function. The screened models are further carried forward to be studied in more 

detail using full-physics coupled reservoir simulations.  The general workflow is 

described in Figure 2.26 and is summarised as follows: 

 

1. Selection of the response variable or variables (e.g., objective function) of the 

model or model ensemble that will be predicted by the proxy model 

2. Experimental design for the sampling of the simulations to be run for the training 

3. Construction of ANN-based proxy model by calibration of the model against held-

out data (training simulations) 

4. Searching of the proxy model using possible combinations of the variables in a 

study by means of a design of experiment to define the blind data samples 

5. Validation of the model against blind data.  The blind data samples are run using 

the actual simulation and compared against the proxy prediction (active learning). 

6. Deployment of the model for the intended study (sensitivity, uncertainty, or 

optimisation) through an extensive search using Monte Carlo realisations or any 

other design of experiment 

7. Comparison, ranking, clustering, and screening of proxy predicted models. 

8. Execution of the screened simulations found by the proxy prediction using actual 

simulations 
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This workflow aims to maximise the value of a strategically defined set of poro-

mechanically informed flow diagnostics simulations using an orthogonal Latin hypercube 

in the design of experiments (DoE) (step 2).  The construction of the proxy model make 

use of some of the “simulation budget” (e.g., time and computational resources) to run 

the simulations that will train the ANN-based proxy model.  Because poro-mechanically 

informed flow diagnostics simulations are very fast, thousands of realisations can be 

generated to train the proxy model in hours.  Once trained and validated (steps 3 through 

5), the proxy model is used to execute thousands of Monte Carlo realisations to carry out 

sensitivity, uncertainty, or optimisation studies (step 6).  From the proxy predictions, 

further studies like clustering, comparison and ranking of reservoir models are carried out 

(step 7).  The remaining part of the “simulation budget” is then used to run the model 

candidates that were screened with the proxy-based predictions.  If the screened proxy 

prediction differs highly (e.g., proxy prediction is extrapolating out of training space) 

from the actual simulations (step 8), this process takes the form of a proxy-model update 

or a new refined search procedure.  This implies that the procedure will be repeated from 

steps 2 through 5 until the converge criterion is met or the desired accuracy is reached.   

 

Figure 2.26.  Proposed workflow using ANN-based proxy models. 
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2.14 Flow Diagnostics 

Flow diagnostics (Datta-Gupta & King, 2007; Shahvali et al., 2012; Rasmussen & Lie, 

2014; Lie et al., 2015; Møyner et al., 2015) provide a computationally efficient way to 

quantify and visually investigate the effect of the flow patterns across a reservoir model 

in a fraction of the time it would take to compute it using full-physics simulations.  The 

flow diagnostics formulation is based on the incompressible pressure equation, Darcy’s 

law, and the linear steady-state transport equation.  The approximation of the dynamic 

behaviour is achieved through the computation of two fundamental quantities: the time 

of flight and drained or injected concentration distributions.  These quantities enable the 

identification of regions with fast and slow fluid flow, which allows estimating influence 

flow regions between injectors and producers, drained and swept reservoir pore volumes, 

inter-well connected pore volume, flux allocation between injection-production well 

pairs, breakthrough time at individual wells, and quantification of dynamic heterogeneity 

inside flux regions.  Flow diagnostics provides a first and quick insight into reservoir 

dynamics which gives auxiliary and complementary information for more detailed studies 

using full-physics reservoir simulation.  Flow diagnostics simulations have been widely 

used to accelerate and investigate the assessment of fluid-displacement processes, 

recovery efficiency under waterflooding, the optimisation of well injection patterns, the 

reservoir model history matching, the assessment of different geological concepts, and 

the ranking and screening of a larger number of models, among other applications (Thiele 

et al., 2007, 2010; Datta-Gupta & King, 2007; Kaplan et al., 2017; Spooner et al., 2019; 

Watson et al., 2021).   

 

2.14.1 Streamline-Based Flow Diagnostics 

Streamlines are instantaneous lines that are traced everywhere tangential to the total 

velocity field (Figure 2.27).  The velocity field is obtained from the numerical solution of 

the pressure equation in the grid cells of a reservoir model.  Streamline simulations isolate 

the effects of geologic heterogeneity from the details of the physics of fluid transport 

calculations by using the streamline time of flight as a spatial coordinate variable.  From 

a computational point of view, the streamlines work in a coordinate system where all 

streamlines are straight lines and the distance along streamlines is replaced by the 

corresponding time of flight (Figure 2.27).  With the time of flight being the spatial variable, 

the streamline-based flow diagnostics approximates multidimensional fluid flow 
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calculations by a sum of one-dimensional simplified physics calculations along the 

streamlines (Datta-Gupta & King, 2007).  

 

 

Figure 2.27.  Schematic of streamlines and time of flight 𝜏 when inert particles are injected and distributed.   

 

For instance, the overall response of a producer subjected to water flooding is obtained 

by the addition of the 1D waterflood calculations along each of the streamlines connected 

to the producer.  The advancement of the invading front can be contoured to the 

distribution along each streamline to obtain a snapshot of variations in the displacement 

front across the reservoir.  The time of flight 𝜏 is defined by the following integral  

 

 𝜏(𝑟) = ∫
𝜙(�⃗⃗� )

|𝒗(�⃗⃗� )|
𝑑𝑆

𝑟

0
, (2.65) 

 

where 𝑟 is the arc length of the single streamline �⃗⃗�  that follows a single path line with 

spatial distance 𝑆 along the streamline.  The porosity is involved to consider the reduced 

volume available for the flow.  Streamlines are extremely effective for modelling 

convection-dominated flows in the reservoir.  This is typically the case when 

heterogeneity is the main mechanism that governs the flow behaviour.  The geometry and 

density of streamlines reflect the impact of geology on fluid flow paths, providing better 

resolution in regions of faster flow.  Specifically, streamlines tend to cluster in regions of 

high flow and are sparsely distributed in low-permeability regions. 

 

Streamline-based flow diagnostics are a hybrid; portions of the calculations occur on an 

underlying fixed spatial grid and others occur on the streamlines.  A disadvantage of the 

streamline-based flow diagnostics is the need for routing streamlines through the 

reservoir model, which can be challenging for unstructured grids when Pollock’s 
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algorithm (Pollock, 1988) is used to trace the streamlines (e.g., Datta-Gupta & King, 

2007; Wheeler, 2005).  Another disadvantage is the mapping of the solution from the 

streamlines to the grid blocks and vice versa.  This mapping is a grid-dependent process 

which may introduce mass balance errors and numerical dispersion (Datta-Gupta & King, 

2007). 

 

2.14.2 Grid-Based Flow Diagnostics 

Recent developments have enabled to compute the time of flight directly on the structure 

and unstructured reservoir grids (Shahvali et al., 2012; Møyner et al., 2015; Zhang et al., 

2017).  Flow diagnostics simulations (Shahvali et al., 2012; Rasmussen & Lie, 2014; Lie 

et al., 2015; Møyner et al., 2015), are faster than streamlines simulations because they 

omit the construction and tracing of the streamlines and the mapping of the outcomes 

(Figure 2.28).  Flow diagnostics approximate the dynamic behaviour of the reservoir model 

by computing the finite volume discretisation (Natvig et al., 2006, 2007; Eikemo et al., 

2009) for the time of flight 𝜏 (or TOF) and the influence regions of a passive drained- or 

injected concentration 𝑐 (Figure 2.28).  Because of the steady-state nature of the grid-based 

flow diagnostics, it is only required a one-time solution of the pressure and transport 

equation to obtain the time of flight. 

 

 

Figure 2.28.  Comparison of flow diagnostics and streamlines estimates of time of flight τ (a and c), reservoir influence 

regions (b) and mapped oil saturations of the SPE 10 model when 50 pore volumes have been injected.  
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2.14.2.1 Principles of Grid-Based Flow Diagnostics 

The time of flight (TOF) is a fundamental quantity that corresponds to the time a non-

reactive particle takes to travel from an injector to a certain point in the reservoir or from 

this point to a producer at a given velocity field in the reservoir model (Figure 2.27).  The 

forward time of flight 𝜏𝑓 is the time it takes an imaginary injected particle at an inflow 

boundary, i.e., injector, to travel at a certain point x in the reservoir.  The backward time 

of flight 𝜏𝑏 is the time it takes to travel from a certain point x in the reservoir to an inflow 

boundary, i.e., producer.  Forward and backward TOF allow us to identify regions that 

are likely to remain unswept or undrained, respectively.  The total time of flight or 

residence time 𝜏 is the sum of the forward time of flight 𝜏𝑓 and the backward time of 

flight 𝜏𝑏.  The total time of flight characterises fast flow (low values of 𝜏) and stagnant 

regions (very high to infinite values of 𝜏).  Stagnant regions represent reservoir zones 

where the sweep and drainage of the reservoir model will be difficult to achieve. 

 

The steady-state concentration field for each injection-production well pair is the second 

fundamental quantity.  The steady-state concentration establishes the volumetric portion 

in a grid cell that is influenced by inert particles emanating from different sources (e.g., 

injection wells) within all the streamlines that intersect a particular grid cell.  The spatial 

scattering of these particles is tracked and the places where the particle has resided are 

called regions of influence.  Note that each particle can only lie in one streamline and the 

streamlines that are hosted in a grid cell have an associated volume.  Consequently, each 

particle emanating from some specific source will occupy only a volumetric portion of 

the host grid cell.  The sum of all the influence region portions associated with each 

streamline in a single grid cell is equal to unity.  Consequently, the influence regions 

define the contribution of each source (e.g., injector) to the total fluid volume passing 

through each grid cell.  Flow diagnostics (Shahvali et al., 2012; Rasmussen & Lie, 2014; 

Lie et al., 2015; Møyner et al., 2015) calculates the passive drained- or injected- 

concentrations 𝑐 and the time of flight 𝜏 as 

 

 𝛻 ∙ (𝐯𝑐) = 0, (2.66) 

 𝐯 ∙ 𝛻𝜏 − 𝜙 = 0, (2.67) 

 𝛻(𝑐𝜏 ) = 𝑐𝜙. (2.68) 

 

The solution of the concentration field (Equation 2.66) of each injection-production well 

pair is used to partition the model into influence volumetric flow regions and ultimately 
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define the swept and drained volumetric regions.  The finite-volume discretisation of 

Equation 2.67 results in volume averaged 𝜏 values.  An inconvenience of the finite-volume 

discretised 𝜏 is its inaccuracy when streamlines with contrasting high-flow and low-flow 

converge in a single grid cell and when streamlines from different well pairs merge into 

a single grid cell, i.e.,  near well regions and boundaries between inter-well flow regions.  

Lie (2019) proposed an improved discrete version of 𝜏 (Equation 2.68) to mitigate the 

undesirable averaging effect by improving accuracy in 𝜏 values for each influence region. 

 

The advancement of the injected fluid (fluid displacement front) can be approximated by 

thresholding the concentration fields of the influence volumetric regions, for such an 

established conditional of maximum value 𝜏max allows us to identify if a given grid cell 

𝑖 with pore volume 𝑉𝑖 and volumetric flux 𝑓𝑖 = 𝑉𝑖/𝜏𝑖 has been influenced by a given 

injector (Equation 2.69).  Likewise, assuming that the present flow field remains infinitely 

constant (steady-state condition) the advancement of the fluid displacement front can be 

tracked in terms of an equivalent actual time  𝑡𝑒𝑞𝑢𝑖𝑣 (Equation 2.70) through the 

relationship of the total injected pore volume 𝑉𝑖𝑛𝑗 limited by 𝜏𝑚𝑎𝑥 (Equation 2.69) with 

respect to the total injected flow rate ∑ 𝑞𝑗
𝑖𝑛𝑗𝑛

𝑗  of all jth injection wells in the model. 

 

 
𝑉𝑖 𝑐𝑖

𝑓𝑖
≥ 𝜏max, (2.69) 

 𝑡𝑒𝑞𝑢𝑖𝑣 =
𝑉𝑖𝑛𝑗(𝜏𝑚𝑎𝑥)

∑ 𝑞
𝑗
𝑖𝑛𝑗𝑛

𝑗

. (2.70) 

 

2.14.3 Grid-Based Flow Diagnostics for Dual-Porosity Models 

Until recently, flow diagnostics have only been used for single-porosity reservoirs, i.e., 

reservoirs where fractures are not present or barely enhance the matrix permeability.  

Spooner et al. (2019, 2021) extended existing flow diagnostics to account for dual-

porosity behaviour, i.e.,  NFR where fractures dominate reservoir performance.  They 

account for dual-porosity behaviour through the implementation of a retardation term in 

the time of flight definition (Equation 2.71) to account for the delay effect that an injected 

particle transported in the fracture experiences when interacting with the rock matrix 

(Figure 2.15).  The mathematical representation for the time of flight under dual-porosity 

behaviour is given by 
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 𝐯 ∙ 𝛻𝜏∗ −𝜙𝑅 = 0 (2.71) 

 𝑅 = 1 + 𝑅𝐹∞(1 − 𝑒
−𝛽𝑡∗)⏟          

 𝐴𝑟𝑜𝑛𝑜𝑓𝑠𝑘𝑦 𝑀𝑜𝑑𝑒𝑙

, 
(2.72) 

 

where 𝜏∗, is the dual-porosity time of flight, and 𝑅 is a retardation factor which can be 

estimated using different models (Spooner et al., 2021).  The choice of the 𝑅 model 

depends on the characteristic strength of the fracture-matrix transfer and the breakthrough 

behaviour that is investigated.  Here 𝑅 is approximated using the Aronofsky model 

(Aronofsky et al., 1958).  In Aronofsky’s matrix recovery model (Equation 2.7), the 

transfer rate constant 𝛽 determines the rate of fluid exchange between matrix and 

fractures and the dominant recovery mechanism of the rock matrix.  Here, 𝑅 models the 

capillary-driven matrix-fracture exchange of two immiscible and incompressible fluid 

phases, for which 𝛽 is calculated using Schmid & Geiger’s (2013) model (Equation 2.8).   

 

Spooner et al. (2019) formulation implies that the transfer rate governs the magnitude of 

the time of flight, this is that the retardation factor is high when the transfer rate is large 

and when the residence time in the grid block is longer, for example, some particles can 

be transferred to the matrix and retained indefinitely, increasing the time of flight.  This 

formulation enables the effect of the transfer rate on the flow heterogeneity of the system.  

Note that R is dependent on 𝑡∗ (i.e., the time that the particle stays on the grid block), 

which creates complex interaction and non-linearity between 𝜏 and 𝑡∗.  Originally, 

Spooner et al.’s (2019) formulation assumed that changes in the retardation factor over 

time were negligible (i.e., linear R model) in mixed- to weakly water-wet systems. This 

assumption implies that the transfer rate is constant.  Recently, Spooner et al., (2021) have 

suggested the use of fitting coefficients obtained from full-physics simulations to consider 

the temporal non-linearity in the R models, however, these improved R models are still in 

development.  

 

Although the linear R models cannot capture the evolving relationship between the 

transfer rate and the flow heterogeneity, Spooner et al. (2019, 2021) demonstrated the 

applicability of this formulation through series of different conditions applied to real full-

field reservoir models (e.g., Teapot Dome reservoir and Amellago carbonate model). 

They compared the flow diagnostics estimates to outcomes obtained from full-physics 

numerical simulation. They showed that their methodology offers a qualitative and 

representative characterisation of regions where injected fluid is likely to travel slower or 
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faster and identification of wells that are more and least likely to experience breakthrough.  

These outcomes demonstrated to be useful for fats pre-screening of the reservoir 

dynamics before detailed investigation using computationally intensive full-physics 

simulations. 

 

2.14.4 Grid-Based Flow Diagnostics Estimates in MRST Framework 

Flow diagnostics solve sequentially the incompressible pressure (Equation 2.3) and then 

the Darcy velocity field (Equation 2.2).  The solution of the velocity field is then used to 

compute the steady-state concentrations and the time of flight distributions either for 

single-porosity models (Equations 2.66 and 2.67) or dual-porosity models (Equations 2.66 

and 2.71).  With the solution of the steady-state concentrations and the time of flight, 

subsequent flow diagnostics estimates are calculated to obtain the (1) reservoir volumetric 

partitioning and allocation factors, (2) swept and drained reservoir volumes, (3) 

approximation of waterfloods and recovery factors and (4) ranking of reservoir models. 

 

2.14.4.1 Reservoir Volumetric Partitioning and Allocation Factors  

A unique particle concentration is injected at each well, in the case when the velocity field 

is reversed a unique tracer is injected at each producer (Equation 2.66).  Each grid block 

is then queried for its maximum injector and producer concentration (i.e., concentration 

equal to unity in the emanating source), and by the simple majority principle, the 

influenced grid block is assigned to the corresponding injector and producer (Figure 2.29).  

Eventually, this yields the swept and drained reservoir regions for each injector-producer 

flow region.   

 

The reservoir volumetric partitioning is obtained by intersecting drained and swept 

volumes. The reservoir volumetric partitioning allows to identifying (1) well pair flow 

regions (e.g., reservoir volumetric partitions where injector and producer are connected), 

(2) pore volume associated to each well pair and (3) well allocation (i.e., amount of inflow 

attributed from each particular source/injector to the producers) (Figure 2.29).  The 

cumulative well allocation of the injector 𝑛 to the producer 𝑚 is given by  

 

 𝑎𝑛→𝑚
𝑖𝑛 (𝑤𝑘

𝑛) = ∑ 𝑞𝑛𝑘(𝑤𝑘
𝑛)𝑛

𝑘=1 𝑐𝑚
𝑝

𝑘
(𝑤𝑘

𝑛), (2.73) 
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where 𝑘 as the number of the perforated grid blocks corresponding to the well 𝑛.  𝑐𝑚
𝑝

 is 

the production concentration associated to well 𝑚, 𝑞 the vector of well fluxes, and 𝑤𝑘
𝑛 

the grid blocks in which well number 𝑛 is perforated.  Note that the flux field can be 

reversed to compute the cumulative allocation of producers to the injectors. 

 

 

Figure 2.29.  Schematic of reservoir partitioning and well allocation factors showing how the solution of the steady-state 

concentrations c and time of flight are used to partition the model into flow volumetric regions associated to injector-

producer pairs (a), calculate fluxes between well pairs (line width is proportional to flow rate) and calculate cumulative 

allocation factors from the bottom to the top of the perforated layers.  Modified after Shahvali et al., 2012. 

 

2.14.4.2 Breakthrough Time Approximation 

The injected particles can unevenly be transported taking different paths toward the 

producer.  For example, some particles will disperse in fast and shorter flow paths and 

others in slower and longer paths.  On the other hand, volume-averaged 𝜏 values might 

be inaccurate near the wellbore regions resulting in biased estimation of the breakthrough 

time (Lie, 2019).  Especially, when streamlines with outliers values of high 𝜏 and low 𝜏 

deviate from the mean 𝜏 of the other streamlines that intersect the grid blocks that host 

the producer (Figure 2.30).  Lie (2019) proposed the use of the first arrival time of flight to 

prevent inaccuracies in the prediction of the breakthrough times.  The first arrival time of 

flight corresponds to the 𝜏 attributed to the injected particle that moves in the fastest flow 

path.   
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Figure 2.30. Representation of first arrival time of flight. In this example, the predicted breakthrough time is expected 

to take longer when an average 𝜏 is considered. 

 

2.14.5 Measures of Dynamic Heterogeneity 

Dynamic metrics, also known as flow diagnostics metrics, were firstly introduced by 

Shook & Mitchell (2009), in the context of streamline-based flow diagnostics and later 

by Shahvali et al. (2012) in the finite-volume form (e.g., grid-based flow diagnostics).  

Both authors extended the conventional measures of heterogeneity (i.e., 𝐹 − Φ curve, 

𝐸𝑉 − 𝑡𝑑 curve, Lorenz coefficient) to account for the effect of dynamic changes (e.g., 

well configurations and operation conditions) on fluid flow, in addition to the effect of 

the geological heterogeneity.  The dynamic metrics of heterogeneity quantify the impact 

of the geometry and heterogeneity of the flow paths on the efficiency of the fluid flow of 

the reservoir model (e.g., volumetric sweep efficiency, breakthrough behaviour) as a 

function of the changes in the 𝜏 and influence pore volume.  Dynamic metrics can 

diagnose and identify conditions that lead to early water breakthrough and poor sweep 

efficiency.   

 

2.14.5.1 𝑭 −𝜱 and 𝑭 − 𝜞  Diagrams 

The dynamic 𝐹 − Φ curve associates the volumetric flow and the influenced pore volume 

of grid blocks to its respective flow capacity 𝐹 and storage capacity Φ.  Unlike the 

dynamic metrics, static metrics (Stiles, 1949; Schmalz & Rahme, 1950) associate 
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permeability and porosity with the definition of 𝐹 and Φ, respectively.  The mathematical 

representation for dynamic 𝐹 and Φ is given by 

 

 𝐹𝑖 =
∑ 𝑓𝑗
𝑖
𝑗=1

∑ 𝑓𝑗
𝑁
𝑗=1

, (2.74) 

 𝛷𝑖 =
∑ 𝑉𝑗
𝑖
𝑗=1

∑ 𝑉𝑗
𝑁
𝑗=1

, (2.75) 

 

where subscripts 𝑗 and 𝑖 refer to the cell index sorted according to ascending total time of 

flight (fast to slow flow), 𝑁 is the total number of grid cells, 𝑓𝑗 = 𝑉𝑗/𝜏𝑗 the cell volumetric 

flux. 

 

Spooner et al. (2019) introduced another flow diagnostic metric to account for the dual-

porosity behaviour, the cumulative transfer flow Γ.  Γ compares the heterogeneity of the 

transfer rate with the heterogeneity of the flow in the fractures.  They implemented a 𝐹 −

𝛤  curve, analogous to the 𝐹 − 𝛷 curve (Figure 2.31), which contrasts the cumulative flow 

rate of the fracture-matrix transfer Γ with the volumetric flow rate in the fracture 𝐹 

(Equation 2.74).  The cumulative transfer flow is defined as  

 

 Γ𝑖 =
∑ 𝛽𝑗𝑃𝑉𝑗𝜙1𝑗
𝑖
𝑗=1

∑ 𝛽𝑗𝑃𝑉𝑗𝜙1𝑗
𝑁
𝑗=1

. (2.76) 

 

 

Figure 2.31.  Schematic of 𝐹 −Φ and 𝐹 − Γ  diagrams and visual definition of the Lorenz Coefficient showing the limits 

of homogeneous displacements. 
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2.14.5.2 Dynamic Lorenz Coefficient 

The dynamic Lorenz coefficient 𝐿𝑐 is a conventional metric of heterogeneity, it is equal 

to twice the area defined under the 𝐹 − Φ curve and above the line defined by 𝐹 = Φ 

(Figure 2.31).  The value of 𝐿𝑐 describes the fluid displacement front, 𝐿𝑐 = 0 indicates 

perfect piston-like fluid displacement (i.e.,  equal volumetric flow from every incremental 

pore volume), and 𝐿𝑐 = 1 represents infinitely heterogeneous fluid displacement.  Here 

the numerical calculation of 𝐿𝑐 (Equation 2.77) is based on the trapezoidal rule.   

 

 𝐿𝑐 = ∑ (𝐹𝑗 − 𝐹𝑗−1)(𝛷𝑗 − 𝛷𝑗−1) − 1 𝑤𝑖𝑡ℎ 𝐹0 = 0
𝑁
𝑗=1  𝑎𝑛𝑑 𝛷0 = 0. (2.77) 

 

For dual-porosity behaviour, Spooner et al. (2019) made use of standard flow diagnostics 

metrics (Equations 2.74 and 2.75) but involved 𝜏∗ in their definitions rather than 𝜏 to 

consider the fracture-matrix interactions.  This thesis will thus refer to 𝐿𝑐 and 𝐿𝑐
∗  under 

the context of single-porosity and dual-porosity behaviour, respectively.  The 𝐿𝑐
∗  is 

identical to the standard 𝐿𝑐 when uniform matrix-fracture transfer occurs across the 

reservoir.   

 

The computation of a Lorenz Coefficient defined using the cumulative transfer flow 𝐿𝑐
Γ is 

defined as  

 

 𝐿𝑐
𝛤 = ∑ (𝐹𝑗 − 𝐹𝑗−1)(𝛤𝑗 − 𝛤𝑗−1) − 1 𝑤𝑖𝑡ℎ 𝐹0 = 0

𝑁
𝑗=1  𝑎𝑛𝑑 𝛤0 = 0. (2.78) 

 

The 𝐿𝑐
Γ = 0 represents conditions of flow homogeneity between the fracture flow and 

fracture-matrix fluid exchange.  This means that the flow rate that is transported in the 

fracture equals the flow rate that is exchanged from the matrix to the fractures.   

 

2.14.5.3 Sweep Efficiency  

The sweep efficiency 𝐸𝑉 measures the displacement efficiency of the injected fluids in 

the movement of reservoir fluids.  Sweep efficiency is defined as the volume fraction of 

the in-place fluid that has been displaced by the injected fluid at time 𝑡.  The 𝐸𝑉 is 

computed in terms of Φ, 𝐹 and dimensionless time 𝑡𝐷. The 𝐸𝑉 is given by  

 

 𝐸𝑉 = Φ+ [1 − 𝐹(Φ)]𝑡𝐷 with 𝑡𝐷 =
𝑑Φ

𝑑𝐹
, (2.79) 
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where Φ represents the fraction of the pore volume that contains the displaced fluid and 

[1 − 𝐹(Φ)]𝑡𝐷 the fraction of the total pore volume that has been swept. 

 

Alternatively, the computation of sweep efficiency of the volume displaced can be 

achieved using directly the cell-average 𝜏 values such that  

 

 𝐸𝑉(𝑡) =

∑
𝑗|�̅�f𝑗

≤𝑡

𝑉𝑗

∑ 𝑉𝑗
𝑁
𝑗=1

, (2.80) 

 

where the cell indices are sorted according to ascending volume-average forward time of 

flight 𝜏�̅�.   

 

2.14.5.4 Dual-Porosity Damköhler Number  

The Dual-porosity Damköhler number 𝐷 (Spooner et al., 2019) compares the fracture 

volumetric flow rate 𝑓 in a grid cell 𝑖 to the flow rate of the fracture-matrix transfer as  

 

 𝐷𝑖 = (
𝛽𝑖𝜙1𝑖
𝑓𝑖
). (2.81) 

 

The logarithm (𝑙𝑜𝑔10) of the average Dual-porosity Damköhler number �̅� =

𝑙𝑜𝑔10 (
1

𝑁
∑ 𝐷𝑖
𝑁
𝑖=1 ) enables the quick identification of poorly swept matrix regions 

occurring at reservoir level and between injection-production well-pair regions, either due 

to slow flow in the fractures or by slow fracture-matrix fluid exchange. The �̅� helps 

identify well-pair regions that are at risk of early water breakthrough.  The �̅� also 

quantifies and characterises the dominant flow regime (i.e., single-porosity, dual-porosity 

behaviour) occurring at reservoir level and between injection-production well-pair 

regions.  The �̅� < −1 indicates fracture-dominated flow with likely risk of early 

breakthrough (e.g., dual-porosity behaviour), and �̅� > 1 represents matrix-dominated 

flow (e.g., single-porosity, dual-porosity/dual permeability behaviour).  The �̅� hence can 

identify if the dual-porosity conceptualisation can be applied.  This insight is useful to 

adequately conceptualise the flow behaviour (single-porosity, dual-porosity, dual-

permeability) of the reservoir model used in full-physics reservoir simulations.  The 

interpretation of different transfer and flow regimes that �̅� can identify are listed in Table 

2.3. 
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�̅� Interpretation 

Slow transfer 

(�̅� < −1)  

Poor replenishment from the matrix may arise early water breakthrough.  In the cases when 

𝜏∗ ≈ 𝜏 fractures and matrix can be upscaled together into an equivalent single-porosity system. 

Equilibrated flux-transfer 

(�̅� = 0)  
Balance between transfer and advective fluxes. 

High and positive 

(�̅� > 1)  

Suboptimal sweep: transfer rates are high, and some reservoir regions may be poorly swept if 

𝜏 is large.  Fractures no longer dominate the overall flow behaviour.  Equivalent single-

porosity or dual-porosity/dual-permeability continuum model is more suitable. 

Table 2.3:  Interpretation of �̅� values. 

 

2.14.6 Application of the Flow Diagnostics Curves and Metrics 

The flow diagnostics curves and metrics are a useful tool that characterise the impact of 

the heterogeneity of the displacement and the fracture-matrix fluid exchange (e.g., flow 

discontinuity, stagnant regions, abrupt injected-fluid breakthrough, channelised flow) on 

the overall fluid displacement efficiency of the reservoir (Shook & Mitchell, 2009; Thiele 

et al., 2007, 2010; Spooner et al., 2019).  The closer the flow diagnostics curves (e.g., 

𝐹 − Φ and 𝐹 − Γ curves) are to the straight line (homogeneous displacement) the more 

efficient the fluid displacement (sweep).  Spooner et al. (2021) and Watson et al.  (2021) 

emphasise the mindful selection of the flow diagnostics metrics and suggest the use of 

more than one type of metric to characterise different aspects of the flow heterogeneity 

on the fluid-displacement fronts (e.g., sweep efficiency, breakthrough behaviour, strength 

of fracture-matrix fluid exchange).   

 

Although flow diagnostics estimates are simplified numerical approximations that might 

differ from full-physics simulation outcomes, the derived flow diagnostics metrics (i.e., 

Lorenz coefficients, sweep efficiency), irrespectively whether they include dual-porosity 

behaviour, have demonstrated to correlate with full-physics simulation results (e.g., 

Møyner et al., 2015; Spooner et al., 2019; Watson et al., 2021). Flow diagnostics metrics 

have shown to be good flow proxies that relate the effect of different aspects of flow 

heterogeneity in sweep efficiency, recovery, and breakthrough time for waterflooding and 

polymer injection strategies (Shook & Mitchell, 2009; Shahvali et al., 2012; Møyner et 

al., 2015; Krogstad et al., 2016; Spooner et al., 2019; Watson et al., 2021).  For example, 

the 𝐿𝑐 has a good correlation with hydrocarbon recovery (Figure 2.32).  The identification 

of low and high values of 𝐿𝑐 can be used to rank reservoir models with good and poor 

dynamic performance, respectively.   
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The characterisation of flow heterogeneity and the computational efficiency of the flow 

diagnostics metrics provide robust measures that enable us to compare, contrast, rank and 

screen ensembles of reservoir models (Shook & Mitchell, 2009; Shahvali et al., 2012; 

Møyner et al., 2015; Krogstad et al., 2016; Spooner et al., 2019; Watson et al., 2021). 

 

 

Figure 2.32.  Use of flow diagnostics metrics to rank reservoir model assembles.  Taken from Watson et al., 2021. 

 

2.15 Proxy Modelling based on Flow Diagnostics 

Proxy models have been widely employed in petroleum engineering and geoscience for 

sensitivity analysis, assisted history matching, risk analysis, uncertainty quantification, 

optimisation of the field development plans, and reservoir characterization.  The fast 

execution of thousands of proxy-based predictions allows to robustly understand and 

investigate how the variability in model parameters (i.e., petrophysical, geological and 

mechanical uncertainty) and operational conditions (i.e., bottom hole pressure) of the 

reservoir model can change the simulation outcomes (e.g., predictions of reservoir 

performance).  This enables a broader and more robust exploration of the multi-parameter 

space (Queipoa et al., 2005; Yeten et al., 2005; Yu et al., 2021; Litvak & McMurray, 

2007; Onwunalu et al., 2008; Goodwin, 2015; Da Silva et al., 2020).  Proxy modelling, 

also referred to as surrogate modelling, consists of an analytical model (e.g., response 

surface methodology) or machine learning model (e.g., artificial neural networks) in 

which the response of a model is approximated from the set of input parameters that 

conforms the model in study (Yeten et al., 2005).  Proxy models are constructed using a 

data-driven, bottom-up approach.   
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This PhD thesis makes use of ANN-based proxy models to quickly quantify the impact 

of the poro-mechanical effect on reservoir dynamic estimates and associated uncertainty 

using poro-mechanically informed flow diagnostics simulations.  The proxy models are 

used to perform two processes: the variance-based sensitivity analysis and the 

probabilistic uncertainty quantification. Two types of experimental design are used in this 

thesis; the (1) Latin hypercube design for the proxy creation and (2) Monte Carlo method 

to carry out the creation of scenarios for the predictions of the proxy models.   

 

2.15.1 Experimental Design 

The creation of a robust and representative proxy model requires a significant amount of 

design points in the parameter space.  The accuracy of the proxy model depends greatly 

on the sampling process (e.g., the number and location of the samples in the parameter 

space) used to define the experiments/simulations that will be used to train the proxy 

(Yeten et al., 2005).  The design of experiments (DoE) techniques consists of the variation 

of multiple parameters (sampling) at the same time in a methodical and organised way to 

maximise the value (e.g., maximum information of the search space) of the strategically 

defined set of simulation runs (Montgomery, 2012) that will be conducted, while 

minimising time and computational cost.   

 

2.15.1.1 Orthogonal Latin Hypercube Design  

The orthogonal Latin hypercube design (Ye, 1998) is a random design based on the Latin 

hypercube sampling (McKay et al., 1979), where the input parameters are considered 

random parameters with known distribution function (i.e., probability density function 

and cumulative distribution function).  When sampling a multi-parameter domain, the 

cumulative distribution function (CDF) of each parameter is divided into equally probable 

bins (intervals) same as the number of expected samples (Figure 2.33).  The multi-

parameter space is additionally subdivided into subregions such that an orthogonal array 

is used to uniformly spread the sample points within the design space (Figure 2.34).  Each 

bin of a parameter is sampled once, and each subregion (quadrant) is also sampled once.  

Finally, a vector (multi-dimensional sample) is created by randomly combining samples 

from each parameter. The correlation between sampling dimensions is minimised by 

evenly sampling each subregion.  The orthogonal Latin hypercube sampling considers 

near orthogonality of the input parameters and space-filling (Tang, 1993; Johnson et al., 
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1990) to avoid large unsampled gaps of the multi-parameter space (Figure 2.34).  The 

orthogonal Latin hypercube (Figure 2.34) maximises the shortest distance between two 

sample points to increase the variability of the sampling (e.g., avoid two sample points 

having similar values) and spread out evenly the sample points over the entire design 

regions (i.e., space-filling property).   

 

 

Figure 2.33.  Latin hypercube sampling of a single input parameter. 

 

 

Figure 2.34.  Distribution of the samples in a two-parameter space within a Latin hypercube sampling, where sample 

points tend to lie on the diagonal (i.e., strong correlation) and leave a large unexplored gap (a), and orthogonal Latin 

hypercube sampling showing optimal scatter of sample points (b).  The lines represent the major and minor divisions 

of the design space and each point represents a vector of two-parameter values. 

 

2.15.1.2 Monte Carlo Method 

Monte Carlo (MC) methods sequentially generate randomly distributed sample points 

within a unit hypercube.  The basis of MC methods is the probabilistic inference.  Monte 

Carlo sampling consists of drawing independent sample points from the probability 
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distribution of the desired quantity (e.g., target function: output variable, or a performance 

metric). This random sampling procedure is repeated many times (e.g., from hundreds to 

thousands of times), each time using a different set of random numbers, to have a close 

approximation of the expected value (e.g., likely outcome) of the desired quantity.  The 

level of accuracy of the predicted expected value (e.g., probability distribution, 

probability density, variance) is controlled by generating enough sets of random samples 

(i.e., the law of large numbers).  This PhD thesis uses the quasi-Monte Carlo method with 

Sobol sequence sampling (e.g., Schürer, 2003; Saltelli et al., 2008; Sobol, 1967; Dalal et 

al., 2008) to improve the generation of samples that the standard Monte Carlo sampling 

offers (Dalal et al., 2008) by determining successive quasi-random points based on prior 

knowledge of the location of previously sampled points, which reinforces a more uniform 

and efficient coverage of the multi-parameter space (Figure 2.35).  

 

 

Figure 2.35.  Comparison of the sampling between Monte Carlo (a) and quasi-Monte Carlo methods (b). 

 

2.15.2 Artificial Neural Network (ANN) 

ANN is a non-linear statistical model based on the operation of the neurological 

processing of the human brain (Rochester et al., 1956; Schalkoff, 1997).  This method 

processes, understands and learns from complex, noisy, irrelevant, and incomplete data 

in a human-like manner; identifying special features of the data to then be classified, 

characterised, and arranged hierarchically inside the different levels of the network.  The 

ANN architecture is defined by multiple layers with processing elements, known as 

neurons (Figure 2.36).  ANNs can only consist of three layers of neurons; the input layer, 

the hidden layer and the output layer. The information is transferred from one layer to 
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another. In the input layer, the data enters the model, in the hidden layer the information 

is processed, and in the output layer, the model decides what to do based on the learnt 

data.  When ANNs are involved in deep learning (i.e., multiple hidden layers in the ANN), 

the model teaches itself; the multiple hidden layers reinforce the learning process.   

 

 

Figure 2.36.  General architecture of an ANN (a) and structure of the process carried out in a single neuron of an ANN 

(b). 

 

The neurons execute the collection of the inputs and the generation of a single scalar 

output (Figure 2.36).  Each unobserved variable is a linear function of the variables of the 

previous layers where the first layer represents the model inputs (Yeten et al., 2005).  A 

node combines (Figure 2.36) each input variable with a set of coefficients that act as weights 

and their associated bias (Jensen et al., 1999).  The weights assign significance to the 

inputs with respect to the characteristics that the algorithm is trying to learn.  The 

mathematical representation of an ANN with a single neuron can be expressed as 

 

 𝑧 = 𝑤1𝑥1 + 𝑤2𝑥2 +⋯+𝑤𝑛𝑥𝑛 + 𝑤0 = ∑ (𝐖𝑖𝐗𝑛 +𝐖0)
𝑛
𝑖=1 , (2.82) 

 

where 𝑧 is the proxy-predicted summed weighted input of the established reservoir 

estimate, the x is the input parameter, w is the weight, and 𝑤0 is the associated bias 

function that serves as a translation vector. 𝐖 and 𝐗 are the matrices of weights and input 

variables respectively, and 𝐖0 is the vector that contains the bias of the neuron. 

 

The solution of the neural network comprises three stages: (1) the linear combination 

between the input variables and their respective weights are defined (Equation 2.82) to 

compute the proxy-predicted output (scoring input), (2) calculation of the loss/error term 
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(i.e., deviation of actual simulated values from the proxy-predicted values), and (3) 

minimisation of the loss/error term (updating the model).   

 

Since the summed weighted input 𝑧 can range (−∞,+∞), ANN formulation uses an 

activation function Υ(𝑧) to normalize the output of any input into a categorical value (e.g., 

ranges between [−1,1] with a hyperbolic tangent function).  The activation function 

(Equation 2.83) determines if and to what extent (e.g., classification) the signal can move 

forward through the network (e.g., transfer to the next layer) to produce an effect on the 

outcome.  The lower bound of Υ(𝑧) represents a signal with the absence of a given neural 

feature, and the upper bound represents its presence.  The strength of the signal is 

transferred to the next layer, and so on until the signal reaches the final layer where the 

decisions of the network are made.  This complex mapping between inputs and outputs 

of the layers of the network is the basis to classify and learn complex structures in the 

data.  

