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CHAPTER 1

INTRODUCTION

Shape analysis is a fundamental aspect of many problems in computer graphics and com-

puter vision, including surface matching and surface registration. There has been a lot of

research on 3D shape analysis. The key question in shape analysis has been the choice of

the shape representation scheme. Actually, in recent years a large amount of research on how

to find the representation for the 3D shape has been done. Different approaches including

curvature-based representations [68], regional point representations [23][54][62][12], spherical

harmonic representations [26][16][17], shape distributions [49] have been proposed. However,

many of these representations are not reliable and cannot perform well under such circumstance

as noise, occlusion and clutter.

1.1 Motivation
Researchers and professionals dedicated to 3D filed are usually looking at the 2D field to

find a similar strategy for analysis purpose. In the 2D domain, extracting features from the

image is one of the most important tasks in the processing of image analysis. Line segments

[18], groupings of edges [36][45], and regions [5] have been proposed as features. Neverthe-

less, these features are not reliable and they just work well under certain circumstance. There

has been recent work on developing much reliable features. One of them is to use a corner

detector. Zhang et al. [77] used the Harris corner detector to identify feature locations. Harris

corner detector is also used by Schmid & Mohr [58] to identify interest points for the object

recognition problem. Other approaches to appearance-based recognition including eigenspace

analysis [43], color histograms [63], and receptive field histograms [56] have been proposed.

However, it is difficult to extend them to cluttered and partially occluded images because of

their more global features. Ohba & Ikeuchi [48] successfully apply the eigenspace approach to
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cluttered images by using many small local eigen-windows, but this is time consuming. Most

recently, SIFT [37], scale-invariant features, has been proposed for 2D regular images and

proven to be the most robust among many other local invariant feature descriptors with respect

to different geometrical changes [40]. As [2] says, “SIFT [37] has been proven to be the most

robust among the other local invariant feature descriptors with respect to different geometrical

changes [40]”. So SIFT should be a good approach for image analysis.

It inspires us to link the 3D analysis problem to the scale space through the 2D image anal-

ysis. Here the link is the geometric maps. Geometric maps can map the 3D surface to the

2D image. This simplifies the shape-analysis problem to a 2D image-analysis problem. When

constructing shape images, geometric maps, which encode the shape information of the surface

patch into the 2D image, provide a solution to the mapping problem between a 3D surface and a

2D domain. In the conformal geometry theory, each 3D shape can be mapped to a 2D domain

through a global optimization and the resulting map is a diffeomorphism [15][59][60][30].

Consequently the 3D shape-analysis problem can be simplified to a 2D image-analysis prob-

lem in virtue of the conformal geometric maps. These maps are stable, insensitive to resolution

changes and robust to occlusion and noise. The analysis of 2D image which integrates geomet-

ric and appearance information is a better understood problem [37][3][42]. Therefore, highly

accurate and efficient 3D shape analysis algorithms can be achieved by 2D image analysis by

creating the shape image.

However, since SIFT was mainly developed for gray-scale images, the usage of the scale-

space processing on the special shape images or shape vector images are under-explored and its

performance remains unknown. As we known, SIFT is based on the scale space theory. Scale-

space processing usually convolves an image with Gaussian filters, generating a sequence of

images, and then the difference of successive Gaussian-blurred images are calculated to create

the Difference of Gaussians (DoG) for further analysis. In order to extract the most robust and

salient features to abstract the shape vector image like SIFT, we propose to create a multiscale
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vector-valued diffusion space through our novel geodesic distance-weighted shape vector im-

age diffusion. As a result, analysis of the shape vector image in its diffusion space is similar to

the direct diffusion analysis of the 3D model. A valuable point here is that our computation is

executed in a regular 2D domain, which is much simpler than in the 3D domain.

In the diffusion space, we can then extract distinctive features used for matching and analy-

sis. A rich set of scale-aware features can be extracted from the diffusion space representation.

Similar to the feature extraction technique in SIFT [37], our approach detects the extrema

across the scales as keypoints. We then calculate the orientation histograms around the key-

points as feature descriptors, which provide distinctive bases for representing the 3D geometry

of the original shape. These scale-aware geometric features can directly be used for robust

matching and registration against the noises and distortions. Therefore, statistical analysis and

visualization of surface properties across subjects become readily available. This is important

for many real-world applications. For example, it is very useful for processing inter-subject

brain surfaces from medical scans of different subjects since these surfaces exhibit the inher-

ited physiological variances among subjects. We have conducted extensive experiments on

scanned real-world surface models and real 3D human neocortical surfaces, through which we

demonstrate the excellent performance of our approach in surface matching and registration,

statistical analysis, and integrated visualization of the multimodality volumetric data over the

shape vector image.

Although we can simplify a 3D problem to 2D problem, however, the major disadvantage of

the shape vector image diffusion method is that it introduces inevitable, large distortions when

mapping large, complex and topologically complicated surfaces to a canonical domain. This

unwanted distortion changes the characteristics of actual 3D shapes and affects the performance

in shape matching or other shape analysis. In addition, it would be very difficult to compute

parametrization of certain high genus-surfaces. Here we are trying to find a diffusion method

which can be applied directly to the shape without the mapping.
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To find the solution for shape diffusion, we have to look back to the root of 2D SIFT. Since

the essential of SIFT is the diffusion equation which can create a multi-scale space, scientists

are dedicating to figuring out the solution of diffusion equation for 3D shape. In [9], the

spherical harmonics is used to derive the diffusion equation for a sphere from the spectral point

of view. However, that only works for the sphere because it uses the spherical harmonics. It

would be nice if we have the harmonics for a arbitrary regular shape instead of the spherical

harmonics only for sphere. To find the harmonics, we have to turn to the shape spectrum field

which provides another shape analysis tool from the spectral point of view.

Shape spectrum is a rather new research topic in computational geometry and shape anal-

ysis [25, 29, 52, 55]. Reuter [52] defined shape spectrum as the family of eigenvalues of

the Laplace-Beltrami operator on a manifold, and used it as a global shape descriptor. Lévy

[29] pointed out that Laplace-Beltrami eigenfunctions are tools to understand the geometry of

shapes and discussed the properties of those eigenfunctions of the Laplace-Beltrami operator.

Rustamov [55] proposed a Laplace-Beltrami shape distribution based on global point signa-

tures using the eigenfunctions and eigenvalues. Karni and Gotsman [25] used the projections

of geometry on the eigenfunctions for mesh compression. The Laplace shape spectrum, which

has been proved to have many good invariant properties [52], is showing tremendous power

and potential in shape analysis. While we are investigating the shape spectrum, we find that

the Fiedler vector from shape spectrum naturally following the shape makes it as a good tool

for surface registration. As a medical application in our test case, we employed the shape

spectrum to extract the shape characteristics as the signature to find the correspondent regions

between the prone and supine lumen surface. The method is simple yet efficient and accurate.

