5,005 research outputs found

    3D FACE RECOGNITION USING LOCAL FEATURE BASED METHODS

    Get PDF
    Face recognition has attracted many researchers’ attention compared to other biometrics due to its non-intrusive and friendly nature. Although several methods for 2D face recognition have been proposed so far, there are still some challenges related to the 2D face including illumination, pose variation, and facial expression. In the last few decades, 3D face research area has become more interesting since shape and geometry information are used to handle challenges from 2D faces. Existing algorithms for face recognition are divided into three different categories: holistic feature-based, local feature-based, and hybrid methods. According to the literature, local features have shown better performance relative to holistic feature-based methods under expression and occlusion challenges. In this dissertation, local feature-based methods for 3D face recognition have been studied and surveyed. In the survey, local methods are classified into three broad categories which consist of keypoint-based, curve-based, and local surface-based methods. Inspired by keypoint-based methods which are effective to handle partial occlusion, structural context descriptor on pyramidal shape maps and texture image has been proposed in a multimodal scheme. Score-level fusion is used to combine keypoints’ matching score in both texture and shape modalities. The survey shows local surface-based methods are efficient to handle facial expression. Accordingly, a local derivative pattern is introduced to extract distinct features from depth map in this work. In addition, the local derivative pattern is applied on surface normals. Most 3D face recognition algorithms are focused to utilize the depth information to detect and extract features. Compared to depth maps, surface normals of each point can determine the facial surface orientation, which provides an efficient facial surface representation to extract distinct features for recognition task. An Extreme Learning Machine (ELM)-based auto-encoder is used to make the feature space more discriminative. Expression and occlusion robust analysis using the information from the normal maps are investigated by dividing the facial region into patches. A novel hybrid classifier is proposed to combine Sparse Representation Classifier (SRC) and ELM classifier in a weighted scheme. The proposed algorithms have been evaluated on four widely used 3D face databases; FRGC, Bosphorus, Bu-3DFE, and 3D-TEC. The experimental results illustrate the effectiveness of the proposed approaches. The main contribution of this work lies in identification and analysis of effective local features and a classification method for improving 3D face recognition performance

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Ensemble of texture descriptors and classifiers for face recognition

    Get PDF
    Abstract Presented in this paper is a novel system for face recognition that works well in the wild and that is based on ensembles of descriptors that utilize different preprocessing techniques. The power of our proposed approach is demonstrated on two datasets: the FERET dataset and the Labeled Faces in the Wild (LFW) dataset. In the FERET datasets, where the aim is identification, we use the angle distance. In the LFW dataset, where the aim is to verify a given match, we use the Support Vector Machine and Similarity Metric Learning. Our proposed system performs well on both datasets, obtaining, to the best of our knowledge, one of the highest performance rates published in the literature on the FERET datasets. Particularly noteworthy is the fact that these good results on both datasets are obtained without using additional training patterns. The MATLAB source of our best ensemble approach will be freely available at https://www.dei.unipd.it/node/2357

    Multi-scale and multi-spectral shape analysis: from 2d to 3d

    Get PDF
    Shape analysis is a fundamental aspect of many problems in computer graphics and computer vision, including shape matching, shape registration, object recognition and classification. Since the SIFT achieves excellent matching results in 2D image domain, it inspires us to convert the 3D shape analysis to 2D image analysis using geometric maps. However, the major disadvantage of geometric maps is that it introduces inevitable, large distortions when mapping large, complex and topologically complicated surfaces to a canonical domain. It is demanded for the researchers to construct the scale space directly on the 3D shape. To address these research issues, in this dissertation, in order to find the multiscale processing for the 3D shape, we start with shape vector image diffusion framework using the geometric mapping. Subsequently, we investigate the shape spectrum field by introducing the implementation and application of Laplacian shape spectrum. In order to construct the scale space on 3D shape directly, we present a novel idea to solve the diffusion equation using the manifold harmonics in the spectral point of view. Not only confined on the mesh, by using the point-based manifold harmonics, we rigorously derive our solution from the diffusion equation which is the essential of the scale space processing on the manifold. Built upon the point-based manifold harmonics transform, we generalize the diffusion function directly on the point clouds to create the scale space. In virtue of the multiscale structure from the scale space, we can detect the feature points and construct the descriptor based on the local neighborhood. As a result, multiscale shape analysis directly on the 3D shape can be achieved

    Structured Light-Based 3D Reconstruction System for Plants.