 

 Υ(𝑧) = {
 

Tanh function = (𝑒𝑧 + 𝑒−𝑧)(𝑒𝑧 + 𝑒−𝑧)−1, −∞ ≤ 𝑧 ≤ ∞  . (2.83) 

 

Initially the ANN network model guesses the weights and biases, and the resulting output 

is tested by comparing it with the actual data (ground truth).  The error/loss function (i.e., 

root mean square error RMSE) is measured between ANN-based prediction and the data.  

The signal of the gradient error information is back-propagated (Figure 2.36) over the 

neural network and the weights are updated and calibrated proportionately to their 

contribution to the overall error. This process of calibrating the weights of the model in 

response to the minima model error is what defines the learning of the neural network.  In 

this PhD thesis, the optimization target is the minimization of the RMSE for the given 

weight distribution using the gradient-based Levenberg-Marquardt Algorithm that comes 

as standard in the commercial software CMOST-AI.   

 

2.16 Sensitivity Analysis 

Sensitivity analysis studies the influence of the input parameters on the investigated target 

function (e.g., a particular reservoir response), this is, how the change in the value of the 

parameters can affect the output of a model (e.g., target function).  Sensitivity analysis is 

used to: (1) understand the relationship between input parameters and the model output, 

(2) define to what extent the uncertainty in the model parameters can contribute to the 
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overall variability of the model output, (3) identify influential parameters that 

predominantly control the model output, (4) guide further experimental designs of the 

subsequent process (e.g., uncertainty quantification, optimisation), and (5) manage the 

refinement of critical parameters and exclusion of irrelevant parameters in proxy 

modelling to gain additional confidence in its predictability (e.g., improvement of 

robustness of the proxy model) (Saltelli et al., 2008; Mokhtari & Frey, 2005; Kiparissides 

et al., 2009). 

 

2.16.1 Local Sensitivity Analysis (OPAT) 

Local sensitivity analysis is also known as One-Parameter-At-the-Time (OPAT) analysis.  

The input parameters are varied one at a time for some given increments or decrements 

of a baseline value over the range of the parameters.  The effect of the perturbation of 

individual parameters on the model output is calculated using local sensitivity indexes.  

The indexes are evaluated using either gradients or first-order partial derivatives of the 

output function at punctual values of an input parameter (local change) while the values 

of the other input parameters are kept constant.  The local sensitivity index 𝑆𝑖 is given as  

 

 𝑆𝑖 = (
𝜕𝑧

𝜕𝑦
)
[𝑦1
∗,...,𝑦𝑛

∗ ]
≈ [

𝑧(𝑦1
∗,...,𝑦𝑖

∗+∆𝑦𝑖,...,𝑦𝑛
∗ )−𝑧(𝑦1

∗,...,𝑦𝑖
∗,...,𝑦𝑛

∗ )

∆𝑦𝑖
], (2.84) 

 

where 𝜕𝑧 𝜕𝑦⁄  represents the rate of change of the output function 𝑧 = 𝑧(𝑦1, . . . , 𝑦𝑛) in the 

direction of increasing values of the input parameter 𝑦𝑖(1 ≤ 𝑖 ≤ 𝑛) evaluated at a specific 

base point  [𝑦1
∗, . . . , 𝑦𝑛

∗].  The parameter space is defined by the n-dimensional hypercube.  

The local sensitivity analysis is not appropriate when the relationship between the model 

output and the input parameters is non-linear, and the range of the uncertainties of the 

input factors are in different orders of magnitude.   

 

2.16.2 Variance-based Global Sensitivity Analysis (Sobol Method) 

In complex and non-linear processes (e.g., hydrodynamical-poro-mechanical problems: 

dominant interplay between the petrophysical and mechanical uncertainties), the input 

parameters generally interact with one another.  Global sensitivity analysis quantifies the 

importance of covarying effects of multiple parameters (e.g., the interaction between 

parameters) on the model output.  This analysis provides an overall view of the relative 

contribution of each parameter to the variance of the model outputs. Several methods 
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exist to assess global sensitivity analysis (e.g., the weighted average of local sensitivity 

analysis, multiparametric sensitivity analysis, and Sobol method), here we focus on the 

Sobol method.  The Sobol method (Sobol 1993, 2001) is a variance-based global 

sensitivity analysis, which is based on the decomposition of the variance of the model 

output into summands of variances of each input parameter.  The summands or indices 

represent fractions of the variance of the response parameter (Saltelli et al., 2010) and can 

be directly interpreted as measures of sensitivity.  The general procedure of the Sobol 

analysis consists of: (1) definition of the target function (e.g., model output) and input 

parameters with their associated ranges and distributions, (2) representative sampling 

using a parameter sequence (i.e., in this thesis: quasi-Monte Carlo with Sobol sequence), 

(3) calculate the sensitivity coefficients, and (4) analyse the Sobol indices.  

 

The Sobol method decomposes the model output into individual indices that quantify how 

much of the unconditional variance 𝜎𝑧
2 of the model output 𝑧 can be attributed to the 

individual input parameters 𝑦𝑖 and the interaction between them (combination of pairs of 

input parameters).  The Hoeffding-Sobol decomposition can be expressed as  

 

 𝑧(𝐲) = z̅ + ∑ 𝑧𝑖
𝑛
𝑖=1 (y𝑖) + ∑ ∑ 𝑧𝑖𝑗

𝑛
𝑖≠𝑗 (yi, yj)

𝑛
𝑖=1 +⋯+ 𝑧1...𝑛(y1, . . . , yn), (2.85) 

 

where 𝑧(𝐲) = 𝑧(y1, . . . , yn) is the output model dependent on each input parameters 𝑦 =

(𝑦1, … , 𝑦𝑛).  Under a probabilistic framework, 𝑧(𝐲) is a random variable with mean 𝑧̅ and 

variance 𝜎𝑧
2.  The Sobol. Sensitivity analysis assumes that the input parameters are 

defined to range over a finite interval [0, 1], this implies that each input parameter is 

rescaled if needed and the parameters are considered mutually independent. That 

contribution of each input parameter is measured through total-, higher- and first- order 

indices.  

 

The first-order index or main effect index 𝑺𝒊 quantifies the contribution of the variation 

of the individual parameters to the variance of the model output. It represents the 

contribution of the main effect of each input parameter on the variance of the output and 

indicates the influence of 𝑦𝑖 on 𝑧 (e.g., the sensitivity of 𝑧 to changes in 𝑦𝑖) (Saltelli et al., 

2008).  The first-order index is normalised by the total variance so that 𝑺𝒊 represents a 

fractional contribution (Sobol, 1993) and is given by 
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 𝑺𝑖 =
𝜎𝑧𝑖
2

𝜎𝑧
2 =

𝜎𝑧𝑦𝑖
2 (𝐸(𝑧|𝑦𝑖))

𝜎𝑧
2 ≈

1

𝑘
∑ 𝑧𝐀𝑗𝑧𝐂𝑖𝑗

−
1

𝑘2
∑ 𝑧𝐀𝑗
𝑘
𝑗=1 ∑ 𝑧𝐁𝑗

𝑘
𝑗=1

𝑘
𝑗=1

1

𝑘
∑ (𝑧𝐀𝑗)

2
−𝑧0

2𝑘
𝑗=1

 for 𝑖 = 1,⋯ , 𝑛. (2.86) 

 

The total order index 𝑺𝑻𝒊  account for the total contribution of each input parameter to 

the overall output variance; this considers all variance caused by the parameter alone and 

its interactions of any order with any other parameter (Saltelli et al., 2008). The 𝑺𝑻𝒊  is 

obtained by the sum of both first- and higher- order index for each individual input 

parameter (e.g., 𝑺𝑻𝒊 is the sum of all indices that belong to 𝑦𝑖) and is given by 

 

 𝑺𝑻𝒊 = 𝟏 −
𝜎𝑧𝑖
2 [𝐸(𝑧|𝑦𝑖)]

𝜎𝑧
2 ≈ 𝟏 −

1

𝑘
∑ 𝑧𝐁𝑗𝑧𝐂𝑖𝑗

−𝑧0
2𝑘

𝑗=1

1

𝑘
∑ (𝑧𝐀𝑗)

2
−𝑧0

2𝑘
𝑗=1

 with 𝑧0
2=(

1

𝑘
∑ 𝑧𝐀𝑗
𝑘
𝑗=1 )

2
, (2.87) 

 

where sample matrices 𝐀 and 𝐁 are two independent samples of k-points in the n-

dimensional unit hypercube obtained from the quasi-Monte Carlo sampling.  The sample 

matrix 𝐂𝑖 is formed by all the columns of matrix 𝐁 except for the ith column. The ith 

column is equal to the ith column of matrix 𝐀.  The vectors of the model outputs are 

denoted as 𝑧𝐴 = 𝑓(𝐀), 𝑧𝐵 = 𝑓(𝐁), and 𝑧𝐂𝑖 = 𝑓(𝐂𝑖). 

 

Note that ∑ 𝑺𝑇𝑖
𝑛
𝑖=1 ≥ 1 since the interaction effects between parameters are counted in 

each 𝑺𝑻 that contains the interacting parameters (e.g., 𝑆𝑖𝑗 between yi and yj are counted 

both in STiand STj).  𝑺𝑇𝑖equals unity when the model output is entirely additive.  The 

difference 𝑺𝑇𝑖 − 𝑺𝑖 characterises the degree at which 𝑦𝑖 interacts with other input 

parameters. 

 

The higher-order index 𝑺𝒊𝒋 quantifies the interaction effects between parameters on the 

variance of the model output. Parameter interactions may imply that values of the model 

output are exclusively the result of specific combinations of input parameters and these 

combinations cannot be characterised by the first-order effects (Saltelli et al., 2008). The 

input parameters interact with each other when their effect on 𝑧 can not be expressed as 

the sum of their individual effects. Calculating high-order sensitivity indices can be 

computationally intensive in high-dimensional scenarios.  Therefore, total effect indices 

are calculated instead. 
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The uncertainty of the input parameters can be numerous and span a wide range, thus, the 

Sobol sensitivity analysis demands a large number of model executions and becomes 

computationally prohibitive for intensive models (i.e., highly non-linear coupled 

simulations).  We address this inconvenient using proxy modelling to accelerate the 

execution of the simulations and the estimate of the expected values (i.e., variance) of the 

predicted output. As discussed earlier, the proxy predictions and expected values are used 

to calculate the Sobol indices (Saltelli et al., 2008, 2010) to analyse the contributions of 

each parameter to the variability of the outcomes. 

 

2.17 Cluster Analysis 

Cluster analysis identifies structures of similar data points in the data set to be grouped 

into clusters. Since groups are identified from the data itself, as opposed to known target 

classes, cluster analysis is considered a data-driven method that uses unsupervised 

learning.  This PhD thesis focuses on the K-means clustering with the Elbow method for 

the screening of poro-mechanical scenarios in the proposed framework for uncertainty 

quantification (Chapter 6). 

 

2.17.1 K-means Clustering 

The K-means is a centroid-based clustering algorithm (MacQueen, 1967).  The similarity 

between data points is determined by the distance between them.  The K-means algorithm 

requires to define a K number of partitions (clusters) for the data set. It identifies clusters 

by finding their K centroid points in the data set.  Initially, the centroid points are 

randomly generated.  The centroid points are found by iteratively evaluating the 

Euclidean distance between each point in the data set.  K-means clustering minimises the 

distance from each cluster member to their respective centroid (i.e., total intra-cluster 

variation or total within-cluster sum of the square is minimised) while maximising the 

distance between the different clusters.   

 

The K-means algorithm consists of: (1) random generation of K centroid points (e.g., 

cluster centres), (2) calculation of Euclidean distance of all data points to the centroids, 

(3) allocation of data points to the nearest centroid point, (4) calculation of new centroids 

based on the mean of all the data points within each previously defined cluster, and (5) 

iteration of step 2 through 4 until the maximum number of iterations is reached or all data 
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points converge, and cluster centroids do not vary in the next iterations (Figure 2.37).  The 

convergence criteria generally imply that the allocated points to the clusters from the 

previous and current iteration are the same.  K-means algorithm is computationally 

efficient but sensitive to the initialisation of centroid points, and outliers.  Furthermore, 

the K-means algorithm requires knowing the number of clusters before carrying out the 

computation.  The optimal value of K can be obtained by either Elbow or Silhouette 

methods (Rousseeuw, 1987; Thorndike, 1953).  

 

 

Figure 2.37.  Schematic of the K-means algorithm for a data set that requires 4 clusters. Initially, the centroids are 

randomly generated (a), data points are allocated to the initial centroids based on proximity (b), the centroids of each 

previously obtained cluster are calculated, and their proximal data points are assigned to redefined clusters (c), this is 

repeated until convergence is achieved or a maximum number of iterations is reached (d). 

 

2.17.2 Elbow Method 

Elbow or knee method empirically finds the optimal K by assessing a selected range of K 

values and taking the best among them.  The Elbow method uses the total within-cluster 

sum of square 𝑊𝑇  (Hartigan & Wong, 1979) as a measure of the compactness of the data.  

The Elbow method relates the optimum value of K with the minimum 𝑊𝑇, such that 

adding another cluster marginally improve the minimisation of the 𝑊𝑇 given by  

 𝑊𝑇 = ∑ ∑ (𝑥 − �̅�𝑘)
2

𝑥∈𝑆𝐾
𝐾
𝑘=1 , (2.88) 
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where 𝑥 refers to the set of data points (𝑥1, . . . , 𝑥𝑛) in the data set, each data point is a d-

dimensional real vector.  The clusters are represented by the set of data points S=

(𝑆1, . . . , 𝑆𝐾). Each set of data points in a cluster has a centroid �̅�𝑘. In a 𝑊𝑇 − K graph 

(Figure 2.38), the value of K increases as the 𝑊𝑇 decreases.  The bend point is the point at 

which the slope of the curve changes abruptly; at this point the K value is considered the 

optimal.  However, for some data sets the use of the 𝑊𝑇 − K relationship in the elbow 

method is sometimes ambiguous, and the number of clusters may not be clear from the 

data set itself.  Consequently, we use the relationship between the per cent of the variance 

explained 𝜂𝑊𝑖 and the number of clusters to obtain the optimal number of clusters K𝑜𝑝𝑡.  

We consider that K𝑜𝑝𝑡 is found with a cut-off of 95 per cent of 𝜂𝑊𝑖.  The 𝜂𝑊𝑖 determines 

the amount of cumulative variability in 𝑊𝑇 explained by the effect of the ith number of 

clusters.  As 𝜂𝑊𝑖 increases, the number of clusters K increases too (Figure 2.38).  The 𝜂𝑊𝑖 

is given by 

 

 𝜂𝑊𝑖 =
∑ (𝑊𝑇𝑛−𝑊𝑇𝑛+1)
𝑖
𝑛=1

𝑊𝑇1−𝑊𝑇𝐾

× 100 with 1 ≤ 𝑖 ≤ 𝐾 and 𝐾𝑜𝑝𝑡 ∈ 𝑖 𝑤𝑖𝑡ℎ 𝜂𝑊𝑖 = 95%. (2.89) 

 

 

Figure 2.38.  K -means clustering with the Elbow method to obtain the optimal number of clusters considering 95% of 

variance explained. In this case, the optimum number is 13 clusters. 
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Chapter 3– INFLUENCE OF FLUX DISCRETISATION SCHEMES 

IN THE COMPUTATION OF RESERVOIR DYNAMICS 

3.1 Introduction 

As explained in Section 2.12, the modelling of geological features and complex well 

trajectories in a geocellular model generates grids with non-conforming connections 

between cells, irregular cell geometries, distorted cells, and extremely contrasting cell 

volumes among neighbouring cells. These grid characteristics are difficult to handle by 

standard flow discretisation schemes. The standard TPFA schemes are conditionally 

consistent, susceptible to grid-orientation effects and fail to converge to the solution of 

the discretised pressure and flow problems when grid 𝐤 −orthogonality is not met 

(Robertson, 1978; Eydinov et al., 2006; Hamd-Allah et al., 2020).  There is a growing 

interest to develop numerical schemes that robustly solve discretised flow equations in 

complex grids on non-orthogonal structured and unstructured grids (Brewer et al., 2015; 

Klemetsdal et al., 2017; Samier & Masson, 2017; Ding, 2019). The importance of 

honouring the grid of the geomodel with its volumetric representations of fracture 

networks, fault intersection, geological features, and wellbore configurations (Klemetsdal 

et al., 2017; Durlofsky, 2005) is to reduce the error in flux approximations, and ultimately 

predictions in reservoir performance, caused by simplified grid generation techniques and 

property upscaling (Sablok & Aziz, 2007).   A wide range of discretisation schemes have 

been proposed to improve the computation of the discretised fluxes on general polyhedral 

grids using mixed (Brezzi & Fortin, 1991), multipoint (Aavatsmark, 2002), and mimetic 

(Brezzi et al., 2005a, 2005b; Nilsen et al., 2012) discretisation schemes. Most recently, 

the vertex-approximate gradient scheme (VAG) (Eymard et al., 2012a, 2012b) has been 

formulated as a conservative, coercive, consistent, and convergent numerical scheme that 

can be applied on general polyhedral grids and for a general heterogeneous anisotropic 

permeability tensor.  

 

The aim of the VAG discretization scheme in space is to incorporate nodal interface 

degrees of freedom (dof) allowing to capture the hydraulic transmission conditions, this 

thesis only considers linear transmission conditions at the interface between 

homogeneous porous rocks, however, applicable to general meshes capable of handling 

(irregular) polyhedral cells.  The spatial discretisation of the VAG scheme into tetrahedral 

meshes allows to cope with the geometrical complexity of realistic geological structures, 

this discretisation in space as mentioned before incorporates nodal degrees of freedoms.  
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The main objective of the implementation of the VAG scheme in this thesis is to integrate 

in the MRST framework a flux discretisation scheme that can be used for general meshes 

(i.e., structured and unstructured grids) under the context of single-phase incompressible 

flow which is the principle for which flow diagnostic simulations underlaid.   

 

Under the context of incompressible flow in general meshes the formulation of the VAG 

scheme has demonstrated superiority over the widely used linear two-point flux 

approximation (TPFA) (e.g., Eymard et al., 2012a, 2012b),  the TPFA is a simple but 

robust scheme, however, is inconsistent on grids that are not K-orthogonal (i.e., the grid 

cells need to be in line with the principal directions of the permeability tensor K) and 

anisotropic permeability tensors (e.g., Edwards & Rogers, 1998, Aavatsmark, 2007; Wu 

& Parashkevov, 2009).  On the other hand, the Multi-Point Flux Approximation (MPFA) 

scheme and, most recently, the mimetic approximations developed to overcome the 

shortcomings of the classical two-point-flux approximation, do not require the grid to 

be K-orthogonal to solve general polyhedral grids (Aavatsmark, 2002; Brezzi & Fortin, 

1991; Brezzi et al., 2005a; 2005b; Nilsen et al., 2012).  As described previously (Section 

2.12), the MPFA is a numerical scheme dependent on multi-point stencils which account 

for the directionality of the flow using a gradient approximation.  The MPFA scheme 

keeps the same number of unknowns as the TPFA scheme but has a denser stencil. The 

VAG scheme provides a much lower number of dof on tetrahedral meshes than the 

number of cells for cell-centered discretisation like in the MPFA scheme (Ahmed et al., 

2019; Gläser et al., 2017).  The lower dof that the VAG scheme offers, has shown 

computational advantage over the MPFA scheme, since a smaller number of unknowns 

have to be solved (Eymard et al., 2012a, 2012b; Brenner et al., 2020).   

 

In the mimetic finite difference (MFD) scheme, auxiliary pressure points are employed 

to approximate the solution and used as primary unknowns.  The MFD scheme does not 

require explicitly reconstructing the flux of sub control volumes like in the case of the 

MPFA, providing in general a faster computational performance (Lie, 2019).  Although, 

the mimetic method implemented in MRST reproduces linear flow (see Section 2.12) 

with negligible error within a distorted grid, the mimetic scheme, as implemented in 

MRST (see Section 2.12.3) does not converge for hexahedral grids with curved faces due 

to the implications of the first-order approximation of their inner products in its 

formulation (Lipnikov et al., 2004; Brezzi, et al., 2006).  This disadvantage of the MFD 

over the VAG scheme will be illustrated in the next sections.  
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To make a fair comparison of the differences between the VAG scheme with the flux 

discretisation methods that are part of the MRST modules, it is important to mention that 

the schemes TPFA, MPFA and MFD were implemented to be locally conservative and 

exact for linear solutions (Aavatsmark, 2002; Aavatsmark, et al., 1994; Edwards & 

Rogers, 2004; Aziz & Settari, 1979; Brezzi, et al., 2005b).  In such formulations as 

described in Section 2.12, the TPFA discretisations produce a diagonal matrix of 

transmissibilities which are not convergent for general grids.   While the formulations of 

the MPFA and MFD schemes are consistent and convergent on non-orthogonal grids; this 

leads to full transmissibility matrices.  The improvement in the directionality of the flow 

extends the application of the MPFA and MFD to complex non-orthogonal structured and 

unstructured grids.  Figure 3.13.1 shows an example of vastly pressure solutions calculated 

using the three modular discretisation schemes in MRST (TPFA, MPFA and MFD) on an 

unstructured grid in a homogeneous system under single-phase incompressible flow 

conditions.  Note the deviation of the TPFA solution from the actual solution (i.e., in this 

case the more accurate solution was achieved with the MFD scheme) due to the grid 

distortion.  

 

 

Figure 3.1.  Comparison of pressure solutions obtained from TPFA (a), MPFA-O (b) and Mimetic finite difference (c) 

schemes. The pressure solution that approximates more to the analytical solution is the one obtained form the MFD 

scheme. Modified after Klemetsdal et al. 2017. 

 

The capability of MPFA and MFD of solving general grids gives the same advantage as 

the VAG scheme  (for more details of each scheme see Section 2.12) when using skewed 

and unstructured grids or in case the principal directions of the permeability tensor are 

inclined (e.g., layered porous structures or faults).    

 

https://www.sciencedirect.com/topics/computer-science/unstructured-grid
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The VAG scheme offers to have some advantage over the modular flux discretisation 

schemes present in MRST under conditions of single-phase incompressible flow for 

general meshes.  The capability of the VAG approximation, when fully implemented, to 

connect the fluxes between cells to their vertices enables the approximation to account 

for more possible directions of the flux and due to the imposed mathematical restriction, 

the fluxes are always conservative, coercive, and consistent on general polyhedral meshes 

and for general heterogeneous anisotropic permeability tensor (Eymard et al., 2011a, 

2012b).  In addition, the smaller number of dof the VAG scheme renders the scheme to 

provide faster solutions than that with the MPFA scheme.  Although the MFD scheme 

offers greater computationally efficiency, the MFD as implemented in MRST shows 

problems to converge for hexahedral grids with curved faces.  The comparison between 

solution of the diverse schemes will be presented in the upcoming sections; for such 

comparisons it is important to bear in mind the limitations of the partial implementation 

of the VAG scheme in the MRST framework. 

 

This chapter aims to discuss the numerical methods inherent to the VAG scheme and their 

implementation in the open-source MATLAB Reservoir Simulation Toolbox MRST (Lie 

et al., 2019).  The specific objectives for this chapter are as follows 

 

1. To implement the VAG pressure solution and approximate cell transmissibilities 

in the MRST framework, as much as is feasible, and solve for the flux of 

incompressible single-phase flow in a homogenous medium. 

2. To validate the implemented VAG scheme for the pressure solution by 

comparison with an analytical solution. 

3. To compare VAG-approximated pressure and flux solutions against other 

discretisation techniques available in MRST (i.e., TPFA, MPFA-O, and MFD 

schemes). 

4. To assess the impact of grid orientation effects and other numerical errors inherent 

to the calculation of the velocity field on the subsequent estimation of reservoir 

dynamics using grid-based flow diagnostics simulations. 

 

While the pressure solution using the VAG discretisation scheme was fully implemented 

in MRST, the implementation of the flux solution was only partially implemented 

because the reconstruction of the fluxes using the VAG transmissibilities requires further 

mathematical development to utilise the numerical framework structure of MRST.  The 
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presented work in this chapter thus includes an alternative implementation for the flux 

solution using the VAG scheme; this alternative uses the VAG-approximated pressure 

solution and involves one-sided transmissibility instead of a reconstructed VAG 

transmissibility.   

 

3.2 Vertex Approximate Gradient Scheme 

Eymard et al.  (2011b, 2012a) introduced the VAG scheme for the discretisation of single-

phase flow in a homogenous and anisotropic porous medium on general grids.  The VAG 

scheme has since been extended to multi-phase compositional flow (Eymard et al., 

2012b), two-phase flow in a fractured porous medium (Brenner et al., 2013), and two-

phase flow problems with capillary-dominated flux (Brenner et al., 2020).  The VAG 

scheme has also been implemented in commercial software (Pierre & Masson, 2015). 

 

The VAG scheme is based on the solution of nodal unknowns, similar to the control 

volume finite element method (CVFE), but with the difference that in VAG scheme cell-

centred unknowns are preserved in its formulation.  The VAG scheme has a denser stencil 

that improves the robustness of the pressure gradient approximation.  This scheme 

discretises the grid cells of the reservoir model by subdividing the grid blocks into 

tetrahedron geometrical representations, then the vertices of the unknowns are joined with 

the centroid of the grid cell where the pressure solution is piecewise linear (Figure 3.2).  

The VAG-approximated fluxes in the centroid of a grid cell are equivalent to the sum of 

all the fluxes of each vertex of that grid cell.  The advantage of VAG over CVFE 

approximations is the larger flexibility in the choice of control volumes, which prevents 

averaging regions with highly contrasting permeabilities into a single control volume.   

 

 

Figure 3.2.  Schematic of a 2D grid (a) being spatially discretised using the VAG scheme. 
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Samier & Masson (2017) demonstrated that the VAG scheme applies to complex grid 

geometries honouring the geological features of actual reservoirs, because of VAG 

scheme reduces inaccuracies caused by permeability discontinuities or averaging 

oscillations in the transmissibility calculation resulting in contrasting values of 

permeability, fluid mobility, or cell volumes.  The VAG scheme hence is a promising 

approach to calculating fluxes on general polyhedral grids with a general heterogeneous 

anisotropic permeability field.  

 

In this thesis, for the implementation of the VAG scheme, we assume a simplified set of 

single-phase flow equations on an open bounded subset of polyhedral elements Ω ⊂ ℝ𝑑 

with external boundary 𝜕Ω = Ω̅ Ω⁄ , whose external boundaries can be subjected to 

pressure (Dirichlet) or flux (Neumann) boundary conditions. The system of equations is 

represented as 

 

 {
∇ ∙ 𝐯 = 𝑓,       where 𝐯 = −𝚲∇𝑝    𝑖𝑛 Ω ⊂ ℝ𝑑

𝑝 = 0,                                             𝑜𝑛 𝜕Ω  
, (3.1) 

 

where 𝐯 is the Darcy velocity, 𝑝 is the unknown (pressure), 𝚲 = 𝐤 𝜇⁄  is the diffusion 

operator, i.e., the ratio of permeability tensor 𝐤 and the fluid viscosity 𝜇.  The term 𝑓 is a 

volumetric sink/source term.   

 

Eymard et al. (2010) proposed a consistent and flux conservative approximation of 

Equation 3.1 using the VAG scheme.  The variational formulation of Equation 3.1 for p ∈

H1(Ω) such that 𝑝 = 𝑝𝐷 on ∂ΩD is given by 

 

 ∫ Λ(𝒙)∇𝑝(𝒙) ∙ ∇�̅�(𝒙)
Ω

𝑑𝒙 = ∫ 𝑓(𝒙)�̅�(𝒙)
Ω

𝑑𝒙, (3.2) 

 

where 𝐻1is the set of all families of discrete unknowns, 𝒙 is any point in the spatial 

domain 𝒙 ∈ Ω, and �̅�(𝒙) is the test function.  Equation 3.2 can be approximated by the 

VAG scheme as 

 

 ∫ 𝚲(𝒙)∇𝐷𝑝(𝒙) ∙ ∇𝐷�̅�(𝒙)Ω
𝑑𝒙⏟                  

𝒶𝐷(𝑝,�̅�)

= ∫ 𝑓(𝒙)∏𝐷�̅�(𝒙)Ω
𝑑𝒙⏟            

𝔣𝐷(�̅�)

, 
(3.3) 
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where 𝑝 ∈ X𝐷,  ⩝ �̅� ∈ X𝐷, ∏𝐷 is a re-construction operator, and ∇𝐷 a discrete gradient 

operator which acts on the discrete functional space X𝐷.  Subscript 𝐷 denotes the 

discretisation.   

 

The construction of the VAG scheme is based on the introduction of a discrete gradient 

that depends on the properties and unknowns at the cell vertices and the faces (from 

primary cell) and subfaces (from subcell) of each grid cell (Figure 3.2).  The definition of 

the discrete gradient requires the face unknowns from the primary cell to be expressed as 

linear combinations of the vertex unknowns in the cell.  Consequently, the construction 

of the VAG scheme consists of four main stages: (1) spatial discretisation of the control 

volumes into tetrahedral subdivisions, (2) definition of the discrete unknowns in the new 

spatial subdivision, (3) the construction of the approximate gradient and the 

reconstruction operator, and (4) the implementation of this scheme to solve the problem 

presented in Equation 3.1.  The main steps for each stage are summarised in Figure 3.3. 

 

 

Figure 3.3.  Summary of the main steps needed to construct the VAG scheme and the corresponding functions in MRST 

that perform these steps. 

 

3.2.1 Characteristics of the VAG Scheme 

Figure 3.4 defines the operators in Equation 3.3.  Let 𝑀 be a global grid that contains a set 

of control volumes that are disjoint open subsets of Ω.  Any control volume of 𝑀, for 
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example, control volume 𝐾, is defined by its vertices 𝑆 ∈ 𝒱𝐾, its faces 𝜎 ∈ ℱ𝐾, and each 

face is also defined by a set of its vertices 𝑆 ∈ 𝒱𝜎.  Consider the flow between two 

neighbouring grid cells 𝐾 𝑎𝑛𝑑 𝐿.  The two grid cells 𝐾 and 𝐿 define specific control 

volumes with cell centroids 𝑥𝐾 and 𝑥𝐿, respectively.  These control volumes share a 

common face 𝜎 where flow is calculated.  The interface between 𝐾 and 𝐿 consists of four 

mutual vertices 𝑆, 𝑆′, 𝑆′′ 𝑎𝑛𝑑 𝑆′′′.  The control volume 𝐾 is subdivided into a set of 

subcells (𝑀𝐾,𝑆)𝐾∈ℳ,𝑆∈𝑉𝐾
.  

 

 

Figure 3.4. Spatial discretisation of a single grid block using the VAG scheme. 

 

Eymard et al. (2012a) highlighted the following characteristics of the VAG Discretisation 

scheme:  

 

I. The discrete unknowns are the variables 𝑝𝐾 defined at the centre of the control 

volumes 𝐾 ∈ M and the 𝑝𝑠 at the vertices 𝑆 ∈ 𝒱.    

II. After a local elimination of the cell unknowns 𝑝𝐾, the stencil can be reduced for 

the interior vertices (e.g., from 64 points to 27 points on structured hexahedral). 

III. An exact solution can be obtained if 𝜦(𝑥) is piecewise constant in polygonal 

subdomains and 𝑝 is affine in each of the subdomains of the control volumes 𝐾 

and 𝐿. 

IV. The scheme is always a gradient scheme, which leads to a symmetric positive 

definite matrix, regardless of the geometry and the diffusion operator.  For a 

general heterogeneous anisotropic diffusion problem, the approximate solutions 

converge to the exact solution of the problem as the grid size tends to zero. 
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V. Although the scheme yields a 27-point linear system for the vertex unknowns (for 

structured hexahedral meshes), it does not necessarily lead to a 27-point linear 

system for the cell unknowns because some vertices are shared by neighbouring 

tetrahedra and unknowns are locally eliminated, resulting in a reduced system 

consisting only of unrepeated unknowns. 

VI. The extension of this method from 2D to 3D is achieved by implementing 

harmonic averaging points, which yield a consistent 2-point interpolation of any 

function 𝑝 on an interface 𝜎 between two neighbouring control volumes 𝐾 and 𝐿.  

Such interpolation is used to construct a discrete gradient on the subcells. These 

subcells consist of a cell centre 𝒙𝐾, a cell vertex 𝑆 ∈ 𝐾 and the harmonic averaging 

points (Angelas et al., 2009) of the edges 𝑦𝑒 (in 2D) and face 𝑦𝜎 (in 3D) that 

belong to 𝐾 (Figure 3.4). 

 

3.2.2 Spatial Discretisation and Definition of Discrete Unknown Space 

Each subcell (𝑀𝐾,𝑆)𝐾∈ℳ,𝑆∈𝑉𝐾
 is constructed using the following procedure (Figure 3.5): 

 

• All the vertices {𝑆 ∈ 𝒱𝜎} that define the control volume 𝐾 are mapped.  The vertices 

𝒱σ that belong to the interface σ where the flux will be calculated are identified. 

• The centroid 𝑦𝜎 of the interface σ is calculated using the harmonic averaging point 

(See Appendix A.1).  At 𝑦𝜎 the solution of the pressure in the interface 𝑝𝜎 is defined 

as a weighted sum of the solutions of the pressure at the vertices 𝑆 ∈ 𝒱𝜎. 

• For a homogeneous isotropic porous medium, the 𝑦𝜎 and each pair of vertices that 

conform to an edge 𝑒 of the interface σ define the set of subfaces 𝜏 (Figure 3.5).   

•  Each subcell 𝑀𝐾,𝑆 is then defined by the tetrahedron resulting from joining the vertices 

that confirm a particular subface 𝜏 (e.g., 𝑆, 𝑆′ and 𝑦𝜎) in the interface σ and the cell 

centre 𝒙𝐾(Figure 3.5).  

• Note that in Figure 3.5 the subdivision of the control volume 𝐾 depends on whether the 

medium is either homogeneous isotropic or anisotropic.  For an isotropic medium, the 

discretisation requires a smaller number of subdivisions and therefore fewer stencils. 
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Figure 3.5.  Spatial discretisation of a control volume 𝐾 for the construction of the piecewise constant discrete gradient 

for a homogenous isotropic medium(a) and an anisotropic medium (b). 

 

The subcells of the control volume give rise to a new discrete set of unknowns that must 

be defined in the new spatial subdivision 𝑋𝐷,0  for the real families 𝑝 =

((𝑝𝐾)𝐾∈ℳ , (𝑝𝜎)𝜎∈ℱ , (𝑝𝑒)𝑒∈ℰ , (𝑝�̂�)�̂�∈ℱ̂ , (𝑝�̃�)�̃�∈ℱ̃).  These new pressure unknowns are 

defined for the exterior faces and edges (outside 𝐾 − 𝐿 interface), interior faces and edges 

(inside 𝐾 − 𝐿 interface), and the barycentric triangular faces.  The definition of the  

pressure unknowns is presented in Appendix A.2. 

 

3.2.3 Approximate Gradient and Reconstruction Operator 

Consider the case when the face of a hexahedral cell is locally refined by the union of 

tetrahedra constructed with the cell centre and the barycentre of the four points of the face 

(Figure 3.6).  Assuming an isotropic medium in each tetrahedron and considering that for 

any face 𝜎, the defined barycentre 𝒚𝜎 has non-negative weights 𝛽𝜎,𝑆 of the set of vertices 

𝒱𝜎 of the interface, such that 𝒚𝜎 = ∑ β 𝜎,sS𝑆∈𝒱𝜎 .  Hence, the 𝑝𝜎 can be expressed as a 

contribution of the individual nodes as 

 

 𝑝𝜎 = ∑ 𝛽𝜎,𝑠𝑝𝑠𝑆∈𝒱𝜎  with ∑ 𝛽𝜎,𝑠 = 1𝑆∈𝒱𝜎 . 
(3.4) 
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Similarly, each face 𝜎 ∈ Ϝ with vertices {𝑆 ∈ 𝒱𝜎} is decomposed into planar triangular 

subfaces 𝜏 (Figure 3.6).  For each subface 𝜏, a centroid 𝒙𝜏 is estimated in such a way that 

the barycentric combinations can satisfy 𝒙𝜏 = ∑ 𝛽 𝜏,𝑠𝑆𝑆∈𝒱𝜎 .  Hence, the construction of 

𝑝𝜏 at the point 𝒙𝜏 is defined as 

 

 𝑝τ = ∑ βτ,spτS∈𝒱σ  with ∑ 𝛽𝜏,𝑠 = 1𝑆∈𝒱𝜎 . (3.5) 

 

The construction on a discretised tetrahedron subcell is given by  

 

 𝐼𝜎(𝑝) = ∑ 𝛽𝜎,𝑠S∈𝒱σ ps, (3.6) 

 

where βσ,s ≥ 0 for all 𝑆 ∈ 𝒱𝜎 and β𝜏,s ≥ 0 for all 𝑆 ∈ 𝒱𝜎 and 𝐼𝜎(𝑝) is a second order 

interpolation operator at point 𝑦𝜎.  Finally, using Equations 3.4 through 3.6, the p𝜏 can be 

defined as a continuous piecewise affine function on each tetrahedron 𝒯 =

{𝒯𝐾,𝜎,𝑒 𝑓𝑜𝑟 𝑒 ∈ ℰ𝜎, 𝜎 ∈ Ϝ𝐾, 𝐾 ∈ 𝑀 } of the control volume 𝐾, such that p𝒯(𝒙𝐾) = p𝐾, 

p𝒯(𝑆) = p𝑆,and p𝒯(𝒙𝜎) = 𝐼𝜎(𝑝) for all 𝐾 ∈ 𝑀, 𝑆 ∈ 𝒱 and 𝜎 ∈ Ϝ (Figure 3.6).  The VAG 

scheme assumes the piecewise constant gradient and the piecewise constant 

reconstruction operator as ∇𝐷𝑝(𝒙) = ∇𝐾,𝑆𝑝 and ∏𝐷𝑝(𝒙) = 𝑝𝐾 + 𝛻𝐾𝑝 ∙ (𝒙 − 𝒙𝐾), 

respectively. Consequently, the piecewise constant gradient for (𝑀𝐾,𝑆)𝑆∈𝒱𝐾
 is 

approximated as follows 

 

 𝛻𝐾,𝑆𝑝 = 𝛻𝐾𝑝 + 𝛾𝑅𝐾,𝑆𝑝𝒃𝐾,𝑆, (3.7) 

 

with 

 

 𝛻𝐾𝑝 =
1

|𝐾|
∑ |𝜏|𝜏∈𝒯𝐾

(𝑝𝜏 − 𝑝𝐾)𝒏𝐾,𝜏 =
1

|𝐾|
∑ (𝑝𝑆 − 𝑝𝐾)𝒃𝐾,𝑆𝑆∈𝒱𝐾 , (3.8) 

 𝒃𝐾,𝑆=
1

|𝐾|
∑ 𝛽𝜏,𝑠|𝜏|𝜏∈𝒯𝐾 𝒏𝐾,𝜏, (3.9) 

 

where 𝑅𝐾,𝑆 is a consistency error term, 𝑛𝐾,𝜏 is the unit normal vector to 𝜏 (triangular 

subface), outward to 𝐾, and |𝜏| and |𝐾| are respectively the area and the volume of 

subface 𝜏 and control volume 𝐾. 