In the shape spectrum filed, most recently, Vallet and Lévy [65] proposed the manifold har-

monics transform on the mesh which can be considered as a filter in the spectrum domain. This

type of work inspired us to combine spectrum and diffusion together to seek a new creation

of scale space for shapes from the spectrum domain by integrating the manifold harmonics
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with the diffusion equation which is the essential mathematical foundation for the scale space.

So we propose a novel method to create a scale space for the shape by finding the solution

of the diffusion equation using the manifold harmonics from the spectral point of view. Not

confined on the mesh, which is reconstructed from the point cloud, in this dissertation, we use

the point-based manifold harmonics to deal with the point cloud data. We rigorously derive our

solution from the diffusion equation on the manifold using the point-based manifold harmon-

ics. Utilizing the manifold harmonics, the creation of scale space on the point clouds can be

achieved by the diffusion of the curvature function. Based on the multiscale structure, we can

robustly detect the distinctive features by comparing the neighbors directly on the point clouds.

Shape descriptors associated with the local scale information can then be defined. With these

feature descriptors, the point cloud matching can be achieved through the feature descriptors

matching.

1.2 Contribution
We have systematically developed the proposed framework based on the ideas from the

motivations. Based on this, my research work has been fruitful in my Ph.D. study with three

important contributions are presented as following that fall into the filed of shape matching and

registration in both academia and medical domain:

∙ Shape Vector Image Diffusion Framework (Chapter 3). We present a novel and ef-

ficient surface matching and visualization framework based on the geodesic distance-

weighted shape vector image diffusion. Firstly, our framework conformally maps a to-

be-analyzed surface to a canonical 2D domain. The surface curvatures and conformal

factors are then interpolated and encoded into the rectangular 2D domain, which we call

shape vector image. Based on the shape vector image, we propose to create a multiscale

vector-valued diffusion space through our novel geodesic distance-weighted shape vec-

tor image diffusion. By detecting the cross-scale extrema in the diffusion space, we can

create a set of distinctive scale-aware geometric features. These robust features are well
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suitable for surface matching and registration. We have conducted extensive experiments

on scanned real-world surface models and real 3D human neocortical surfaces, through

which we demonstrate the excellent performance of our approach in surface matching

and registration, statistical analysis, and integrated visualization of the multimodality

data over the shape vector image.

∙ Implementation and Application of Laplacian Shape Spectrum (Chapter 4). A novel

surface registration method based on shape spectrum is invented and applied to colon

surface registration. First of all, we show the implementation of the Laplace-Beltrami

operator on the mesh. By constructing the matrix form for the Laplace-Beltrami opera-

tor, we can solve the eigen problem to get the Laplacian Shape Spectrum. The second

eigenvector of the Laplacian is called the Fiedler vector and has interesting properties,

and we employ the Fiedler vector to extract the shape characteristics as the signature

for registration. To do the registration efficiently, we first detect reliable anatomic land-

marks. With the landmarks, we register the colon surface using piecewise registration

using the Fiedler vector value. We apply the algorithm to the real computed tomography

colonography (CTC) datasets and the experiments demonstrate the excellent accuracy of

our registration results. Furthermore, we integrate the registration component into our

virtual colonoscopy software for false positive (FP) reduction, which shows that it is an

excellent tool aiding polyp diagnosis in CTC.

∙ Scale Space Construction Using Point-based Manifold Harmonics (Chapter 5). We

present a novel method to create a scale space for the point cloud from the spectral point

of view by using the manifold harmonics. First of all, we show how to implement the

Laplace-Beltrami operator for the point cloud data. Based on the Laplace-Beltrami op-

erator, we have the point-based manifold harmonics. Using the point-based manifold

harmonics, we rigorously derive our solution from the diffusion equation which is the

essential of the scale space processing on the manifold. Built upon the point-based man-
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ifold harmonics transform, we generalize the diffusion function directly on the point

clouds to create the scale space. Based on the multi-scale structure, we try to detect the

features as the local extrema. Since there is no connectivity on the point cloud data, we

have to define a local neighborhood for the feature detection. By using the global point

signature, a neighborhood can be defined around the detected features on the point cloud

data. Subsequently, we can construct a feature descriptor for each feature point which

is effective for matching point clouds. With these feature descriptors, the point cloud

matching can be achieved through the feature descriptors matching. The performance of

our framework was thoroughly evaluated through our experiments which demonstrated

that our method can achieve excellent matching performance for point cloud in real-

world applications.

1.3 Dissertation Organization
The dissertation is organized in the following way:

∙ Chapter 2: Gives definitions and detailed description of conformal mapping techniques

and scale invariant feature transform. This provides a mathematical foundation on which

the remainder of the thesis will be based.

∙ Chapter 3: Describes how shape vector image diffusion can be used for multiscale diffu-

sion space construction. This chapter presents the detection, descriptor and matching of

keypoints. Applications are given as well as experiments validating the technique.

∙ Chapter 4: Shows the implementation of the Laplacian shape spectrum on mesh and

presents the surface registration application using the Laplacian shape spectrum.

∙ Chapter 5: Present a novel method to create a scale space for the point cloud from the

spectral point of view by using the point-based manifold harmonics.
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∙ Chapter 6: Offers a summary of the dissertation and points towards the future work along

this research direction.
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CHAPTER 2

BACKGROUND

This chapter provides a mathematical background for the problem we raise in previous

chapter. This foundation will facilitate the reader’s understanding of the research and contri-

butions put forth in the following chapters. This chapter is organized as follows. Chapter 2.1

reviews conformal mapping, including the introduction of conformal mapping and the calcula-

tion of the conformal mapping. Chapter 2.2 reviews scale invariant feature transform.

2.1 Conformal Mapping
Geometric maps have been widely applied in the fields of computer graphics and computer

vision. Zhang and Hebert used harmonic maps to construct scalar shape images to match the

surfaces [80]. In [73], harmonic maps were used to track dynamic 3D surface. However, calcu-

lating harmonic maps needs to identify the surface boundary and create the boundary mapping

from 3D surfaces to the 2D domain, which becomes unreliable when there are noises and oc-

clusions in the 3D original data. Since the interior feature points are often more robust in the

3D original data, conformal maps, which do not need boundary information, can be a natural

choice to overcome the difficulty. Using several feature constraints instead of the boundary

condition, conformal maps have many appealing properties [72]. For example, if the param-

eterization is conformal, the surface can be uniquely determined by the mean curvatures with

area stretching factors defined on the parametric domain. In [19], genus zero surface conformal

mapping was discussed and it was adopted for the brain surface mapping [81]. The conformal

parameterization can be uniquely determined by two corresponding points. Conformal pa-

rameterization depends on the geometry itself, not the triangulation of the surfaces. Hence,

conformal mapping is a viable solution for 3D shape image construction. This motivated us

to encode a shape vector image using conformal mapping for surface representation. In this
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section, we will review the existing work of the conformal mapping.