    Get PDF
    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance

    A new approach to face recognition using Curvelet Transform

    Get PDF
    Multiresolution tools have been profusely employed in face recognition. Wavelet Transform is the best known among these multiresolution tools and is widely used for identification of human faces. Of late, following the success of wavelets a number of new multiresolution tools have been developed. Curvelet Transform is a recent addition to that list. It has better directional ability and effective curved edge representation capability. These two properties make curvelet transform a powerful weapon for extracting edge information from facial images. Our work aims at exploring the possibilities of curvelet transform for feature extraction from human faces in order to introduce a new alternative approach towards face recognition

    Face pose estimation with automatic 3D model creation for a driver inattention monitoring application

    Get PDF
    Texto en inglés y resumen en inglés y españolRecent studies have identified inattention (including distraction and drowsiness) as the main cause of accidents, being responsible of at least 25% of them. Driving distraction has been less studied, since it is more diverse and exhibits a higher risk factor than fatigue. In addition, it is present over half of the inattention involved crashes. The increased presence of In Vehicle Information Systems (IVIS) adds to the potential distraction risk and modifies driving behaviour, and thus research on this issue is of vital importance. Many researchers have been working on different approaches to deal with distraction during driving. Among them, Computer Vision is one of the most common, because it allows for a cost effective and non-invasive driver monitoring and sensing. Using Computer Vision techniques it is possible to evaluate some facial movements that characterise the state of attention of a driver. This thesis presents methods to estimate the face pose and gaze direction of a person in real-time, using a stereo camera as a basic for assessing driver distractions. The methods are completely automatic and user-independent. A set of features in the face are identified at initialisation, and used to create a sparse 3D model of the face. These features are tracked from frame to frame, and the model is augmented to cover parts of the face that may have been occluded before. The algorithm is designed to work in a naturalistic driving simulator, which presents challenging low light conditions. We evaluate several techniques to detect features on the face that can be matched between cameras and tracked with success. Well-known methods such as SURF do not return good results, due to the lack of salient points in the face, as well as the low illumination of the images. We introduce a novel multisize technique, based on Harris corner detector and patch correlation. This technique benefits from the better performance of small patches under rotations and illumination changes, and the more robust correlation of the bigger patches under motion blur. The head rotates in a range of ±90º in the yaw angle, and the appearance of the features change noticeably. To deal with these changes, we implement a new re-registering technique that captures new textures of the features as the face rotates. These new textures are incorporated to the model, which mixes the views of both cameras. The captures are taken at regular angle intervals for rotations in yaw, so that each texture is only used in a range of ±7.5º around the capture angle. Rotations in pitch and roll are handled using affine patch warping. The 3D model created at initialisation can only take features in the frontal part of the face, and some of these may occlude during rotations. The accuracy and robustness of the face tracking depends on the number of visible points, so new points are added to the 3D model when new parts of the face are visible from both cameras. Bundle adjustment is used to reduce the accumulated drift of the 3D reconstruction. We estimate the pose from the position of the features in the images and the 3D model using POSIT or Levenberg-Marquardt. A RANSAC process detects incorrectly tracked points, which are not considered for pose estimation. POSIT is faster, while LM obtains more accurate results. Using the model extension and the re-registering technique, we can accurately estimate the pose in the full head rotation range, with error levels that improve the state of the art. A coarse eye direction is composed with the face pose estimation to obtain the gaze and driver's fixation area, parameter which gives much information about the distraction pattern of the driver. The resulting gaze estimation algorithm proposed in this thesis has been tested on a set of driving experiments directed by a team of psychologists in a naturalistic driving simulator. This simulator mimics conditions present in real driving, including weather changes, manoeuvring and distractions due to IVIS. Professional drivers participated in the tests. The driver?s fixation statistics obtained with the proposed system show how the utilisation of IVIS influences the distraction pattern of the drivers, increasing reaction times and affecting the fixation of attention on the road and the surroundings
    • …
    corecore