 

Consequently, the terms 𝒶𝐷(𝑝, �̅�) and 𝔣𝐷(�̅�) in Equation 3.3 can be rewritten as 
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 ∑ ∑ |𝑀𝐾,𝑆|𝑆∈𝒱𝐾 Λ𝐾𝐾∈ℳ ∆𝐾,𝑆𝑝 ∙ ∆𝐾,𝑆′𝑝⏟                      
𝒶𝐷(𝑝,�̅�)

= ∑ ∫ (𝑝𝐾 + ∆𝐾,𝑆′𝑝 ∙ (𝑥 − 𝑥𝐾)) 𝑓(𝑥) 𝑑𝑥𝐾𝐾∈ℳ⏟                          
𝔣𝐷(�̅�)

. 
(3.10) 

 

Finally, the variational formulation of the VAG scheme is given by (Eymard et al., 2012a)   

 

 𝒶𝐷(𝑝, �̅�) = ∑ ∑ ∑ 𝐴𝐾
𝑆,𝑆′(𝑝𝑆 − 𝑝𝐾)(𝑝𝑆′ − 𝑝𝐾)𝑆′∈𝒱𝐾𝑆∈𝒱𝐾𝐾∈ℳ . (3.11) 

 

The above expressions lead to a set of linear equations which only depend on 𝑝𝐾 and 𝑝𝑆 

for 𝑆 ∈ 𝒱𝐾.  A linear system for all 𝑝𝑆 that belong to 𝑆 ∈ 𝒱 is obtained by the elimination 

of all cell values 𝑝𝐾, resulting in a 27-point stencil for a hexahedral grid.   

 

 

Figure 3.6.  Construction of the approximate gradient of the subcell 𝑀𝐾,𝑆 in a homogeneous isotropic medium. 

 

The transmissibility  𝐴𝐾
𝑆,𝑆′

is defined by the relationship between the permeability and 

fluid viscosity of the cell 𝚲𝐾, the gradients ∆𝐾,𝑆′′
𝑆  and ∆𝐾,𝑆′′

𝑆′  (cell centre to the vertices 𝑆 

and 𝑆′), and the individual contributions of all partitions (𝑀𝐾,𝑆)𝑆∈𝒱𝐾
  of the control 

volume 𝐾 defined as |𝑀𝐾,𝑆| = |𝐾| 𝑁𝐾⁄ , where 𝑁𝐾 is the number of vertices of 𝐾.  The 

transmissibility is given by 

 

 𝐴𝐾
𝑆,𝑆′ = ∑ |𝑀𝐾,𝑆|𝑆′′𝒱𝐾 𝚲𝐾∆𝐾,𝑆′′

𝑆 ∙ ∆𝐾,𝑆′′
𝑆′ . (3.12) 
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The definition of the conservative generalised fluxes (Figure 3.7) between 𝐾 ∈ 𝑀 and its 

vertices 𝑆 ∈ 𝒱𝐾 are given by 

 

 F𝐾,𝑆(𝑝) = ∑ 𝐴𝐾
𝑆,𝑆′(𝑝𝐾 − 𝑝𝑆′)𝑆′∈𝒱𝐾 , (3.13) 

 F𝑆,𝐾(𝑝) = −F𝐾,𝑆(𝑝). (3.14) 

 

 

Figure 3.7.  Illustration of the flux between the two neighbouring control volumes 𝐾 and 𝐿 (a) and the interaction of the 

individual fluxes between the tetrahedron defined by the shared vertices 𝑆 and 𝑆′ that belong to 𝐾 and 𝐿 (b). 

 

The implementation of the VAG scheme (Equations 3.13 and 3.14) in MRST is provided 

in Appendices A.3 and A.4.  Recall that, as discussed above, the flux calculation using 

the VAG scheme was adapted to employ the one-sided transmissibility instead of the 

transmissibilities used in the implemented pressure solution using the VAG scheme 

because the numerical framework in MRST does not allow for a straightforward 

implementation in this case.  For the calculation of the interface transmissibility, in MRST 

the one-sided transmissibilities of two neighbouring cells considers the weighted 

harmonic average of the cells properties and the single-point upwind scheme.  The 

implementation of the VAG scheme was validated against an analytical solution.  The 

grid had different levels of distortion and different levels of refinement.  As noted earlier, 

the VAG scheme was also compared to the MPFA-O, MFD, and TPFA schemes available 

in MRST.  The comparison between schemes was carried out by calculating the norm of 

the approximated pressure for each discretisation scheme to further compute the relative 

error with respect to the analytical solution. 
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3.2.4 Case Study 1: Illustrative Example to Validate the VAG Implementation 

To validate the implementation of the VAG scheme, a simple box model with the 

dimension of 30 m × 30 m × 30 m is considered.  The model has variable degrees of grid 

resolution and grid distortion (Figure 3.8).  The model has homogeneous petrophysical 

properties, with a porosity of 0.2 and a permeability of 1 mD.  Pressure boundary 

conditions of 0 and 2 bar are imposed at the left (𝑝𝐿) and right (𝑝𝑅) side of the model, 

respectively.  There are no gravity forces.  The fluid density and viscosity are 1014 g/cm3 

and 1 cP, respectively.  The problem can be modelled by the steady-state pressure 

equation  

 

 
𝜕2𝑝

𝜕𝒙2
= 0, (3.15) 

 

with boundary conditions  

 

 𝑝(𝒙 = 0) = 𝑝𝐿 , where 𝑝𝐿 = 0 𝑏𝑎𝑟, (3.16) 

 𝑝(𝒙 = 𝐿) = 𝑝𝑅 , where 𝑝𝑅 = 2 𝑏𝑎𝑟 and 𝐿 = 30 𝑚. (3.17) 

 

The analytical solution for this problem is given by 

 

 𝑝(𝒙 ≥ 0) = 𝑝𝐿 + (𝑝𝑅 − 𝑝𝐿)
𝒙

𝐿
. (3.18) 

 

Figure 3.8 shows the results of the VAG simulations.  The accuracy of the VAG scheme is 

analysed by calculating the relative error 𝜖𝑝 between the numerical and analytical 

solution, which is given by 

 

 𝜖𝑝 =
‖𝑝−𝑝𝑠𝑜𝑙‖

‖𝑝𝑠𝑜𝑙‖
. (3.19) 

 

We observe a consistent numerical solution for the different levels of grid distortion and 

grid resolution (Figure 3.8 and Table 3.1) and good agreement with the analytical solution.  

Note that the numerical error also decreases with increasing grid refinement, indicating 

that the VAG implementation converges.  But a more detailed analysis with further levels 

of grid refinement would be necessary to demonstrate the convergence and its order 

clearly.    
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Grid Type Grid Resolution Max.  Rel.  Error 

 nx × ny × nz (fraction) 

Uniform 30 × 30 × 1 1.03 ×10-14 

Distorted 60 × 60 × 1 7.16 ×10-13 

Distorted 30 × 30 × 1 4.87 ×10-13 

Distorted 10 × 10 × 1 4.65 ×10-4 

Table 3.1:  Maximum relative error obtained for the VAG scheme. 

 

The same problem was assessed for a coarse, three-dimensional, and non-orthogonal grid 

(Figure 3.9).  As in the two-dimensional case, the results showed nearly perfect agreement 

between the VAG solution and the analytical solution (Figure 3.10), indicating that the 

VAG scheme can solve accurately for pressure on orthogonal and non-orthogonal 

structured and unstructured grids.   

 

 

Figure 3.8.  Grid structure used for the VAG scheme when solving the steady-state pressure equation (Equations 3.15 

to 3.17) (left column) and resulting cell (middle column) and nodal values (right column) for the pressure.   See Table 

3.1 for the grid resolution. 
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Figure 3.9.  Grid structure (a) and resulting cell values (b) and nodal values (c) for the solution of the steady-state 

pressure equation (Equations 3.15 to 3.17) in three dimensions using the VAG scheme. 

 

 

Figure 3.10.  Comparison of the pressure in the x-direction of the grid calculated with the VAG scheme and the analytical 

solution.   

 

3.2.4.1 Comparison of the VAG Scheme with other Discretisation Schemes 

The VAG scheme was compared with the MPFA-O, MFD, and TPFA schemes in MRST.  

The aim was to analyse if the VAG scheme can provide equal or possibly more accurate 

results when solving the steady-state pressure equation on non-orthogonal grids.  Table 

3.2 and Figure 3.11 show that VAG, MPFA-O and MFD schemes yield accurate results, only 
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the TPFA scheme, as expected, is susceptible to significant numerical errors.  The TPFA 

scheme is conditioned by the grid 𝐤 −orthogonality, which results in significant 

inaccuracies of the pressure approximation caused by the grid orientation effect.  For the 

chosen level of grid deformation, the MPFA-O scheme was the most accurate followed 

by the VAG scheme and MFD scheme. 

 

 Maximum Relative Error 

Grid Resolution VAG MPFA-O MFD TPFA 

nx × ny × nz (fraction) (fraction) (fraction) (fraction) 

60 × 60 × 1 7.16 × 10-13 6.63 × 10-15 2.50 × 10-12 2.92 × 10-3 

30 × 30 × 1 4.87 × 10-13 2.16 × 10-14 2.52 × 10-12 2.53 × 10-3 

10 × 10 × 1 4.65 × 10-4 5.10 × 10-4 2.20 × 10-12 1.21 × 10-2 

Table 3.2:  Maximum relative error for the VAG, MPFA-O, MFD and TPFA schemes. 

 

 

Figure 3.11. Pressure field,  calculated from the solution of the steady-state pressure equation (Equations 3.15 to 3.17), 

for different discretisation techniques and grid resolutions.   

 

3.2.4.2 Comparison of Flux Solution for different Discretisation Schemes 

In this section, we analyse the accuracy of the flux calculation for each discretisation.   

Since the accuracy of each discretisation scheme differs when approximating the pressure 

solution, the solution of the flux field also shows differences in the magnitude and spatial 

distribution (Figure 3.12).  However, the discrepancies are not only caused by the 

differences in the pressure solution but are mainly caused by the way the direction of the 

flux is approximated.  For example, note that the pressure solution for the (10 × 10 × 1) 

coarse grid is almost the same for all the schemes but the flux solution is different.  The 

directionality of the flux for the VAG, MPFA and MFD schemes is modelled using a 

multi-point stencil and full transmissibility matrices.  However, due to the simplified, i.e., 
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one-sided transmissibility (i.e., single-point upwind weighting scheme), in the VAG 

implementation, the flux solution is less accurate when compared to the MPFA and MFD 

schemes.  Although the TPFA and VAG schemes had the same transmissibility 

calculation, the fluxes obtained from the VAG scheme still capture the region with high 

flux, in contrast to the TPFA scheme.  This improvement in the flux calculation for the 

implemented VAG scheme is due to the much-improved pressure calculation.   

 

 

Figure 3.12.  Flux field, calculated from the solution of the steady-state pressure equation (Equations 3.15 to 3.17), for 

different discretisation techniques and grid resolutions.   

 

3.2.5 Case Study 2: Grid-Orientation Effects for the different Discretization Schemes 

in a Quarter-Five Spot Pattern 

We illustrate the impact of different discretisation schemes on flux distribution and fluid-

front displacement by examining a quarter-five-spot problem and grid-based flow 

diagnostics. The model has a dimension of 30 m × 30 m × 30 m, consisting of 60 × 60 

× 1 distorted grid cells.  The wells are bottom hole pressure (BHP) constrained.  Capillary 

and gravity forces are ignored.  The model has a homogeneous porosity of 0.2 and a 

permeability of 100 mD.  We assume single-phase flow, that is the model is saturated 

with water.  The characteristics of the model are depicted in Figure 3.13.  We focus our 

analysis on the grid orientation effects and their impact on the estimation of the fluxes, 

breakthrough time, and the swept and drained fluid fronts in the flow diagnostics 

calculations.   
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Figure 3.13.  Schematic of the quarter-five-spot problem used to analyse grid deformation effects on flow diagnostics 

calculations. 

 

Figure 3.14 shows the flux field and corresponding flow diagnostics results for the different 

discretisation schemes.  There are distinct differences in the flux fields, not only in 

magnitude but also in the flux distribution.  Consequently, subsequent estimates that 

approximate the reservoir dynamics are affected too.  The total time of flight 𝜏 varies 

significantly, particularly the distribution of the forward time of flight 𝜏𝑓 and 𝜏 iso-

contours presented in the VAG and TPFA schemes which have a simpler transmissibility 

calculation.  The comparison of all solutions for the distorted grid with the solution on an 

undistorted grid indicates that the most accurate flux field and subsequent flow diagnostic 

estimates can be obtained with the MPFA-O scheme.  Grid-orientation effects are also 

observable in the 𝐹 − Φ diagram and the dynamic Lorenz Coefficient 𝐿𝑐 (Figure 3.15). The 

largest 𝐿𝑐 value was obtained for the TPFA scheme whose flux field is impacted most by 

the deformed grids, which introduces a non-physical heterogeneity in the flow behaviour.  

The differences in flux distributions, arising from the different discretisation schemes, 

also result in different distributions in time-of-flight (Figure 3.16) and different production 

profiles (Figure 3.17).  Note that the production rate for the MFD scheme differs by almost 

40 per cent from the production flow rates obtained for the other discretisation schemes.  

The mimetic scheme, as implemented in MRST (see Section 2.12.3), does not converge 

for hexahedral grids with curved faces (Lipnikov et al., 2004; Brezzi, et al., 2006).  Hence 

the magnitude of the approximated fluxes is affected by the first-order mimetic 

formulation in MRST although the spatial distribution of the flux field and subsequent 
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flow diagnostic estimates appear to be correct and only slightly influenced by the grid 

orientation effects.  The largest differences in the simulated production rates, especially 

with respect to the breakthrough times, are observed for the TPFA scheme, which also 

exhibits the largest grid orientation effects.  The recovery profiles appear to be less 

affected by the different discretisation schemes because they are normalised by pore 

volume injected but will differ if plotted in actual (i.e., transient conditions) time, i.e., it 

will take longer to reach the ultimate recovery in cases where the discretisation scheme 

underestimates the flow rates such as the MFD scheme. 

 

In summary, for the case tested here, the MPFA-O scheme has the most consistent flux 

solution on a distorted grid, which results in more reliable estimates of the reservoir 

dynamics in subsequent flow diagnostic calculations.  This example demonstrates the 

importance of selecting a suitable discretisation scheme to obtain reliable approximations 

for pressure and flux and subsequently accurate flow diagnostics results. 

 

 

Figure 3.14.  Comparison of cell flux (upper row), forward time of flight (middle row), and time of flight (lower row) 

distributions of a case with an undistorted grid solved with the MPFA-O scheme (a, f and k) and a case with distorted 

grid solved with different discretisation techniques and grid resolutions, when 50 pore volumes have been injected. 
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Figure 3.15.  Flow-storage capacity curves and corresponding dynamic Lorenz coefficients 𝐿𝑐 for the different 

discretisation schemes depicted in Figure 3.14. 

 

 

Figure 3.16.  Time of flight distributions s as calculated for the different discretisation schemes after injecting 0.2, 0.5 

and 1 pore volumes. 
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Figure 3.17.  Comparison of production profiles, normalised by pore volume injected, calculated for the different 

discretisation schemes for the water production rate (a), concentration production rate (b), recovery factor (c), and the 

ratio of produced concentration to produced total liquid rate (d).   

 

3.3 Summary 

This chapter shows the full implementation of the VAG scheme for the solution of 

pressure and flux for incompressible single-phase flow in a homogenous isotropic porous 

medium.  The presented implementation of the VAG scheme for flux solution employs 

the VAG-approximated cell-wise pressures and one-sided transmissibilities (i.e., a 

weighted harmonic average of the cells properties of two neighbouring cells and the 

single-point upwind scheme) for the VAG flux solution instead of the full matrix of VAG 

transmissibilities.  The pressure solution for structured and unstructured grids of the 

implemented VAG scheme was validated using an analytical solution and the accuracy 

of its solution was compared against other numerical discretisation schemes (i.e., MPFA-

O, MFD, and TPFA schemes).  Due to the incomplete implementation of the matrix of 

transmissibilities for the computation of the flux solution of the VAG scheme it was not 

possible to compare the computationally efficiency of the VAG scheme over the other 

schemes, however, the literature suggest (e.g., Eymard et al., 2012a, 2012b; Brenner et 

al., 2020)  that the much lower number of dof of the VAG scheme offers a faster solution 

of the flux than that obtained using the MPFA-O scheme.   This chapter demonstrates that 

the VAG scheme can solve accurately for pressure on orthogonal and non-orthogonal 

structured and unstructured grids.  On the other hand, the simplification of the 

transmissibility (i.e., one-sided transmissibility) on the implementation of the VAG 

scheme for the flux approximation limits its application to structured grids with moderate 

grid orientation effects.  Note that once the full matrix of VAG transmissibilities for the 

flux approximation is integrated within the numerical framework of MRST, the flux 

solution will substantially improve since the directionality of the flux field will be more 



 

112 

robustly considered and therefore can be applied for more general grid geometries 

(Eymard et al., 2012a). 

 

The case studies and the comparison between discretisation schemes presented 

demonstrate the importance of selecting a suitable discretisation scheme when grid 

orientation and non 𝐤 −orthogonality can considerably affect the accuracy of 

approximations for pressure and flux solutions and consequently impact the reliability of 

predicted flow rates, breakthrough time, and the swept and drained fluid fronts obtained 

from the reservoir simulation results (e.g., flow diagnostics calculations).  Lastly, this 

chapter illustrates how flow diagnostics simulations can quickly and efficiently assess the 

impact of the limitations of diverse numerical schemes on the accuracy of their solutions 

when dealing with complex gridding.  The results obtained in this chapter suggest that 

this type of assessment for the selection of the appropriate numerical schemes can 

efficiently help reduce bias in further reservoir studies using full-physics simulations, 

resulting in more reliable predictions of reservoir performance. 
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Chapter 4– PORO-MECHANICAL COUPLING WITH FLOW 

DIAGNOSTICS FOR SINGLE-POROSITY MODELS  

4.1 Introduction 

In this chapter, we introduce a new approach that couples hydrodynamics through 

existing flow diagnostics methods (Rasmussen & Lie, 2014; Lie et al., 2015; Møyner et 

al., 2015; Krogstad et al., 2016) with poro-mechanics to screen the impact of coupled 

poro-mechanical processes on reservoir performance.   

 

As discussed in Section 2.10, the alterations in petrophysical properties due to poro-

mechanical effects across the reservoir may significantly modify flow paths and thus the 

velocity field.   The corresponding poro-mechanical hydrodynamical coupled simulations 

tend to be computationally very challenging.  However, we hypothesise that the change 

in velocity field resulting from poro-mechanical effects, and its implication on the 

dynamic behaviour, can be assessed and quantified using the computationally efficient 

grid-based flow diagnostics, which are proven to accelerate reservoir management 

workflows (Rasmussen & Lie, 2014; Lie et al., 2015; Møyner et al., 2015).  

 

In the context of the overarching aims of this thesis, this chapter will demonstrate that 

extended flow diagnostics can be used to investigate the change in reservoir connectivity, 

fluid-fronts distributions, fluid displacement efficiency, breakthrough time and well 

allocation factors caused by the poro-mechanical impact on reservoir properties in single-

porosity systems, without incurring in high computational overhead.   

 

In this chapter, we will introduce a new poro-mechanically informed flow diagnostics 

approach for single-porosity reservoirs to quantify changes in the steady-state and single-

phase flow behaviour based on the poro-elastic theory (Biot 1941, 1955, 1956).  Fluid 

flow and rock deformation calculations are coupled sequentially and consider stress-

dependent rock properties.  The equations are discretised using a finite volume method 

with two-point flux-approximation and the virtual element method, respectively.  The 

solution of the coupled system considers stress-dependent permeabilities.  Due to the 

steady-state nature of the calculations and the effective proposed coupling strategy, these 

calculations remain computationally efficient while providing first-order approximations 

of the interplay between geomechanics and hydrodynamics, as we demonstrate through a 

series of case studies.  The poro-mechanically informed flow diagnostics were 
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implemented in MRST (Lie et al., 2019) and validated with solutions obtained from a 

commercial software package (ECLIPSE-VISAGE).  Single-porosity models encompass 

NFR Type 1 (Nelson, 2001), and conventional reservoirs are treated as a single effective 

continuum defined purely by rock matrix porosity and matrix permeability. 

 

4.2 Numerical Formulation 

The conceptual model for our new poro-mechanically informed flow diagnostics was 

introduced in Section 2.9.  We solve the equations for the steady-state linear-momentum 

balance equation and the continuity equation (Equations 2.12 and 2.17) to calculate the 

strain (Equation 2.11) and we use stress-dependent permeability models (Equations 2.35 

to 2.39) to update these petrophysical properties as a function of strain.  Note that in our 

proposed framework any other stress-dependent permeability model (e.g., other 

porosity/permeability laws) can be used as a non-linear coupling term.   

 

The steady-state linear-momentum balance equation and the continuity equation are 

discretised using the virtual element method (VEM) and the finite volume method (FVM) 

with two-point flux-approximation (TPFA), respectively.  The recently developed nodal-

based VEM (Beirão da Veiga et al., 2013, 2014; Gain et al., 2014) can be seen as a 

reformulation of mimetic finite difference methods used for solving linear elasticity 

(Beirão da Veiga et al., 2014) in a finite element framework, which results in an extension 

to general grids without the need of complex quadrature formulas.  Thus, VEM provides 

robustness for the choice of the grid, showing great flexibility on structured and 

unstructured grids for solving the geomechanical problem, and can be readily coupled 

with traditional discretisation used in flow solvers (e.g., Andersen et al., 2017a, 2017b).  

Since the basis functions in VEM are not explicitly defined, the method can be formulated 

entirely through its degrees of freedom, which are well defined (Gain et al., 2014; 

Andersen et al., 2017a).  Further details of VEM are beyond the scope of this thesis and 

we refer interested readers to the work of Beirão da Veiga et al. (2013, 2014), Gain et al. 

(2014), and Andersen et al.  (2017a, 2017b).   

 

The spatial discretization of Equations 2.12 and 2.17, yields an algebraic relationship of 

nodal and nodal/cell values, respectively.  The discretised system of equations is 

expressed in matrix form as 
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 𝐓𝐩𝑐 = 𝐟𝑝, (4.1) 

 𝐊𝐮𝑐 − 𝐐𝐩𝑐 = 𝐟𝑢, (4.2) 

 

where 𝐮𝑐 and 𝐩𝑐 are control point values of the linear displacement and pressure field 

variable vectors, 𝐓 is the transmissibility matrix, 𝐟𝑝 is the vector of fluid body forces and 

fluxes, 𝐊 is the stiffness tensor, 𝐐 is the interaction matrix, 𝐟𝑢 is the vector of body forces 

and surface traction.   

 

Since VEM defines the discrete operators required for the general coupling between 

hydrodynamics and poro-mechanics in terms of a discrete divergence operator (gradient 

of pressure in the geomechanical discretisation and divergence of displacement in the 

flow discretisation and geomechanical derived quantities), the system of equations 

expressed in matrix form (Equation 4.1 and 4.2) can readily interact one another.  The 

coupled linear system of the discretised equations is given by 

 

 (
𝐊 −𝐐
0 𝐓

) (
𝐮𝑐

𝐩𝑐
) = (

𝐟𝑢
𝐟𝑝
). (4.3) 

 

The coefficient matrices 𝐊 and 𝐐 contain mechanical parameters of the rock, whilst the 

transmissibility matrix 𝐓 contains the stress-dependent permeability (Equation 4.3).  The 

coupled system of equations becomes a non-linear system as the coefficient matrix 𝐓 is 

dependent on the permeability unknowns 𝐤𝟏 = 𝐤𝟏(𝐮). 

 

4.2.1 Solution Strategy 

The solution of the coupled linear system (Equation 4.3) is achieved through a sequentially 

coupled solution strategy (e.g., Koutsabeloulis et al., 1994; Settari & Mourits, 1998) given 

by 

 

 𝐓(𝐮𝑐,𝑟)𝐩𝑐,𝑟+1 = 𝐟𝑝           where  𝐤(𝐮𝑐,𝑟), (4.4) 

 𝐊 𝐮𝑐,𝑟+1 = 𝐟𝑢 + 𝐐𝐩
𝑐,𝑟+1  then    𝑟 = 𝑟 + 1, (4.5) 

 

where superscript 𝑟 refers to the iteration level.  We use a fixed-point iteration which 

starts with an initialisation stage where the flow and mechanics models are set to their 

initial conditions.  The coupling loop starts with the computation of the fluid pressure, 
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assuming that the prior initial conditions of the displacement field 𝐮𝑐,𝑟 are not changing.  

With the solution of the pressure 𝐩𝑐,𝑟+1∗, the mechanics solver is updated to account for 

the effect of the fluid pressure on the deformation of the rock.  The solution for the 

displacement 𝐮𝑐,𝑟+1∗ is used to obtain 𝛆𝑣(𝐮
𝑐,𝑟+1∗), and ultimately the stress-dependent 

permeability 𝐤(𝐮𝑐,𝑟+1∗) is calculated.  The fixed-point iteration loop is restarted, and the 

iteration level is renamed 𝑟 = 𝑟 + 1 ∗, and then the new permeability 𝐤(𝐮𝑐,𝑟+1∗) is used 

to re-compute the transmissibility matrix 𝐓(𝐮𝑐,𝑟) for the computation of the new fluid 

pressure 𝐩𝑐,𝑟+1.  This new fluid pressure 𝐩𝑐,𝑟+1 is compared with the prior fluid pressure 

𝐩𝑐,𝑟+1∗.  The procedure is repeated until ‖𝐩𝑐,𝑟+1∗ − 𝐩𝑐,𝑟+1‖ ≤ 𝜖, i.e., convergence has 

been reached, otherwise 𝐩𝑐,𝑟+1 is reset as the initial guess for the new iterative loop.  Once 

the solution has converged, the final updated permeability and its corresponding pressure 

field are used to compute the velocity fields from which flow diagnostics and derived 

estimates can be computed.  Note that the average rate of convergence that we observed 

using the proposed fixed-point iteration range between 3 to 5 iterations, for single- and 

dual-porosity respectively.  

 

4.2.2 Steady-State Poro-mechanical Coupling in MRST 

A steady-state poro-mechanical coupling module was implemented in MRST, namely 

‘SSHydroMech_SinglePoroSim’.  The implementation consists of two main functions; 

First, the function ‘MechanicModelSS_SinglePoro’ defines the mechanic problem by 

computing the stiffness tensor, imposing the initial boundary conditions of the mechanic 

problem and obtaining the operators required to define the initial matrices of coefficients 

described in Equation 4.2.  Second, the function ‘SSHydroMech_SinglePoroSim’ includes 

the discretised steady-state poro-elastic problem described in Equations 4.1 and 4.2 

leverages the operators of the incompressible flow and the mechanics modules that come 

as standard with MRST to define the coupled system in Equation 4.3.   

 

The solution to the coupled system is achieved by iterating sequentially between each 

module through the interface module ‘updateStrainDepProps_SP’, which includes stress-

dependent rock properties that act as a coupling term.  The procedures that defined the 

implemented functions for the hydrodynamical-poro-mechanical coupling are 

summarised in Figure 4.1.  The details about the implementations and source code are 

presented in Appendix B.1. 
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Figure 4.1.  Structure of the functions in MRST that solve the steady-state hydrodynamical-poro-mechanical coupling 

problem (Equations 4.4 and 4.5).  The underlined functions represent the new implementations in MRST as part of this 

thesis. 

 

The workflow to update the single-porosity flow diagnostics calculations after the poro-

mechanical calculations is shown in Figure 4.2.  Note that the standard single-porosity flow 

diagnostics module in MRST is used to estimate the resulting spatial distribution of 𝜏(𝒙) 

and 𝑐(𝒙) to characterise the reservoir dynamics.  In addition, a post-processing module 

(‘dynamicFDMetrics’) was implemented to facilitate the analysis of the poro-mechanical 

effect on production and injection profiles as a function of the residence time and injected 

pore volume.  This module allows us to organise the results to plot the evolution of the 

production profiles as a function of the injected pore volumes or residence time, which 

enables us to robustly screen cases that need to be studied in more detail using full physics 

coupled simulations.   
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Figure 4.2.  Summary of the poro-mechanically informed flow diagnostics.  Note that for the hydrodynamical-poro-

mechanical coupling and model screening, two new modules have been implemented in MRST.  The underlined 

functions represent the new implementations in MRST as part of this thesis. 

 

4.3 Validation Case for Hydro-mechanical Solution 

To demonstrate and validate our proposed poro-mechanics scheme that includes a stress-

dependent permeability, we test it against a reference solution from a commercial 

software package.  Both numerical solution approaches use the same model setup, namely 

a two-dimensional problem with dimensions of 100 m × 100 m, with a grid resolution of 

500 × 500 cells.  The model assumes poro-elasticity and represents a homogeneous and 

isotropic fluid-saturated porous.   

 

Fluid is injected and withdrawn from the model through an injector-producer pair located 

on opposite sides of the domain.  The two wells are bottom hole pressure (BHP) 

constrained.  The model is subjected to gravitational load under lateral confinement and 

no vertical displacement at the bottom of the domain.  The fluid and rock properties, the 

boundary conditions, and input parameters are given in Figure 4.3 and Table 4.1.  Note that 

the commercial simulator is run to steady-state conditions to enable a direct comparison 

of our implementation. 
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Parameter Value Unit 

Model Dimensions 100 × 100 m 

Grid Division (nx ×  ny × 

nz) 
500 × 500 cells 

Permeability 100 mD 

Porosity 0.10 - 

Biot's coefficient 1 - 

Young's modulus 0.1 GPa 

Poison's ratio 0.25 - 

Bulk density 3000 kg/m3 

Fluid density 1000 kg/m3 

Fluid viscosity 1 cP 

Initial pressure 148.23 bar 

Injector BHP 163.06 bar 

Producer BHP 133.4 bar 

     Table 4.1: Input data and model configuration. 

Figure 4.3 and Table 4.1:  Setup of the 2D poro-elastic problem used for validating the poro-mechanics implementation 

in MRST.  The system is subjected to a gravity load with lateral confinement and fully constrained displacement at the 

bottom and perturbed by an injector-producer pair. 

 

The accuracy of our implementation is evaluated by calculating the relative error of the 

computed strains and permeability, assuming the solution of the commercial software as 

the true solution.  The relative error 𝜖𝑥 is given by 

 

 𝜖𝑥 =
‖�̃�−𝑥‖

‖𝑥‖
, (4.6) 

 

where 𝑥 is a computed parameter (e.g., strain, stress, permeability) obtained from the 

reference numerical solution and �̃� refers to the solution of the same computed parameter 

obtained for our implementation. 

 

Figure 4.4 shows that our steady-state poro-mechanics solution in MRST agrees very well 

with that of a commercial solver.  The main discrepancies between the two numerical 

implementations occur in the solution of the stress field; we attribute these discrepancies 

to the different discretisation methods, tolerance criteria and the solution techniques used 

by the commercial software and MRST (Gain et al., 2014; Andersen et al., 2016).  We 

observe similar results on further tests in which we consider different levels of grid 

refinement and strong and weak stress-dependency of the permeability.  For those tests, 

the relative errors are similar in terms of range and order of magnitude and the error 

decreases with increasing grid refinement, as expected.  Note that for simulations carried 

out on a standard desktop PC, the CPU time for this and the other validation tests are 
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approximately 30 times faster for the uncompiled MRST implementation compared to 

those of the commercial solver.   

 

 

Figure 4.4.  Simulation results for the poro-elastic problem are depicted in Figure 4.3, showing stress (a), strain (b), 

pressure (c), permeability (d), and the relative error between the VEM implementation and a commercial solver for 

stress (e), strain (f), and the comparison of relative error for pressure (g), and permeability (h) using 

porosity/permeability models described in Equation 4.3 and 4.4. 

 

4.4 Application: Linking Hydrodynamical-Poro-mechanical Simulations with 

Flow Diagnostics  

4.4.1 Simple Case: Box Model 

The integration of poro-mechanics with flow diagnostics is first illustrated by studying 

an idealised 5-spot box model with a dimension of 300 m × 300 m × 50 m, consisting of 

21 × 21 × 20 grid cells.  All wells are BHP constrained.  The model has homogeneous 

petrophysical properties with poro-elastic behaviour, and the system is confined and 

closed.  For simplicity and without loss of generality, there are no acting forces or loads.  

The effective stress is only affected by the production-injection process.  Note that the 

proposed framework is not limited to these boundary conditions and more complex 

boundary conditions with diverse displacements and applied loads are possible. 

 

The reservoir domain is divided into three regions (Figure 4.5).  The central region of the 

model (diagonal) represents a mechanically soft material, and the off-diagonal regions 

are mechanically stiffer.  The properties of the model, boundary conditions, and input 
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parameters are given in Figure 4.5 and Table 4.2.  This simple example does not represent 

a geologically realistic scenario and only intends to illustrate and compare the effect of 

production-induced disturbance of stress-dependent petrophysical properties on reservoir 

dynamics when wells are allocated in regions of different mechanical stiffness, i.e., two 

injectors are placed in the stiff regions and the remaining injectors and producer in the 

soft region. 

 

 

Figure 4.5.  Setup of the 3D poro-elastic problem.  A model with homogenous and isotropic petrophysical properties, 

representing a system with lateral confinement and vertical constrained movement at the bottom and top (a) with two 

regions with different Young’s moduli that represent the materials stiffness and divide the system into three mechanical 

regions, two stiff regions and one soft region (b). 

 

Parameter Value Unit 

Model Dimensions 300 × 300 × 50 m 

Grid Division (nx × ny × nz) 21 × 21 × 20 cells 

Permeability 100 mD 

Porosity 0.10 - 

Biot's coefficient 1 - 

Young's modulus (Stiff) 30 GPa 

Young's modulus (Soft) 5 GPa 

Poison's ratio 0.25 - 

Bulk density 3000 kg/m3 

Fluid density 1000 kg/m3 

Fluid viscosity 1 cP 

Initial pressure 148.23 bar 

Injector BHP 170.46 bar 

Producer BHP 118.58 bar 

Table 4.2: Input data of 5-spot box model. 

 

Before starting production-injection operations, the permeability of the model is 

initialised to the stress state obtained from the established mechanical boundary 

conditions, initial reservoir pressure and input properties and parameters.  Then, this 

mechanically initialised permeability is used for the hydrodynamical simulation when 
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poro-mechanics are neglected, i.e., no computation of the coupled poro-mechanical 

solution and no production-induced permeability alteration (w/o poro-mechanics).  For 

the simulation when poro-mechanics are considered, i.e., the computation of coupled 

poro-mechanical and hydrodynamical solutions with resulting permeability alteration (w/ 

poro-mechanics), the mechanically initialised permeability represents the start of the 

simulation before the stress state is altered by the production-injection operation.  In this 

manner, having defined a common permeability is intended to fairly compare and 

quantify the resulting production-induced changes when accounting for poro-mechanics 

against the simulation case that neglects poro-mechanics.   

 

For this and the following case studies, we refer to the ratio of produced concentration to 

produced total liquid rate 𝑐𝑝 as the ratio given by  

 

 𝑐𝑖
𝑝 =

𝑞𝑖
𝑝

∑ 𝑞
𝑖
𝑝𝑛

𝑖

, (4.7) 

 

where 𝑞𝑝 is the produced concentration flow rate attributed to a specific injector 𝑖, and 

∑ 𝑞𝑖
𝑝𝑛

𝑖  represents the total produced concentration liquid rate of a given producer 𝑝. 

 

When considering poro-mechanics, permeability decreases by up to 25% in the softer 

region of the reservoir, specifically in the vicinity of the producer where the pressure drop 

is the largest (Figure 4.6).  Consequently, the well influx and 𝜏 are affected by the 

permeability change.  The overall flux in the model is reduced, with the most significant 

reduction occurring between the injectors and the producer located in the stiff zone, i.e., 

wells INJ1, INJ4, and PROD1.  Furthermore, the change in the low field impacts 𝜏 and 

the stationary producer- and injector- concentration and alters the reservoir volumetric 

partitioning and well allocation factors.  The result of these changes is the modification 

of reservoir connectivity and displacement efficiency of each injector (Figures 4.6 and 4.7).   
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Figure 4.6.  Comparison of horizontal permeability (a and e), cell-based fluxes (b and f), time of flight (c and g) and 

reservoir partitioning (d and h) for the upper layer of the reservoir depicted in Figure 4.5 after 3.5 pore volumes have 

been injected, when neglecting (upper row) and including (lower row) poro-mechanics. 

 

In Figure 4.7, the contribution of each injector to the produced concentration primarily 

depends on the reservoir connectivity between well pairs.  The ratio of produced 

concentration to produced total liquid rate, therefore, reveals the evolution of pore volume 

connectivity over time, i.e. influence flow regions between well pairs as a function of the 

time of flight 𝜏max (Equation 2.67 to 2.69), assuming that the present flow field remains 

constant.  Note that when considering poro-mechanics, the ratio of produced 

concentration to the produced total liquid rate of each well pair (i.e., INJ2-PROD1 and 

INJ3-PROD1 versus INJ1-PROD1 and INJ4-PROD1) is different compared to the case 

where poro-mechanics are neglected. 

 

In addition, we analyse the impact of including poro-mechanics at the well level in three 

different ways (Figure 4.7, 4.8 and 4.9) by measuring (i) the cumulative flux from the bottom 

to the top of the perforated layers, (ii) the individual flux per perforated layer, and (iii) by 

comparing production and injection profiles.  Figure 4.8 shows that the well flow rates are 

reduced in terms of inflow per reservoir layer and cumulative flow rates (up to 12%).  

Note that the reduction of flow rate per layer is uniform due to the absence of gravitational 

and capillary forces and because the system experiences the same deformation in all 

layers, which implies the permeability changes in each layer occur in the same proportion.  

The reduction in inflow rates causes an increase in the time it takes to produce the 

reservoir (Figure 4.9).  Note that the same values of 𝜏max in Figures 4.8 and 4.9 refer to two 
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different time scales and injected pore volumes because 𝜏 changes due to the alteration in 

permeability and flow rates caused by poro-mechanics.  The equivalent actual time scale 

and injected pore volume are hence depicted as secondary axes in Figures 4.7 and 4.9. 

 

 

Figure 4.7.  Comparison of well flow rates (a and b), flux allocation for injector-producer well pairs (c and d) and the 

ratio of produced concentration to produced total liquid rate for injector-producer well pairs (e and f) against 𝜏max for 

the reservoir depicted in Figure 4.5 when neglecting (upper row) and including (lower row) poro-mechanics.  The 

secondary axes in the upper part of each plot represent the equivalent actual time and the cumulative injected volume, 

assuming the present flow field in the reservoir remains constant.  The oscillations that are visible at 𝜏max≥ 25 days in 

Figure 4.7(f) are purely numerical. 
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Figure 4.8.  Comparison of the reservoir productivity when neglecting and including poro-mechanics for the cumulative 

flux per perforated layer from the bottom of the reservoir to the top of the reservoir (a) and the individual flux per 

perforated layer of the reservoir (b). 

 

 

Figure 4.9.  Comparison of cumulative injected volume (a), swept volume (b), oil recovery factor (c), and the ratio of 

produced concentration to produced total liquid rate for injector-producer well pairs (d) for the reservoir depicted in 

Figure 4.5 when neglecting and including poro-mechanics.  The secondary axes in the upper part of each plot represent 

the equivalent actual time and the cumulative injected volume, assuming the present flow field in the reservoir remains 

constant.  The oscillations that are visible at 𝜏max= 20 days in Figure 4.9(a) are purely numerical. 
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4.4.1.1 Effect of Different BHP Constraints 

To further illustrate poro-mechanical effects under different flow conditions, we run 

additional simulations using the same box model described in Figure 4.5 and Table 4.2 but 

considering three cases with different BHP constraints defined by values of 1, 10 and 100 

bar above and below the initial average pressure 𝑝𝑖 =148.8 bar for the injectors and the 

producer, respectively.  This example aims to illustrate under which production 

conditions poro-mechanical effects have a noticeable impact on reservoir performance. 