2.1.1 Harmonic maps

Given two genus zero meshes 𝑀 and 𝑁 . A map 𝑓 : 𝑀 → 𝑁 , the string energy is defined

as:

𝐸(𝑓) =< 𝑓, 𝑓 >=
∑

{𝑣0,𝑣1}
𝑘{𝑣0,𝑣1}∥ 𝑓(𝑣0)− 𝑓(𝑣1) ∥2, (2.1)

where {𝑣0, 𝑣1} is an edge connecting two neighboring vertices 𝑣0 and 𝑣1.

Suppose edge {𝑣0, 𝑣1} has two adjacent faces Γ𝛼,Γ𝛽 ,with Γ𝛼 = {𝑣0, 𝑣1, 𝑣2} and Γ𝛽 =

{𝑣0, 𝑣1, 𝑣3}, as shown in Fig. 2.1; 𝑘{𝑣0,𝑣1} is defined as

1

2

( (𝑣0 − 𝑣2) ⋅ (𝑣1 − 𝑣2)

∣(𝑣0 − 𝑣2)× (𝑣1 − 𝑣2)∣ +
(𝑣0 − 𝑣3) ⋅ (𝑣1 − 𝑣3)

∣(𝑣0 − 𝑣3)× (𝑣1 − 𝑣3)∣
)
,

and the string energy obtained with this 𝑘{𝑣0,𝑣1} is called the harmonic energy.

Specially, if string constants 𝑘{𝑣0,𝑣1} ≡ 1, the string energy is known as the Tuette energy.

The harmonic map can be computed by minimizing the harmonic energy using the Euler-

Lagrange differential equation. With the boundary condition of the mapping f is given, 𝑓 ∣∂𝑀 :

∂𝑀 → ∂𝑁 , the solution is unique. The harmonic maps are easy to compute, however, it

becomes unreliable when there are occlusions in the 3D original data. As it has to meet the

boundary condition, the occlusion will cause the problem [80]. Conformal mapping, which

replaces the boundary condition with feature constraints, is proposed because interior feature

points are often more robust to occlusion.

2.1.2 Conformal Maps

In the theorem of differential geometry, a diffeomorphism 𝑓 : 𝑀 → 𝑁 is conformal if and

only if, for any surface patch 𝜎𝑚 on 𝑀 , the first fundamental forms of 𝜎𝑚 and 𝜎𝑛 = 𝑓 ∘ 𝜎𝑚 are

proportional. Mathematically, this means that

𝑓 ∘ 𝑑𝑠2𝑚 = 𝜆𝑑𝑠2𝑛, (2.2)
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Figure 2.1: Edge {𝑣0, 𝑣1} connects two faces Γ𝛼 , Γ𝛽 , and two corners 𝛼 , 𝛽 are against it. The
edge weight 𝑘{𝑣0,𝑣1} is defined as the summation of the cotangents of these angles.
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where 𝜆 is called the conformal factor, 𝑑𝑠2𝑚 and 𝑑𝑠2𝑛 are the first fundamental form on 𝑀 and

𝑁 [20].

If 𝑀 and 𝑁 are surfaces, a diffeomorphism 𝑓 : 𝑀 → 𝑁 is said to be conformal if ,

whenever f takes two intersecting curves 𝛾𝑚 and 𝛾𝑚 on 𝑀 to curves 𝛾𝑛 and 𝛾𝑛 on 𝑁 , the angle

of intersection of 𝛾𝑚 and 𝛾𝑚 is equal to the angle of intersection of 𝛾𝑛 and 𝛾𝑛. In short, f is

conformal if it preserves angles.

It is well known that any genus zero surface can be mapped conformally onto the sphere

and any local portion thereof onto a disk. This mapping, a conformal equivalence, is one-to-

one, onto, and angle-preserving. Moreover, the elements of the first fundamental form remain

unchanged, except for a scaling factor (the so-called Conformal Factor). For this reason, con-

formal mappings are often described as being similarities in the small region. Since the cortical

surface of the brain is a genus zero surface, conformal mapping offers a convenient method to

retain local geometric information, when mapping data between surfaces.

Another nice property of conformal mappings is their connection to complex function the-

ory. Suppose a mapping 𝑓 : 𝑀 → 𝑁 between two planar Riemann surfaces, which can be

considered as a function of a complex variable, 𝑛 = 𝑓(𝑚). A conformal map thus satisfies the

Cauchy-Riemann equations, which, with 𝑛 = 𝑢+ 𝑖𝑣 and 𝑚 = 𝑥+ 𝑖𝑦,are

∂𝑢

∂𝑥
=

∂𝑣

∂𝑦
,
∂𝑢

∂𝑦
= −∂𝑣

∂𝑥
. (2.3)

Noticing that by differentiating one of these equations with respect to x and the other with

respect to y, we obtain the two Laplace equations

△𝑢 = 0, △𝑣 = 0, (2.4)

where

△ =
∂2

∂𝑥2
+

∂2

∂𝑦2
(2.5)
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is the Laplace operator.

Any mapping which satisfies these two Laplace equations is called a harmonic mapping.

Thus a conformal mapping is also harmonic. A harmonic map can either be viewed as the

solution to Eq. 2.4, or as the minimizer of the energy (Eq. 2.1) over the surface.

2.1.3 Conformal Maps by Energy Minimization

Suppose K representing the simplicial complex; then we have these kinds of definitions

here [19]:

Definition 1: The piecewise Laplacian is the linear operator △𝑃𝐿 : 𝐶𝑃𝐿 → 𝐶𝑃𝐿 on the

surface of piecewise linear functions on K, defined as

Δ𝑃𝐿(𝑓) =
∑

{𝑣0,𝑣1}
𝑘{𝑣0,𝑣1}(𝑓(𝑣0)− 𝑓(𝑣1)). (2.6)

Definition 2: For a map
−→
𝑓 : 𝑀 → ℜ3,

−→
𝑓 = (𝑓0, 𝑓1, 𝑓2), 𝑓𝑖 ∈ 𝐶𝑃𝐿, 𝑖 = 0, 1, 2, the energy

is defined as the norm of
−→
𝑓

𝐸(
−→
𝑓 ) =

2∑
𝑖=0

𝐸(𝑓𝑖). (2.7)

Definition 3: For a map
−→
𝑓 : 𝑀 → ℜ3, the piecewise Laplacian of

−→
𝑓 is

Δ𝑃𝐿

−→
𝑓 = (Δ𝑃𝐿𝑓0,Δ𝑃𝐿𝑓1,Δ𝑃𝐿𝑓2). (2.8)

The minimization of the energy 𝐸(
−→
𝑓 ) can be solved by the steepest descent algorithm

𝛿
−→
𝑓 = −𝐷

−→
𝑓 × 𝛿𝑡, (2.9)

where 𝐷
−→
𝑓 is the absolute derivative. The detail of the algorithm can be referred to [19].
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2.1.4 Conformal Maps by Least Squares Conformal Maps

The Least Squares Conformal Map (LSCM) parameterization algorithm [30] generates a

discrete approximation of a conformal map by adding more constraints. Here we give a brief

description.

Given a discrete 3D surface mesh M and a smooth target mapping 𝑓 : 𝑀 → (𝑢, 𝑣), then,

as described in previous section, 𝑓 is conformal if and only if the Cauchy-Riemann equation

holds true on the whole of M. However, in general this conformal condition cannot be strictly

satisfied on the whole triangulated surface M, so the conformal map is constructed in the least

squares sense:

𝐶(𝑀) =
∑
𝑑∈𝑀

∥ ∂𝑓

∂𝑥
+ 𝑖

∂𝑓

∂𝑦
∥
2

𝐴(𝑑), (2.10)

where d is a triangle on the mesh M with the area A(d). The least squares minimization problem

in Eq. 2.10 can be efficiently solved using the Conjugate Gradient Method.

2.2 Scale Invariant Feature Transform (SIFT)
First we will review the related 2D image feature extraction techniques. Then we detail the

SIFT algorithm.

2.2.1 Review of Related Image Methods

First, let me give a short review of the related works on 2D image methods. After mapping

the 3D surface to the 2D image plane, extracting features from the shape image becomes one of

the most important tasks. Generally speaking, the analysis of 2D image is a better understood

problem [8, 3, 42]. However, the analysis of the shape image that integrates geometric and ap-

pearance information has its own special challenges mainly due to the non-uniform sampling

and different pixel properties (i.e., geometric characteristics instead of grey-scale intensities).

Hence, conventional image analysis techniques may not work well. For example, line segments

[18], groupings of edges [36, 45], and regions [5] have all been proposed as features for image

matching. Nevertheless, these feature extraction techniques are not reliable for shape images
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due to the aforementioned special characteristics of shape images and they only work well un-

der certain circumstances. Recently, there has been a great deal of research work on developing

more reliable features for conventional images. One of them is to take advantage of corner de-

tectors. Zhang et al. [77] used the Harris corner detector to identify feature locations. Harris

corner detector was also used by Schmid and Mohr [58] to identify interest points for the object

recognition problem. Other approaches have been proposed for appearance-based matching,

including eigenspace analysis [43], color histograms [63], and receptive field histograms [56].

However, it is difficult to extend them to match variant inter-subject images because of their

more global features. Ohba and Ikeuchi [48] successfully applied the eigenspace approach to

cluttered images by using many small local eigen-windows, but this is very time consuming

and not practical. Most recently, SIFT, scale-invariant features, has been proposed [37] for

2D regular images and proven to be the most robust among many other local invariant feature

descriptors with respect to different geometrical changes [40, 2].

2.2.2 SIFT Matching

From the fact [34] that the scale-space representation 𝐿(𝑥, 𝑡) satisfies the diffusion equation

∂𝐿(𝑥, 𝑡)

∂𝑡
= 𝑑𝑖𝑣(∇𝐿(𝑥, 𝑡)) = ∇2𝐿(𝑥, 𝑡), (2.11)

where the Laplacian on the right side is taken only with respect to the x variables (𝑥 ∈ 𝑅𝑛),

it follows that the Laplacian can also be computed as the limit case of the difference between

two Gaussian smoothed images. So in SIFT, the image is convolved with Gaussian filters

generating a sequence of images, and then the difference of successive Gaussian-blurred im-

ages are calculated to create the Difference of Gaussians (DoG). Keypoints are then taken as

maxima/minima of the DOG at each scales. Specifically, a DoG image 𝐷(𝑥, 𝑦, 𝜎) is given by

𝐷(𝑥, 𝑦, 𝜎) = 𝐿(𝑥, 𝑦, 𝑘𝑖+1𝜎)− 𝐿(𝑥, 𝑦, 𝑘𝑖𝜎), (2.12)
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where 𝐿(𝑥, 𝑦, 𝑘𝑖𝜎) and 𝐿(𝑥, 𝑦, 𝑘𝑖+1𝜎) are the original image I(x,y) convolved with the Gaussian

blur 𝐺(𝑥, 𝑦, 𝑘𝜎) at scale 𝑘𝑖𝜎 and 𝑘𝑖+1𝜎, i.e.,

𝐿(𝑥, 𝑦, 𝑘𝑖𝜎) = 𝐺(𝑥, 𝑦, 𝑘𝑖𝜎) ∗ 𝐼(𝑥, 𝑦) (2.13)

and

𝐿(𝑥, 𝑦, 𝑘𝑖+1𝜎) = 𝐺(𝑥, 𝑦, 𝑘𝑖+1𝜎) ∗ 𝐼(𝑥, 𝑦), (2.14)

where

𝐺(𝑥, 𝑦, 𝑘𝑖𝜎) =
1

2𝜋𝑘𝑖𝜎
𝑒−(𝑥2+𝑦2)/2𝑘𝑖𝜎 (2.15)

and

𝐺(𝑥, 𝑦, 𝑘𝑖+1𝜎) =
1

2𝜋𝑘𝑖+1𝜎
𝑒−(𝑥2+𝑦2)/2𝑘𝑖+1𝜎. (2.16)

Once DoG images have been obtained, keypoints are identified as local minima/maxima of

the DoG images across scales. Detection of the interest points at the extrema of a difference

of Gaussian pyramid of the input image is performed. By comparing each pixel in the DoG

images to its eight neighbors at the same scale and nine corresponding neighboring pixels in

each of the neighboring scales, the detection can be done and all the maximum or minimum

will be selected as candidate keypoints.

Next, each keypoint is assigned orientation based on local image gradient directions. Ori-

entation assignment is the key step in achieving invariance to rotation as the keypoint descriptor

can be represented relative to this orientation and therefore achieve invariance to image rota-

tion after the interesting points are found. For an image sample 𝐿 (𝑥, 𝑦) at scale 𝜎, the gradient

magnitude, 𝑚 (𝑥, 𝑦), and orientation, 𝜃 (𝑥, 𝑦), are precomputed using pixel differences:

𝑚(𝑥, 𝑦) =
√

(𝐿(𝑥+ 1, 𝑦)− 𝐿(𝑥− 1, 𝑦))2 + (𝐿(𝑥, 𝑦 + 1)− 𝐿(𝑥, 𝑦 − 1))2 (2.17)
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and

𝜃(𝑥, 𝑦) = tan−1(
𝐿(𝑥, 𝑦 + 1)− 𝐿(𝑥, 𝑦 − 1)

𝐿(𝑥+ 1, 𝑦)− 𝐿(𝑥− 1, 𝑦)
). (2.18)

Using above equations, the magnitude and direction are calculated for every pixel in a neigh-

boring region around the keypoint in the Gaussian-blurred image L. An orientation histogram

with 36 bins is formed, with each bin covering 10 degrees. Once the histogram is filled, the ori-

entations which have largest value and those which are within 80% of the largest are assigned

to the keypoint.