 

Under the prescribed operational conditions, only case 3 (BHP constraints are 𝑝𝑖 ±100 

bar, respectively) shows a considerable impact of the poro-mechanical effect on the well 

allocation factors (Figure 4.10).  We observe significant changes which include different 

arrival times of each injector concentration to the producer and a substantial variation in 

the flux allocation of the different well pairs.  This variation in the production profile of 

the allocation fluxes indicates a significant alteration in the preferential flow paths and 

reservoir connectivity.  In contrast, poro-mechanical effects on reservoir performance 

appear to be negligible in the other two cases.  This example, therefore, illustrates how 

the extended flow diagnostics framework could be used to screen the impact of poro-

mechanical effects on reservoir dynamics and select individual scenarios, in this example 

case 3, for further detailed full-physics simulations. 

 

We observe that the integration of flow diagnostics with poro-mechanical simulations 

enables us to compute the essential reservoir dynamics much faster than the full-physics 

simulations carried out with a commercial simulator.  We compared simulations here with 

a commercial simulator and observed a difference of approximately 180 times 

(approximately 1 minute and 3 hours for our proposed implementation and the 

commercial simulator, respectively) without aiming for a rigorous comparison.  Hence, 

our approach is ideal for preliminary screening of possible reservoir behaviours before 

commencing more detailed and CPU-intensive full-physics poro-mechanical simulations.   
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Figure 4.10.  Production profile for case 1 with BHP constraints = 𝑝𝑖 ±1 bar (a), case 2 with BHP constraints = 𝑝𝑖 ±10 

(b), and case 3 with BHP constraints = 𝑝𝑖 ±100 (c) for the injector-producer well pairs when neglecting and including 

poro-mechanics.  The secondary axes in the upper part of each plot represent the equivalent actual time and the 

cumulative injected volume, assuming the present flow field in the reservoir remains constant.  Note that fluid flow is 

symmetric when neglecting poro-mechanics and hence the corresponding curves overlap. 
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4.4.2 Complex Case – SPE 10 Model 

4.4.2.1 General Overview of the SPE 10 Model 

The 10th SPE Comparative Solution Project, also known as SPE 10 model (Christie & 

Blunt, 2001), considers the complex and heterogenous reservoir geology represented by 

a regular cartesian grid with box geometry (Figure 4.11).  The model dimensions are 366 

m × 671 m × 52 m discretised into 60 × 220 × 45 grid cells.  The model represents a 

part of the Brent sequence, consisting of the Tarbert formation (first 20 layers) and the 

Upper Ness formation (remaining 25 layers).  The Tarbert formation model is a 

progradding near-shore environment, consisting of stacking patterns of sand bodies of 

different characteristics (Figure 4.11).  The Upper Ness formation model contains fluvial 

channels bounded by shales (Figure 4.11).  We rescale the original petrophysical properties 

to induce more significant changes in the poro-mechanical simulations, as suggested by 

Rutqvist & Stephansson (2003).  We preserve the original porosity-permeability 

relationships for the four facies (fine sand, sand, coarse sand, and shale).  Mechanical 

properties such as Young’s modulus, Biot’s coefficient and rock density are assigned to 

each facies in the model using the data from Graham (1997) for consolidated sandstones 

and Molina et al.  (2017) for shales.  Thus, the model is mechanically heterogeneous.  The 

porosity and permeability ranges and Young’s modulus distribution across the facies for 

the Tarbert and Upper Ness formations are depicted in Figure 4.11 and Table 4.3.   

 

We study Tarbert and Upper Ness formations separately due to their inherently different 

characteristics.  However, both formations are examined under the same operational 

conditions, assuming a 5-spot injection pattern where all wells are BHP constrained.  Each 

model is subject to production-induced poro-mechanical effects.  There is no lateral 

displacement on any of the vertical sides, the bottom of the model cannot move vertically, 

and the top is free to displace in all directions.  In a similar way to the box model case, 

before commencing production-injection operations the permeability of Tarbert and Ness 

formations is subjected to the initial stress state according to the defined mechanical 

boundary conditions, initial reservoir pressure, input properties and parameters listed in 

Tables 4.3 and 4.4.  The hydrodynamical simulation when poro-mechanics are neglected 

utilises the mechanically initialised permeability, which remains unaltered during the 

whole simulation.  Thus, the permeability before stating production operations for the 

simulation case that considers poro-mechanics is identical to the simulation case that 

neglects poro-mechanics. 
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Figure 4.11.  Modified reservoir properties of the SPE 10 model showing Young’s modulus for each facies (a and d), 

porosity histograms (b and e), and horizontal permeability histograms (c and f) for the Tarbert (upper row) and Upper 

Ness Formations (lower row), respectively.   

 

Parameter Value Unit 

Shale  36 GPa 

Fine Sand  15 GPa 

Sand  10 GPa 

Coarse Sand  5 GPa 

Table 4.3: Young's modulus per facies for SPE 10. 

 

Parameter Value Unit 

Biot's coefficient 1 - 

Poison's ratio 0.25 - 

Bulk density 2650 kg/m3 

Fluid density 1000 kg/m3 

Fluid viscosity 1 cP 

Initial reservoir pressure 148.2 bar 

Injector BHP 163.1 bar 

Producer BHP 133.4 bar 

Table 4.4: Input data for SPE 10. 
 

4.4.2.2 Studied Poro-mechanical Effect on the SPE 10 Model Formations 

A considerable reduction of the reservoir permeability for the Tarbert Formation, as well 

as a noticeable change in permeability distribution, can be observed when considering 

poro-mechanics in the simulations (Figure 4.12).  The impact of the rock stiffness on the 

permeability change is most pronounced in the softest zones (see the coarse sand facies 

in Figure 4.11), leading to a permeability reduction of up to 300 mD.  Furthermore, changes 

in flow paths between well pairs (see well pair INJ3-PROD1 in Figures 4.13 and 4.14) and 

well productivity can be observed.  Well inflow rates in each layer are significantly 

altered, leading to a 50% reduction in overall inflow at the producer (Figure 4.15).  The 
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reduction of reservoir productivity and injectivity results in a delay in the breakthrough 

time (Figure 4.16) and subsequently slower recovery, indicating that the complex interplay 

of poro-mechanics and reservoir dynamics warrants further analysis using full-physics 

simulations. 

 

 

Figure 4.12.  Distribution of the horizontal permeability of a stress-sensitive Tarbert formation when neglecting poro-

mechanics (a), when including poro-mechanics (b), and histogram comparing the permeability distributions when 

neglecting and including poro-mechanics (c). 

 

 

Figure 4.13.  Comparison of influence pore volume after 0.1 pore volumes have been injected for the reservoir cross-

section that contains the wells INJ2-PROD-INJ3 (a and c) and INJ1-PROD1-INJ4 (b and d) for the Tarbert formation 

depicted in Figure 4.11 when neglecting (upper row) and including (lower row) poro-mechanics. 

 

 

Figure 4.14.  Reservoir partitioning between injector-producer pairs for the Tarbert formation when neglecting poro-

mechanics (a), when including poro-mechanics (b), and histogram comparing the frequency of the cell-values of each 

well pair region after 20 pore volumes have been injected when neglecting and including poro-mechanics (c). 
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Figure 4.15.  Comparison of the reservoir productivity when neglecting and including poro-mechanics for the Tarbert 

formation showing the cumulative flux per perforated layer from bottom to top of the reservoir (a) and flux per 

perforated layer (b). 

 

 

Figure 4.16.  Comparison of cumulative injected volume (a), swept volume (b), oil recovery factor (c), and the ratio of 

produced concentration to the produced total liquid rate of all injector-producer well pairs (d) for the Tarbert Formation 

when neglecting and including poro-mechanics.  The secondary axes in the upper part of each plot represent the 

equivalent actual time assuming the present flow field in the reservoir remains constant.   
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In the Upper Ness formation, poro-mechanical effects only cause slight changes resulting in a subtle overall 

reduction of the reservoir permeability (Figure 4.17).  However, this small reduction influences the change 

in reservoir connectivity (Figures 4.18 and 4.19), causing a 32% reduction in the inflow rate and significant 

modification of the inflow profile (Figure 4.20).  The reduction of reservoir productivity and injectivity 

results in longer oil recovery times and a slight delay in breakthrough times (Figure 4.21).  The substantial 

change in reservoir productivity suggests that even if the heterogeneity of mechanical properties causes 

only minor changes in permeability, the impact on reservoir performance can be significant and, as for the 

Tarbert formation, the behaviour should be studied in further detail using the appropriate full-physics 

simulations. 

 

 

Figure 4.17.  Distribution of the horizontal permeability of a stress-sensitive Upper Ness formation when neglecting 

poro-mechanics (a), when including poro-mechanics (b), and histogram comparing the permeability distributions when 

neglecting and including poro-mechanics (c). 

 

 

Figure 4.18.  Comparison of influence pore volume after 0.1 pore volumes have been injected for the reservoir cross-

section that contains the wells INJ2-PROD-INJ3 (a and c) and INJ1-PROD1-INJ4 (b and d) for the Upper Ness 

formation depicted in Figure 4.11 when neglecting (upper row) and including (lower row) poro-mechanics. 

 

 

Figure 4.19.  Reservoir partitioning between injector-producer pairs for the Upper Ness formation when neglecting poro-

mechanics (a), when including poro-mechanics (b), and histogram comparing the frequency of the cell-values of each 

well pair region after 20 pore volumes have been injected when neglecting and including poro-mechanics (c). 
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Figure 4.20.  Comparison of the reservoir productivity when neglecting and including poro-mechanics for the Upper 

Ness formation showing the cumulative flux per perforated layer from bottom to top of the reservoir (a) and flux per 

perforated layer (b). 

 

 

Figure 4.21.  Comparison of cumulative injected volume (a), swept volume (b), oil recovery factor (c), and the ratio of 

produced concentration to the produced total liquid rate of all injector-producer well pairs (d) for the Upper Ness 

Formation when neglecting and including poro-mechanics.  The secondary axes in the upper part of each plot represent 

the equivalent actual time assuming the present flow field in the reservoir remains constant.  The oscillations that are 

visible at 𝜏𝑚𝑎𝑥 = 200 days in Figure 4.21(a) are purely numerical. 
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Next, we compare the impact of poro-mechanics on fluid flow for Tarbert and Upper Ness 

formations using the  𝐹 − 𝛷 curves, dynamic Lorenz coefficient 𝐿𝑐, and the permeability 

quotient to define the change in the spatial distribution of permeability using the grid cell-

based quotient operator (Henrici, 1964) in its percentage form 𝑄𝑥 = [(𝑥(𝒖) 𝑥𝑖𝑛𝑖⁄ ) − 1] ×

100, which quantifies the percentage of change between the poro-mechanically-altered 

quantity 𝑥(𝒖) to the original quantity 𝑥𝑖𝑛𝑖.   

 

The poro-mechanically induced changes in the Upper Ness and Tarbert formations 

models cause 𝐿𝑐 to increase, which indicates an increase in the dynamic heterogeneity 

and decrease in sweep efficiency (Figure 4.22).  As discussed above, the increased dynamic 

heterogeneity, which changes flow paths and connected pore volumes, also alters the 

production profiles (Figures 4.16 and 4.21).  The change in flow paths (Figure 4.13, 4.14, 4.18 and 

4.19) are a direct consequence of the spatial changes in the permeability, which lead to 

permeability quotients ±8% for the Upper Ness formation and −100% and +30% for the 

Tarbert formation (Figure 4.22).  Although the permeability quotient for the Upper Ness 

formation is small compared to that of the Tarbert, the Lorenz coefficient increases by 

23% for the Upper Ness but only 6% for the Tarbert formation, this counter-intuitive 

behaviour of the permeability reduction and changes in 𝐿𝑐 indicates that the impact of 

poro-mechanics on the reservoir dynamics is more severe for the Upper Ness formation 

where the heterogeneity in permeability is more randomly distributed in comparison to 

the Tarbert formation with its extensive and continuous sand bodies, which results in a 

more uniformly distributed permeability.  Hence, the relatively small permeability change 

in the Upper Ness formation causes more pronounced alterations in flow paths and 

displacement efficiency.  These results indicate how important the inclusion of poro-

mechanics can be for reliable reservoir performance forecasts because spatial changes in 

permeability can affect flow paths, connected pore volumes, and ultimately the recovery 

efficiency in unexpected and non-intuitive ways.   
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Figure 4.22.  Comparison of 𝐹 − Φ curves for the Tarbert formation and Upper Ness formation (a), and the permeability 

quotient for the Tarbert formation (b) and Upper Ness formation (c) to contrast the changes in permeability due to 

production-induced poro-mechanical changes. 

 

As the last test, we assess the influence of the stress-dependent permeability model on the 

computation of dynamic estimates for the SPE10 model.  We employ the same model 

configuration and conditions described in Figure 4.11 and Tables 4.3 and 4.4 but consider 

three different stress-dependent permeability models in addition to the normalised 

Kozeny-Carman (KC) model (Equation 2.36).  The additional stress-dependent models 

are that of Bai and Elsworth (BE) (1994), Kozeny-Poiseuille (KP), and the polynomial 

law function (PLF) model with an exponent 𝑛 = 10 to represent the sandstones 

lithologies.  Recall that these models are summarised in Section 2.10.2 in Equations 2.37 

and 2.39. 

 

We observe that all stress-dependent permeability models showed an overall reduction in 

permeability (Figure 4.23) with respect to the original permeability.  However, some stress-

dependent permeability models seem to be more sensible to compaction, for example, the 

KP and PLF models present a more left-skewed permeability distribution and a higher 

frequency of zero-permeability values than the other models for both, the Tarbert and 

Upper Ness formations.  In contrast, the BE model shows only subtle changes in the 

permeability distribution.  Note that the discrepancies in permeabilities between stress-

dependent models are a result of the assumptions inherent to each stress-dependent model 

(e.g., specific geometries of the pore space, distribution of stress in pores and grains, 

laboratory data), which have been discussed in Section 2.10.2. 
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In addition, the alteration of permeability across the reservoir models induces significant 

discrepancies in connected pore volumes within injection-production wells (Figure 4.24).  

The discrepancies observed in reservoir connectivity are the result of different and uneven 

collapsed pores and the resulting low permeability values in the reservoir models obtained 

for the different stress-dependent permeability models. 

 

 

Figure 4.23.  Histogram of horizontal permeability using the stress-dependent permeability models of Bai & Elsworth 

(1994) (a and e), Normalised Kozeny-Carman (b and f), Kozeny-Poiseuille (c and g), and Polynomial Law Function (d 

and h) for the Tarbert Formation (upper row) and Upper Ness Formation (lower row).  Note that the original 

permeability (w/o poro-mechanics) is used as a reference in all the histograms. 

 

 

Figure 4.24.  Histograms of pore volume connected within injection-production wells for the Tarbert Formation (a) and 

Upper Ness Formation (b) using different stress-dependent permeability models (Equations 2.36 to 2.39). 

 

We observe a greater discrepancy in the characterisation of the flow patterns for the 

Tarbert formation (Figure 4.25) compared to the Upper Ness formation (i.e., the 

overlapping curves in Figure 4.25).  The discrepancies in reservoir connectivity for the 

different stress-dependent permeability models are more significant for the Tarbert 

formation compared to the Upper Ness formation.  The different heterogeneities in the 

flow paths for the Tarbert formation cause distinct sweep efficiencies and recovery 
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profiles (Figure 4.26).  The negligibly small differences in the dynamic Lorenz coefficients 

for the Upper Ness formation (Figure 4.25) are reflected in the recovery profiles (Figure 

4.26) where we observe identical recovery efficiencies, which indicates that the alteration 

of the permeability heterogeneity is similar for all the stress-dependent permeability 

models. 

 

 

Figure 4.25.  Comparison of F-Φ curves for the Tarbert formation (a) and Upper Ness formation (b) using different 

stress-dependent permeability models presented in (Equations 2.36 to 2.39). 

 

 

Figure 4.26.  Comparison of production profiles for the oil production rate (a and e), the produced concentration rate (b 

and f), recovery factor (c and g), and the ratio of produced concentration to produced total liquid rate (d and h) using 

different stress-dependent permeability models (Equations 2.36 to 2.39) for the Tarbert Formation (upper row) and 

Upper Ness Formation (lower row).  The oscillations that are visible for the polynomial law function series in 4.26(a) 

to 4.26(d) are purely numerical. 
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When accounting for the poro-mechanical effect, all stress-dependent permeability 

models capture the tendency of the overall reduction of permeability (Figure 4.23) and 

productivity (Figure 4.26).  However, important differences are observed in the 

breakthrough time and sequence of arrival times for the injected concentration (Figure 

4.27) for the different injectors.   

 

  

Figure 4.27.  Comparison of the sequence of tracer arrival of the injected concentration for the different injectors (INJ1, 

INJ2, INJ3, and INJ4) at the producer (PROD1) (a and b), and visualisation of the breakthrough times through the ratio 

of produced concentration to produced total liquid rate vs injected pore volume (b and d) using different stress-

dependent permeability models (Equations 2.36 to 2.39) for the Tarbert Formation (upper row) and Upper Ness 

Formation (lower row).  The oscillations that are visible for the polynomial law function series in Figure 4.27(d) are 

purely numerical. 

 

The presented examples illustrate that for our steady-state hydrodynamical-poro-

mechanical coupling, the choice of stress-dependent permeability model is a first-order 

control that impacts the estimated deformation of the reservoir and subsequent changes 

in the fluid flow because the permeability acts as the non-linear coupling term.  

Consequently, the choice of stress-dependent permeability model is not trivial and 

requires a careful analysis, which can be performed efficiently with our new coupled 

hydrodynamical-poro-mechanical flow diagnostics approach.   

 

Although the obtained results can be simulated using traditional coupled reservoir 

simulators, our proposed methodology proves computational efficiency since reduced 

computing time was required to o a first insight into the poro-mechanical behaviour of 

the reservoir models.  For this particular example, the entire computations were carried 

out on a standard desktop PC for the Tarbert and Ness formations, and it took only 16 and 
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23 minutes to simulate the whole workflow, respectively.  Such fast computations allow 

us to analyse a much wider range of geological scenarios, parameter combinations, and 

well patterns, and hence enable us to screen and explore a broader range of uncertainties 

before selecting models and scenarios for more detailed full-physics simulations using 

appropriate clustering and ranking techniques (Caers & Scheidt, 2011; Scheidt & Caers, 

2009; Park et al., 2013).  Performing similar screening simulations would likely take days 

using coupled full-physics simulations.  Hence the proposed extended flow-diagnostics 

framework is a natural pre-processing that helps to accelerate but does not replace, 

coupled process modelling and modern uncertainty quantification workflows for poro-

mechanical studies. 

 

4.5 Summary 

In this chapter, the integration of poro-mechanics with traditional flow diagnostic 

calculations for single-porosity reservoirs was established.  We developed a sequential 

poro-elastic coupling (Equations 4.4 and 4.5) between the steady-state fluid flow and the 

rock deformation problem (Equations 2.12 and 2.17) considering stress-dependent 

permeabilities (Equations 2.36 to 2.39) that act as a coupling term.  By first solving the 

poro-mechanical problem and then executing the computationally efficient flow 

diagnostics simulations, the impact of the change in the reservoir flow field due to the 

poro-mechanically altered petrophysical properties is investigated.  The spatial 

distribution of the time of flight and the stationary produced or injected concentrations is 

utilised to characterise reservoir dynamics, sweep efficiency, and well inflow rates.  The 

framework was implemented in MRST and validated with the solutions from a 

commercial software package.  Using two case studies of the benchmark SPE 10 model, 

we demonstrated the capability of our extended flow diagnostics framework to quickly 

screen how the complex interactions between poro-mechanical and hydrodynamical 

processes could alter petrophysical properties and hence affect subsequent predictions of 

the reservoir dynamics.  The outcomes obtained from the proposed poro-mechanically 

informed flow diagnostics are strongly dependent on the non-linear coupling term, i.e., 

the stress-dependent permeability model.  Therefore, the choice of the stress-dependent 

permeability model is a first-order control on the solution for the interaction between the 

deformation and fluid flow of the system, so as should be examined carefully to avoid 

incurring in significant uncertainty. 
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The extended flow-diagnostics framework can be used to complement and accelerate 

modern coupled process simulation studies that aim to assess and quantify the impact of 

a broader range of geomechanical and hydrodynamical uncertainties as well as 

engineering parameters (e.g., well placements) on reservoir performance.  The proposed 

methodology proves to be a computationally efficient first screening to assess the likely 

importance of poro-mechanics at a significantly reduced computing time before more 

detailed reservoir simulation studies.  By using the extended flow diagnostics framework, 

it is now possible to quickly screen, compare and contrast, and rank different reservoir 

models to identify a smaller number of representative reservoir models that need to be 

taken forward for more detailed, but also more time-consuming full-physics simulation 

studies, while still honouring the full range of uncertainties inherent to the reservoir. 
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Chapter 5– PORO-MECHANICAL COUPLING WITH FLOW 

DIAGNOSTICS FOR DUAL-POROSITY MODELS  

5.1 Introduction 

This chapter introduces the extension of the coupled poro-mechanics and flow diagnostics 

framework for single-porosity reservoirs discussed in Chapter 4 to account for dual-

porosity systems using the augmented flow diagnostics framework of Spooner et al. 

(2019, 2021). 

 

Recall that NFR where the fractures provide the main flow paths and the matrix the main 

storage are often modelled using the dual-porosity approach (Barenblatt et al., 1960; 

Warren & Root, 1963).  This model idealised the fractured rock as disaggregated matrix 

blocks surrounded by fracture networks.  These matrix and fractures are considered 

porous media with different hydraulic and hydro-mechanical characteristics which 

communicate through a mass transfer function.  This model is generally applicable to 

Type II reservoirs where the dual-continuum approach models fluid flow and mechanical 

deformation in the fractures and matrix. 

 

As in the previous chapters, the proposed algorithm is implemented in MRST, validated 

through comparison with a commercial software package, and then demonstrated using a 

case study based on a fractured carbonate reservoir analogue which covers a range of 

petrophysical properties and constitutive relationships.  In addition, we propose an 

alternative procedure to deal with the non-linear and time-dependent behaviour between 

the dual-porosity time of flight and the fracture-matrix fluid exchange involved in the 

existing flow diagnostics framework for dual-porosity NFR (Spooner et al., 2019, 2021). 

 

5.2 Model Formulation 

The poro-mechanical informed dual-porosity flow diagnostics discussed in this chapter 

describes the deformation of the system using the dual-continuum poro-elastic theory 

(Equations 2.12, 2.20 to 2.27).  In contrast to the single-porosity formulation in Chapter 4, 

the first part of the dual-continua formulation starts with the computation of the 

macromechanics (i.e., overall displacement of the system) of the fractured rock using a 

composite representation (i.e., equivalent continuum model representing matrix and 

fractures properties) based on the poro-elastic theory within the macroscopic framework 
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of Coussy (1995, 2004).  The properties of the composite are averaged apparent 

macroscopic properties, obtained from homogenising the properties of the matrix and 

fractures.  In this chapter, we consider iso-stress conditions for which the homogenisation 

of the properties that defined the composite are given by the Reuss average (Equation 

2.19).  The second part of the formulation employs micromechanics and the mixture theory 

to allocate the macroscopic stress and strain of the composite to the matrix and fractures 

(Equations 2.26 and 2.27).  The macroscopic relations with the micro-mechanical 

constitutive model are based on Ashworth & Doster’s (2019b) model and their 

corresponding coefficients are described in Appendix C.1 (Tables C.1 and C.2).  Lastly, this 

framework uses as the coupling term the stress-dependent fracture permeability model 

defined by Bai et al.  (1997) to relate the model deformation (Equations 2.12, 2.26 and 2.27) 

to changes in fluid flow in the fractures (Equation 2.17).   

5.2.1 Solution Strategy 

The numerical solution strategy discussed in Section 4.2.1 is applied here for the solution 

of the macromechanics used in the composite representation for the interlink between the 

fractured rock deformation and the fluid flow (Equations 2.12 and 2.17).  Recall that the 

solution of the sequential non-linear system (Equations 4.4 and 4.5) presented in Section 

4.2.1 is iteratively solved.  In contrast to the single-porosity framework, the 

transmissibility matrix 𝐓 contains the stress-dependent fracture permeability 𝐤𝟐(𝐮
𝑐), and 

the coefficient matrices 𝐊 and 𝐐 contain the mechanical parameters of the composite.  

The additional steps that are conducted in the dual-continuum approach involved the 

calculation of matrix and fracture strains 𝛆1(𝐮
𝑐,𝑟+1∗) and 𝛆2(𝐮

𝑐,𝑟+1∗) (discretised 

Equations 2.26 and 2.27) through the solution of the displacement field of the composite 

𝐮𝑐,𝑟+1∗.  Subsequently, fracture strain is employed to calculate the ∆𝑏 and 𝐤𝟐(𝐮
𝑐,𝑟+1∗) to 

then re-compute 𝐓(𝐮𝑐,𝑟) for the next iteration of fluid pressure 𝐩𝑐,𝑟+1.  This procedure is 

repeated until the convergence criterion is met, otherwise 𝐩𝑐,𝑟+1 becomes the initial guess 

for the new iterative loop.   

 

5.2.2 Assumption and Limitations of Poro-mechanically Informed Dual-Porosity 

Flow Diagnostics 

The proposed poro-mechanically informed dual-porosity flow diagnostics are established 

based on steady-state conditions assuming incompressible fluid flow driven by pressure 

gradients between injectors and producers.  Recall that the dual-porosity flow diagnostics 

formulation (Spooner et al., 2021) assumes that the non-linear effects arising from 
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viscosity contrast, capillary forces, and gravity are negligibly small in the fractures, and 

that the fluid exchange between the fractures and rock matrix can be represented by the 

transfer rate coefficient 𝛽.  Spooner et al.  (2021) propose several linearised formulations 

for a retardation factor 𝑅(𝛽), for example, based on the Aronofsky model (Aronofsky et 

al., 1958), to approximate the delay in the advancement of the fluid front in the fractures 

arising from the fracture-matrix fluid exchange (Equation 2.72).  𝑅 can be spatially 

variable if the matrix properties are not uniform.  The delay in the fluid front advancement 

leads to a different formulation for the time-of-flight 𝜏∗ in the fractures (Equation 2.71).  

This revised 𝜏∗ is capable to predict the order at which the production wells experience 

the breakthrough of the injected fluid with reasonable accuracy if the appropriate 

formulation of 𝑅 is chosen based on the strength of the fracture-matrix transfer.  Note that 

the dual-porosity concept is no longer valid if there is no clear separation of time scales 

between flow in the fracture and matrix substantial regions, i.e., if the reservoir is not a 

Type II reservoir.  In scenarios where the fractures only contribute to matrix flow (Type 

III reservoir) or the matrix has no contribution to storage (Type I reservoir), the single-

porosity approach from Chapter 4 should be used. 

 

To overcome the limitation of assuming a linearised formulation of 𝑅, we proposed an 

alternative formulation for 𝑅 to account for transient and non-linear effects in how 

fracture-matrix exchange processes impact the advancement of the fluid fronts.  For 

simplicity, we assume that the exchange is driven by spontaneous imbibition and that 

gravitational forces are absent.  We define 𝑡𝑗
∗ as the net residence time in a grid block 𝑗, 

assuming that flow in the grid block is influenced by the advancing fluid phase, whose 

location is approximated by the concentration field 𝑐(𝑡, 𝒙).  Consequently, 𝑡∗ equals the 

difference between the largest travel time and the travel time between an injector and the 

grid block 𝑗.  The 𝑡∗ is given by 

 

 𝑡∗(𝜏∗) = 𝜏𝑓
∗

𝑚𝑎𝑥
− 𝜏𝑓

∗

𝑗
, with 𝜏𝑓

∗

𝑚𝑎𝑥
≤
𝑃𝑉𝑗 𝑐𝑗

𝑓𝑗
, (5.1) 

 

where 𝜏𝑓
∗ is the forward time of flight and 𝜏𝑓

∗

𝑚𝑎𝑥
 is the established conditional of 

maximum forward time of flight.  𝜏𝑓
∗

𝑚𝑎𝑥
 allows us to identify if a given grid block 𝑗 with 

pore volume 𝑃𝑉𝑗 and a volumetric flow rate 𝑓𝑖 has been contacted by the concentration 𝑐 

that was injected at a given well.  In this way, we can also track the transient movement 

of the displacement front.   
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We assume that the fluid exchange between fracture and matrix occurs only once the 

displacement front has passed completely through the grid block, i.e., when 𝑐𝑗 = 1, 

assuming that the maximum concentration is 1.  Consequently, the filling time 𝑡𝑗
𝒻
 required 

filling completely the pore volume of the fracture 𝑃𝑉2 with the corresponding volumetric 

flow rate 𝑓𝑖 of a grid block 𝑗 is given by  

 

 𝑡𝑗
𝒻
= 𝑃𝑉2𝑗/𝑓𝑗. (5.2) 

 

The non-linearity inherent to the dual-porosity time of flight and the retardation factor 

(Equations 2.71 and 2.72) can now be solved using an iterative sequential solution 

described as follows: 

 

1. Estimate the initial forward time of flight as 

 

 𝐯 ∙ 𝛻𝜏𝑓
𝑖𝑛𝑖 − 𝜙 = 0 then 𝑡∗,𝑟 = 𝜏𝑓𝑚𝑎𝑥 − 𝜏𝑓

𝑖𝑛𝑖. (5.3) 

 

 

2. Evaluate if the fluid front has passed through a grid block by evaluating the 

condition 

 

 If 𝑡∗,𝑟 ≥ 𝑡𝑗
𝒻
  then {

𝑅𝑟 = 1 + 𝑅𝐹∞(1 − 𝑒
−𝛽𝑡∗,𝑟)  

𝐯 ∙ 𝛻𝜏𝑓
∗,𝑟 − 𝜙𝑅𝑟 = 0  

. (5.4) 

 

3. Perform a fixed-point iteration and check for convergence at iteration level 𝑟 

 

 
  ‖𝜏𝑓

∗,𝑟 − 𝜏𝑓
𝑖𝑛𝑖‖ ≤ 𝜖 ⟹  𝜏𝑓

∗,𝑟 = 𝜏𝑓
𝑖𝑛𝑖  otherwise

 𝑡∗,𝑟+1 = 𝜏𝑓
∗,𝑟

𝑚𝑎𝑥
− 𝜏𝑓

∗,𝑟

𝑗
  and update Equation 5.3 with 𝑟 = 𝑟 + 1

}. (5.5) 

 

4. If the solution has converged, calculate 𝑅 as 

 

 𝑅 = 𝑅(𝐱, 𝑡∗ = 𝑡∗(𝜏∗)) = 1 + 𝑅𝐹∞(1 − 𝑒
−𝛽𝑡∗,𝑟+1). (5.6) 
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5.2.3 Additional Stress-Dependency on Matrix Rock and Two-Phase Properties 

From the solution of the effective strains of the matrix and fractures (Equations 2.26 and 

2.27), additional stress-dependent properties can be estimated.  We implemented the 

stress-dependent matrix permeability models discussed in Section 2.10.2 (Equation 2.30 

to 2.34) and one semi-analytical model that accounts for stress-dependency in relative 

permeabilities and capillary pressure for fractured carbonates (Haghi et al., 2018).  The 

inclusion of these additional calculations has the purpose of investigating their effect on 

the fracture-matrix fluid exchange, which will be assessed with subsequent dual-porosity 

flow diagnostics estimates via a transfer rate constant β (Equation 2.8). 

 

5.2.4 Steady-State Poro-mechanical Coupling for Dual-Porosity in MRST 

The framework was implemented in the new module ‘SSHydroMech_Sim4’ in MRST.  

To execute the coupling, two main functions need to be run sequentially: First, the 

function ‘MechanicModelSSDPf’ is executed to define the mechanics problem by 

imposing the initial boundary conditions and body forces, to compute the constitutive 

coefficients and properties of the composite and its constituents and to obtain the VEM 

operators for setting up the initial coefficient matrices  (Equations 4.3).  Second, the 

function ‘SSHydroMech_Sim4’ is executed to incorporate the discretised steady-state 

poro-elastic problem (Equations 4.4 and 4.5) and leverage the operators of the 

incompressible flow and the mechanics modules of MRST to solve the coupled system 

(Equation 4.3).  In function ‘SSHydroMech_Sim4’, the solution of the coupled system is 

achieved by iterating sequentially between each module through the interface module 

‘updateStrainDepProps4B4’, which includes stress-dependent fracture properties 

(Equations 2.30 to 2.34) that act as a coupling term.  The function 

‘updateStrainDepProps4B4’ also includes stress-dependent matrix properties (Equations 

2.35 to 2.39).  The structure of these implemented functions is summarised in Figure 5.1.  

The implementation details and source code are described in Appendix C.1. 
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Figure 5.1.  Structure of the functions in MRST that solve the steady-state hydrodynamical-poro-mechanical coupling 

problem (Equations 2.12, 2.17, 2.20 to 2.27).   The underlined functions represent the new implementations in MRST 

as part of this thesis. 

 

Analogous to the workflow presented in Section 4.2.1, the poro-mechanically informed 

dual-porosity flow diagnostics are executed sequentially; the coupled poro-mechanical-

hydrodynamical problem is solved first before carrying out the dual-porosity flow 

diagnostics calculations.  The algorithm used in this thesis is shown in Figure 5.2.  In 

addition, we have implemented the optional capability to account for the effect of stress-

dependency of fracture, matrix, and two-phases flow properties on the fracture-matrix 

fluid exchange through the transfer rate constant 𝛽.  The function 

‘stressDepSatFunctRock_TransferFunctions’ was implemented for this purpose.   

 

 

Figure 5.2.  Numerical algorithm for the poro-mechanical integration with the dual-porosity flow diagnostics framework 

in MRST. 
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5.3 Validation Case for Hydro-mechanical Solution 

As in Section 4.3, the proposed framework was validated through a comparison with a 

reference numerical solution from a commercial software package (ECLIPSE-VISAGE), 

the workflow is discussed in detail in Appendix C.2.  The only difference between the 

validation of the single-porosity and dual-porosity implementation is the allocation of 

strains to the fractures and matrix, for which we created an automatic workflow to link 

the coefficients that were used for the micromechanics (Ashworth & Doster, 2019b) to 

the geomechanical simulations (Appendix C.1).   The solution approaches were compared 

considering a two-dimensional problem with dimensions of 100 m × 100 m, with a grid 

resolution of 500 × 500 cells.  The model assumes poro-elasticity and represents a 

homogeneous and isotropic dual-continuum.  Fluid is injected and withdrawn from the 

model through an injector-producer pair located on opposite sides of the domain.  The 

model is subjected to gravitational load and isostress conditions under lateral confinement 

and no vertical displacement at the bottom of the domain.  The fluid and rock properties, 

boundary conditions, and input parameters are given in Table 5.1 and illustrated in Figure 

5.3.  Note that the commercial simulator is run under steady-state conditions to enable a 

direct comparison of our implementation (Appendix C.2). 

 

 

Figure 5.3.  Setup of the 2D dual-continnum poro-elastic problem used for validating the dual-continnum poro-

mechanics implementation in MRST. The whole system (i.e., matrix and fractures) is subjected to a gravity load with 

lateral confinement and fully constrained displacement at the bottom and perturbed by an injector-producer pair. The 

matrix (a) and the fracture (b) systems have homegenoeus and isotropic petrophysical and mechanical properties as 

reported in Table 5.1. 
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Parameter Value Unit 

Model dimensions 300 × 300 × 30 m 

Grid division (nx × ny × nz) 100 × 100 ×  1 cells 

Shape factor 1 m-2 

Fracture permeability 100 mD 

Matrix permeability 0.01 mD 

Fracture porosity 0.000343 - 

Matrix porosity 0.1 - 

Transfer rate coefficient  (oil-wet system) 4.00 ×10-11 sec-1 

Transfer rate coefficient  (water-wet system) 8.8 ×10-11 sec-1 

Water density 1000 kg/m3 

Oil density 800 kg/m3 

Water viscosity 1 cP 

Oil viscosity 3.4 cP 

Initial reservoir pressure 148.2 bar 

Injector BHP 150.2 bar 

Producer BHP 140.2 bar 

Fracture Young’s Modulus 30 ×108 Pa 

Matrix Young’s Modulus 30 ×109 Pa 

Composite Young’s Modulus 29.29×109 Pa 

Fracture Volume Fraction 0.0068 - 

Matrix Volume Fraction 0.9932 - 

Matrix and Fracture Poison's Ratio 0.25 - 

Table 5.1:  Input data for the 2D poro-mechanical problem. 

 

The accuracy of the implemented framework is analysed in the same way as it was 

presented in Section 4.3 by calculating the relative error (Equation 4.6) but in this case for 

the fracture strains and fracture permeability.  Our steady-state hydrodynamical-poro-

mechanical solution agrees well with the one obtained from the commercial simulator 

(Figure 5.4).  As in Section 4.3, the main discrepancies between the two numerical 

implementations are present in the solution of the stress field; we attribute these 

discrepancies to the different discretisation methods (FEM vs VEM), tolerance criteria, 

and the solution techniques used by the commercial software and MRST.  Note that the 

solution obtained from our implementation (i.e., simulation time was 1 minute) was 50 

times faster than that obtained using the commercial simulator.   
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Figure 5.4.  Simulation results for the dual-continuum poro-elastic problem described in Figure 5.3, showing the 

macroscopic stress (a), fracture strain (b), matrix strain (c), and fracture permeability (d), and the relative error between 

the VEM implementation and a commercial solver for stress (e), strain (f), and the comparison of relative error for 

stress (e), strains (f and g), and fracture permeability (h) using the 0ss-dependent permeability model described in 

Equation 2.30. 

 

5.4 Application: Linking Hydrodynamical-Poro-mechanical Simulations with 

Flow Diagnostics  

5.4.1 Illustrative Example of the Non-linear Retardation Factor  

We test the linear and non-linear formulations for 𝑅 using three simple box models 

representing (1) a homogenous water-wet matrix, (2) a homogenous oil-wet matrix, and 

(3) a system with randomly distributed water-wet and oil-wet regions in the matrix.  All 

three scenarios have uniform fracture properties and a uniform matrix porosity and 

permeability.  The models have dimensions of 300 m × 300 m × 30 m and consist of 100 

× 100 × 1 grid cells.  An injector-producer pair is located in the opposite corners of the 

model and the wells are bottom hole pressure (BHP) constrained.  Gravity forces are not 

considered.  To focus on the impact of 𝑅, poro-mechanics are ignored.  The model 

properties are summarised in Figures 5.55.5 and 5.6, and Table 5.2.  The flow diagnostics 

calculations are compared against solutions from a commercial simulator. 
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Parameter Value Unit 

Model dimensions 300 × 300 × 30 m 

Grid division (nx × ny × nz) 100 × 100 ×  1 cells 

Shape factor 1 m-2 

Fracture permeability 100 mD 

Matrix permeability 0.01 mD 

Fracture porosity 0.000343 - 

Matrix porosity 0.1 - 

Transfer rate coefficient  (oil-wet system) 4.00 × 10-11 sec-1 

Transfer rate coefficient  (water-wet system) 8.8 × 10-11 sec-1 

Water density 1000 kg/m3 

Oil density 800 kg/m3 

Water viscosity 1 cP 

Oil viscosity 3.4 cP 

Initial reservoir pressure 148.2 bar 

Injector BHP 150.2 bar 

Producer BHP 140.2 bar 

Table 5.2:  Input data for the quarter-five-spot box models for testing different formulations for R. 