The feature descriptor is computed as a set of orientation histograms on the (4 x 4) pixel

neighborhoods, each of which have 8 orientation bins, around the interesting point. So it uses

this 4 x 4 x 8 = 128 elements vector for the feature descriptor. This vector is then normalized

to unit length in order to enhance invariance to affine changes in illumination.

Then the SIFT matching is achieved by matching the feature descriptor. The matching is

calculated based on Euclidean distance of the feature vectors.
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CHAPTER 3

SHAPE VECTOR IMAGE DIFFUSION (SVID)

FRAMEWORK

This chapter presents a novel and efficient surface matching and visualization framework

through the geodesic distance-weighted shape vector image diffusion. Based on conformal ge-

ometry, our approach can uniquely map a 3D surface to a canonical rectangular domain and

encode the shape characteristics (e.g., mean curvatures and conformal factors) of the surface in

the 2D domain to construct a geodesic distance-weighted shape vector image, where the dis-

tances between sampling pixels are not uniform but the actual geodesic distances on the man-

ifold. Through the novel geodesic distance-weighted shape vector image diffusion presented

in this chapter, we can create a multiscale diffusion space, in which the cross-scale extrema

can be detected as the robust geometric features for the matching and registration of surfaces.

Therefore, statistical analysis and visualization of surface properties across subjects become

readily available. The experiments on scanned surface models show that our method is very

robust for feature extraction and surface matching even under noise and resolution change. We

have also applied the framework on the real 3D human neocortical surfaces, and demonstrated

the excellent performance of our approach in statistical analysis and integrated visualization of

the multimodality volumetric data over the shape vector image.

3.1 Conformal Shape Vector Image Construction
A good shape image should be able to fully represent the geometric characteristics of a

given surface, and thus serves as a domain for indexing other heterogenous attributes. Thus, a

3D surface can be converted to a multidimensional vector image for effective processing. We

employ conformal mapping to accomplish the task. In the theorem of differential geometry,

a diffeomorphism 𝑓 : 𝑀 → 𝑁 is conformal if and only if, for any surface patch 𝜎𝑚 on 𝑀 ,
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(a) (b) (c) (d)

Figure 3.1: Shape Vector Image. (a) shows the Igea (5002 vertices) surface and mesh; (b)
and (c) show the mean curvature channel and conformal factor channel of the shape vector
image representation of the Igea model; (d) is the composite shape vector image including
both channels.

the first fundamental forms of 𝜎𝑚 and 𝜎𝑛 = 𝑓 ∘ 𝜎𝑚 are proportional. Mathematically, this

means that 𝑓 ∘ 𝑑𝑠2𝑚 = 𝜆𝑑𝑠2𝑛, where 𝜆 is called the conformal factor, 𝑑𝑠2𝑚 and 𝑑𝑠2𝑛 are the first

fundamental form on 𝑀 and 𝑁 . If 𝑀 and 𝑁 are surfaces, a diffeomorphism 𝑓 : 𝑀 → 𝑁 is

said to be conformal if , whenever 𝑓 takes two intersecting curves 𝛾𝑚 and 𝛾𝑚 on 𝑀 to curves

𝛾𝑛 and 𝛾𝑛 on 𝑁 , the angle of intersection of 𝛾𝑚 and 𝛾𝑚 is equal to the angle of intersection of

𝛾𝑛 and 𝛾𝑛. In short, 𝑓 is conformal if it preserves angles.

In order to match 3D shapes accurately and efficiently, we develop a 2D representation,

shape vector image, using conformal mapping. Given a surface patch 𝑀 , its conformal im-

age 𝐼𝑐 can be created using conformal mapping. There is one-to-one correspondence between

the vertices in 𝑀 and the vertices in 𝐼𝑐. Based on the shape attributes computed at each ver-

tex of 𝑀 , attribute values can be interpolated and computed for each pixel of the conformal

shape vector image. In practice, we compute the conformal parameterization by a nonlinear

optimization method carried out in the tangential space of a sphere as proposed in [19].

Suppose 𝐾 denotes the simplical complex and there is a piecewise linear embedding �⃗� :

∣𝐾∣ → R3. Then a triangular mesh can be represented as (𝐾, �⃗�). For the purpose of imple-

mentation, surfaces are usually approximated by triangular meshes. We use 𝑝, 𝑞 to denote the

vertices and {𝑝, 𝑞} to denote the edge spanned between 𝑝 and 𝑞. The surface and its para-
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metric domain are modeled as piecewise linear functions 𝑓 and �⃗� in accordance with (𝐾, �⃗�),

respectively. The mean curvature at vertex 𝑞 is estimated as in [39] by

𝐻(𝑞) =
1

4𝐴
∥
∑

𝑝∈𝑁1(𝑞)

(cot𝛼𝑝,𝑞 + cot 𝛽𝑝,𝑞)(𝑓(𝑞)− 𝑓(𝑝))∥2, (3.1)

where 𝛼𝑝,𝑞 and 𝛽𝑝,𝑞 are the two opposite angles of edge 𝑝, 𝑞 in the two triangles sharing this

edge, and 𝑁1(𝑞) is the set of 1-ring neighbor vertices of vertex 𝑞. 𝐴 is the area of the associated

surface patch (so-called finite volume in Mechanics), which is given by

𝐴(𝑞) =
1

8

∑
𝑝∈𝑁1(𝑞)

(cot𝛼𝑝,𝑞 + cot𝛽𝑝,𝑞)∥𝑓(𝑞)− 𝑓(𝑝)∥2, (3.2)

under the condition that the triangles in the 1-ring neighbors are non-obtuse. In case of obtuse

triangles, refer to [39] for solutions. Following this path, we define the discrete conformal

factor operator as

𝜆(𝑞) =
𝐴𝑔(𝑞)

𝐴𝑓 (𝑞)
, (3.3)

where the 𝐴𝑓 (𝑞) and 𝐴𝑔(𝑞) are the averaging areas for each homotopic vertex 𝑞 on surface 𝑓

and �⃗�, respectively.

As conformal surface representation 𝑆(𝑢, 𝑣) is parameterized by conformal parameters

(𝑢, 𝑣) on a domain 𝐷, the conformal factor function, 𝜆(𝑢, 𝑣), and mean curvature function,

𝐻(𝑢, 𝑣), defined on 𝐷 satisfy the Gauss and Codazzi equation. If 𝜆(𝑢, 𝑣) and 𝐻(𝑢, 𝑣) are

given together with the boundary conditions, 𝑆(𝑢, 𝑣) can be uniquely reconstructed. Since the

mean curvature and the conformal factor are two important attributes, we assign these two at-

tributes to 𝐼𝑐(𝑢, 𝑣) to construct a vector image 𝐼 , where the pixel attributes are represented by

a vector [𝐻,𝜆]⊤. Other features such as normal and texture can be considered if necessary. We

use barycentric interpolation for sampling 𝐼𝑐(𝑢, 𝑣) to 𝐼 . Fig. 3.1 shows the Igea surface model

with 5002 vertices (Fig. 3.1(a)) and its corresponding mean curvature channel (Fig. 3.1(b))
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and conformal factor channel (Fig. 3.1(c)). The composite shape vector image is shown in

Fig. 3.1(d).