 

 

Figure 5.5.  Setup of the box models for testing different formulations for R.  The porosity and permeability for both 

matrix and fracture properties are homogeneous (a) for a uniformly water-wet matrix (case 1), a uniformly oil-wet 

matrix (case 2), and a matrix with both, oil-wet and water-wet regions (case 3) (b).  See Table 5.2 for further details. 
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Figure 5.6.  Relative permeability curves (a), capillary pressure curves (b), and matrix recovery due to spontaneous 

imbibition (c) as computed using Equation 2.7 for each rock type (RT) associated with a water-wet system (RT1) and 

oil-wet system (RT2). 

 

Figure 5.7 compares the production rates, flux allocations, and breakthrough times as a 

function of pore volume injected for the flow diagnostics results and the commercial 

simulators.  The proposed non-linear formulation for 𝑅 significantly improved the 

prediction of the breakthrough time and flux allocation compared to the linear formulation 

for 𝑅.  Although some difference remains between the full-physics results from the 

commercial simulator and the flow diagnostics results for the non-linear formulation for 

𝑅, the flow diagnostics characterise the displacement processes for all wettability 

scenarios.  Since flow diagnostics calculates the time of flight in a computationally 

efficient way, the inclusion of the iterative procedure to account for the non-linearity 

between the dual-porosity time of flight and 𝑅 did not incur in significant increment of 

the computing time.  For all the case studies, the increment of the computing time is 

approximately 20 per cent slower (i.e., 11 seconds) than with their respective cases using 

the linear R formulation.   

 

 

Figure 5.7.   Comparison of simulations results obtained using dual-porosity flow diagnostics with linear and non-linear 

formulations for R and commercial simulator for the oil-wet matrix (case 1) (a), water-wet matrix (case 2) (b), and the 

matrix with both, oil-wet and water-wet regions (case 3) (c). 

 

To further test the different formulations for 𝑅, we revised case 3 (i.e., matrix with both, 

randomly populated oil-wet and water-wet regions) in more detail and divided the matrix 
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into two uniform regions that are oil- and water-wet (Figure 5.8) to assess the strong 

dependency of the current R formulation on the wettability conditions of the porous 

medium due to its relation with β (Spooner et al., 2021).  Consequently, since our 

proposed R is an extension of R proposed by Spooner et al. (2021), we decided to 

investigate the applicability of our formulation at different wettability conditions, but 

most importantly to assess under which condition of wettability the proposed R shows 

better representativeness.  In this case (i.e., system with two regions of oil- and water- 

wet porous media), two BHP-constrained injectors are placed in each region and a BHP-

constrained producer is placed in the centre of the model.  As in the previous cases, the 

non-linear formulation (Equations 5.2 to 5.6) captures the full-physics simulation results 

qualitatively but not the sequential arrival of the fluid fronts at INJ1 and INJ2, which is 

caused by the different rates of fracture-matrix fluid exchange in the oil-wet (slower) and 

water-wet (faster) regions, which is poorly reflected in Figure 5.8(b), as the two fronts 

arrive almost at the same time at the producer.  Further work is needed to understand why 

the different advancements of the fluid fronts are not captured in the flow diagnostics 

here.  The results from this case study suggests that the implemented retardation factor 

𝑅=𝑅(𝑡∗𝜏∗) is preferably applicable for oil-wet systems for calculating dual-porosity flow 

diagnostics since represents slightly better the arrival of the fluid fronts than in water-wet 

systems. The presented non-linear R formulation will be employed in the next case studies 

and used in all case studies that will be presented in Chapter 6. 

 

 

Figure 5.8.  Comparison of simulations results obtained using dual-porosity flow diagnostics with a non-linear 

formulation for R and a commercial simulator, showing the box model geometry with two regions of wettability (a), 

the flux allocation (b), and the ratio of produced concentration to produced total liquid rate for injector-producer well 

pairs (c). 
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5.4.2 Simple Case: Box Model  

We now illustrate the integration of poro-mechanics with dual-porosity flow diagnostics 

by examining a 5-spot box model with the dimension of 300 m × 300 m × 50 m with 21 

× 21 × 20 grid cells.  All wells are BHP-constrained.  The model has a homogeneous 

porosity and permeability for the matrix and fractures whose two-phase properties are 

depicted in Figure 5.9.  The R formulation is considered non-linear.  There is no lateral 

displacement on any of the sides of the reservoir.  The bottom of the model cannot move 

vertically but the top is free to displace in all directions.  There are no acting forces or 

loads, effective stress is only affected by the production-injection process.  Note that our 

implementation in MRST allows for more complex boundary conditions such as 

prescribed displacements or applied loads and forces. 

 

 

Figure 5.9.  Relative permeability curves (a), capillary pressure curves (b), and matrix recovery due to spontaneous 

imbibition (c) as computed using Equation 2.7 associated with a water-wet system. 

 

The matrix continuum is divided into three regions (Figure 5.10).  The central part of the 

model (in a diagonal direction) represents a mechanically softer region while the other 

parts of the reservoir are mechanically stiffer.  The fracture continuum has homogeneous 

mechanical properties and the mechanical properties for the composite are computed 

assuming isostress conditions (Equation 2.19).  Before commencing injection and 

production, the permeability of the model is subjected to the initial stress state according 

to the mechanical boundary conditions, initial reservoir pressure, input properties, and 

parameters given in Figure 5.10 and Table 5.3.  This mechanically initialised permeability is 

used for the hydrodynamical simulation when poro-mechanics are neglected, i.e., no 

computation of the coupled poro-mechanical solution and no production-induced 

permeability alteration (w/o poro-mechanics case).  For the simulation when poro-

mechanics are considered, i.e., computation of coupled poro-mechanical and 

hydrodynamical solution with resulting permeability alteration (w/ poro-mechanics case), 

the mechanically initialised permeability represents the start of the simulation before 
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stress state is altered by the production-injection operation.  Therefore, the simulation 

cases that account for and neglect poro-mechanics have the same reference permeability. 

 

 

Figure 5.10.  Setup of a simple 5-spot poro-elastic dual-porosity problem in 3D showing the poro-elastic properties for 

the matrix (a), fractures (b), and composite (c).  There is no lateral displacement on the model sides, the bottom of the 

model is fixed, and the top can move in all directions.  See Table 5.3 for further details. 

 

Parameter Value Unit 

Model dimensions 300 × 300 × 50 m 

Grid division (nx × ny × nz) 21 × 21 × 20 cells 

Shape factor 1 m-2 

Mean fracture aperture 0.00346 m 

Fracture network spacing 0.25 m 

Fracture permeability 100 mD 

Matrix permeability 0.01 mD 

Fracture porosity 0.000343 - 

Matrix porosity 0.1 - 

Matrix volume fraction 0.995 - 

Transfer rate coefficient  4.00 ×10-11 sec-1 

Fracture Young's modulus  1 GPa 

Matrix young's modulus (stiff) 15 GPa 

Matrix Young's modulus (soft) 55 GPa 

Matrix and fracture Poison's ratio 0.25 - 

Bulk density 3000 kg/m3 

Water density 1000 kg/m3 

Oil density 800 kg/m3 

Water viscosity 1 cP 

Oil viscosity 3.4 cP 

Initial reservoir pressure 148.2 bar 

Injector BHP 150.2 bar 

Producer BHP 126.4 bar 

Table 5.3:  Input data for the 5-spot box model. 

 

Fracture and matrix permeabilities have changed (Figure 5.11) from their respective 

constant values to two bimodal distributions when accounting for poro-mechanics.  This 

change is caused by the different mechanical responses to the production-injection-

induced pore pressure changes in the stiffer and softer matrix regions.  For the open 
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boundary condition in the vertical direction, we observe a decrease in horizontal fracture 

permeability (along the yy-component) and a small increase in horizontal matrix 

permeability (along the yy-component) throughout the domain (Figure 5.11).  Because of 

the specific asymmetry of the problem, the qualitative behaviour of the vertical 

permeability is different.  Under different boundary conditions, the system shows 

different deformation behaviour.  Due to the computational efficiency our poro-

mechanically informed flow diagnostics enabled the investigation of diverse scenarios. 

 

 

Figure 5.11.  Comparison of horizontal permeability histograms when accounting for and neglecting poro-mechanics in 

the fractures (a) and matrix (b).  Note the shift to a bimodal distribution when poro-mechanics are considered. 

 

 

Figure 5.12.  Comparison of horizontal fracture permeability along yy-component (a and f), cell-based fluxes (b and g), 

𝜏∗ (c and h), 𝑙𝑜𝑔10(�̅�) (d and i), and well-pair regions (e and j) after 5 pore volumes have been injected for the simple 

box model when neglecting (upper row) and including poro-mechanics (lower row). 

 

Fracture permeabilities decrease by up to 34%, which occurs in the softer matrix region 

in the vicinity of the producer where the pressure change is the largest, causing subsequent 

changes in the flow rates and 𝜏∗ (Figure 5.12).  The overall flux is reduced, with the most 

significant decrease occurring between the injectors and the producer (e.g., INJ2, INJ4 
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and PROD1) in the stiff zone.  Consequently, 𝜏∗ and 𝑐 change, which impacts the average 

�̅�, reservoir partitioning, and well-allocation factors (Figure 5.12).  The temporal evolution 

for the production rates, the flux allocations for each injector-producer pair, and the ratio 

of produced concentration to produced total liquid rate for the injector-producer well pairs 

(Figure 5.13) from each injector confirm the observations from Figure 5.12 and highlights 

how the reservoir responds mechanically to the changes in effective stress caused by 

production and injection.   

 

Note that the ratio of produced concentration to produced total liquid rate for the injector-

producer well pairs indicates the order and strength of the concentration that was released 

for each injector and how is breaking through at the producer; for example, the 

concentration released at INJ1 reaches PROD1 first and therefore at that particular time 

the total produced concentration is only attributed to INJ (i.e., the ratio of produced 

concentration to produced total liquid rate equals one), as other injectors break through 

the producer the magnitude of the ratio of produced concentration to produced total liquid 

rate for each well pair will be allocated proportionally to the level of communication 

between well pair regions over time.  The flux allocations and 𝑐𝑝 also help to illustrate 

the arrival at different points in time of the realised concentrations coming from different 

injectors to the producer when accounting for poro-mechanics. 

 

We further highlight the impact of considering poro-mechanics at the well level.  Well 

inflow rates are significantly reduced, both in terms of cumulative inflow rates and inflow 

per reservoir layer (up to 17%) (Figures 5.13 and 5.14).  The decrease in inflow rates causes 

an increase in the time it takes to produce the reservoir (Figure 5.15), in addition to the 

more uneven sweep pattern (Figures 5.12 and 5.13).   
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Figure 5.13.  Comparison of well flow rates (a and b), flux allocation for injector-producer well pairs (c and d) and the 

ratio of produced concentration to produced total liquid rate for injector-producer well pairs (e and f) against 𝜏𝑚𝑎𝑥
∗  for 

the reservoir depicted in Figure 5.10 when neglecting (upper row) and including (lower row) poro-mechanics.   

 

 

Figure 5.14.  Comparison of the reservoir productivity when neglecting and including poro-mechanics for the cumulative 

flux per perforated layer from the bottom of the reservoir to the top of the reservoir (a) and the individual flux per 

perforated layer of the reservoir (b). 
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Figure 5.15.  Comparison of cumulative injected volume (a), swept volume (b), recovery factor (c), and the ratio of 

produced concentration to produced total liquid rate considering the overall contribution of all injector-producer well 

pairs (d) for the reservoir depicted in Figure 5.10 when neglecting and including poro-mechanics.    

 

We also study the impact of poro-mechanics on fracture-matrix fluid exchange (Equation 

2.72) for the simple box model (Figure 5.9).  While we use the reservoir properties shown 

in Table 5.3, the Young’s modulus of the fracture is set to 3 GPa to stay within the limit of 

constitutive relation to compute stress-dependent capillary pressure and relative 

permeabilities (Equations 2.42 to 2.48).  Again, we assume that fracture-matrix fluid 

exchange is dominated by spontaneous imbibition.  Uniform relative permeability and 

capillary pressure curves are assigned to the entire matrix.  These saturation functions, 

however, change due to the poro-mechanically induced stress changes in the reservoir, 

which impacts the transfer rate coefficient 𝛽 and hence the subsequent recovery behaviour 

for spontaneous imbibition given by the Aronofsky model (Aronofsky, et al., 1958) 
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(Figures 5.16 and 5.17).  Note that most of the changes in recovery behaviour are due to the 

shift in saturation endpoints (Table 5.4), which leads to significant a reduction in mobile 

oil saturations and reduces the recoverable oil in the matrix by up to 22%, resulting in 

even more pronounced changes in the production profiles (Figure 5.18) compared to the 

situation where only changes in permeability and porosity are considered (Figure 5.15). 

 

Regions 
swir sor krwmax krnwmax 

Mobile oil 

saturation         

(som=1-swirr-sor) 

Pressure 

Transfer 

rate 

coefficient 

  

(fraction) (fraction) (fraction) (fraction) (fraction) (bar) (sec-1) 

All regions                

(w/o Poro-mechanics) 
0.2160 0.3730 0.3870 1.0000 0.4110 0.1234 4.00 × 10-11 

Region 1                      

(w/ Poro-mechanics) 
0.3172 0.4228 0.3689 1.0000 0.2600 0.1278 1.35 × 10-11 

Region 2                      

(w/ Poro-mechanics) 
0.2502 0.3899 0.7112 1.0000 0.3599 0.1249 5.14 × 10-11 

Region 3                      

(w/ Poro-mechanics) 
0.3291 0.4287 0.3080 1.0000 0.2422 0.1283 1.74 × 10-11 

Table 5.4:  Relative permeability endpoints and transfer rate coefficients for the reservoir depicted in Figure 5.10. 

 

𝐿𝑐
∗  is not affected by poro-mechanics and is constant for all cases considered (𝐿𝑐

∗ = 0.6) 

because flow occurs only in the fractures where the dynamic heterogeneity is dominated 

by the flow symmetry, not the changes in permeability (Figure 5.12).  In contrast, the 𝐹 −

Γ curves show considerable variation because 𝛽 changes significantly due to poro-

mechanics, which in turn changes the amount of recoverable oil from the matrix (Figure 

5.19).  All these results indicate how important the inclusion of poro-mechanics can be for 

reliable reservoir performance forecasts.  While these results can be obtained using 

commercial reservoir simulators coupled to poro-mechanical simulators, our extended 

flow diagnostics approach provides computationally efficient first screening to assess the 

likely importance of poro-mechanics at much-reduced CPU time before commencing 

more detailed reservoir simulation studies.  For this particular example, our flow 

diagnostics were approximately 100 times faster than simulations carried out with 

commercial software packages, all the simulations were carried out on a standard desktop 

PC.   
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Figure 5.16.  Impact of poro-mechanics on relative permeability curves (a), capillary pressure curves (b), and matrix 

recovery due to spontaneous imbibition as computed using Equation 2.8 for each region in the simple box model (c). 

 

 

Figure 5.17.  Poro-mechanical effect on mobile oil saturation (a), transfer rate coefficient(c), and histogram displaying 

the frequency of the transfer rate coefficients (c) in the simple box model when neglecting and accounting for poro-

mechanical effect on fracture-matrix fluid exchange. 

 

 

Figure 5.18.  Comparison of cumulative injected volume (a), swept oil volume (b), oil recovery factor (c), and produced 

colour to liquid ratio (d) for the simple box model when neglecting poro-mechanics and considering the impact of poro-

mechanics for single-phase properties only and single-phase and two-phase flow properties. 
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Figure 5.19.  Comparison of remaining recoverable original oil in place (OOIP) in the fractures (a) and matrix (b) as 

well as F − Φ plot (c) and F − Γ plot (d) for the simple box model when neglecting poro-mechanics and considering 

the impact of poro-mechanics for single-phase properties only and single-phase and two-phase flow properties after 5 

pore volumes have been injected. 

 

5.4.3 Complex Case – Fractured Carbonate Reservoir. 

The Amellago Model is a synthetic reservoir model whose reservoir architecture is based 

on a middle Jurassic carbonate ramp in the High Atlas Mountains of Morocco.  This 

model is an analogue for the Arab D Formation in Qatar based on the same depositional 

environment.    The reservoir geology is complex and heterogeneous, both in terms of the 

matrix properties and fractures.  Matrix properties (Figure 5.20) were sourced from a 

proprietary database while fracture properties were obtained from a Discrete Fracture 

Network Model (Table 5.5). 

 

For simplicity, a constant shape factor and transfer function are assumed considering a 

water-wet matrix.  The reservoir model dimensions are 1150 × 1173 × 220 m, and the 

model contains 199,800 active cells.  For further details on the Amellago Model see 

Shekhar et al.  (2014). 
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Parameter Value Unit 

Model dimensions 1150 × 1173 × 220 m 

Grid division (nx × ny × nz) 74 × 75 × 46 cells 

Shape factor 1 m-2 

Fracture aperture 0 – 0.009 m 

Fracture network spacing 0 – 9.5 m 

Fracture permeability 0 – 1700 mD 

Matrix permeability 0.0001 – 7 mD 

Fracture porosity 0 – 0.0009 - 

Matrix porosity 0 – 0.38 - 

Fracture volume fraction 0 – 0.091 - 

Matrix volume fraction 0.909 – 1 - 

Transfer rate coefficient  3.2 ×10-11 sec-1 

Composite Biot's coefficients 1 - 

Fracture Young's modulus  3 GPa 

Matrix Young's modulus range 3 – 70 GPa 

Matrix and fracture Poison's ratio 0.25 - 

Bulk density 3000 kg/m3 

Water density 1000 kg/m3 

Oil density 800 kg/m3 

Water viscosity 1 cP 

Oil viscosity 3.4 cP 

Initial reservoir pressure 148.2 bar 

Injector BHP 180.3 bar 

Producer BHP 133.3 bar 

Table 5.5:  Model setup on the Amellago Model. 

 

Rock Type 

No.  

Rock type 

  

Proportion in model  Young's modulus  

(%) (GPa) 

RT1 Marl 16.0 3 

RT2 Mudstone 0.4 15 

RT3 Skeletal peloidal wackestone 6.6 30 

RT4 Skeletal peloidal wackestone-packstone 16.9 30 

RT5 Skeletal wackestone-packstone 14.0 30 

RT6 Wackestone-packstone with mollusc debris 0.3 55 

RT7 Oncoidal wackestone-packstone 3.5 55 

RT8 Peloidal packstone-grainstone 9.6 65 

RT9 Ooidal grainstone limestone 11.3 65 

RT10 Floastone with mollusc debris 0.1 70 

RT11 Skeletal floastone 3.1 70 

RT12 Oncoloidal floastone-rudstone 14.2 70 

RT13 Mollusc bank 0.4 65 

RT14 Coral reef 0.3 65 

Table 5.6:  Rock types and Young's modulus definition for Amellago Model. 
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To model poro-mechanical effects, the Young’s moduli, bulk moduli, Biot’s coefficients, 

and rock densities were assigned based on the distribution of rock types shown in Figure 

5.20 using published data (Tang, 1998; Chugh, 2015; Goffredo et al., 2015; Li et al., 2015; 

Małkowski et al., 2018) (see Table 5.6 for details).  Figure 5.21 shows the distribution of the 

mechanical properties in the matrix.  The mechanical properties for the fractures are 

assumed to be homogeneous with a Young’s Modulus of 3 GPa and Poison’s ratio of 

0.25.  Before commencing production and injection, the permeability of the model is 

initialised considering the mechanical effects, and the properties of the composite 

material are computed in the same way as for the simple box model.  A 5-spot pattern is 

applied, and all wells are BHP-constrained.  The model has no lateral displacement on 

any of the vertical sides, the bottom cannot move vertically, and the top is free to displace 

in all directions.   

 

 

Figure 5.20.  Matrix properties for the Amellago Model showing the reservoir rock types (RT) (a) and porosity-

permeability correlation (b) relationships for each rock type. 

 

 

Figure 5.21.  Mechanical properties for the matrix (a), fractures (b), and composite (c) in the Amellago Model.  There 

is no lateral displacement on the model sides, the bottom of the model is fixed, and the top can move in all directions.  

See Tables 5.5 and 5.6 for further details on the reservoir properties. 

 

Poro-mechanics cause a subtle reduction of the overall matrix and fracture permeability 

(Figure 5.22) which still has a significant impact on reservoir connectivity (Figure 5.23), 

causing a marked reduction in the well inflow profiles (Figure 5.24).  The observed change 
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in reservoir productivity suggests that in this case, even minor changes in fracture 

permeability led to a significant alteration in reservoir performance. 

 

 

Figure 5.22.  Comparison of horizontal permeability histograms for the fractures (a) and matrix (b) when neglecting and 

accounting for poro-mechanics in the Amellago Model. 

 

 

Figure 5.23.  Volumes affected by the different well-pair regions when neglecting poro-mechanics (a), considering poro-

mechanics (b), and comparison of the reservoir partitioning for each injector-producer part (c) for the Amellago Model 

after 20 pore volumes have been injected. 

 

 

Figure 5.24.  Comparison of the reservoir productivity for the Amellago Model when neglecting and including poro-

mechanics for cumulative flux per perforated layer from bottom to top (a) and flux per perforated layer (b). 

 

We follow the same approach as in the simple box model to analyse the impact of poro-

mechanics on fracture-matrix fluid exchange.  Figure 5.25 and Table 5.7 show the changes 

in relative permeability curves, recovery profiles for spontaneous imbibition, and 

saturation end points.  As for the box model, mobile oil saturations change, which impacts 

the transfer rate coefficient 𝛽 (Figures 5.26) but, in contrast to the box model, the effect on 

the recoverable oil on the matrix and overall recovery profile is negligible (Figure 5.27), 
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likely due to the more heterogeneous nature of the reservoir that leads to more subtle 

changes in these fracture-matrix transfer properties.  For the Amellago Model, the main 

impact of the poro-mechanics is related to the alteration of the reservoir connectivity, 

although individual changes in matrix and fracture permeability are subtle and the impact 

on fracture-matrix fluid transfer is negligible.  Still, poro-mechanics change the reservoir 

dynamics considerably, which could be screened and analysed quickly and efficiently 

using extended flow diagnostics.  The total CPU time for performing the extended flow 

diagnostics on the Amellago Model was only 19 minutes, which was orders of magnitude 

faster than coupled simulations carried out with a commercial software package. 

 

 

Figure 5.25.  Impact of poro-mechanics on relative permeability curves (a), capillary pressure curves (b), and matrix 

recovery due to spontaneous imbibition as computed using Equation 2.72 for each rock type in the Amellago Model 

(c). 

 

Rock type 
swirr  sor krwmax kromax 

Mobile oil 

saturation         

(som=1-swirr-sor) 

Pressure 

Transfer 

rate 

coefficient 

 

(fraction) (fraction) (fraction) (fraction) (fraction) (bar) (sec-1) 

All RTs (w/o Poro-mechanics) 0.22 0.37 0.39 1.00 0.41 0.1234 3.3 × 10-9 

RT1 (w/ Poro-mechanics) 0.16 0.34 0.76 1.00 0.50 0.1209 2.4 × 10-9 

RT2 (w/ Poro-mechanics) 0.22 0.37 0.45 1.00 0.41 0.1235 1.1 × 10-9 

RT3 (w/ Poro-mechanics) 0.22 0.38 0.44 1.00 0.40 0.1236 2.2 × 10-9 

RT4 (w/ Poro-mechanics) 0.22 0.38 0.43 1.00 0.40 0.1237 2.0 × 10-9 

RT5 (w/ Poro-mechanics) 0.22 0.38 0.43 1.00 0.40 0.1237 1.5 × 10-9 

RT6 (w/ Poro-mechanics) 0.23 0.38 0.40 1.00 0.39 0.1240 1.4 × 10-9 

RT7 (w/ Poro-mechanics) 0.23 0.38 0.41 1.00 0.40 0.1239 1.8 × 10-9 

RT8 (w/ Poro-mechanics) 0.23 0.38 0.38 1.00 0.39 0.1241 3.5 × 10-9 

RT9 (w/ Poro-mechanics) 0.24 0.38 0.36 1.00 0.38 0.1243 5.3 × 10-9 

RT10 (w/ Poro-mechanics) 0.23 0.38 0.39 1.00 0.39 0.1240 5.2 × 10-9 

RT11 (w/ Poro-mechanics) 0.23 0.38 0.41 1.00 0.39 0.1239 1.7 × 10-9 

RT12 (w/ Poro-mechanics) 0.23 0.38 0.41 1.00 0.39 0.1239 1.9 × 10-9 

RT13 (w/ Poro-mechanics) 0.21 0.37 0.51 1.00 0.42 0.1230 3.1 × 10-9 

RT14 (w/ Poro-mechanics) 0.22 0.37 0.46 1.00 0.41 0.1235 7.6 × 10-9 

Table 5.7:  Endpoints and transfer rate coefficient after poro-mechanical consideration for Amellago Model. 
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Figure 5.26.  Poro-mechanical effect on mobile oil saturation (a), transfer rate coefficient (b), and histogram displaying 

the frequency of the transfer rate coefficients (c) in the Amellago Model when neglecting and accounting for poro-

mechanical effect on fracture-matrix fluid exchange. 

 

 

Figure 5.27.  Comparison of remaining recoverable original oil in place (OOIP) in the fractures (a) and matrix (b) as 

well as F − Φ plot (c) and F − Γ plot (d) for the Amellago Model when neglecting poro-mechanics and considering the 

impact of poro-mechanics for single-phase properties only and single-phase and two-phase flow properties after 20 

pore volumes have been injected. 

 

5.5 Summary 

In this chapter, a dual-continuum hydrodynamical-poro-mechanical coupling was 

integrated with the existing dual-porosity flow diagnostics framework.  In the new 

framework, the deformation of the system is described by the dual-continuum poro-elastic 

theory.  We employed micromechanics and mixture theory to compute the effective 

stresses and strains of the rock matrix and fractures.  We related macroscopic relations 

with the micro-mechanical constitutive model proposed by Ashworth & Doster (2019b).  

The solutions to the fluid flow and rock deformation equations are coupled sequentially 

using the stress-dependent fracture permeability as a non-linear coupling term.  The 

coupled poro-mechanical-hydrodynamical problem is solved before carrying out the 

dual-porosity flow diagnostics calculations.  The poro-mechanical informed dual-

porosity flow diagnostics account for steady-state and single-phase flow conditions in the 

fractured medium while the fracture-matrix fluid exchange is approximated using a 

physics-based transfer rate coefficient which models two-phase flow using an analytical 
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solution for spontaneous imbibition (Schmid & Geiger, 2013) but also capable to include 

gravity drainage with the adequate model (e.g., March et al., 2016).  We also propose an 

alternative procedure to include the non-linear and time-dependent behaviour between 

the dual-porosity time of flight and the fracture-matrix fluid exchange involved in the 

definition of the retardation factor 𝑅 used in the existing flow diagnostics framework for 

dual-porosity NFR (Spooner et al., 2019, 2021).  The inclusion of the non-linear R in the 

dual-porosity flow diagnostics framework shows substantial improvement in the 

computation of the dual-porosity time of flight and consequently led to better prediction 

of breakthrough behaviour, well allocation factors, swept volume and drained volumes.   

 

Our new framework and the improvement in the new formulation for 𝑅 were implemented 

in MRST and validated with the solutions obtained from a commercial software package.  

In addition, we investigated the poro-mechanical effect on fracture-matrix fluid exchange 

considering the impact of poro-mechanically altered matrix and fracture properties, 

including relative permeability and capillary pressure curves.  For the stress-dependent 

two-phase properties, we use the stress-dependent model of relative permeabilities and 

capillary pressure for fractured carbonate rocks proposed by Haghi et al.  (2018).  All the 

stress-dependent models were also implemented in MRST.  By using two case studies, a 

simple box model and a geologically complex fractured carbonate reservoir analogue, the 

Amellago model, we demonstrated that the proposed poro-mechanically informed dual-

porosity flow diagnostics provide a fast and computationally efficient tool that allows us 

to identify how poro-mechanics could change the petrophysical properties in the fractures 

and matrix, impacting reservoir connectivity, productivity, recoverable fluid in place and 

fracture-matrix fluid exchange. 
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Chapter 6– UNCERTAINTY QUANTIFICATION WORKFLOW 

WITH FLOW DIAGNOSTICS FOR STRESS SENSITIVE 

RESERVOIRS   

6.1 Introduction 

This chapter introduces an uncertainty quantification workflow that combines proxy 

models based on Artificial Neural Network (ANN) and the poro-mechanically informed 

flow diagnostics described in Chapter 5.  Although this chapter will consider the dual-

porosity implementation, the intended workflow can be also applied to the single-porosity 

systems described in Chapter 4.  We illustrate the methodology by assessing a wide range 

of poro-mechanical uncertainties (i.e., stress-dependent correlations, stress regimes, 

boundary conditions, Young’s modulus, bulk modulus) using a series of case studies 

based on a simple box model and a fractured carbonate reservoir analogue and employ 

cluster analysis based on flow diagnostics metrics to identify a set of representative 

reservoir models that capture the range of quantified uncertainty.  The proposed 

framework has been implemented using MRST and was linked to a commercial reservoir 

simulation package (CMOST-AI) to carry out the experimental design, construct the 

proxy model, and perform the sensitivity and uncertainty analysis.  The specific 

objectives of this new methodology are: 

 

1. To improve the uncertainty quantification by quantifying how uncertain reservoir 

properties impact reservoir performance predictions at different hydrodynamical-

poro-mechanical scenarios; 

2. To reduce the bias in uncertainty estimates by exploring a large ensemble of 

geologically diverse reservoir models via Monte Carlo realisations using ANN-

based proxy models;  

3. To use cluster analysis based on flow diagnostic metrics to identify the 

representative set of reservoir models that preserve the original range of 

uncertainties and can be subjected to more detailed full-physics simulations. 

 

6.2 Assumptions and Limitations 

The new methodology underlies the same assumptions and limitations of the poro-

mechanically informed dual-porosity flow diagnostics presented in Chapter 5, which are 

summarised here for brevity only:  
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• Incompressible single-phase flow formulation for exact voidage replacement; 

• Flow dominated by viscous forces with the negligibly small impact of 

gravitational and capillary flow; 

• Flow can be described by a dual-porosity system, i.e., fractures dominate flow and 

matrix provides storage.   

 

As noted above, the concept developed in this chapter also applies to single-porosity 

systems, i.e., reservoirs where fractured do not contribute much to flow or reservoirs 

where the matrix has no storage and no flow.  This approach is no longer valid in 

situations where the matrix contributes to flow, and without further developments in the 

dual-porosity flow diagnostics concept.  We identify if fractures or matrix dominate flow 

in two stages.  The first stage consists of a general screening of each model using the 

average Dual-Porosity Damköhler number �̅� (Figure 6.1).  Reservoir models with values 

of �̅� < −1 tend to have fracture-dominated flow while reservoirs with �̅� > 1 tend to 

have matrix-dominated flow.  Reservoirs with �̅� = 0 have equal contributions to flow 

from fracture and matrix (Spooner et al., 2019). However, even for situations of �̅� < −1, 

some regions can exist in the reservoir where flow is dominated by the matrix but the 

average �̅� is still below 1 for example when there are outliers of 𝐷 that are orders of 

magnitude different or when 𝐷 has a non-Gaussian distribution.  In such situations, the 

first screening step is not sufficient.  We hence apply a second screening and employ the 

dispersion index of the dual-porosity Damköhler number 𝐼𝐷 to quantify the scattering of 

the values of 𝐷 with respect to the fracture-dominated flux (𝐷 ̅ < −1) and identify how 

the reservoir model deviates from fracture-dominated flux (Figure 6.1).  𝐼𝐷 is given by 

 

 𝐼𝐷 =
𝜎𝐷

2

𝜇𝐷
 with 𝜇𝐷 ≠ 0, (6.1) 

 

where 𝜎𝐷
2 is the variance of the dual-porosity Damköhler number and 𝜇𝐷 is the arithmetic 

mean of the dual-porosity Damköhler number of a given reservoir model.  Note the subtle 

difference between 𝜇𝐷 =
1

𝑁
∑ 𝐷𝑖
𝑁
𝑖=1  and �̅� = 𝑙𝑜𝑔10 (

1

𝑁
∑ 𝐷𝑖
𝑁
𝑖=1 ).   

 



 

170 

 

Figure 6.1.  Identification of the dominant flow regimes in an ensemble of reservoir model using the average Damköhler 

number �̅� (a) to identify the models where the dual-porosity concept applies and flow is dominated by the fractures (b) 

before identifying potential outliers in the remaining ensemble by calculating the dispersion coefficient for the 

Damköhler number 𝐼𝐷 (c) to identify the reservoir models with predominant fractured-dominated flux (d). 

 

When 𝐼𝐷 is calculated for an ensemble of reservoir models, the reservoir models with the 

same predominant flow regime cluster and form a trend.  The range and magnitude of 𝐼𝐷 

then depends on the degree of scattering of the individual 𝐼𝐷 values for each reservoir 

model (Table 6.1 and Figure 6.1).  Note that the values of 𝐼𝐷 are always positive.  The 

intervals in 𝐼𝐷 that define the different flow regimes in a model ensemble are separated 

by at least one order of magnitude (Figure 6.1), which makes it easy to identify the reservoir 

models where the dual-porosity assumption is valid.   
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𝑰𝑫  Interpretation Distribution 

𝐼𝐷 = 0  
All values of 𝐷 in the reservoir model fall into the same flow regime; 

fracture-dominated flux ( �̅� < −1) behaviour 

Constant random variable 

– not dispersed 

0 < 𝐼𝐷 < 1  
Most values of 𝐷 in the reservoir model fall into the same flow regime, 

the predominant regime is given by �̅� < −1 

Binomial – under-

dispersed 

𝐼𝐷 = 1  
The values of 𝐷 in the reservoir model are equally distributed across all 

flow regimes (𝐷 < −1, 𝐷 > 1, 𝐷 = 0) 
Poisson 

𝐼𝐷 > 1  

A significant number of values of 𝐷 in the reservoir model fall into the 

three different flow regimes each, and the predominant flow regime is 

defined by the �̅�. 

Negative binomial – over-
dispersed 

Table 6.1:  Interpretation of 𝐼𝐷 values on an ensemble of models with �̅� < −1. 

 

6.3 Uncertainty Quantification Workflow 

We employ proxy modelling based on poro-mechanical informed flow diagnostics in four 

key steps (Figure 6.2):  

 

1. Design of experiments to quantify the impact of the prevalent uncertainties and 

create the proxy model; 

2. Perform a proxy-based global sensitivity analysis; 

3. Perform a proxy-based probabilistic uncertainty quantification using Monte Carlo 

methods; 

4. Carry out a cluster analysis to select representative models that capture the full 

range of the initial uncertainties. 

 

 

Figure 6.2.  Overview of the proposed uncertainty quantification workflow using ANN-based proxy modelling trained 

by poro-mechanically informed flow diagnostics simulations. 

 

6.3.1 Experimental Design and Proxy Modelling 

Proxy models defined by a proper design of experiments (DoE) provide a computationally 

efficient approach that statistically and mathematically explores the linear and non-linear 

relationships between the model uncertainties and the response variable.  Proxy-based 
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predictions improve understanding of the reservoir performance while reducing the 

required number of coupled simulations runs and computing time required to cover a full 

range of uncertainties.  Here we accelerate the training of the proxy models using the 

poro-mechanically informed flow diagnostics simulations to account for the interactions 

between poro-mechanics and reservoir flow processes.  Specifically, the proxy models 

serve two purposes: (1) proxy models are used to determine linear and non-linear 

interactions in sensitivity analysis and identify the most influential parameters for 

subsequent analyses; (2) proxy models are used to execute Monte Carlo realisations 

(Metropolis & Ulam, 1949, 1953, 1987) to identify the most influential uncertainty 

parameters in an uncertainty analysis.  The Monte Carlo results allow us to make 

probabilistic forecasts for the response variables, which can be used for clustering and the 

identification of reservoir models for more detailed full-physics coupled reservoir 

simulations (Figures 6.2 and 6.3).   We use an ANN to create the proxy model because of 

the ANN’s capability to learn and generalise the behaviour of complex and non-linear 

processes (Rochester et al., 1956; Schalkoff, 1997).  As explained in Section 2.15.2.  the 

ANN identifies special features of the data that are then classified, characterised, and 

arranged hierarchically inside the different levels of the network.  To train the ANN, we 

select an orthogonal Latin Hypercube Design (McKay et al., 1979;  Ye, 1998) for the DoE 

to reduce sampling bias and ensure a better exploration of the uncertainty domain.  The 

benefit of using an orthogonal Latin Hypercube Design is that ensures that the values 

from all equally probable bins of all parameters are combined to maximise the amount of 

information that can be obtained from the given limited number of simulations.  A more 

detailed summary of ANN and DoE is given in Section 2.15.2.  

 

 

Figure 6.3.  Detailed overview of the sensitivity analysis and the uncertainty quantification flow using proxy models 

trained by poro-mechanically informed flow diagnostics. 

 

The training of the ANN-based proxy model was carried out using the commercial 

software CMOST-AI.  CMOST-AI uses the Levenberg-Marquardt algorithm to minimise 
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the root mean square error (RMSE) in all weights of the neural network connections.  We 

use the default network configuration which consists of one hidden layer with six nodes, 

and one output layer with a single node.  The input layer is defined by the uncertainty 

parameters.  The default network configuration proved to be sufficient for the problems 

analysed in this thesis.  The training data set is randomly divided into two groups to carry 

out the training and verification of the proxy model predictions.  The proxy model is 

trained until two convergence criteria are met: (1) when the correlation coefficient 𝑅2 

reaches the largest value (generally near unity), and (2) when the minimisation of the 

RMSE is not decreasing any longer (when the optimum is reached).  Although this 

strategy is computationally challenging when full physics coupled simulations are 

executed, the benefit of using our poro-mechanically informed flow diagnostics is that 

this approach allows us to quickly run a large number of simulations to adequately train 

and refine the proxy model in regions of interest using a limited number of full-physics 

simulations.  As in the previous chapters, the poro-mechanically informed flow 

diagnostics simulations are performed in MRST (Lie, 2019). 

 

6.3.2 Sensitivity and Uncertainty Analysis 

In global sensitivity analysis, all uncertainty parameters are varied simultaneously to 

assess the relative contribution of each parameter to the variance of the investigated 

response variable of the model.  Global sensitivity analysis quantifies the interaction 

among parameters and its effect on the investigated response variable.  A more detailed 

summary of global sensitivity analysis is given in Section 2.16.  This thesis uses the Sobol 

method (Sobol 1993, 2001), which is a variance-based global sensitivity analysis.  The 

variance-based global sensitivity analysis generally requires a large number of model 

executions because the uncertainty parameters can be numerous and span a wide range.  

In traditional uncertainty quantification workflows, variance-based global sensitivity 

analysis can be prohibitive, especially for computationally intensive models (Saltelli et 

al., 2008), such as coupled poro-mechanical and hydromechanical simulations.  As noted 

above, we overcome this problem using the ANN-based proxy model.  Once the variance-

based global sensitivity analysis has been conducted, the most influential uncertainty 

parameters are carried forward for the subsequent uncertainty analysis, which performs 

Monte Carlo simulations using the ANN-based proxy model to compute the probability 

distributions for a given response variable.  Note that the number of Monte Carlo runs 

was always set to 65,000 as this is the fixed default value in CMOST-AI. 
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6.3.3 Clustering and Screening of Reservoir Models 

We defined the clusters for the simulation results based on the flow diagnostics metrics.  

From the wide range of possible metrics discussed in Section 2.14.5, we chose to use the 

dynamic Lorenz coefficient 𝐿𝑐, the average dual-porosity Damköhler number �̅�, the 

dispersion index of the dual-porosity Damköhler number 𝐼𝐷, and the breakthrough time 

𝑡𝐵𝑇, more specifically the normalised breakthrough time 𝑡𝑁𝐵𝑇 .  The choice of these 

metrics aims to account for the different aspects of the dynamic behaviour.  From each 

identified cluster we can then choose a single model (i.e., the model at the cluster centre) 

or multiple models (i.e., models at the boundaries of the clusters) that represent the range 

of uncertainty.  The results of the clustering then allow us to identify models for the 

subsequent computationally intensive full-physics simulations.  In this thesis, the 

clustering technique and the optimum number of clusters are carried out using K-means 

partitions (MacQueen, 1967) with the Elbow method (Thorndike, 1953), both of which 

are available in MATLAB. 

 

When considering poro-mechanical effects on reservoir behaviour, a common reference 

framework needs to be defined for clustering models based on the flow diagnostic results.  

For example, the injection rates may be affected by poro-mechanics, and hence the 

resulting breakthrough times cannot be compared directly between scenarios due to 

differences in injectivity.  We hence propose the use of either the normalised 

breakthrough time 𝑡𝑁𝐵𝑇 or the pore volume injected at the breakthrough time 𝑉𝑖𝑛𝑗 | 𝑡𝐵𝑇
𝑛  

defined as  

 

 𝑡𝑁𝐵𝑇
𝑛 = 𝑡𝐵𝑇

𝑛 𝑄𝑖𝑛𝑗
𝑛

‖𝑄𝑖𝑛𝑗
𝑚 ‖

∞

, (6.2) 

 𝑉𝑖𝑛𝑗 | 𝑡𝐵𝑇
𝑛 = 𝑡𝐵𝑇

𝑛 𝑄𝑖𝑛𝑗
𝑛 , (6.3) 

 

where 𝑡𝑁𝐵𝑇 is the normalised water breakthrough, 𝑉𝑖𝑛𝑗 | 𝑡𝐵𝑇
𝑛  is the pore volume injected at 

the breakthrough time, 𝑡𝐵𝑇 is the breakthrough time, 𝑄𝑖𝑛𝑗 is the injection rate, and 

‖ ‖∞is the maximum norm of the injection rates of the ensemble of reservoir scenarios 

𝑚.  The subscript 𝑛 represents the n model in the ensemble 𝑚.   

 

The 𝑡𝑁𝐵𝑇 is normalised as a function of the maximum injection rate presented in the 

ensemble of scenarios involved in the uncertainty quantification workflow, while the 

𝑉𝑖𝑛𝑗 | 𝑡𝐵𝑇
𝑛  is a direct computation of the injected pore volume as a function of the 
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breakthrough time and injection rate of each scenario.  Note that the profile of 

breakthrough behaviour described by 𝑡𝑁𝐵𝑇 and 𝑉𝑖𝑛𝑗 | 𝑡𝐵𝑇
𝑛  is the same (Figure 6.4).  

Consequently, the use of any of these metrics for comparison and ranking among 

scenarios will give the same results.  This thesis will hence use 𝑡𝑁𝐵𝑇 in further studies. 

 

 

Figure 6.4.  Breakthrough time 𝑡𝐵𝑇 of an ensemble of diverse hydrodynamical-poro-mechanical scenarios (a), the same 

model ensemble within a common reference frame based on the normalised breakthrough time 𝑡𝑁𝐵𝑇 (b) and the pore 

volume injected at breakthrough time 𝑉𝑖𝑛𝑗 | 𝑡𝐵𝑇
𝑛  (c). 

 

6.4 Suggested Procedure to Mitigate Error Propagation from Poro-mechanically 

Informed Flow Diagnostics in the Proposed Uncertainty Quantification 

Workflow 

This methodology proposes to mitigate the inherent two levels of inaccuracies induced 

from the poro-mechanically informed flow diagnostics (level 1) to the ANN-based proxy 

outcomes (level 2) by using two levels of calibration.  The first level, which is the core in 

the mitigation of the errors, consists of the calibration (history matching) of the models 

based on poro-mechanically informed flow diagnostics to fit the measured data (e.g., 

production history and poro-mechanical test from laboratory analysis).  Hence, it is aimed 

to avoid a greater propagation and amplification of the inaccuracies inherited to the ANN-

based proxy models which are trained using these poro-mechanically informed flow 

diagnostics simulations.  Then the second level will consist of the training-verification-

refinement of the ANN-based proxy models through a two-stage verification process; 

first, by assessing and corroborating the results with poro-mechanically informed flow 

diagnostics simulations, and then by selecting representative candidates from these poro-

mechanically informed flow diagnostics simulations for final validation and assessment 

using full-physics coupled reservoir simulations.  
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To conduct the first level of calibration, we suggest two possible approaches, the first one 

is a traditional model-driven based approach (Figure 6.5) which consists of calibrating 

selected reservoir models with consistent geological and poro-mechanical responses 

obtained from the poro-mechanically informed flow diagnostics to fit the observed data 

(i.e., history matching of observed pressure, flow rates and poro-mechanical changes in 

properties over time).  

 

 

Figure 6.5.  Schematic describing the mitigation of the two-level error propagation of the proposed methodology using 

a combination of the traditional model-driven physics-based approach (lower box) and data-driven approach. 

 

The second approach is a data-driven physics-based approach (Figure 6.6) in which the 

simplified-physics models are combined with big-data and data-driven technologies. In 

this approach, an ensemble of models is built based on available data and known physics 

underlying the applicability of the proposed methodology (e.g., exact voidage 

replacement; reservoirs are managed by producers and injectors).  The poro-mechanical 

informed flow diagnostics models are calibrated to observed data via fast classification 
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or data assimilation methods (Evensen et al., 2022; Pallav et al., 2013; Emerick & 

Reynolds, 2013). 

 

Figure 6.6.  Schematic describing the mitigation of the two-level error propagation of the proposed methodology using 

a two-level data-driven physics-based approach. 

 

Once the selected models based on poro-mechanically informed flow diagnostics have 

been history matched, they will be taken forward to create the ANN-based proxy model 

which will also have a validation as described in Section 6.3.1 (i.e., quality check of poxy 

models via comparison of proxy predicted and history-matched poro-mechanically 

informed flow diagnostics outcomes) and assessment of predictivity through simulation 

using poro-mechanically informed flow diagnostics (e.g., selected central cases of proxy 

predicted outcomes are then simulated with poro-mechanically informed flow 

diagnostics) (Figure 6.3).  Once the predicted proxy-models have been validated by poro-

mechanically informed flow diagnostics, these validated models are carried forward to be 

used with actual full-physics hydro-poro-mechanically coupled simulations and will be 

newly assessed.  Note that this thesis lacks of observed data to carry out a poro-
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mechanical calibration of the presented case studies.  Consequently, we leave this to be 

developed for further work to increase the confidence on the proposed methodology. 

 

6.5 Application to a Simple Box Model 

6.5.1 Overview of the Box Model 

The box model has a dimension of 300 m × 300 m × 50 m and 21 × 21 × 20 grid cells.  

A 5-spot pattern is applied, and all wells are BHP-constrained.  The model has a 

homogeneous porosity and permeability for the matrix and fractures and represents a 

water-wet matrix whose two-phase properties were discussed in the analogue example 

described in Section 5.4.2 (Figure 5.8).  The model has no lateral displacement on any of 

the sides of the reservoir.  The bottom cannot move vertically but the top is free to displace 

in all directions.  The model is subjected to an overburden load, represented by the gravity 

load of the weight of the overlying layers, which are represented by the geomechanical 

grid (Figure 6.7).  The effective stress is affected by fluid production and injection.  The 

matrix is divided into three regions with different rock strengths (Figures 6.7 and 6.8).  The 

central region of the model represents a mechanically soft rock material, and the off-

diagonal regions are mechanically stiffer.  The fracture continuum has homogeneous 

mechanical properties. 

 

 

Figure 6.7.  The geomechanical model with the reservoir and over-, under-, and side- burden (a) and the reservoir model 

with different regions of mechanical strength (b). 

 

file:///D:/PhD/2021/Thesis/Writen%20Chapters/Corrections_Supervisors/Sebastian/Finalised/Backup_FinalChapters_Compile/Chapter%205.docx%23FIG5_8
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Figure 6.8.  Setup of a simple 5-spot poro-elastic dual-continuum problem showing the Young’s Modulus for the matrix 

(a), fractures (b), composite under isostress condition (c) and composite under isostrain condition (c).  There is no 

lateral displacement on the model sides, the bottom of the model is fixed, and the top can move in all directions.  See 

Table 6.2 for further details on the reservoir properties. 

 

The initial stress state is defined by the mechanical boundary conditions, initial reservoir 

pressure, input properties, and parameters given in Figure 6.7 and Table 6.2; it is assumed 

that the only acting load is the overburden.  Before commencing production and injection, 

the matrix and fracture permeabilities of the model are subjected to the initial stress state, 

assuming isostress conditions.  The mechanically initialised permeabilities represent the 

start of the simulation before the stress state is altered by production and injection.  

Consequently, simulation cases that neglect and account for poro-mechanics have the 

same initial permeability.  We use this example to quantify the impact of mechanical 

uncertainties on the prediction of cumulative oil production, i.e., the swept oil volume. 
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Parameter Value Unit 

Geomechanical Model Dimensions 1500 × 500 × 3000 m 

Geomechanical Grid Division (nx × ny × nz) 33 × 33 × 35 cells 

Reservoir Model Dimensions 300 × 300 × 300 m 

Reservoir Grid Division (nx × ny × nz) 21 × 21 × 20 cells 

Shape Factor 1 m-2 

Mean Fracture Aperture 0.00025 m 

Fracture Network Spacing 1 m 

Fracture Permeability 10 mD 

Matrix Permeability 0.1 mD 

Fracture Porosity 0.00028 - 

Matrix Porosity 0.1 - 

Matrix Volume Fraction 0.995 - 

Transfer Function 𝛽 4.0004 × 10-11 sec-1 

Fracture Young's Modulus  3 GPa 

Matrix Young's Modulus (Stiff Regions) 55 GPa 

Matrix Young's Modulus (Soft Region) 5 GPa 

Matrix and Fracture Poison's Ratio 0.25 - 

Bulk Density 3000 kg/m3 

Water Density 1000 kg/m3 

Oil Density 800 kg/m3 

Water Viscosity 1 cP 

Oil Viscosity 3.4 cP 

Initial Reservoir Pressure 148.2 bar 

Injector BHP 150.2 bar 

Producer BHP 90.4 bar 

Table 6.2:  Input data for the 5-spot box model. 

 

6.5.2 Definition of Poro-mechanical Reference Cases 

We illustrate the effect of mechanical uncertainties on reservoir performance as a function 

of boundary conditions, stress regimes, mechanical properties, and stress-dependent 

permeability models (Table 6.3).  The uncertainty parameters include the Young’s modulus 

for fracture and matrix, the bulk stiffness module, isostress and isostrain boundary 

conditions, and stress regimes for normal faulting, reverse faulting and strike-slip 

faulting.  All cases with poro-mechanics are compared to the case that neglects poro-

mechanics (Base Case).  We assumed gravity load as the principal vertical stress 𝜎𝑣 and 

defined the minimum horizontal 𝜎ℎ and maximum horizontal 𝜎𝐻 stress as a function of  

𝜎𝑣.  The stress regimes are thus defined as a function of 𝜎𝑣 (Table 6.4). 
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Parameters 

Initial 

Condition 

Reference 

Values 

Range for Continuous and Discrete 

Values 
Unit Distribution 

Discrete 

Sampling 

Levels 

Fracture Young's Modulus 3 [ 1  - 10] GPa Uniform 40 

Matrix Young's Modulus 

(Soft Zone) 

1 

(5 GPa) 
[0.66 - 1.45] Multiplier Uniform 25 

Matrix Young's Modulus 

(Stiff Zone) 

1 

(55 GPa) 
[0.66 - 1.45] Multiplier Uniform 25 

Solid Bulk Modulus 
1 

(65 GPa) 
[0.66 - 1.45] Multiplier Uniform 25 

Boundary Condition – [Isostress, Isostrain] – Uniform 2 

Isostress Permeability 

Correlations 

Bai et al.  

(1999) 

[Bai et al.  (1999), Bai et al.  (1997), 
Zhang et al.  (2007), Zhang et al.  

(2004)] 

– Uniform 4 

Isostrain Permeability 
Correlation 

– 
[Bai et al.  (1997), Zhang et al.  

(2004)] 
– Uniform 2 

Stress Regime 
Gravity 

Load 

[Gravity Load, Normal Faulting, 

Reverse Faulting, Strike-Slip 

Faulting] 

– Uniform 4 

Table 6.3:  Uncertainty parameters for the box model. 

 

Load or Stress Regime Definition or Relationship 

Gravity Load 𝜎𝑣  

Normal Faulting 𝜎ℎ < 𝜎𝐻 < 𝜎𝑣 where 𝜎ℎ = 0.5𝜎𝑣 and 𝜎𝐻 = 0.75𝜎𝑣 

Reverse Faulting 𝜎𝑣 < 𝜎ℎ < 𝜎𝐻 where 𝜎ℎ = 1.5𝜎𝑣 and 𝜎𝐻 = 2𝜎𝑣 

Strike-Slip Faulting 𝜎ℎ < 𝜎𝑣 < 𝜎𝐻 where 𝜎ℎ = 0.5𝜎𝑣 and 𝜎𝐻 = 2𝜎𝑣 

Table 6.4:  Assumed stress regimes as a function of the gravity load. 

 

The local sensitivity analysis considers the whole range of the uncertainty parameters and 

the sampling levels presented in Table 6.3, not only the bounded values of the range.  

Figure 6.9 illustrates all the scenarios assessed for the different uncertainties using OPAT 

analysis.  For each boundary condition and corresponding stress-dependent fracture 

permeability model, all mechanical uncertainties are individually assessed.  Note that the 

ranking of the most influential uncertainties can vary for each boundary condition and its 

corresponding stress-dependent permeability model (Figures 6.9 and 6.10).  Since the local 

sensitivity analysis only characterises the independent effect of one parameter when all 

the other parameters are held constant, OPAT provides only a limited view of model 

responses and sensitivities.  Consequently, the general contribution of each uncertainty 

parameter to the variability in the predicted swept oil volume cannot be interpreted.  This 

fact also implies that the variation of the swept oil volume varies with the location of the 

uncertainty parameter in the uncertainty space, and consequently the interpretation of the 

most influential parameters is not unique.  For example, in Figure 6.10 when we consider 

to analyse the relative change of the predicted swept oil volume caused by the upper and 

lower values of the uncertainty parameters with respect to the central case, case P50,  

which represents the 50% of probability that the predicted swept oil volume from the 

simulated cases is above or below 0.313 × 106𝑚3; note that the outcomes of the OPAT 
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analysis for the Case P50 show that the variability of the predicted swept oil volume is 

mostly attributed to the change in boundary conditions and their respective permeability 

models. In this case, the model of Zhang et al. (2004) and Zhang et al.  (2007) at isostress 

and isostrain conditions have the most significant influence.  In contrast, the other stress-

dependent permeability models, irrespectively of the boundary conditions, show minimal 

changes with respect to the Case P50.  Note that each boundary condition and its 

corresponding stress-dependent permeability model requires an individual analysis 

(Figure 6.10) since they assess a particular location in the uncertainty space.  Consequently, 

the rankings of influence differ from each another.  These results between stress-

dependent permeability models indicate that the selection of the stress-dependent 

permeability model defines how, and to what extent, each uncertainty parameter will 

affect the swept oil volume but cannot provide a global interpretation of the influence of 

each uncertainty parameter on the overall variability of the swept oil volume.  The lack 

of a generalised ranking for all the uncertainty parameters complicates the interpretation 

of the influence of mechanical uncertainties on the swept oil volume.   

 

 

Figure 6.9.  Effect of the uncertainty parameters defined in Table 6.3 on swept oil volume assessed in an OPAT sensitivity 

analysis and with cases defined using a DoE based on an orthogonal Latin hypercube for the proxy modelling.  For the 

OPAT sensitivity analysis, each marker colour represents a specific uncertainty parameter.  The assessed sampling 

levels of each uncertainty parameter (Table 6.3) increase as the Case ID moves forward. 

 

On the other hand, the outcomes from the OPAT sensitivity analysis imply that the poro-

mechanical effect is only significant when using the Zhang et al.  (2004) model.  This 

implication could lead to the exclusion of some stress-dependent permeability models or 

to ignoring the poro-mechanical effect in the uncertainty analysis altogether.  Because the 

choice of the stress-dependent permeability model is a first-order control on the solution 
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obtained from the proposed hydrodynamical-poro-mechanical coupling (as demonstrated 

in Section 4.2.2), we will investigate this aspect in more detail.   

 

  
Figure 6.10.  Tornado diagram comparing the relative importance of the mechanical uncertainties on the swept oil 

volume for the Case P50 from all simulated cases (574 cases).  The baseline starts at zero and corresponds to the swept 

oil volume of the Case P50 (w/ poro-mechanics under isostress with permeability model of  Bai et al., 1997); the relative 

change to the Case P50 is measured as the ratio of the difference between the predicted swept oil volume for a given 

change in an uncertainty parameter and the Case P50 ’s swept oil volume to the Case P50 ’s swept oil volume. 

 

This study intends to verify whether some stress-dependent permeability models can be 

excluded from the uncertainty analysis as the OPAT analysis suggests.  We use the 

defined model setup and the initial reference values established in Table 6.3 to compare 

the outcomes obtained from the different stress-dependent permeability models at the 

same reference conditions.  The resulting stress-dependent fracture permeabilities (Figure 

6.11) from the different models show significant discrepancies among them.  Note that 

when comparing permeability outcomes of the different stress-dependent models at the 

same boundary condition (i.e., isostress, isostrain), the observed discrepancies are 

attributed to the intrinsic assumptions used in each stress-dependent permeability model 

to represent the change in the fracture aperture (discussed in Section 2.10.1). 
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Figure 6.11.  Comparison of poro-mechanical effect on fracture horizontal permeability (upper row; a to g), reservoir 

partitioning (middle row; h to n), and 𝜏∗ (lower row; o to u), under isostress and isostrain boundary conditions for the 

stress-dependent fracture permeability models and reference values listed in Tables 6.2 and 6.3, after 6 pore volumes 

(matrix and fractures) have been injected. 

 

The discrepancies in permeability outcomes among stress-dependent models lead to 

different reservoir volumetric partitioning and τ∗ distributions across the reservoir models 

(Figure 6.11).  Consequently, the production flow rate, breakthrough time and ratio of 

produced concentration to produced total liquid rate between well-pairs (Figure 6.12 and 

Table 6.5) differ significantly among cases.  Note that when approximately 5.25 pore 

volumes have been injected all the reference cases (Base Case and cases with the different 

stress-dependent permeability models) have swept all the recoverable oil (i.e., all 

accessible pore volume has been invaded by injected fluid).  Also, note that despite the 

production flow rates differing among reference cases (Figure 6.12), ultimate swept oil 

volume is comparable among most of the reference cases except for the reference cases 

that use the Zhang et al.  (2004) model (Figure 6.12).  Note that the differences between 

ultimate swept oil volume (recoverable oil pore volume) are mainly because of the closing 

of fracture apertures which isolate from flow some regions of the matrix. 

 

Despite most of the reference cases showing a similar value of ultimate swept oil volume 

(Table 6.5 and Figure 6.12), their dynamic behaviour are very different (e.g., the 
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breakthrough time, the time that takes to recover the ultimate swept oil volume, the ratio 

of produced concentration to produced total liquid rate between well-pairs, the inter-well 

region connectivity).  The temporal evolution of the production profiles (Figure 6.12) and 

the response to the mechanical changes in effective stress caused by production and 

injection are globally diagnosed by the flow diagnostics metrics (e.g., 𝐿𝑐, 𝐿𝑐
∗ , 𝐿𝑐

𝛤, �̅�, 𝑡𝐵𝑇).  

The flow diagnostics metrics allow quantifying how the change in the heterogeneity of 

the flow displacement impacts the efficiency of the recovery and the breakthrough time 

(Figure 6.13 and Table 6.5).  Therefore, the main decision variable (in this case the swept oil 

volume) along with estimates of dynamic performance (i.e., flow diagnostics metrics) are 

valuable information to support the decision-making process for sound reservoir 

management.   This example shows the importance of the inclusion of diverse different 

hydrodynamical-poro-mechanical scenarios.  Therefore, the involvement of all the stress-

dependent permeability models will be considered for the subsequent analysis and the 

entire uncertainty quantification workflow. 

 

 

Figure 6.12.  Comparison of production profiles of all training cases, emphasizing the Base Case and the reference cases 

of each stress-dependent permeability model under isostress and isostrain boundary conditions using the setup values 

of the box model listed in Tables 6.2 and 6.3.  The evolution of the swept oil volume (a), production flow rate (b), and 

the ratio of produced concentration to produced total liquid rate for all injector-producer well pairs (c) is shown during 

a period of injection of 6 pore volumes (matrix and fractures), note that for most of the reference cases the sweep of 

the recoverable oil is reached before the injection of 6 pore volumes. 
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Figure 6.13.  Comparison of the ratio of produced concentration to produced total liquid rate between well-pairs of all 

training cases, emphasizing the Base Case and the reference cases of each stress-dependent permeability model under 

isostress and isostrain boundary conditions using the setup values of the box model listed in Tables 6.2 and 6.3. The 

well-pairs defined by INJ1-PROD1 (a), INJ2-PROD1 (b), INJ3-PROD1 (c), and INJ4-PROD1 (d) are assessed during 

a period of injection of 6 pore volumes (matrix and fractures), note that for most of the reference cases the sweep of 

the recoverable oil is reached before the injection of 6 pore volumes. 

 

Cases Lc Lc* Lc �̅� 𝒕𝑩𝑻 

Liquid 

Flow 

Rate 

Swept 

Oil 

Vol. 

Sweep 

Efficiency 

  (fraction) (fraction) (fraction) (fraction) (x103 days) (m3/day) (x106 m3) (fraction) 

Base Case                       

(w/o Poro-mechanics) 
0.130 0.130 0.130 -2.585 6.765 45.5 0.313 0.844 

Isostress                             

w/ Bai et al.  (1999) 
0.123 0.125 0.131 -2.574 6.889 43.3 0.314 0.845 

Isostress                             

w/ Bai et al.  (1997) 
0.147 0.158 0.172 -2.522 6.693 36.8 0.324 0.872 

Isostrain                             

w/ Bai et al.  (1997) 
0.126 0.126 0.126 -2.571 6.944 42.8 0.315 0.848 

Isostress                             

w/ Zhang et al.  (2007) 
0.149 0.159 0.174 -2.505 7.036 34.5 0.325 0.874 

Isostress                            

w/ Zhang et al.  (2004) 
0.320 0.313 0.304 -2.217 8.508 25.9 0.270 0.726 

Isostrain                              

w/ Zhang et al.  (2004) 
0.296 0.297 0.298 -2.252 8.038 27.0 0.272 0.733 

Table 6.5:  Comparison of the Base Case and reference cases in terms of the flow diagnostics metrics and production 

parameters after 6 pore volumes have been injected. 
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6.5.3 Global Sensitivity Analysis 

For the variance-based global sensitivity analysis (Sobol analysis) of the swept oil 

volume, we trained and validated (Rtraining
2 = 0.996 and Rverification

2 = 0.977) the proxy 

models of the swept oil volume and some flow diagnostics metrics (𝐿𝑐, �̅�, 𝐼𝐷, and 𝑡𝑁𝐵𝑇) 

(Figure 6.14) with 400 poro-mechanically informed flow diagnostics simulations (Figure 

6.9).  The creation of the proxy model took 14 hours using a standard CPU.   

 

 

Figure 6.14.  Quality check of the proxy models for box model via comparison of proxy predicted and poro-mechanically 

informed flow diagnostics outcomes for: swept oil volume (a), 𝐿𝑐 (b), �̅� (c), 𝐼𝐷 (d), and 𝑡𝑁𝐵𝑇 (e). 

 

The Sobol sensitivity analysis (Figure 6.15) of the swept oil volume was carried out with 

the proxy model using 65,000 Monte Carlo realisations.  The Sobol analysis shows that 

the most influential parameters are the boundary conditions and the stress-dependent 

permeability models (i.e., the highest values of the total effect).  Also note that if the 

boundary condition can be fixed (either isostrain or isostress conditions remain 

unaffected), 16 per cent of the variance of the swept oi volume can be reduced.  In contrast 

to the OPAT outcomes, in the Sobol analysis, the stress regimes contribute considerably 

to the variability of the swept oil volume.  The least influential parameter is the fracture 

Young’s Modulus, this is because the stiffness of the composite is mainly attributed to 

the matrix due to the low volume fractions of the fractures with respect to the volume of 

the composite. 
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Figure 6.15.  The Sobol sensitivity analysis of the box model shows the contribution of the main effects and the iteration 

effects on the total effect of the variability in the swept oil volume. 

 

The highly non-linear interaction between the hydrodynamical and poro-mechanical 

parameters of the assessed scenarios is manifested in the Sobol analysis (see interaction 

effects in Figure 6.15), in which the interaction effects predominantly control the variance 

of the swept oil volume.  Note that the interaction effects between uncertainty parameters 

can be only quantified when simultaneous changes in all uncertainty parameters are 

assessed, hence interaction effects cannot be captured with OPAT analysis.  This example 

illustrates that OPAT analysis is not suitable to capture the characteristic effects of non-

linearity and interaction involved in hydrodynamical-poro-mechanical problems but most 

importantly shows the potential risk of over-reduction of uncertainty parameters and 

biased identification of the most influential parameters. 

 

6.5.4 Uncertainty Analysis 

Given the manageable number of uncertainty parameters and the computational 

efficiency of the proposed workflow, we carry all the uncertainty parameters forward to 

the uncertainty analysis, this implies that the ranges, distributions and number of bins of 

the uncertainty parameters will remain unaltered.  Consequently, the uncertainty 
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quantification can use the same proxy model created for the Sobol sensitivity analysis.  

We execute the proxy model of the swept oil volume using 65,000 Monte Carlo 

realisations to obtain the probabilistic uncertainty quantification (CDF and PDF).   

As noted above due to current limitations of the proposed poro-mechanically informed 

dual-porosity flow diagnostics, we exclude proxy-predicted scenarios with matrix-

dominated flux but we acknowledge that these scenarios can be examined using the same 

uncertainty quantification workflow but with the poro-mechanically informed single-

porosity flow diagnostics framework (Chapter 4).  A total of 49,450 Monte Carlo 

realisations with fracture-dominated flux (15,550 excluded) were used in the probabilistic 

uncertainty quantification and cluster analysis.  We compare the probabilistic 

distributions obtained from the proxy predictions with that obtained from training 

simulations.  Figure 6.16 illustrates the differences between the CDF, PDF and range of 

predicted swept oil volume.  The proxy-predicted outcomes show a wider coverage of the 

uncertainty space, resulting in a slightly larger range of predicted swept oil volume.  

Although, this example does not show significant discrepancies in the probabilistic 

distribution of the swept oil volume (P10, P50 and P90) between the training cases and 

the proxy-predicted scenarios, note that the additional coverage of the proxy-prediction 

enables to identify solutions (conditions and uncertainty parameter combinations) that 

were not explored with the actual 400 poro-mechanically informed dual-porosity flow 

diagnostics simulations.  This methodology offers the benefit of assessing a broader and 

more diverse uncertainty domain at the minimum CPU requirements and computing time.  

Therefore, this methodology can be used to complement current uncertainty 

quantification workflows, via quick identification of scenarios of interest for more 

complex full-physics coupled simulations. 
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Figure 6.16.  Comparison of probabilistic predictions (PDF and CDF) of swept oil volume between the outcomes 

obtained from the training simulations (400 runs) (a), and the proxy predictions (49,450 Monte Carlos realisations) (b) 

of the box model. 

 

6.5.5 Clustering and Screening 

We investigate the probabilistic interval P10−P90 obtained from the proxy-based 

probabilistic uncertainty analysis of the swept oil volume (Figure 6.16).  For the cluster 
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analysis, we chose different relationships of flow diagnostic metrics (i.e., 𝐿𝑐, �̅�, 𝐼𝐷, 𝑡𝑁𝐵𝑇) 

with the swept oil volume (Figure 6.17) to obtain groups of data that emphasise different 

aspects of the recovery behaviour (e.g., flow displacement efficiency, flux-transfer 

relation, breakthrough behaviour).   

 

 

Figure 6.17.  Proxy-predicted relationships with fracture-dominated flow are defined by the relationships; 𝐿𝑐 (a) �̅� (b), 

𝐼D  ume (c), and 𝑡𝑁𝐵𝑇 (d) with respect to the swept oil volume.  The validation of each proxy model used to define the 

relationships is shown in Figure 6.14. 

 

The K-means clustering with the Elbow method is applied to each proxy-predicted 

relationship of the swept oil volume (Figure 6.18).  The cluster analysis conducted in the 

relationships defined by 𝐿𝑐, �̅�, 𝐼D, and t𝑁𝐵𝑇, identified; five, six, nine and five clusters, 

respectively (Figure 6.18).  Note that not only the cluster size of each relationship differs 

one from another but also the ranges of swept oil volume covered by their clusters (Figure 

6.18 and Table 6.6).  We identify the central cases of each cluster defined in each relationship 
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(Figure 6.18) to obtain a small, manageable, and representative subset of cases that still 

capture the investigated range of uncertainty (interval P10−P90).  The identified central 

cases are then simulated using poro-mechanically informed flow diagnostics to 

corroborate the proxy prediction and to investigate in more detail the reservoir response.  

We observe a very good match (i.e., the maximum error is less than 2%) between the 

proxy-predicted outcomes and the poro-mechanically informed flow diagnostics 

outcomes (Table 6.6) indicating good confidence in the proxy-predicted outcomes within 

the assessed interval. 

 

 

Figure 6.18.  Clustering defined by the two-dimensional relationships: 𝐿𝑐  (a), �̅� (b), 𝐼D (c), and 𝑡NBT (d) with respect to 

the swept oil volume for the proxy-predicted probabilistic interval P10-P90 of the box model.  
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Relationship  Cluster 

Frac.  

Young's 

Modulus 

Matrix 

Young's 

Modulus 

Mult. 

Solid Bulk 

Modulus 

Mult. 

Stress 

Regime 

Boundary 

Condition 

Isostrain Perm.  

Model 

Isostress Perm.  

Model 

Proxy 

Predicted 

Swept Oil 

Vol. 

Simulated  

Swept Oil 

Vol. 

Swept Oil 

Vol.  Rel.  

Error  

   (GPa)       (x106 m3) (x106 m3) (%) 

Lc-Swept Oil 

Vol. 

Cluster 1  5.00 0.75 1.10 Normal Isostress - Zhang et al.  (2007) 7.92 7.92 0.03 

Cluster 2 5.57 0.78 1.02 Gravity Load Isostrain Bai et al.  (1997) - 7.11 7.09 0.22 

Cluster 3 4.00 1.27 1.36 Gravity Load Isostress - Zhang et al.  (2007) 7.45 7.50 0.58 

Cluster 4 7.00 0.92 1.10 Gravity Load Isostress - Bai et al.  (1997) 6.35 6.38 0.40 

Cluster 5 8.00 1.19 1.19 Reverse Isostrain Bai et al.  (1997) - 7.22 7.22 0.02 

�̅� -Swept Oil 

Vol. 

Cluster 1  5.00 1.36 1.10 Gravity Load Isostrain Bai et al.  (1997)) - 7.17 7.21 0.69 

Cluster 2 5.00 1.27 1.45 Strike-Slip Isostress - Bai et al.  (1999) 7.87 7.87 0.05 

Cluster 3 2.00 1.36 1.01 Strike-Slip Isostress - Bai et al.  (1997) 6.36 6.25 1.71 

Cluster 4 1.00 1.45 1.36 Strike-Slip Isostress - Zhang et al.  (2007) 6.19 6.25 1.01 

Cluster 5 5.00 1.27 1.45 Normal Isostress - Bai et al.  (1997) 6.73 6.65 1.09 

Cluster 6 2.00 1.10 1.01 Normal Isostress - Bai et al.  (1999) 7.85 7.82 0.38 

Cluster 7 10.00 1.19 0.75 Strike-Slip Isostrain Bai et al.  (1997) - 7.19 7.22 0.36 

ID -Swept Oil 

Vol. 

Cluster 1  1.00 1.45 1.36 Strike-Slip Isostress - Zhang et al.  (2007) 6.32 6.25 1.09 

Cluster 2 5.00 1.45 0.66 Strike-Slip Isostrain Bai et al.  (1997) - 7.29 7.24 0.68 

Cluster 3 5.57 0.78 1.02 Gravity Load Isostrain Bai et al.  (1997) - 7.11 7.09 0.22 

Cluster 4 5.00 0.84 0.75 Reverse Isostress - Bai et al.  (1999) 8.01 7.99 0.27 

Cluster 5 5.00 1.27 1.45 Normal Isostress - Bai et al.  (1997) 6.61 6.63 0.36 

Cluster 6 2.00 0.66 0.66 Normal Isostrain Bai et al.  (1997) - 7.03 7.06 0.48 

Cluster 7 9.00 1.45 1.27 Gravity Load Isostress - Zhang et al.  (2007) 7.71 7.71 0.04 

Cluster 8 8.00 0.92 1.01 Normal Isostress - Bai et al.  (1997) 6.14 6.17 0.47 

tNBT - Swept Oil 
Vol. 

Cluster 1  2.00 1.27 1.45 Normal Isostrain Bai et al.  (1997) - 7.17 7.19 0.33 

Cluster 2 5.00 1.27 1.45 Normal Isostress - Bai et al.  (1997) 6.59 6.63 0.62 

Cluster 3 7.00 0.84 0.84 Normal Isostress - Bai et al.  (1999) 7.99 7.97 0.15 

Cluster 4 9.00 1.10 1.19 Strike-Slip Isostress - Bai et al.  (1997) 6.26 6.08 2.92 

Cluster 5 9.00 1.45 1.27 Gravity Load Isostress - Zhang et al.  (2007) 7.66 7.71 0.62 

Cluster 6 2.00 0.92 1.45 Strike-Slip Isostress - Zhang et al.  (2007) 7.19 7.40 2.90 

Table 6.6:  Definition of central cases obtained from two-dimensional clustering and comparison between proxy predicted and flow diagnostics simulated data for the box model. 
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Figure 6.19 shows the simulated central cases of each relationship plotted along with the 

poro-mechanically informed flow diagnostics simulations that were used to train the 

proxy model.  We observe that the relationships of the swept oil volume with 𝑡𝑁𝐵𝑇 and 

𝐼D cover almost entirely the range of the quantified uncertainty.  In this example, we 

observed that the coverage of the quantified uncertainty range is independent of the 

number of identified clusters, what shows more importance in the coverage of the 

uncertainty range are the aspects of the recovery behaviour (flow diagnostics metrics) that 

are used to define the clusters.  The scattering and spacing of the central cases along the 

quantified uncertainty for each relationship are influenced by the patterns of 

dissimilarities of the recovery aspects described by the flow diagnostic metric.  The more 

dissimilar the range of values between the flow diagnostics metric of each cluster is, the 

more spread and diverse the intervals of swept oil volume for each cluster.   

 

 

Figure 6.19.  Comparison of swept oil volume profiles obtained from poro-mechanically informed flow diagnostics 

simulations of the identified central cases in the clusters defined in Figure 6.18 and Table 6.6 and plotted along with the 

training cases used to create the proxy model.  The plots show the range of coverage of the quantified uncertainty 

obtained from the central cases of the clusters defined by the two-dimensional relationships: 𝐿𝑐 (a), �̅� (b), 𝐼D (c), and 

𝑡𝑁𝐵𝑇  (g) with respect to the swept oil volume.  The results encompass only the proxy-predicted probabilistic interval 

P10-P90 of the swept oil volume of the box model.  Note that stair-step lines are the result of numerical dispersion.   
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For example, note that the central cases obtained from the cluster defined by 𝑡𝑁𝐵𝑇 are less 

spread across the entire range of the quantified swept oil volume (i.e., most of the central 

cases lie on the extreme values of the swept oil volume range) than the other cases because 

of the slight difference of breakthrough behaviour among the assessed cases (Figures 6.18 

and 6.19 and Table 6.6).  Although the central cases obtained with 𝑡𝑁𝐵𝑇 identify five different 

and well-spread curves of breakthrough behaviour (e.g., different ends of the production 

plateaus) (Figure 6.20), the difference in breakthrough time is not significant enough to 

generate a substantial diversity between the cases when the swept oil volume is 

considered.   

 

 

Figure 6.20.  Comparison of production profiles obtained from poro-mechanically informed flow diagnostics 

simulations of the identified central cases in the clusters defined in Figure 6.18 and Table 6.6 and plotted along with the 

training cases used to create the proxy model.  The plots show the production behaviour obtained from the central cases 

of the clusters defined by the two-dimensional relationships: 𝐿𝑐 (a), �̅� (b), 𝐼D (c), and 𝑡NBT (g) with respect to the swept 

oil volume.  The results encompass only the proxy-predicted probabilistic interval P10-P90 of the swept oil volume of 

the box model.  Note that stair-step lines are the result of numerical dispersion.   
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This case study demonstrates the benefits of the proposed methodology; this tool quickly 

approximates probabilistic forecasts for uncertainty quantification and screens ensembles 

of models that capture a robust range of uncertainty for later use in more detailed full 

physics coupled studies. Additionally, this case study shows the importance of using the 

appropriate flow diagnostics metric for clustering to obtain a representative set of models 

that characterise adequately the range of the uncertainty quantified and the dynamic 

behaviour of interest.   

 

6.6 Complex Case – Amellago Model 

6.6.1 Amellago model setup and Definition of Poro-mechanical Reference Cases 

The overview of the Amellago model is presented in Section 5.4.3.  The reservoir model 

dimensions are 1150 × 1173 × 220 m with 74 × 75 × 46 grid cells.  We assume a water-

wet system; for simplicity, the entire model uses a single capillary pressure and relative 

permeability curve and neglects the poro-mechanical effect on the two-phase properties.  

The two-phase properties are the same as the one defined in Section 5.4.3 for the case 

without poro-mechanics (Table 5.4 and Figure 5.16).  For clarity of the investigation of the 

poro-mechanical effects, we assume a constant shape factor and transfer function for the 

entire model.  A 5-spot injection pattern is implemented with BHP-constrained wells.  A 

total of 50 pore volumes are injected into the model to ensure the entire invasion of the 

injected fluid into the total accessible pore volume. The top of the reservoir model is at 

1500 m depth of the surface.  The model is subjected to the overburden load of overlying 

formation layers, which we assume as shale.  There is no lateral displacement on any of 

the vertical sides of the model, the bottom cannot move vertically, and the top is free to 

displace in all directions.  The geomechanical grid embeds the Amellago reservoir model 

and assumes the same geometry as the geomechanical grid depicted in Figure 6.7.  The 

input properties and parameters of the reservoir and geomechanical model and their initial 

conditions are listed in Tables 6.7 and 6.8.  The mechanical properties of the geomechanical 

model (Young’s moduli, bulk moduli, Biot’s coefficients, and rock densities) are assigned 

according to the rock types of the model (Table 6.8) and sourced from published data 

(Tang, 1998; Chugh, 2015; Goffredo et al., 2015; Li et al., 2015; Małkowski et al., 2018).  