3.2 Shape Vector Image Diffusion
As we known, SIFT is based on the scale space theory. Scale-space processing usually

convolves an image with Gaussian filters, generating a sequence of images, and then the dif-

ference of successive Gaussian-blurred images are calculated to create the Difference of Gaus-

sians (DoG) for further analysis. Since scale-space theory was mainly developed for gray-scale

images, the usage of the scale-space processing on the special shape images or shape vector

images are under-explored and its performance remains unknown.

Since a surface can be represented as a unique shape vector image composed of conformal

factors and curvatures, many algorithms suitable for image computing may be used for feature

extraction from this type of images. For the purpose of matching and visualization of cross-

subject data, the main task is to find the stable keypoints or regions and their local image

features for alignment. Since the shape vector image representation that we propose consists of

the mean curvature and area distortion, it provides important signature of the local geometry,

which is transformation invariant and suitable for shape matching. This section describes a

novel diffusion-based algorithm to extract distinctive features from the shape vector images.

Through the geodesic distance-weighted shape vector image diffusion, we can identify the

robust keypoints and their scales from the computed diffusion extrema, which are suitable for

the matching purpose.

3.2.1 Shape Vector Image Diffusion and Diffusion Space

Our shape vector image is a multichannel image. The simplest way to perform the diffusion

filtering of the shape vector image is to deal with each channel separately and independently.

However, this method leads to an undesirable effect that edges may be formed at different

locations for each channel since the curvature and conformal factor channels must take effect

simultaneously in order to accurately determine the local geometry. In our framework, we
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employs a diffusivity 𝑔 which combines information from all channels. For a vector image

𝐼 = (𝐼1, 𝐼2, ..., 𝐼𝑚)
⊤, the diffusion is performed by

∂𝐼𝑘
∂𝑡

= 𝑑𝑖𝑣
(
𝑔∇𝐼𝑘

)
(𝑘 = 1, ...,𝑚), (3.4)

where 𝑑𝑖𝑣 indicates the divergence operator, ∇ is the gradient operator, and 𝑔(𝑥) = 1√
1+(𝑥

𝑙
)2

(𝑙 is a constant). For the case in which 𝑔 is a constant for a specific channel 𝐼𝑘, it reduces to

the isotropic heat diffusion equation, ∂𝐼𝑘
∂𝑡

= 𝑐△𝐼𝑘, where △ is the Laplacian operators and

the solution is Gaussian smoothing. However, Gaussian smoothing has a typical disadvantage,

especially for the shape vector image. Gaussian smoothing does not only reduce noise, but

also blurs important geometric features such as sharp edges, hence making them harder to be

identified.

To solve the problem, we propose to perform geodesic distance-weighted inhomogeneous

linear diffusion of the shape vector image,

∂𝐼𝑘
∂𝑡

= 𝑑𝑖𝑣

(
𝑔
(
∥∇𝑓𝐼𝑘∥

)
∇𝐼𝑘

)
, (3.5)

where 𝐼𝑘 is the actual diffused image, 𝑓𝐼𝑘 is the original image and 𝑔 is the diffusivity function.

For a specific channel 𝑃 = 𝐼𝑘, the numerical solution for Eq. 3.5 can be computed, similar to

the 4-nearest-neighbors discretization [51], as follows,

𝑃 𝑡+1
𝑖,𝑗 = 𝑃 𝑡

𝑖,𝑗 + 𝜌[𝑐𝑁 ⋅ ▽𝑁𝑃 + 𝑐𝑆 ⋅ ▽𝑆𝑃 + 𝑐𝐸 ⋅ ▽𝐸𝑃 + 𝑐𝑊 ⋅ ▽𝑊𝑃 ], (3.6)

where 0 ≤ 𝜌 ≤ 1/4, N, S, E, W are the subscripts for the North, South, East, and West, 𝑡 is the

scale, 𝑖 and 𝑗 are the indices of the image pixel. Since the shape vector image encodes geodesic

distance information, the symbol ▽ is defined as follows with the consideration of geodesic

distances:
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▽𝑁𝑃𝑖,𝑗 =
𝑃𝑖−1,𝑗 − 𝑃𝑖,𝑗

𝐺𝑒𝑜𝐷[𝑁 ]
, ▽𝑆𝑃𝑖,𝑗 =

𝑃𝑖+1,𝑗 − 𝑃𝑖,𝑗

𝐺𝑒𝑜𝐷[𝑆]
,

▽𝐸𝑃𝑖,𝑗 =
𝑃𝑖,𝑗+1 − 𝑃𝑖,𝑗

𝐺𝑒𝑜𝐷[𝐸]
, ▽𝑊𝑃𝑖,𝑗 =

𝑃𝑖,𝑗−1 − 𝑃𝑖,𝑗

𝐺𝑒𝑜𝐷[𝑊 ]
, (3.7)

where

𝐺𝑒𝑜𝐷[𝑁 ] = 𝐺𝑒𝑜𝐷([𝑖− 1, 𝑗], [𝑖, 𝑗]), 𝐺𝑒𝑜𝐷[𝑆] = 𝐺𝑒𝑜𝐷([𝑖+ 1, 𝑗], [𝑖, 𝑗]),

𝐺𝑒𝑜𝐷[𝐸] = 𝐺𝑒𝑜𝐷([𝑖, 𝑗 + 1], [𝑖, 𝑗]), 𝐺𝑒𝑜𝐷[𝑊 ] = 𝐺𝑒𝑜𝐷([𝑖, 𝑗 − 1], [𝑖, 𝑗]),

and 𝐺𝑒𝑜𝐷([𝑝𝑖𝑥𝑒𝑙𝐴], [𝑝𝑖𝑥𝑒𝑙𝐵]) is the normalized geodesic distance between the 𝑝𝑖𝑥𝑒𝑙𝐴 and

𝑝𝑖𝑥𝑒𝑙𝐵 on the manifold, which is normalized by dividing the averaged 𝐺𝑒𝑜𝐷 over the image.

And the 𝑐 is defined as:

𝑐𝑁𝑖,𝑗
= 𝑔(∣ ▽𝑁 𝑓𝐼𝑖,𝑗 ∣), 𝑐𝑆𝑖,𝑗

= 𝑔(∣ ▽𝑆 𝑓𝐼𝑖,𝑗 ∣),

𝑐𝐸𝑖,𝑗
= 𝑔(∣ ▽𝐸 𝑓𝐼𝑖,𝑗 ∣), 𝑐𝑊𝑖,𝑗

= 𝑔(∣ ▽𝑊 𝑓𝐼𝑖,𝑗 ∣),

where ▽𝑁𝑓𝐼𝑖,𝑗 , ▽𝑆𝑓𝐼𝑖,𝑗 , ▽𝐸𝑓𝐼𝑖,𝑗 and ▽𝑊𝑓𝐼𝑖,𝑗 are computed by Eq. 3.7. Therefore, the final

numerical solution is

𝑃 𝑡+1
𝑖,𝑗 = 𝑃 𝑡

𝑖,𝑗 + 𝜌[
𝑐𝑁 ⋅ ▽𝑁𝑃 + 𝑐𝑆 ⋅ ▽𝑆𝑃

𝐺𝑒𝑜𝐷𝑁𝑆

+
𝑐𝐸 ⋅ ▽𝐸𝑃 + 𝑐𝑊 ⋅ ▽𝑊𝑃

𝐺𝑒𝑜𝐷𝐸𝑊

], (3.8)

where

𝐺𝑒𝑜𝐷𝑁𝑆 =
𝐺𝑒𝑜𝐷[𝑁 ] +𝐺𝑒𝑜𝐷[𝑆]

2
,

𝐺𝑒𝑜𝐷𝐸𝑊 =
𝐺𝑒𝑜𝐷[𝐸] +𝐺𝑒𝑜𝐷[𝑊 ]

2
.

Using this numerical solution, we can construct a discrete geometric diffusion space which
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encodes the surface geometric information.

Particularly for our shape vector image scheme, our approach sums up the diffusivity of

each channel to a common diffusivity. This may be regarded as collecting the contrast in-

formation of all channels. Thus, for a shape vector image 𝐼 = (𝐼1, 𝐼2, ..., 𝐼𝑚)
⊤, the vector

diffusion is performed by

∂𝐼𝑘
∂𝑡

= 𝑑𝑖𝑣

(
𝑔
( 𝑚∑

𝑛=1

∥∇𝑓𝐼𝑛∥
)
∇𝐼𝑘

)
(𝑘 = 1, ...,𝑚). (3.9)

By solving Equations 3.9, we obtain the diffusion space,

(
I𝑡0 I𝑡1 . . . I𝑡𝑛

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐼1
𝑡0 𝐼1

𝑡1 . . . 𝐼1
𝑡𝑛

𝐼2
𝑡0 𝐼2

𝑡1 . . . 𝐼2
𝑡𝑛

...
... . . .

𝐼𝑚
𝑡0 𝐼𝑚

𝑡1 . . . 𝐼𝑚
𝑡𝑛

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (3.10)

which is a sequence of shape vector images with 𝑡 as the scale in a matrix format, i.e., each row

of the matrix is the sequence images of a specific channel with 𝑡 as the scale, and each column

of the matrix is the vector image at a specific scale 𝑡. Fig. 3.2 shows the diffused shape vector

images of the Igea model with increasing diffusion scale 𝑡.

3.2.2 Properties of Diffusion Space

Suppose a mapping 𝑓 : 𝑀 → 𝐼 and the diffusion 𝐷 : 𝐼 → 𝑆, where 𝑀 is a 3D surface, 𝐼

is the shape vector image and 𝑆 is the diffusion space. In this section, we firstly show that 𝐷

satisfies the criteria of the multiple scale descriptions. Secondly, we show that 𝑓 ∘𝐷, together,

creates the diffusion space appropriate for scale-space processing of the 3D surface geometry.

The diffusion space construction is to create a multiscale “semantically meaningful” de-

scriptions of images. As we know, a scale-space representation must have the property that no

spurious detail will be generated passing from finer to coarser scales. This is so-called causal-
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Figure 3.2: The diffused shape vector images, consisting both curvature and conformal factor
channels, of the Igea model at different diffusion scales, 𝑡, computed by the geodesic distance-
weighted diffusion.

ity, which means any feature at a coarse level of resolution is required to possess a “cause” at

a finer level of resolution although the reverse need not be true. The causality criterion can be

established by showing the used diffusion equation satisfies the maximum principle, that is to

say, all the maxima of the solution of the equation in space and time belong to the initial condi-

tion (i.e., the original image). A proof of the maximum principle for the diffusion equation can

be found in [51, 46]. Therefore, for the diffusion 𝐷, the satisfaction of the maximum principle

leads to the satisfaction of the causality for the diffusion space. Consequently, 𝐷 satisfies the

criteria of the multiple scale descriptions.

For our shape vector image, we use the geodesic distance-weighted method, in which the

distance can be retrieved by the mapping, 𝑓 , for the computation of the diffusion to construct

a geometric diffusion space. Therefore, constructing and analyzing the geometric diffusion

space is similar to analyzing a direct diffusion space of the 3D surface. As a result, 𝑓 ∘ 𝐷 is

able to construct a multiple scale space and multiscale descriptions for the 3D surface.

The geodesic distance-weighted anisotropic diffusion has the advantages of preserving and

identifying true features as well as preventing dislocated false features in the diffusion space

when taking the actual geodesic distance as a-priori information. Fig. 3.3 shows an illustrative

one-dimensional example, where the curve is the actual shape object and the line segment is the
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1D shape “image”. The sampling vertices (from 𝑣1 to 𝑣6) on the curve are mapped to the pixels

(from 𝑝1 to 𝑝6) on the 1D shape “image” shown at the bottom. As we can see, the sampling

vertices of the curve, 𝑣2 and 𝑣3, have relatively high curvature values while other sampling

vertices have low curvatures.

Figure 3.3: Example of the 1D shape “image”.

Without considering the geodesic distance among the pixels, 𝑝4’s curvature value will be

increased while moving from finer to coarser scales. For example, at the immediately next

level, 𝑝3 will boost the diffusion of 𝑝4 since its distance to 𝑝4 is considered the same as the

distance between 𝑝4 and 𝑝5 (a unit length). The situation will get worse when diffusing further

since 𝑝2 will also dramatically affect the diffusion of 𝑝4. However, 𝑣2 is far away from the

diffusion vertex, 𝑣4. In fact, 𝑝2 is not suppose to have significant influence on 𝑝4. On the

other side, it is also difficult to preserve the high curvature values for 𝑝2 and 𝑝3. Therefore, the

procedure will dislocate keypoints when moving from finer to coarser scales. So the keypoints

detected at a coarse scale do not give the correct location in the original image, which will
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result in instability and incorrect matching. The situation is much improved when considering

geodesic distances in the diffusion.

3.3 Keypoint-based Shape Descriptors

3.3.1 Extrema Detection

The maximum principle states that all the maxima of the solution of the equation in space

and time belong to the initial condition (i.e., the original image). Therefore, we propose to

detect the extrema across the diffusion space as our keypoints since they are most robust points

at the specific scales which are able to represent collectly the original image. We sample the

diffusion space by computing a sequence of diffused shape vector images at discrete scales, 𝑡.

For each diffusion scale, we use Eq. 3.9 to calculate its diffused images which can be expressed

in a matrix form like Eq. 3.10.

In order to extract the cross-scale extrema, we compute the Difference of Diffusion (DoD)

using the following vector-based equation,

DoD𝑡𝑖 = I𝑡𝑖+1 − I𝑡𝑖 (𝑖 = 0, ..., 𝑛− 1). (3.11)

Consequently, we can obtain,

⎛⎜⎜⎜⎜⎜⎜⎜⎝

DoD1

DoD2

...