The mechanical properties of the fractures are assumed to be homogeneous with Young’s 

modulus of 3 GPa and Poison’s ratio of 0.25.  Before commencing production-injection 

operations the permeability of the model is mechanically initialised.  This example 

illustrates the effect of mechanical uncertainties on the prediction of the swept oil volume. 
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Parameter Value Unit 

Geomechanical Model Dimensions 
5750 × 5865 × 

3220 
m 

Geomechanical Grid Division (nx × ny × nz) 84 × 85 × 66 cells 

Reservoir Model Dimensions 
1150 × 1173 × 

220 
m 

Reservoir Grid Division (nx × ny × nz) 74 × 75 × 46 cells 

Shape Factor 1 m-2 

Matrix Volume Fraction 0 – 0.091 - 

Fracture Volume Fraction 0.909 – 1 - 

Transfer Function  3.2×10-11 sec-1 

Fracture Young's Modulus  3 GPa 

Matrix Young's Modulus Range 3 – 70 GPa 

Matrix and Fracture Poison's Ratio 0.25 - 

Bulk Density 3000 kg/m3 

Water Density 1000 kg/m3 

Oil Density 800 kg/m3 

Water Viscosity 1 cP 

Oil Viscosity 3.4 cP 

Initial Reservoir Pressure 148.2 bar 

Injector BHP 160.3 bar 

Producer BHP 90.4 bar 

Table 6.7:  Input data for the Amellago model. 

 

Rock 

Type No. 

Rock Type Proportion in 

Model 

Young's 

Modulus 

Solid Bulk 

Modulus 

(%) (GPa) (GPa) 

RT1 Marl         16 3 9 

RT2 Mudstone 0.4 15 20 

RT3 Skeletal Peloidal Wackestone          6.6 30 40 

RT4 Skeletal Peloidal Wackestone-Packstone 16.9 30 40 

RT5 Skeletal Wackestone-Packstone 14 30 40 

RT6 Wackestone-Packstone with Mollusc Debris 0.3 45 55 

RT7 Oncoidal Wackestone-Packstone         3.5 45 55 

RT8 Peloidal Packstone-Grainstone 9.6 55 70 

RT9 Ooidal Grainstone Limestone         11.3 55 70 

RT10 Floastone with Mollusc Debris 0.1 60 75 

RT11 Skeletal Floastone         3.1 60 75 

RT12 Oncoloidal Floastone-Rudstone 14.2 60 5 

RT13 Mollusc Bank          0.4 0 0 

RT14 Coral Reef 0.3 0 0 

Table 6.8:  Rock types and assignment of mechanical properties for the Amellago model. 

 

6.6.2 Definition of Poro-mechanical Reference Cases 

The assessed uncertainty is the fracture and matrix Young’s modulus, the bulk stiffness 

module, isostress and isostrain boundary conditions, and stress regimes (Table 6.9).  All 

poro-mechanical cases are compared to the case that neglects poro-mechanics (Base 
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Case).  We define the principal stresses (i.e., σv, σH and σh) and the stress regimes acting 

in the system as presented in Table 6.4.  As in the simple box model, we establish the 

reference cases for each stress-dependent permeability model by using the model setup 

and the initial reference values shown in Table 6.9 

 

Parameters 
Initial Condition Reference 

Values 

Range for 

Continuous and 

Discrete Values 

Unit Distribution 

Discrete 

Sampling 

Levels 

Fracture Young's 

Modulus 
3 [ 1  - 10] (GPa) Uniform 10 

Matrix Young's 

Modulus  

Defined per Rock Type 

(3 -60 GPa see Table 6.8)  
[0.66 - 1.45] (multiplier) Uniform 10 

Solid Bulk Modulus 
Defined per Rock Type 

(5 -75 GPa, see Table 6.8) 
[0.66 - 1.45] (multiplier) Uniform 10 

Boundary Condition – 
[Isostress, 

Isostrain] 
– Uniform 2 

Isostress 
Permeability 

Correlations 

Bai et al.  (1999) 

[Bai et al.  (1999), 

Bai et al.  (1997), 
Zhang et al.  

(2007), Zhang et 

al.  (2004)] 

– Uniform 4 

Isostrain 

Permeability 

Correlation 

– 

[Bai et al.  (1997), 

Zhang et al.  

(2004)] 

– Uniform 2 

Stress Regime Gravity Load 

[Gravity Load, 

Normal Faulting, 

Reverse Faulting, 
Strike-Slip 

Faulting] 

– Uniform 4 

Table 6.9:  Uncertainty parameters definition for the Amellago Model. 

 

Figure 6.21 and Table 6.10 depicts the range of variability in the predictions of the reservoir 

dynamic behaviour using the different stress-dependent fracture permeability models and 

values of the other uncertainty parameters.  The significant discrepancies in the forecasts 

of the reservoir performance among the reference cases and the Base Case exemplify the 

importance of the assessment of the poro-mechanical effect on the wide range variability 

of reservoir predictions (e.g., the swept oil volume).  Note that some production profile 

curves end before 50 pore volumes have been injected, this is because the total accessible 

pore volume has been fully swept before the target injection of 50 pore volumes.  Most 

of the cases that required a lower value than the targeted 50 injected pore volume show a 

faster recovery profile and better sweep efficiency due to good fracture-matrix fluid 

exchange and reservoir connectivity.  A few cases like the reference case under Isostress 

w/ Bai et al.  (1997) show a high production flow rate but slower recovery caused by 

channelised flow which hinders the access to all the pore volume due to poro-mechanical 

changes in reservoir connectivity.  When flow is channelised, the injected fluid moves 

preferentially into a zone of fast flow until encounters a flow disruption either caused by 

slow-flow or stagnant regions.  In general, the negative effect of poro-mechanics on 

changes in flow connectivity results in poor swept efficiency, longer oil recovery, early 
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breakthrough time and changes in recoverable oil pore volume (e.g., creation of 

inaccessible pores due to the closure of fracture apertures resulting in regions of the 

matrix that are isolated from flow). 

 

 

Figure 6.21.  Comparison of production profiles of all training cases, emphasizing the Base Case and the reference cases 

of each stress-dependent permeability model under isostress and isostrain boundary conditions considering the setup 

values of the Amellago model listed in Tables 6.7, 6.8 and 6.9.  The evolution of the swept oil volume (a), production 

flow rate (b), and the ratio of produced concentration to produced total liquid rate for all injector-producer well pairs 

(c) is shown during a period of injection of 50 pore volumes (matrix and fractures), note that for most of the reference 

cases the sweep of the recoverable oil is reached before the injection of 50 pore volumes. 

 

Cases Lc Lc* Lc �̅�  𝒕𝐁𝐓 
Liquid 

Flow Rate 

Swept 

Oil Vol. 

Sweep 

Efficiency 

  (fraction) (fraction) (fraction) (fraction) (x103 days) (m3/day) (x106 m3) (fraction) 

Base Case                       

(w/o Poro-mechanics) 0.358 0.390 0.511 -8.95 6.46 580.14 7.42 0.813 

Isostress                             

w/ Bai et al.  (1999) 0.383 0.401 0.446 -10.26 7.95 454.21 7.34 0.802 

Isostress                             

w/ Bai et al.  (1997) 0.591 0.572 0.521 -7.97 14.09 1824.20 6.37 0.576 

Isostrain                             

w/ Bai et al.  (1997) 0.399 0.410 0.441 -8.71 8.64 458.99 7.19 0.786 

Isostress                             

w/ Zhang et al.  (2007) 0.467 0.463 0.462 -10.16 9.22 501.02 6.63 0.722 

Isostress                            

w/ Zhang et al.  (2004) 0.572 0.536 0.550 -12.56 8.39 789.34 5.20 0.573 

Isostrain                              

w/ Zhang et al.  (2004) 0.567 0.532 0.545 -12.69 8.61 733.77 5.20 0.572 

Table 6.10: Comparison of Base Case and reference cases in terms of flow diagnostics metrics and production 

parameters after 50 pore volumes have been injected. 

 

6.6.3 Sensitivity Analysis 

The OPAT and Sobol sensitivity analyses show a wide range of variability in the 

predicted swept oil volume (Figure 6.22), even the less robust outcomes obtained from the 

OPAT analysis (i.e., only linear effects are studied) capture the high degree of variability 

due to the stress sensitivity of the model.  The Sobol analysis of the swept oil volume 

employs a proxy model trained and verified with 335 poro-mechanically informed flow 

diagnostics simulations (Figure 6.23).  Analogously, the proxy models for 𝐿𝑐, �̅�, 𝐼𝐷, and 
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𝑡𝑁𝐵𝑇 (Figure 6.23) were created for the cluster analysis.  The overall computing time for 

the creation of the proxy models took 84 hours (3.5 days) using a standard CPU.   

 

 

Figure 6.22.  Effect of the uncertainty parameters defined in Table 6.9 on swept oil volume assessed in an OPAT 

sensitivity analysis and with training cases defined using a DoE based on an orthogonal Latin hypercube for the proxy 

modelling.  For the OPAT sensitivity analysis, each marker colour represents a specific uncertainty parameter.  The 

assessed sampling levels of each uncertainty parameter (Table 6.9) increase as the Case ID moves forward. 

 

 

Figure 6.23.  Quality check of the proxy models for the Amellago Model, via comparison of proxy predicted and poro-

mechanically informed flow diagnostics outcomes for; swept oil volume (a), 𝐿𝑐 (b), �̅� (c), 𝐼𝐷 (d), and 𝑡𝑁𝐵𝑇 (e). 

 

The Sobol analysis employed 65,000 Monte Carlo realisations using the validated proxy 

model of the swept oil volume (i.e., Rtraining
2 = 0.987 and Rverification

2 = 0.975).  The 

Sobol analysis (Figure 6.24) shows that the non-linear and interaction relationships between 

the input parameters (i.e., hydrodynamical and mechanical uncertainty parameters) 

control the influence of the variability of the predicted swept oil volumes.  For the 

conditions and mechanical properties applied to the Amellago model, the choice of 

boundary conditions and their corresponding stress-dependent permeability models are 

the major contributors to the overall variability of the swept oil volume, while the other 
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uncertainty parameters have a negligible effect.  Depending on the applied stress regimes, 

some stress-dependent models are more sensitive to changes in effective stress, which 

results in more reductions and closures of fracture apertures in the model, and 

consequently drastic changes in the reservoir connectivity.  Note that if the stress-

dependent permeability model for isostress conditions is kept fixed, 25 per cent of the 

output variance can be reduced.  Similarly, 22 per cent of the variability of the swept oil 

volume can be reduced if the stress-dependent permeability model for isostrain conditions 

is fixed.   

 

 

Figure 6.24.  The Sobol sensitivity analysis of the Amellago model shows the contribution of the main effects and the 

iteration effects on the total effect of the change in the swept oil volume. 

 

6.6.4 Uncertainty Analysis 

The uncertainty quantification considers all the uncertainty parameters with their entire 

ranges and discrete levels (Table 6.9).  From the proxy predictions obtained using a sample 

of 65,000 Monte Carlo realisations, we identify 40,068 scenarios with fracture-dominated 

flow (Figure 6.25).   The probabilistic distribution of the swept oil volume obtained from 

the proxy prediction (40,068 predictions) and the training simulations (335 runs) shows 

slight differences; the P10, P50 and P90 are almost identical (Figure 6.25).  Note that the 
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missing intervals of the probability distribution obtained from the training simulations are 

now covered in the proxy-predicted distribution of the swept oil volume.  The proxy 

model allows extending the coverage of the predicted domain by exploring a broader 

range of uncertainty scenarios at the minimum computing time (e.g., 65,000 predictions 

using the proxy model take 22 seconds in a standard CPU).  This methodology thus has 

proven to assess a broader and more diverse uncertainty domain of hydrodynamical-poro-

mechanical scenarios, and also to be computationally efficient (e.g., including the proxy 

creation) for this highly heterogenous and complex Carbonate analogue. 

 

 

Figure 6.25.  Comparison of probabilistic predictions (PDF and CDF) of swept oil volume between the outcomes 

obtained from the training simulations (335 runs) (a), and the proxy predictions (40,068 Monte Carlos realisations) (b) 

of the Amellago model. 

 

6.6.5 Clustering and Screening  

We use both two-dimensional and three-dimensional relationships to carry out the 

clustering.  For the two-dimensional relationships, we relate the swept oil volume with 

𝐿𝑐, �̅�, 𝐼D, and 𝑡𝑁𝐵𝑇.  The three-dimensional relationships are defined as: swept oil 

volume-𝐿𝑐-�̅�, swept oil volume-𝐿𝑐-𝐼D, and swept oil volume-𝐿𝑐-𝑡𝑁𝐵𝑇.  Note 𝐿𝑐 is present 

in all the three-dimensional relationships to involve measurement of flux heterogeneity 

in the fracture network. The cluster definition of the two-dimensional relationships 

identified five, seven, eight and six clusters for the relationships defined by 𝐿𝑐, �̅�, 𝐼𝐷, and 

𝑡𝑁𝐵𝑇, respectively (Table 6.11 and Figure 6.26).  All the three-dimensional relationships 

identified six clusters (Table 6.12 and Figure 6.27) but with different shapes and spatial 
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distributions; note the differences in the different cluster definitions along the common 

relationship swept oil volume-𝐿𝑐 (Figure 6.27). 

 

 

Figure 6.26.  Clustering defined by the two-dimensional relationships: 𝐿𝑐 (a), �̅� (b), 𝐼D (c), 𝑡𝑁𝐵𝑇 (d) with respect to the 

swept oil volume, for the proxy-predicted probabilistic interval P10-P90 of the Amellago model. 

 

 

Figure 6.27.  Clustering defined by the three-dimensional relationships: 𝐿𝑐-�̅� (a and d), 𝐿𝑐-𝐼D (b and e), and 𝐿𝑐-𝑡𝑁𝐵𝑇 (c 

and f) with respect to the swept oil volume for the proxy-predicted probabilistic swept oil volume of the Amellago 

model.  The three- and two- dimensional plane representations are shown in the upper and lower row, respectively. 
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Relationship  Cluster 

Frac.  

Young's 

Modulus 

Matrix 

Young's 

Modulus 

Mult. 

Solid Bulk 

Modulus 

Mult. 

Stress Regime 
Boundary 

Condition 

Isostrain Perm.  

Model 

Isostress Perm.  

Model 

Proxy 

Predicted 

Swept Oil 

Vol. 

Simulated  

Swept Oil 

Vol. 

Swept Oil Vol.  

Rel.  Error  

   (GPa)       (x106 m3) (x106 m3) (%) 

Lc - Swept Oil 

Vol. 

Cluster 1  5.00 0.75 1.10 Normal Isostress - Zhang et al.  (2007) 7.92 7.92 0.03 

Cluster 2 5.57 0.78 1.02 Gravity Load Isostrain Bai et al.  (1997) - 7.11 7.09 0.22 

Cluster 3 4.00 1.27 1.36 Gravity Load Isostress - Zhang et al.  (2007) 7.45 7.50 0.58 

Cluster 4 7.00 0.92 1.10 Gravity Load Isostress - Bai et al.  (1997) 6.35 6.38 0.40 

Cluster 5 8.00 1.19 1.19 Reverse Isostrain Bai et al.  (1997) - 7.22 7.22 0.02 

�̅� - Swept Oil 

Vol. 

Cluster 1  5.00 1.36 1.10 Gravity Load Isostrain Bai et al.  (1997) - 7.17 7.21 0.69 

Cluster 2 5.00 1.27 1.45 Strike-Slip Isostress - Bai et al.  (1999) 7.87 7.87 0.05 

Cluster 3 2.00 1.36 1.01 Strike-Slip Isostress - Bai et al.  (1997) 6.36 6.25 1.71 

Cluster 4 1.00 1.45 1.36 Strike-Slip Isostress - Zhang et al.  (2007) 6.19 6.25 1.01 

Cluster 5 5.00 1.27 1.45 Normal Isostress - Bai et al.  (1997) 6.73 6.65 1.09 

Cluster 6 2.00 1.10 1.01 Normal Isostress - Bai et al.  (1999) 7.85 7.82 0.38 

Cluster 7 10.00 1.19 0.75 Strike-Slip Isostrain Bai et al.  (1997) - 7.19 7.22 0.36 

ID - Swept Oil 

Vol. 

Cluster 1  1.00 1.45 1.36 Strike-Slip Isostress - Zhang et al.  (2007) 6.32 6.25 1.09 

Cluster 2 5.00 1.45 0.66 Strike-Slip Isostrain Bai et al.  (1997) - 7.29 7.24 0.68 

Cluster 3 5.57 0.78 1.02 Gravity Load Isostrain Bai et al.  (1997) - 7.11 7.09 0.22 

Cluster 4 5.00 0.84 0.75 Reverse Isostress - Bai et al.  (1999) 8.01 7.99 0.27 

Cluster 5 5.00 1.27 1.45 Normal Isostress - Bai et al.  (1997) 6.61 6.63 0.36 

Cluster 6 2.00 0.66 0.66 Normal Isostrain Bai et al.  (1997) - 7.03 7.06 0.48 

Cluster 7 9.00 1.45 1.27 Gravity Load Isostress - Zhang et al.  (2007) 7.71 7.71 0.04 

Cluster 8 8.00 0.92 1.01 Normal Isostress - Bai et al.  (1997) 6.14 6.17 0.47 

tNBT - Swept 

Oil Vol. 

Cluster 1  2.00 1.27 1.45 Normal Isostrain Bai et al.  (1997) - 7.17 7.19 0.33 

Cluster 2 5.00 1.27 1.45 Normal Isostress - Bai et al.  (1997) 6.59 6.63 0.62 

Cluster 3 7.00 0.84 0.84 Normal Isostress - Bai et al.  (1999) 7.99 7.97 0.15 

Cluster 4 9.00 1.10 1.19 Strike-Slip Isostress - Bai et al.  (1997) 6.26 6.08 2.92 

Cluster 5 9.00 1.45 1.27 Gravity Load Isostress - Zhang et al.  (2007) 7.66 7.71 0.62 

Cluster 6 2.00 0.92 1.45 Strike-Slip Isostress - Zhang et al.  (2007) 7.19 7.40 2.90 

Table 6.11:  Definition of central cases obtained from two-dimensional clustering and comparison between proxy predicted and flow diagnostics simulated data for the Amellago Model. 
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Relationship  Cluster 

Frac.  

Young's 

Modulus 

Matrix 

Young's 

Modulus 

Mult. 

Solid 

Bulk 

Modulus 

Mult. 

Stress Regime 
Boundary 

Condition 

Isostrain Perm.  

Model 

Isostress Perm.  

Model 

Proxy 

Predicted 

Swept Oil Vol. 

Simulated  

Swept Oil 

Vol. 

Swept 

Oil Vol.  

Rel.  

Error  

   (GPa)       (x106 m3) (x106 m3) (%) 

Lc-�̅�-Swept 

Oil Vol. 

Cluster 1  8.00 1.27 1.36 Gravity Load Isostrain Bai et al.  (1997) - 7.16 7.19 0.40 

Cluster 2 10.00 1.27 0.84 Strike-Slip Isostress - Bai et al.  (1999) 7.89 7.87 0.31 

Cluster 3 1.00 1.27 1.36 Gravity Load Isostress - Zhang et al.  (2007) 6.49 6.53 0.54 

Cluster 4 10.00 1.27 0.92 Gravity Load Isostress - Bai et al.  (1997) 6.22 6.14 1.35 

Cluster 5 5.00 0.66 1.45 Reverse Isostress - Bai et al.  (1997) 6.85 6.64 3.20 

Cluster 6 5.00 1.36 1.10 Reverse Isostress - Zhang et al.  (2007) 7.57 7.51 0.75 

Lc-ID -Swept 

Oil Vol. 

Cluster 1  2.00 1.01 0.66 Normal Isostress - Bai et al.  (1999) 7.89 7.88 0.13 

Cluster 2 5.00 0.92 0.66 Strike-Slip Isostrain Bai et al.  (1997) - 7.16 7.17 0.13 

Cluster 3 1.00 0.92 0.84 Gravity Load Isostress - Bai et al.  (1997) 6.22 6.21 0.05 

Cluster 4 4.00 1.45 1.45 Normal Isostress - Zhang et al.  (2007) 7.28 7.35 1.01 

Cluster 5 2.00 1.10 1.36 Strike-Slip Isostress - Bai et al.  (1999) 7.84 7.82 0.25 

Cluster 6 3.00 0.75 0.66 Reverse Isostress - Bai et al.  (1997) 6.55 6.52 0.40 

Lc-tNBT -Swept 

Oil Vol. 

Cluster 1  2.00 1.19 1.36 Normal Isostress - Bai et al.  (1999) 7.77 7.81 0.44 

Cluster 2 9.00 1.10 1.19 Strike-Slip Isostress - Bai et al.  (1997) 6.26 6.08 2.89 

Cluster 3 2.00 1.27 1.36 Gravity Load Isostrain Bai et al.  (1997) - 7.16 7.19 0.39 

Cluster 4 10.00 1.36 0.84 Normal Isostress - Bai et al.  (1999) 7.89 7.89 0.11 

Cluster 5 5.00 1.27 1.45 Normal Isostress - Bai et al.  (1997) 6.59 6.63 0.59 

Cluster 6 10.00 0.66 0.66 Gravity Load Isostrain Bai et al.  (1997) - 7.25 7.06 2.68 

Table 6.12:  Definition of central cases obtained from three-dimensional clustering and comparison between proxy predicted and flow diagnostics simulated data for the Amellago model. 
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We compare the range of coverage of the quantified uncertainty between central cases 

defined for the two- and three-dimensional relationships (Figures 6.28 to 6.31).  The central 

cases defined by the swept oil volume-�̅� (two-dimensional relationship) and swept oil 

volume-𝐿𝑐-�̅�(three-dimensional relationship) show the best coverage of the quantified 

uncertainty (Figure 6.28).  Note that the �̅� features the best uncertainty coverage of the 

central cases in both the two- and three-dimensional relationships because the oil recovery 

performance of the Amellago model for this case study is mainly controlled by the 

interaction between the fracture flux and the fracture-matrix fluid exchange.  In general, 

the central cases found in the three-dimensional relationships show more dissimilarities 

of reservoir dynamic behaviour (e.g., recovery profile, oil production plateau, production 

decline, breakthrough time) than that obtained in the two-dimensional relationships.   

 

 

Figure 6.28.  Comparison of swept oil volume profiles obtained from poro-mechanically informed flow diagnostics 

simulations of the identified central cases in the clusters defined in Figure 6.26 and Table 6.11 and plotted along with the 

training cases used to create the proxy model.  The plots show the range of coverage of the quantified uncertainty 

obtained from the central cases of the clusters defined by the two-dimensional relationships: 𝐿𝑐 (a and e), �̅� (b and f), 

𝐼D (c and g), and 𝑡𝑁𝐵𝑇  (d and h) with respect to the swept oil volume.  The results encompass only the scenarios with 

fracture-dominated flow. 
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Figure 6.29.  Comparison of production profiles obtained from poro-mechanically informed flow diagnostics 

simulations of the identified central cases in the clusters defined in Figure 6.26 and Table 6.11 and plotted along with the 

training cases used to create the proxy model.  The plots show the range of coverage of the quantified uncertainty 

obtained from the central cases of the clusters defined by the two-dimensional relationships: 𝐿𝑐 (a and e), �̅� (b and f), 

𝐼D (c and g), and 𝑡𝑁𝐵𝑇  (d and h) with respect to the swept oil volume.  The results encompass only the scenarios with 

fracture-dominated flow. 

 

 

Figure 6.30.  Comparison of swept oil volume profiles obtained from poro-mechanically informed flow diagnostics 

simulations of the identified central cases in the clusters defined in Figure 6.27 and Table 6.12 and plotted along with the 

training cases used to create the proxy model.  The plots show the range of coverage of the quantified uncertainty 

obtained from the central cases of the clusters defined by the three-dimensional relationships: 𝐿𝑐 − �̅� (a and d), 𝐿𝑐 − 𝐼D 

(b and e), and 𝐿𝑐 − 𝑡𝑁𝐵𝑇  (c and f) with respect to the swept oil volume.  The results encompass only the scenarios with 

fracture-dominated flow. 
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Figure 6.31.  Comparison of production profiles obtained from poro-mechanically informed flow diagnostics 

simulations of the identified central cases in the clusters defined in Figure 6.27 and Table 6.12 and plotted along with the 

training cases used to create the proxy model.  The plots show the production behaviour obtained from the central cases 

of the clusters defined by the three-dimensional relationships: 𝐿𝑐 − �̅� (a and d), 𝐿𝑐 − 𝐼D (b and e), and 𝐿𝑐 − 𝑡NBT (c 

and f) with respect to the swept oil volume.  The results encompass only the scenarios with fracture-dominated flow. 

 

This case study shows that the additional parameter for the clustering of the swept oil 

volume (three-  instead of two-parameter relationships) reduces the crowding between 

curves of dynamic behaviour (i.e., more spread and spaced cases along the uncertainty 

range) (see the comparison between Figure 6.28 to 6.31).  The identified central cases of the 

two- and three-dimensional relationships feature a wide variety of hydrodynamical-poro-

mechanical scenarios (Table 6.11 and 6.12), hence, beside the range of coverage of the 

reservoir uncertainty is also important to choosing the adequate relationship for the 

clustering to emphasise particular aspects of the reservoir recovery to support specific 

reservoir management decisions (e.g., high and fast oil recovery with low water cut, high 

oil recovery with long oil production plateau). 

 

6.7 Summary 

In this chapter, a new methodology that extends and accelerates traditional uncertainty 

quantification workflows by accounting for poro-mechanics was established.  The new 

methodology hastens the exploration of the uncertainty space using computationally 

efficient ANN-based proxy models based on the established poro-mechanically informed 

flow diagnostics simulations (Chapters 4 and 5).  The computationally efficient ANN-

based proxy models based on poro-mechanically informed flow diagnostics allow us to 

quickly estimate the effect of the complex interaction between the reservoir deformation 

and the reservoir flow processes on reservoir dynamics for a large ensemble of 

geologically diverse reservoir models.  Our methodology performs proxy-based global 

sensitivity analysis, proxy-based probabilistic uncertainty quantification using Monte 
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Carlo methods and cluster analysis to select representative models that capture the full 

range of initial uncertainties for more detailed full-physics analysis.  The benefits of our 

methodology include: (1) the robust sensitivity analysis identifies linear and non-linear 

interaction effects between the petrophysical and mechanical uncertainties mitigating the 

exclusion of key uncertainty parameters, (2) the broader exploration of the uncertainty 

domain reduces biased uncertainty quantification, and (3) the wide and diverse 

hydrodynamical-poro-mechanically forecasts can be used for cluster analysis and the 

identification of reservoir models for more detailed full-physics coupled reservoir 

simulations.  Our new framework was implemented in MRST and linked to the 

commercial software CMOST-AI; MRST performs the poro-mechanically informed flow 

diagnostics simulations and the clustering, while CMOST-AI carries out the experimental 

design, the ANN-based proxy modelling and the sensitivity and uncertainty analysis.  By 

using two case studies, a simple box model and the Amellago model, we demonstrated 

the applicability and computational efficiency of our uncertainty quantification workflow 

with flow diagnostics for stress-sensitive reservoirs.  Our new methodology can 

complement reservoir simulation workflows for quick screening of representative and 

physically meaningful models that honour a wide range of uncertainties and still capture 

the quantified uncertainty.   
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Chapter 7–SUMMARY, CONCLUSIONS AND GUIDELINES  

7.1 Summary and Conclusions 

Naturally fractured reservoirs (NFR) contain important geo-resources.  The exploitation 

of NFR is relevant to hydrocarbon production, groundwater resources, and geothermal 

energy, as well as the storage of carbon dioxide (CO2), hydrogen (H2), natural gas, or 

industrial waste.  All these applications have great relevance to the economy, 

environment, and society.   

 

In NFR, the fractures can impact reservoir performance because fractures can increase or 

dominate reservoir permeability, which influences the efficiency of recovery and storage 

processes. The disturbance to the present-day stress field due to injection or production 

changes, which result in fluid pressure changes and hence alter the effective stress, can 

impact the hydraulic connectivity of the fracture network and intrinsic properties of the 

fractured rock.  The resulting changes in reservoir connectivity can impact reservoir 

performance (e.g., sweep efficiency, productivity, injectivity, breakthrough times, 

recovery, and pore volume) that need to be quantified when making reservoir 

management decisions. 

 

The inherent geological uncertainties that affect the hydraulic and mechanical behaviour 

of NFR render the characterisation and modelling of flow and transport processes of NFR 

challenging.  From a numerical perspective, simulating flow and transport in the 

geological complex reservoir also encounters challenges such as the numerical solution 

of highly non-linear coupled partial differential equations or difficulties of standard 

discretisation schemes to approximate fluxes on non-orthogonal grids and/or for full 

permeability tensors to converge correctly and converge to a consistent solution.   

 

The combined aspects of geological uncertainties and numerical challenges render 

forecasting flow and transport processes in NFR challenging and require the assessment 

of substantial uncertainty.  However, conducting robust reservoir performance forecasts 

and uncertainty quantification workflows for NFR is very demanding because exploring 

the full range of geological uncertainties requires a large number of reservoir numerical 

simulations to be performed.  In many instances, poro-mechanical effects on reservoir 

performance are often disregarded, which may result in inadequate forecasts that do not 

capture the effect of key uncertainties.   
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Grid-based flow diagnostics have been shown to accelerate traditional reservoir 

engineering workflows, including uncertainty and optimisation.  Grid-based flow 

diagnostics use simplified physics based on steady-state solutions of the continuity and 

transport equations and are hence computationally efficient approximations of the 

reservoir dynamics, providing a quick assessment of reservoir connectivity, inter-well 

flow regions, swept and drained pore volumes, well-flow rates, and breakthrough times 

to characterise the dynamic heterogeneity of a reservoir.  Hence flow diagnostics can be 

used to rank, compare, and screen an ensemble of a reservoir model and select individual 

models for subsequent detailed but time-consuming full-physics simulations. 

 

This PhD thesis developed a fast poro-mechanical screening method, based on the 

extension of existing grid-based flow diagnostics for single- and dual- porosity models, 

to investigate the change in reservoir dynamics caused by the poro-mechanics that alter 

reservoir properties.  This extended flow diagnostics approach was then used in a state-

of-the-art uncertainty quantification workflow to screen a large reservoir model ensemble 

and investigate a broad range of geological uncertainties that impact poro-mechanics and 

reservoir flow behaviours.  Overall, the methods developed in this PhD thesis help to 

accelerate uncertainty quantification workflows and allow us to explore a wider range of 

uncertainties and hence reduce the bias during reservoir modelling and simulation.  All 

numerical developments presented in this thesis were done in the MRST and are hence 

available as open-source code.  The key findings of this PhD thesis are as follows: 

 

In Chapter 3, we introduced and validated the full implementation of the Vertex-

Approximate Gradient scheme (VAG) for solving the pressure equation on unstructured 

grids.  We also introduced a partial implementation of the VAG scheme (i.e., one-sided 

transmissibility) for the solution of flux.  We demonstrated that the VAG scheme yields 

accurate results in the presence of grid orientation effects (i.e., for non 𝐤 −orthogonal 

grids).  The performance of the VAG scheme was compared to three different 

discretisation schemes (i.e., TPFA, MPFA-O and Mimetic scheme) for the solution of 

pressure and flux under the effect of grid orientation and non-orthogonality.  From these 

schemes, the MPFA-O scheme performed best for the test cases considered in this chapter 

in terms of robustness and consistency, for both, pressure and flux.  The VAG scheme 

performed very similarly to the MPFA-O scheme for the pressure solution, and it is 

hypothesised that the flux solution of the VAG scheme could be improved once it has 
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been fully implemented.  An important finding of this work was that the inaccurate 

solution of the pressure and flux fields directly impacts the flow diagnostics results in 

terms of recovery and production profiles, well inflow rates, and breakthrough times if 

grid-orientation effects are present. Hence standard discretisation schemes (e.g., the 

TPFA scheme) should be avoided when performing flow diagnostics on complex grids 

and/or in cases with full tensor permeabilities.   

 

In Chapter 4, we developed a sequential coupling approach that combines poro-elastics 

to approximate rock deformation with single-phase flow simulations for flow diagnostics 

in a single-porosity system by considering the stress-dependent permeabilities as a non-

linear coupling term.  We demonstrated that it is possible to analyse how poro-

mechanically altered petrophysical properties impact the reservoir dynamics using flow 

diagnostics estimates of reservoir dynamics (e.g., swept oil volume, sweep efficiency, 

breakthrough time, well inflow rates).  The approach worked because the poro-mechanics 

impact the petrophysical properties, which influence the velocity field 𝐯 and hence the 

distribution of the time-of-flight 𝜏(𝐯(𝐱)) and concentration 𝑐(𝐯(𝐱)), based on which the 

flow diagnostics are calculated.  We showed that the choice of the stress-dependent 

permeability model is a first-order control on the solution of the coupled poro-mechanical 

problem.  We observed that formations that are more heterogeneous and have more 

randomly distributed petrophysical properties experience more drastic changes in 

reservoir connectivity, and hence changes in flow paths, breakthrough behaviour, and 

displacement efficiency due to poro-mechanical effects. 

 

In Chapter 5 we extended the single-porosity poro-mechanically informed flow 

diagnostics to dual-continuum systems, using micromechanics and the mixture theory to 

compute the effective stresses and strains of the rock matrix and fractures.  Similar to the 

single-porosity approach, fluid flow and rock deformation equations are coupled 

sequentially using stress-dependent fracture permeability.  The coupled poro-mechanical-

hydrodynamical problem is solved before carrying out the dual-porosity flow diagnostics 

calculations.  As part of this work, the non-linear and time-dependent calculation to 

couple the dual-porosity time of flight 𝜏∗ = 𝜏∗(𝐯, 𝑅) with the fracture-matrix fluid 

exchange for water-wet rocks was improved, which led to much more accurate prediction 

of breakthrough behaviour, well allocation factors, swept volume, and drained volumes 

in situations where the dual-porosity concept is valid.  Furthermore, we included the 

functionality to investigate the impact of poro-mechanics on the fracture-matrix fluid 
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exchange through the fracture-matrix transfer rate coefficients 𝛽.  Using case studies, we 

demonstrated that the extended flow diagnostics allow us to analyse how the stress-

dependency in two-phase properties impact recovery behaviour due to changes in relative 

permeability and saturation endpoints.  These alterations include a reduction in 

recoverable oil volume (e.g., reduction of mobile hydrocarbon saturations) and longer 

recovery profiles (e.g., adverse relative permeability profile to promote efficient fluid 

displacement).  Our main finding was that we demonstrated that stress-dependency in 

matrix and fracture properties and two-phase properties can be investigated in full-field 

reservoir models with dual-porosity behaviour using our fast and computationally 

efficient poro-mechanically informed dual-porosity flow diagnostics.  Our fast and 

computationally efficient tool allows us to identify how poro-mechanics impact reservoir 

connectivity, productivity, recoverable fluid in place and fracture-matrix fluid exchange. 

 

In Chapter 6 we introduced an extension for modern uncertainty quantification 

workflows for NFRs by accounting for poro-mechanical effects that employed proxy 

models that were trained using poro-mechanically informed flow diagnostics.  

Specifically, we used a variance-based global sensitivity analysis that deployed ANN-

based proxy models to run Monte Carlo simulations to identify the most influential 

geological, petrophysical, and mechanical uncertainties and their (non-linear) 

interactions.  This approach allowed us to reduce bias during uncertainty quantification 

by exploring a wider parameter range for NFRs compared to other methods such as 

OPAT.  The results from the sensitivity analysis were then subjected to cluster analysis 

to identify the relationship between the swept oil volume and metrics from flow 

diagnostics metrics.  From the clustering, we then identified the central case for each 

cluster that should be subjected to further, more detailed full-physics simulations.  We 

observed that the range of the quantified uncertainty obtained from the central cases is 

independent of the number of identified clusters and, instead, depends more on the 

specific metrics that were selected to establish the clusters.  This observation is not 

surprising because the flow diagnostics metrics emphasise different aspects of the 

dynamic behaviour of an ensemble of reservoir models.  Hence the appropriate flow 

diagnostic metrics should be chosen to quantify uncertainties for a particular reservoir 

management scheme (e.g., maximising time on plateau vs maximising rate).  The 

workflow introduced in this chapter is only applicable to situations where fracture-

dominated flow,  i.e., dual-porosity systems.  We, therefore, defined the index of 
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dispersion of the average Damköhler number 𝐼𝐷 to robustly identify the regions in the 

reservoir with fracture dominate flow.   

 

7.2  Suggested Areas for Future Research 

There are several areas where the new poro-mechanically informed flow diagnostics for 

NFR could be improved further.  These will be highlighted below.   

 

Full implementation of flux reconstruction for the VAG scheme.  Due to the design of 

MRST, the full matrix of VAG transmissibilities could not be implemented for the flux 

computations and currently, only one-sided transmissibility is used which limits the 

accuracy of the VAG scheme.  The implementation of the full VAG scheme should be 

completed to improve the calculation of the fluxes for complex grids.   

 

Further improvements to retardation factor 𝑅.  The current, improved, estimate of the 

retardation factor 𝑅 = 𝑅(𝑡∗(𝜏∗)) is only applicable for water-wet systems.  Further 

improvements are needed to use 𝑅 reliably in mixed-wet systems for calculating dual-

porosity flow diagnostics reliably.   

 

Additional recovery mechanisms in fracture-matrix fluid exchange.  This thesis only 

considers fluid exchange between the fracture and the matrix due to spontaneous 

imbibition.  Gravity drainage, another important recovery mechanism in NFR, should be 

considered as well.  New transfer functions (e.g., March et al., 2018; Lu et al., 2008) could 

be used to account for additional fracture-matrix fluid exchange processes.   

 

Deploying the poro-mechanically informed flow diagnostics in a real field application.  

This thesis only considers theoretical case studies.  It would be good to apply the new 

uncertainty workflow to a real field case and first history matching existing production 

data from an NFR and then forecast future reservoir behaviours to rigorously analyse the 

range of applicability and limitations of our poro-mechanically informed flow 

diagnostics. 

 

Extension of poro-mechanically informed dual-porosity flow diagnostics to dual-

permeability systems.  The current method is only applicable to fracture-dominated flow 

and should be extended to situations where there is also non-negligible flow in the matrix.  
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Such an extension should, on the one hand, recognise regions where fractures enhance 

flow in the matrix (Type III reservoir) and where fractures and matrix properties can be 

upscaled together.  A hybrid poro-mechanically informed flow diagnostics in such 

regions would be needed.  On the other hand, where fractures dominate flow but there is 

also considerable flow in the matrix (e.g., due to capillary continuity in a dual-

permeability system), a dual-permeability flow diagnostics method needs to be 

developed.  Such a dual-permeability flow diagnostics approach needs to define how the 

time-of-flight definition needs to establish how the fracture-matrix transfer impacts flow 

rates in the fracture and matrix, as well as the contribution of both domains on the total 

volumetric flow in each grid block to ensure mass conservation. 

 

Extension to primary depletion.  The current flow diagnostics framework assumes that 

reservoirs are managed by producers and injectors.  The concept of a diffusive time-of-

flight allows us to model pressure diffusion during primary depletion (i.e., Fujita et al., 

2016).  Expanding the flow diagnostics using a diffusive time-of-flight would enable us 

to assess the impact of poro-mechanics during primary depletion.   
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A– SUPPORTING INFORMATION FOR CHAPTER 3  

A.1 Harmonic Averaging Points on the Cell Faces 

The harmonic averaging point determines a point 𝒚𝜎 in the interface between two 

neighbouring control volumes that allows defining 𝑝𝜎 as an interpolation between the cell 

centres 𝒙𝐾 and 𝒙𝐿 of those control volumes.  The calculation of 𝒚𝜎 is defined in terms of 

isotropy and homogeneity of the porous medium (e.g., no discontinuities caused by the 

change in permeability).   

 

 

Figure A.1. Comparison of definitions of 𝒚𝜎 for homogenous medium (a) and heterogeneous isotropic medium (b). 

 

For an isotropic homogeneous medium, 𝒚𝜎 is the intersection between the segment 

formed by two cell centres (e.g., 𝒙𝐾 and 𝒙𝐿) and their interface 𝜎 (Figure A.1).  The 

pressure average at the interface 𝑝𝜎 is a linear interpolation between the values of 𝑝𝐾 and 

𝑝𝐾.  For a heterogeneous isotropic medium, the 𝑝𝜎 is obtained from the harmonic average 

of 𝑝𝐾 and 𝑝𝐿 (Angelas et al., 2009).  For the harmonic averaging, consider two control 

volumes 𝐾 and 𝐿 (Figure A.1) with different permeabilities matrices 𝚲𝐾 and 𝚲𝐿, separated 

by an interface 𝜎.  Let 𝑑𝐾,𝜎  and 𝑑𝐿,𝜎 denote the orthogonal distance from 𝒙𝐾 to 𝜎 and 𝒙𝐿 

to 𝜎, respectively.  The point 𝒚𝜎 satisfies the relations 

 

 𝑝𝜎(𝒚𝜎) = 𝛼𝐾,𝜎𝑝𝐾(𝒙𝐾) + 𝛼𝐿,𝜎𝑝𝐾(𝒙𝐿), (A.1) 

 𝚲𝐾 𝛻𝑃(𝒙𝐾) ∙ 𝒏𝐾𝐿 + 𝚲𝐿 𝛻𝑃(𝒙𝐿) ∙ 𝒏𝐾𝐿 = 0, (A.2) 
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where 𝛼𝐾,𝜎 > 0 and 𝛼𝐿,𝜎 > 0 with 𝛼𝐾,𝜎 + 𝛼𝐿,𝜎 = 1, such as: 𝑝 is affine in both 𝐾 and 𝐿, 

and 𝑝 is continuous on 𝜎 = 𝜕𝐾 ∩ 𝜕𝐿, and 𝒏𝐾𝐿 denotes the unit vector, normal to σ, 

oriented from 𝐾 to 𝐿. 

 

The 𝒚𝜎 is given by 

 

 𝒚𝜎 =
𝜆𝐿𝑑𝐾,𝜎𝒚𝐿+𝜆𝐾𝑑𝐿,𝜎𝒚𝐾+𝑑𝐾,𝜎𝑑𝐿,𝜎(𝜆𝐿

𝜎−𝜆𝐾
𝜎)

𝜆𝐿𝑑𝐾,𝜎+𝜆𝐾𝑑𝐿,𝜎
, (A.3) 

 

where 𝒚𝐾 = 𝒫(𝒙𝐾, 𝜎) and 𝒚𝐿 = 𝒫(𝒙𝐿 , 𝜎) are the orthogonal projection of 𝒙𝐾 and 𝒙𝐿on 

𝜎.  The other terms of 𝜆 are defined as follows 

 

 𝜆𝐾 = 𝒏𝐾𝐿 ∙ 𝛬𝐾𝒏𝐾𝐿, (A.4) 

 𝜆𝐿 = 𝒏𝐾𝐿 ∙ 𝛬𝐿𝒏𝐾𝐿, (A.5) 

 𝝀𝐾
𝜎 = 𝛬𝐾𝒏𝐾𝐿 − 𝜆𝐾𝒏𝐾𝐿, (A.6) 

 𝝀𝐿
𝜎 = 𝛬𝐿𝒏𝐾𝐿 − 𝜆𝐾𝒏𝐾𝐿, (A.7) 

 

The 𝑝𝜎, early introduced in Equation A.1 is redefined as  

 

 𝑝𝜎(𝒚𝜎) =
𝜆𝐿𝑑𝐾,𝜎𝑝𝐿+𝜆𝐾𝑑𝐿,𝜎𝑝𝐾

𝜆𝐿𝑑𝐾,𝜎+𝜆𝐾𝑑𝐿,𝜎
, (A.8) 

 

where the terms 𝛼𝐾,𝜎 =
𝜆𝐿𝑑𝐾,𝜎

𝜆𝐿𝑑𝐾,𝜎+𝜆𝐾𝑑𝐿,𝜎
 and 𝛼𝐿,𝜎 =

𝜆𝐾𝑑𝐿,𝜎

𝜆𝐿𝑑𝐾,𝜎+𝜆𝐾𝑑𝐿,𝜎
. 

 

Equations A.3 to A.8 were implemented in MRST (please refer to A4). 

 

A.2 Definition of the Discrete Space Unknowns 

Let 𝑋𝐷,0  denote the set of all the real families 𝑝 =

((𝑝𝐾)𝐾∈ℳ , (𝑝𝜎)𝜎∈ℱ , (𝑝𝑒)𝑒∈ℰ , (𝑝�̂�)�̂�∈ℱ̂ , (𝑝�̃�)�̃�∈ℱ̃) for the pressure approximation of a 

heterogeneous isotropic media. Consider for all exterior faces 𝜎 ∈ ℱ, the exterior 

subfaces �̂� ∈ ℱ̂ and edges 𝑒 ∈ ℰ (outside the interface between K and L) (Figures 3.4 and 

A.2) 
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Figure A.2.  Discrete space for a heterogeneous anisotropic media.   

 

 𝑝𝜎 = 0, for all the exterior face 𝜎 ∈ ℱ, (A.9) 

 𝑝�̂� = 0,   for all exterior face �̂� ∈ ℱ̂, (A.10) 

 𝑝𝑒 = 0, for all exterior edge 𝑒 ∈ ℰ. (A.11) 

 

For all the interior faces and edges defined in the original control volumes (interface 

between the two control volumes K and L) 

 

 pσ = αK,σPK + αL,σPL. (A.12) 

 

For all the interior edge 𝑒 ∈ ℰ, and 𝐾𝑒 (Figure A.2) or all the barycentric triangular faces 

τ̂ ∈ ℱ̂ with vertices: 𝒙K, 𝐲σ and 𝐲e. 

 

 𝑝𝑒 = 𝑝𝐾,𝑒 + 𝛽𝑒(𝑝𝜎𝑒 − 𝑝𝐾,𝑒) + 𝛽𝑒
′(𝑝𝜎𝑒′ − 𝑝𝐾,𝑒), (A.13) 

 𝑝�̃� =
1

3
(𝑝𝐾 + 𝑝𝜎 + 𝑝𝑒). (A.14) 

 

A.3 Assembly of Transmissibility Matrix within the MRST framework 

This thesis uses the re-formulation of the discretisation of Equation 3.11 proposed by 

SINTEF to couple the VAG transmissibility within the numerical framework of MRST 
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as a linear system in a hybridised mixed form (Brezzi & Fortin, 1991).  The variational 

formulation of Equation 3.11 for the solution on a cell 𝐾 ∈ ℳ is given by  

 

  
1

2
∑ ∑ ∑ 𝐴𝐾

𝑆,𝑆′(𝑝𝑆 − 𝑝𝐾)(𝑝𝑆′ − 𝑝𝐾)𝑆′∈𝒱𝐾  𝑆∈𝒱𝐾𝐾∈ℳ , (A.15) 

 

To hybridise the system, the following notation is used: 

 

• Node-cell pressure is denoted by 𝓌, which is a hybridized variable; 𝔀𝑲
𝑺𝒍𝒐𝒄  with 

𝐾 = {1,… , 𝑑𝑖𝑚(ℳ)}, 𝑆𝑙𝑜𝑐 = {1,… , 𝑑𝑖𝑚(𝒱𝐾)}. 

• Cell pressure denoted by 𝒖: 𝑢𝐾  𝑤𝑖𝑡ℎ 𝐾 = {1, … , 𝑑𝑖𝑚(ℳ)} 

• Node pressure denoted by 𝒗: 𝑣𝑆 𝑤𝑖𝑡ℎ 𝑆 = {1, … , 𝑑𝑖𝑚(𝒱)} 

 

The hybrid variable was indexed by vertices first and then local cell indices.  The 

variables obtained by this indexing are called �̃�, where �̃�𝑆
𝐾𝑙𝑜𝑐 with 𝑆 = {1,… , 𝑑𝑖𝑚(𝒱)},

𝐾𝑙𝑜𝑐 = {1,… , 𝑑𝑖𝑚(ℳ𝑆)}.  The variables 𝓌 and �̃� are equal before the permutation.  For 

the permutation, the permutation operator 𝑆 is defined such as 

 

 �̃� = 𝑆𝓌, (A.16) 

 

where 𝑆 is a permutation matrix and is orthogonal, such that  

 

 𝑆𝑡𝑆 = 𝐼. (A.17) 

 

A discretisation matrix 𝐴, which contains a block diagonal matrix with the VAG 

transmissibility matrix 𝐴𝐾
𝑆,𝑆′

(defined in Equation 3.12) of all cells, is defined as 

 

 𝐴 = [

𝐴𝐾=1
𝑆,𝑆′ 0 0

0 𝐴𝐾=1
𝑆,𝑆′ 0

0 0 𝐴𝐾=1
𝑆,𝑆′

]. (A.18) 

 

By introducing the extrapolation matrix 𝑅1and rewriting the bilinear form of Equation 

A.15, we obtain 
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1

2
(𝓌 − 𝑅1𝑢)

𝑇𝐴(𝓌 − 𝑅1𝑢) with . 

(A.19) 

 

To ensure pressure continuity at the nodes �̃�𝑆
𝐾𝑙𝑜𝑐 is defined as 

 

 �̃�𝑆
𝐾𝑙𝑜𝑐 = 𝑣𝑆 for all 𝐾𝑙𝑜𝑐 , (A.20) 

 

and by rewriting Equation A.20 in its vectorised form using the extrapolation operator 

𝑅2 we obtain 

 

  �̃� − 𝑅2𝑣 = 0 with . 

(A.21) 

 

The permutation matrix 𝑆 (Equation A.17) is used to rewrite the pressure continuity 

condition (Equation A.21) as a function of 𝓌as follows 

 

 𝑆𝓌 − 𝑅2𝑣 = 0. (A.22) 

 

To ensure the constraint a Lagrangian vector variable 𝜆 is introduced. For 𝜆, the indexing 

is defined from vertex to local cell.  By substituting Equation A.22 and including the 

Lagrangian term into the bilinear form of the variational equation (Equation A.19), the 

variation of the Lagrangian functional is given by 

 

 
1

2
(𝓌 − 𝑅1𝑢)

𝑇𝐴(𝓌 − 𝑅1𝑢) − 𝜆
𝑡(𝑆𝓌 − 𝑅2𝑣) − 𝑓

𝑡𝑢 − 𝑔𝑡𝑣 = 0, (A.23) 

 

where the terms 𝑓 and 𝑔 correspond to the source/sink term at cell and node level, 

respectively. After the variation of the Lagrangian functional, we obtain a system of 

equations, which is a saddle-point structure and is represented in the following form 
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[
 
 
 

𝐴 −𝐴𝑅1 −𝑆𝑡 0
(−𝐴𝑅1)

𝑡 𝑅1
𝑡𝐴𝑅1 0 0

𝑆
0

0
0

0 −𝑅2
𝑅2
𝑡 0 ]

 
 
 

[

𝓌

𝑢
𝜆
𝑣

]=

[
 
 
 
 0

𝑓

0
𝑔 ]
 
 
 
 

. (A.24) 

 

The system of equations (Equation A.24) can be reduced and expressed in terms of the 

cell and node pressure unknowns 𝑢 and 𝑣, by applying the following procedure. By using 

the first and third row of the system of equations (Equation A.24) and applying the 𝑆−1 =

𝑆𝑡, we obtain  

 

 𝜆 = 𝑆𝐴𝓌 − 𝑆𝐴𝑅1𝑢, (A.25) 

 𝓌 = 𝑆𝑡𝑅2𝑣, (A.26) 

 

and by substituting Equation A.26 into Equation A.25, 𝜆 is redefined as  

 

 𝜆 = 𝑆𝐴𝑆𝑡𝑅2𝑣 − 𝑆𝐴𝑅1𝑢, (A.27) 

 

If we use the second and fourth rows of the system of equations (Equation A.24), the 

following system of equations for 𝑢 and 𝑣 is defined as 

 

 𝑀 [
𝑢
𝑣
] = [

𝑓
𝑔
]  with 𝑀 = [

𝑅1
𝑡𝐴𝑅1 −𝑅1

𝑡𝐴𝑆𝑡𝑅2
(−𝑅1

𝑡𝐴𝑆𝑡𝑅2)
𝑡 𝑅2

𝑡𝑆𝐴𝑆𝑡𝑅2
]. (A.28) 

 

Note that 𝑀 is not invertible because the constant vector is a kernel.  However, the 

structure of matrix 𝑅1
𝑡𝐴𝑅1 is diagonal and easily invertible, for simplicity 𝑅1

𝑡𝐴𝑅1 is 

renamed as 

 

  𝐷 = 𝑅1
𝑡𝐴𝑅1. (A.29) 

 

 

Therefore, the first term of Equation A.24 can be written as 

 

 𝑢 = 𝐷−1(𝑓 + 𝑅1
𝑡𝐴𝑆𝑡𝑅2𝑣), (A.30) 
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and denoting  

 

 𝑄 = 𝑅1
𝑡𝐴𝑆𝑡𝑅2 and 𝐵 = 𝑅2

𝑡𝑆𝐴𝑆𝑡𝑅2, (A.31) 

 

Finally, by substituting Equation A.31 into Equation A.28, we obtain 

 

 (𝐵 − 𝑄𝑡𝐷−1𝑄)𝑣 = 𝑄𝑡𝐷−1𝑓 + 𝑔 . (A.32) 

 

In the VAG implementation, the Lagrange multiplier can be interpreted as the nodal 

fluxes, the value 𝜆𝑆
𝐾𝑙𝑜𝑐corresponds to some flux arriving to the vertex S from cell K, and 

the condition −𝑅𝑡𝜆 = 𝑔 corresponds to the mass conservation at the vertices.  The hybrid 

system (Equation A.32) is solved in MRST using a Schur-complement method and 

standard linear solvers in the library of MATLAB. 

 

A.4 VAG Scheme in MRST  

A.4.1 Spatial Discretisation 

We implemented the function ‘G=computeVAGGeometry(G,rock)’ for the spatial 

discretisation of the VAG scheme (Section 3.2.2) to subdivide the global grid into 

tetrahedra (𝑀𝐾,𝑆)𝐾∈ℳ, 𝑆∈𝑉𝐾
). The function ‘G=computeVAGGeometry(G,rock)’ maps the 

face centroids (G.faces.VAGcentroids), face normal (G.faces.VAGEdgeNormals), cell 

edges (G.cells.VAGEdges), and the edge centroids (G.edges.VAGcentroids) for all the 

cells (Figure A.3).  The Equations A.3 to A.8 are implemented in 

‘G=computeVAGGeometry(G,rock)’ to include the additional set of points that will 

define the tetrahedral for the whole grid.   

 

Figure A.3. Function ‘computeVAGGeometry’ implemented in MRST for the VAG spatial discretisation. 
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A.4.2 Transmissibility Computation 

The matrix of transmissibility 𝑨𝐾
𝑆,𝑆′

of the VAG scheme (Equation 3.12) was coded in the 

function ‘computeVAGTransgrad2’ (Figure A.4).  The main functionality of the function 

‘computeVAGTransgrad2’ is the mapping, ordering and indexing of the local grid cells, 

grid faces, grid nodes and the definition of the nodes that conform the tetrahedra defined 

in the spatial discretisation of the VAG scheme (‘computeVAGGeometry’).  The 

computation of the gradients of each tetrahedron is implemented in the sub-function 

‘compGradTetraK’ within the function ‘computeVAGTransgrad2’.     

 

 

Figure A.4. Flow chart of the transmissibility computation in function ‘computeVAGTransgrad2’ based on Equation 

3.12. 

 

Figure A.5 illustrates local indexing and the computation of the VAG transmissibility 

matrix implemented in the function 'computeVAGTransgrad2' for a hexahedral (cube) 

cell with eight vertices.  The resulting matrix of permeability has a dimension of 8 × 8 

with 64 transmissibility values per grid cell.   
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Figure A.5. Illustrative example of the node indexes and transmissibility matrix computed using the implemented 

function 'computeVAGTransgrad2' in MRST. 

 

A.4.3 Assembly of transmissibilities into the MRST Pressure Solver 

To assemble the matrix of the VAG transmissibilities 𝐀𝐾
𝑆,𝑆′

 (Equation A.28) obtained from 

'computeVAGTransgrad2' with the pressure solver in MRST, 𝐀𝐾
𝑆,𝑆′

was implemented in 

in the form described in Equation A.18 to be integrated in the discretised form of the 

pressure problem (Equation A.25).  The implementation of the discretised system of 

equations (Equation A.25) was included in the function ‘incompVAGWellModel2’ and 

consisted in the creation of the additional matrices 𝑅1, 𝑅2 and 𝑆 within the MRST 

framework (Figure A.6 and A.7).  The implementation of 𝑆 required additional steps to map 

appropriately the indexing of the nodes to the local cell (Figure A.7).  The final part of the 

assembly weights the 𝐀𝐾
𝑆,𝑆′

 with the mobility of each grid block via the implementation 

of the function ‘totmob’, which accounts for the fluid and two-phase properties (i.e., 

viscosity and relative permeability).  Ultimately, the discretised problem defined by the 

system of equations 𝑀 (Equation A.28) is assembled using the previous calculations 

(Figure A.8). The solution of 𝑀 provides the grid cell and node pressures of the system.  
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Figure A.6.  Implementation of R1 and R2 in MRST. 

 

 

Figure A.7.  Implementation of 𝑆 (permutation matrix) in MRST. 

 

 

Figure A.8.  Assembly of the mobility-weighted transmissibility in the matrix M in MRST. 
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The implemented VAG scheme for the pressure solution supports the inclusion of wells, 

source and sink elements within the MRST framework. The setup of the model that is 

intended to be solved is defined like any standard MRST case study.  The inputs are the 

initial conditions (‘initResSol’), the grid characteristics (G), the rock properties (rock), 

the fluid model (fluid) and the terms that will be considered in the solution, e.g., wells 

(W), pressure boundary conditions (bc), and source/sink term (source).  In this thesis, the 

implemented well model only considers Dirichlet conditions (BHP constrained wells) 

which means that only pressure boundary conditions can be imposed in the specified wells 

of the model.  For instance, let us consider the case when the solution involves wells, 

pressure boundary conditions and a source term.  The procedure begins with the mapping 

of the elements that will affect the solution (Figure A.9).  For the boundary conditions, the 

function ‘DirchletBC’ was created to map the faces with imposed boundary conditions 

and to allocate the pressure to the nodes that belong to those mapped faces, then the total 

number of unknowns are considered as the sum between the number of cells and the 

number of nodes of the whole system.  The cells and nodes that contain an imposed 

boundary condition or well cells are included in the matrix 𝐷𝐵𝐶  (Dirichlet and well 

pressure cells and nodes), named here 𝑑𝑖𝑟𝑜𝑝 (Figure A.9).  The productivity index of the 

wells is imposed in the matrix 𝐵, and finally the matrix M develops the following form 

 

 𝑀 = [
𝑀 𝐷𝐵𝐶

−𝐷𝐵𝐶
𝑡 𝐵

]. (A.33) 

 

The matrix M represents the left-hand side of the system of linear equations in the 

Equation A.28 (Figure A.9).  The right-hand side of the system of linear equations (Equation 

A.28) consist of the input flux 𝑓, pressure boundaries conditions, and the bottom-hole 

pressure constraints at cell and node level.  Once the system of linear equations (Equation 

A.33 and A.28) is solved by the MRST library, we obtained the solution of the pressure for 

the cell centre and the nodes of the system, denoted as 𝑢 and v respectively (Figure A.10). 
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Figure A.9.  Implementation of the left-hand side (Equation A.33) of Equation A.28 for the solution of the pressure of 

the VAG scheme in MRST. 

 

 

Figure A.10.  Implementation of the right-hand side of Equation A.28 for the solution of the pressure of the VAG scheme 

in MRST. 
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A.4.4 Solving Face Flux using VAG scheme with One-sided Transmissibility 

As discussed in Section 3.2.3, the implementation of the flux solution of the VAG scheme 

into the MRST framework was simplified.  The transmissibility reconstruction for all the 

tetrahedra of the common faces of neighbouring cells is not conducted, instead, the 

simplified one-sided transmissibility is used for the flux computation between 

neighbouring grid blocks.  This simplification can be thought of as an analogy of the 

transmissibility obtained from the TPFA scheme.  This is that the transmissibility is the 

harmonic average of the mobility weighted-transmissibility of two neighbouring cells. 

The one-sided transmissibility was implemented in the function ‘compute_trans‘ (Figure 

A.11).  The implemented flux calculation uses the pressure solution obtained from the 

implemented VAG scheme and the one-sided transmissibility.  The face flux (Figure A.12) 

of a grid cell is defined as the product between the one-sided transmissibility and the delta 

pressure between the cell centre (𝑖) and the interface of the grid cell (𝑖 +
1

2
), such that 

the face flux is defined by 𝐹𝑖 = 𝑇𝑖 (𝑝𝑖 − 𝑝𝑖+1
2

). 

 

 

Figure A.11.  One-sided transmissibility used for the implemented flux solution of the VAG scheme with one-sided 

transmissibility in MRST. 
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Figure A.12.  Face flux computation of the implemented VAG scheme with one-sided transmissibility in MRST. 
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B– SUPPORTING INFORMATION FOR CHAPTER 4  

B.1 Implementation of the Steady-State Poro-mechanical Coupling Module 

The implemented steady-state poro-mechanical coupling in MRST consists of the 

following functions: 

 

‘MechanicModelSS_SinglePoro’ defines the mechanical system and carries out two 

tasks: (1) the mapping of the grid elements into nodes for the VEM discretisation, and (2) 

the computation of stiffness tensor and operators for the VEM discretisation using the 

input mechanical properties and initial boundary conditions.  Additionally, the option of 

using the model of Geertsma (1957) for the calculation of the Biot’s coefficient can be 

enabled when its value is not provided (Figure B.1).   

 

 

Figure B.1.  Implementation of the function ‘MechanicModelSS_SinglePoro’ for the definition of the mechanical 

problem described in Equation 4.2. 
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‘SSHydroMech_SinglePoroSim’ runs a steady-state hydrodynamical-poro-mechanical 

coupling for single-porosity models.  The numerical solution is obtained through an 

iterative process (Section 4.2) which is sequentially divided into four main processes 

(Figure B.2): (1) implementation of the mathematical model for the steady-state 

mechanical problem for the solution of the displacement, stress and strains fields 

(‘equationSS_SPPoroMechanics’), (2) computation of the stress-dependent properties 

𝐤(𝐮) and 𝜙(𝐮) (‘updateStrainDepProps_SP’), (3) re-computation of transmissibility 

matrix with ‘computeTrans’ using the computed 𝐤(𝐮) obtained from the function 

‘updateStrainDepProps_SP’ , and (4) iterative solution that converges when satisfying 

the converge criterion ‖𝐩𝑐,𝑟+1∗ − 𝐩𝑐,𝑟+1‖ ≤ 𝜖 or when the number of iterations is lower 

than a specified value (i.e., the default values are 𝜖 = 1𝑒 − 10 and maximum number of 

iterations = 5). The convergence criteria can also be specified as a user’s input value.  

Finally. the function ‘SSHydroMech_SinglePoroSim’ obtains poro-mechanically updated 

solutions of the flux and pressure (hydrodynamics), and solutions of the cell-node 

displacement field and global cell-wise stress and strains (mechanics).  The poro-

mechanically altered properties 𝐤(𝐮) and 𝜙(𝐮) are also output.  

 

 

Figure B.2.  Implementation of the function ‘MechanicModelSS_SinglePoro’ for the solution of the steady-state 

hydrodynamical-poro-mechanical coupling for single-porosity models defined by Equations 4.4 and 4.5. 

 

The additional functions created to carry out the four main processes of the function 

‘SSHydroMech_SinglePoroSim’ are described as follows: 
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‘equationSS_SPPoroMechanics’ implements the discretised form of the steady-state 

linear-momentum balance equation (Equation 4.2) in the linearised form 𝐀 ∙ 𝑥 = �⃗� , 

defined as 

 

 𝑲𝒖𝒄⏟
𝑨

= 𝑸𝒑𝒄 + 𝒇𝒖⏟      
𝒓𝒉𝒔

, 
(B.1) 

 

The implemented linearised mechanical problem (Equation B.1) is solved to obtain the 

nodal and global solution of the displacement field u (Figure B.3) which is then used to 

calculate the strain and stress through the function ‘addDerivedQuantitiesSS_SP’. 

 

 

Figure B.3.  Implementation of the function ‘MechanicModelSS_SinglePoro’ for the solution of the mechanical problem 

defined in Equation B.1. 

 

‘updateStrainDepProps_SP2’ computes the stress-dependent properties using the 

models presented in Section 2.10.  The poro-mechanical changes in the principal 

directions of the permeability with respect to the initial permeability (without poro-
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mechanical effect) are applied as multipliers of the main diagonal of the permeability 

tensor 

 

 𝐤𝟏(𝐮) = 𝐤1
𝑖𝑛𝑖(𝑀𝑢𝑙𝑡𝑖) = [

𝐤1𝑋𝑋
𝑖𝑛𝑖 0 0

0 𝐤1𝑌𝑌
𝑖𝑛𝑖 0

0 0 𝐤1𝑍𝑍
𝑖𝑛𝑖

] (𝑀𝑢𝑙𝑡𝑖), (B.2) 

 

where the subscript 𝑖 refers to the stress-dependent permeability model that the user 

defines (i.e., Normalised Kozeny-Carman (KC), Bai and Elsworth (EB), Kozeny-

Poiseuille (KP) and polynomial law function (PL) model) for the poro-mechanical update 

of the permeability (Figure B.4) 

 

 

Figure B.4.  Implementation of the function ‘updateStrainDepProps_SP2’ for the poro-mechanical update of the 

permeabilities using the stress-dependent permeability models defined in Equations 2.35 to 2.39.  
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C– SUPPORTING INFORMATION FOR CHAPTER 5  

C.1 Implementation of the Steady-State Dual-Continuum Poro-Mechanical 

Coupling and Stress-Dependent Fracture-Matrix Fluid Exchange in MRST 

C.1.1 Constitutive Coefficients and Intrinsic Mechanical Properties 

The Ashworth & Doster’s (2019b) model was used to calculate the constitutive 

coefficients and properties for the composite and its constituents (Tables C.1 and C.2).  This 

work leverage the constitutive coefficients defined in the module ‘dual-permeability-

mech’ as part of MRST (Ashworth & Doster, 2019a).  

 

Stiffness idealisation Intrinsic Properties Intrinsic Coefficients 

Fractures represented as a stiff 

material 
(𝐾𝑓 > 0)  

Stiffness Matrix Fracture 

Matrix Fracture 1

𝑛1
=
(𝑏2 − 𝜙1)

𝐾𝑠
 

1

𝑛2
=
(𝑏2 − 𝜙2)

𝐾𝑠
 

𝐾𝑚 =
𝐸𝑚

3(1 − 2𝑣1)
 𝐾𝑓 =

𝐸𝑓

3(1 − 2𝑣2)
 

Biot's Coefficient 

Matrix Fracture 

𝑏1 = 1−
𝐾𝑚
𝐾𝑆

 𝑏2 = 1 −
𝐾𝑓

𝐾𝑆
 

Fractures represented as a 

void space 

(𝐾𝑓 = 0) 

Stiffness Matrix Fracture 

Matrix Fracture 1

𝑚
=
(𝑏𝑚 − 𝜙𝑚)

𝐾𝑠
 

1

𝑓
=
(𝑏𝑓 − 𝜙𝑓)

𝐾𝑠
 

𝐾𝑚 =
𝐸1

3(1 − 2𝑣1)
 𝐾𝑓 = 0 

Biot's Coefficient 

Matrix Fracture 

𝑏1 = 1−
𝐾𝑚
𝐾𝑆

 𝑏2 = 1 −
𝐾𝑓

𝐾𝑆
  

Table C.1:  Intrinsic properties and coefficients for fracture stiffness 𝐾𝑓 > 0 and 𝐾𝑓 = 0 acording to Ashworth & Doster 

(2019b). 

 

Fracture stiffness idealisation Effective and Coupling Coefficients 

Fractures represented as a stiff material 

(𝐾𝑓 > 0) 

and as 

void space 

(𝐾𝑓 = 0) 

𝐵1 = 𝑏1 (
𝐾𝑑𝑟−𝐾𝑓

𝐾𝑚−𝐾𝑓
)  

𝐵2 = 𝑏2 − 𝑏2 (
𝐾𝑑𝑟−𝐾𝑓

𝐾𝑚−𝐾𝑓
)  

1

𝑁1
= (

𝑏1

𝐾𝑚−𝐾𝑓
) (𝑣1𝑏1 − 𝐵1) + 𝑣1

1

𝑛1
  

1

𝑄
= (

𝑏1

𝐾𝑚−𝐾𝑓
) (𝑣1𝑏2 − 𝐵2)  

Table C.2:  Effective coefficients for fracture stiffness 𝐾𝑓 > 0 and 𝐾𝑓 = 0 acording to Ashworth & Doster (2019b). 

 

where 𝐾𝑓 and 𝐾𝑚 are the fracture and matrix intrinsic stiffness, 𝐾𝑠 is the solid stiffness, 

𝐸 is the Young’s Modulus, 𝑣 is the Poison’s ratio, 𝑏 is the intrinsic Biot’s coefficient, and 

the subscripts 1 and 2 represent the matrix and the fractures. 
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C.1.2 Steady-State Poro-mechanical Coupling Module 

The functions implemented in MRST for the steady-state hydrodynamical-poro-

mechanical coupling for dual-porosity models are listed as follows: 

 

‘MechanicModelSSDPf’ defines the mechanical system and consists of three tasks 

(Figure C.1): (1) the mapping of the grid elements into nodes for the VEM discretisation, 

(2) the computation of constitutive coefficients and intrinsic mechanical properties for 

the composite and its constituents (fracture and matrix), and (3) the computation of the 

operators for the VEM discretisation by using the previously computed mechanical 

properties and imposing the prescribed boundary conditions and body forces.  

 

 

Figure C.1.  Implementation of the function ‘MechanicModelSSDPf ’ for the definition of the mechanical problem 

described in Equation 2.12. 
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‘SSHydroMech_Sim4’ carries out the steady-state hydrodynamical-poro-mechanical 

coupling for dual-porosity models.  The coupling is obtained via a sequentially iterative 

process conformed by four main processes (Figure C.2): (1) implementation of the 

mathematical model for the steady-state mechanical problem for the solution of the 

displacement, stress and strains fields for the composite, the matrix and fractures via a 

new implemented subfunction (‘equationSSDPPoroMechanics4B’), (2) computation of 

the stress- dependent properties 𝐤𝑖(𝐮) and 𝜙𝑖(𝐮) for the matrix (𝑖 = 1) and fractures (𝑖 =

2) (‘updateStrainDepProps4B4’), (3) re-computation of the fracture transmissibility with 

‘computeTrans’ using the calculated 𝐤2(𝐮) obtained from function 

‘updateStrainDepProps4B4’, and (4) iterative solution that converges when satisfying the 

converge criteria of pressure ‖𝐩𝑐,𝑟+1∗ − 𝐩𝑐,𝑟+1‖ ≤ 𝜖 ) or when the number of iterations 

is lower than an user-defined value (i.e., the default value is 𝜖 = 1 × 10−7 or when the 

maximum number of iterations = 5).  The function ‘SSHydroMech_Sim4’ obtains poro-

mechanically updated solutions for the flux and pressure solutions at the cell level, and 

solutions of the mechanics of the system for the cell-node displacement field and global 

cell-wise stress and strains.  The poro-mechanically updated properties for fractures and 

matrix are also output.  

 

 

Figure C.2.  Implementation of the function ‘SSHydroMech_Sim4’ for the solution of the steady-state hydrodynamical-

poro-mechanical coupling for dual-porosity models defined by Equations 2.12 and 2.17. 
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Analogous to the single-porosity approach (‘SSHydroMech_SinglePoroSim’), the 

function ‘SSHydroMech_Sim4’ consists of four main processes: 

 

‘equationSSDPPoroMechanics4B’ implements the discretised form of the steady-state 

linear-momentum balance equation of the composite in the linearised form (Equation B.1).  

The linearised linear-momentum balance equation of the composite is solved to obtain 

the nodal and global solution of the displacement field u of the composite and 

subsequently the mechanical fields are calculated through a new subfunction 

‘addDerivedQuantitiesSSDPB4’ (Figure C.3). 

 

‘addDerivedQuantitiesSSDPB4’ is divided into two sections (Figure C.4) to calculate the: 

(a) strain and stress fields of the composite and (b) the matrix and fractures strain fields 

by calculating the intrinsic Biot’s coefficients, coupling coefficients and the effective 

stress of the composite. 

 

 

Figure C.3 Implementation of the function‘equationSSDPPoroMechanics4B’ for the solution of the mechanical problem 

defined in Equation B.1 for dual-porosity models. 

 



 

238 

 

Figure C.4.  Implementation of the function ‘addDerivedQuantitiesSSDPB4’for the calculation of stress and strains 

fields of the composite and its components (matrix and fracture) defined by the model presented in Equations 2.20 to 

2.27. 
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‘updateStrainDepProps4B4’ computes the stress-dependent properties using the models 

presented in Section 2.10.1.  The same procedure presented in Equation B.2 is used to 

update the stress-dependent fracture permeability but with 𝑖 defined by either: Bai et al. 

(1997) (EB), Bai et al. (1999) (BE-ISO), Zhang et. al. (2004) (Z), or Zhang et. al. (2007) 

(Z-ISO) model (see Figure C.5 to C.8).  The poro-mechanical change in the matrix and 

fracture porosity (i.e., 𝑑𝜙1 and 𝑑𝜙2 respectively) are also calculated (Figure C.9). 

 

 

Figure C.5.  Implementation of the function ‘updateStrainDepProps4B4’ for the poro-mechanical update of the matrix 

and the fracture permeabilities using Bai et al. (1997) model. 
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Figure C.6.  Implementation of the function ‘updateStrainDepProps4B4’ for the poro-mechanical update poro-

mechanical update of the fracture permeability using Bai et al. (1999) model. 

 

 

Figure C.7.  Implementation of the function ‘updateStrainDepProps4B4’ for the poro-mechanical update of the fracture 

permeability using Zhang et al . (2004) model. 
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Figure C.8.  Implementation of the function ‘updateStrainDepProps4B4’ for the poro-mechanical update of the fracture 

permeability using Zhang et al . (2007) model. 

 

 

 

Figure C.9.  Implementation of the function ‘updateStrainDepProps4B4’ for the poro-mechanical update of the matrix 

and fracture porosity using the stress-dependent property models defined in Equations 2.23 and 2.24. 

 

C.1.3 Stress-dependent Fracture-Matrix Fluid Exchange 

‘stressDepSatFunctRock_TransferFunction’ computes the poro-mechanical effect on 

the fracture-matrix fluid exchange 𝛽 (Schmid & Geiger, 2013) caused by the stress-

dependency on the matrix, fracture, and two-phases properties.  The function 

‘stressDepSatFunctRock_TransferFunction’ minimises the computational cost by 

computing homogenised values of 𝛽 per facies (rock type) of the reservoir model, and 

executes six main tasks (Figure C.6): (a) the averaging of the rock matrix and fracture 

properties to homogenised the properties per facies, (b) the calculation of the poro-

mechanically altered endpoints of saturation and relative permeabilities 

(‘geoDynamicEndPoints_Haghi_facies’) (Figure C.7), (c) the calculation of the poro-

mechanically altered pore size distribution coefficient (Haghi et al., 2018) 

(‘lambdaPoreSizeDistribution_facies_up’) (Figure C.8), (d) the calculation of poro-
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mechanically altered entry pressure and capillary pressure values 

(‘geoDynamicPc_Haghi_facies’) (Figure C.9), (e) the construction of the relative 

permeability and capillary pressure curves (Brooks & Corey, 1966), and (f) the 

calculation of transfer rate constant per facies ‘SchmidAndGeiger_Beta’.   

 

 

Figure C.10.  Implementation of the function ‘stressDepSatFunctRock_TransferFunction’ for the poro-mechanical 

update of the fracture-matrix fluid exchange transfer function which accounts for stress-dependency on the matrix, 

fracture, and two-phases properties using the model defined by Equations 2.40 to 2.48. 
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Figure C.11.  Implementation of the function ‘geoDynamicEndPoints_Haghi_facies’ for the poro-mechanical update of 

the endpoints of saturation and relative permeabilities using the model defined by Equations 2.43 to 2.46. 

 

 

Figure C.12.  Implementation of the function ‘lambdaPoreSizeDistribution_facies_up’ for the poro-mechanical update 

of the pore size distribution coefficient to model its impact on capillary pressure and relative permeabilities using the 

model defined by Equations 2.47 and 2.48. 
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Figure C.13.  Implementation of the function ‘geoDynamicPc_Haghi_facies’ for the poro-mechanical update of the 

entry pressure and capillary pressure values using the model defined by Equation 2.42. 

 

C.2 Validation of Steady-State Hydrodynamical-Poro-mechanical coupling for 

Dual-Porosity  

The comparison of the implemented hydrodynamical-poro-mechanical coupling for a 

dual-porosity model with the results obtained with the commercial software required to 

incorporate the mechanical and coupling coefficients (Tables C.1 and C.2) and the stress-

dependent permeability models (Equations 2.23, 2.24, 2.28 to 2.39) within the VISAGE-

ECLIPSE framework to fairly compare the results (Figure C.14).  

 

 

Figure C.14.  Algorithm used to link VISAGE-ECLIPSE-Petrel to include Ashworth and Doster’s (2019b) model of 

mechanical and coupling coefficients used in the proposed steady-state hydrodynamical-poro-mechanical coupling for 

dual-porosity models. 
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To integrate the coefficients and the stress-dependent permeability models, we created 

workflows in Petrel to implement the algorithm presented in Figure C.1 which consisted 

of five workflows that includes the following processes; (1) the link of the VISAGE-

ECLIPSE output with the mechanical and coupling coefficients used in the 

implementation in MRST (Figure C.15), (2) the poro-mechanical update of the fracture 

permeabilities and porosity (Figure C.16), and (3) the poro-mechanical update of the matrix 

permeabilities and porosity (Figure C.17). 

 

 

Figure C.15.  Workflow created in Petrel to include Ashworth and Doster’s (2019b) model for the mechanical and 

coupling coefficients (Tables C.1 and C.2) within the ELIPSE-VISAGE framework. 

 

 

Figure C.16.  Workflow created in Petrel to compute the stress-dependent fracture properties using Equations 2.24 and 

2.31 with the VISAGE- ELIPSE outcomes. 
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Figure C.17.  Workflow created in Petrel to compute the stress-dependent matrix properties using Equations 2.35 and 

2.36 with the VISAGE- ELIPSE outcomes. 
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