DoD𝑚

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝐷𝑜𝐷1
𝑡0 𝐷𝑜𝐷1

𝑡1 . . . 𝐷𝑜𝐷1
𝑡𝑛−1

𝐷𝑜𝐷2
𝑡0 𝐷𝑜𝐷2

𝑡1 . . . 𝐷𝑜𝐷2
𝑡𝑛−1

...
... . . . ...

𝐷𝑜𝐷𝑚
𝑡0 𝐷𝑜𝐷𝑚

𝑡1 . . . 𝐷𝑜𝐷𝑚
𝑡𝑛−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (3.12)

Fig. 3.4(c-e), (g-i), and (k-m) show the computed intermediate curvature channel images of the

DoDs across scales.

Once DoD vector images have been obtained, keypoints are identified as local minima/maxima

of the DoD images across scales 𝑡. For each channel DoD𝑖, it is done by comparing each pixel
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in the DoD𝑡𝑗
𝑖 images to its eight neighbors at the same scale 𝑡𝑗 and nine corresponding neigh-

boring pixels in each of the neighboring scales 𝑡𝑗−1 and 𝑡𝑗+1. If the pixel value is the maximum

or minimum among all compared pixels, it is selected as a keypoint. This algorithm is carried

out through all the channels of the vector images: DoD𝑖, (𝑖 = 1, ...,𝑚). The maxima and

minima found in all the channels will be considered as the keypoints. Fig. 3.4(a) and (b) show

all the detected keypoints on the Igea model. Fig. 3.4(c-e), (g-i) and (k-m) show the detected

extrema (shown with points) on the corresponding DoDs at different scales. Fig. 3.4(f), (j) and

(n) show the scale sizes, at which the extrema in (e), (i) and (m), respectively, are detected, with

the corresponding sizes of circles. One valuable point is that the detected keypoints have the as-

sociated scales computed by the algorithm, which are very important to construct scale-aware

feature descriptors.

3.3.2 Descriptor Construction

After localizing the keypoints, feature descriptors are built to characterize these points at

the scales where they are identified. These descriptors should contain the necessary distinct

information for their corresponding keypoints. In our framework, the descriptor is calculated

channel by channel.

For each channel, the local gradient-orientation histograms of the same-scale neighboring

pixels of a keypoint are used as the key entries of the descriptor. In this work, we construct

a keypoint descriptor with 4 × 4 subdescriptors computed from a 16 × 16 sample pixel array,

which is shown on the left side of Fig. 3.5. That is to say, a feature descriptor is computed as

a set of orientation histograms on 4 × 4 pixel neighborhoods or subregions. The coordinates

of the subdescriptors and the gradient orientations are rotated relative to the keypoint orienta-

tion (defined by the gradient vector at the keypoint location) so that it can achieve orientation

invariance. One of the subdescriptors is shown on the right panel of Fig. 3.5, which gives

eight directions of the orientation histogram with the length of each arrow corresponding to

the magnitude of that histogram entry. Since the descriptor is computed with a 4 × 4 array of
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Figure 3.4: Keypoint detection in the diffusion space. (a) The Igea model with all the detected
keypoints at different scales indicated by the points of different colors and sizes. (b) All the
detected keypoints shown on the curvature channel of the shape vector image. (c-e), (g-i) and
(k-m) show the intermediate curvature channel images of the DoDs across scales 𝑡 and the
detected extrema (shown by points) on the corresponding DoDs at different scales. (f), (j) and
(n) show again the extrema detected at (e), (i) and (m), respectively, with the different sizes of
circles indicating the sizes of scales at which these extrema are detected.

histograms with 8 orientation bins in each, this leads to a feature vector with 4× 4× 8 = 128

elements.

In the case of an 𝑚 channel vector image, a keypoint has 𝑚 descriptors which are combined

as a vector, des = [des1,des2, . . . , des𝑚]⊤, where 𝑚 is the dimension of the vector image.

Hence, the descriptor des of a keypoint in the shape vector image is a 𝑚×128 dimension-based

vector. This descriptor will be used for matching, and all the descriptors computed for all the

keypoints form a feature descriptor database, which abstracts the original surface with a small

number of robust keypoints and their local descriptors. The robust keypoints and constructed

local shape descriptors together are well suitable for the matching purpose as demonstrated by

our experiments in Chapter 3.5.
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Figure 3.5: A keypoint descriptor is generated by computing the gradient magnitude and ori-
entation at every pixel around the keypoint (16 × 16 sample pixels). These samples are then
accumulated into orientation histograms summarizing the contents over 4 × 4 subregions, in-
dicated with thicker framed boxes. The right panel shows one subregion with the length of
each arrow corresponding to the sum of the gradient magnitudes along that direction within the
region.

3.4 Shape Matching and Registration
In our framework, shape matching is to match the keypoints and their associated scale-

aware local shape descriptors among different objects. Since the keypoints detected from the

diffusion space are very reliable feature points presented in the original surface, matching these

keypoints with thin-plate spline deformation will lead to accurate registration of the entire

surfaces as well.

Descriptor matching is performed for a keypoint by comparing the distance from its con-

structed local descriptor to the descriptor of its closest matched point (𝐷𝐼𝑆𝐶𝑁 ) with the dis-

tance from the keypoint descriptor to the descriptor of its second-closest matched point (𝐷𝐼𝑆𝑆𝐶𝑁 )

found on the to-be-matched object. The distance of two descriptors, des1 and des2 which are

𝑚 dimension vectors, is calculated by, 𝐷𝐼𝑆 =
∑𝑚

𝑖=1 ∥ des1𝑖−des2𝑖 ∥ . Once the 𝐷𝐼𝑆𝐶𝑁 and

the 𝐷𝐼𝑆𝑆𝐶𝑁 are found, the 𝐷𝐼𝑆𝐶𝑁 and the 𝐷𝐼𝑆𝑆𝐶𝑁 are compared to decide whether they are

matched or not. The judge function for the comparison is

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑×𝐷𝐼𝑆𝐶𝑁 <= 𝐷𝐼𝑆𝑆𝐶𝑁 . (3.13)
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If this inequality holds, the points are matched; Otherwise, they are not matched. This inequal-

ity ensures that only distinctive keypoints having prominent similarity are matched. Since the

3D data can be coarsely aligned easily through affine transformations during the preprocess-

ing, we can use the uniform subdivision grid to speed up the matching. The Euclidean distance

bound (ED) of two potentially matched keypoints is calculated and can be used in efficiently

finding the closest and the second-closest matched points within grids.

After finding all the matched points, registration can be achieved using thin-plate splines

deformation with the matched points as point constraints [83]. In our shape vector image

registration, the keypoints (𝑥𝑖, 𝑦𝑖) are taken as landmarks and 𝑉 = (𝑥
′
𝑖, 𝑦

′
𝑖)∣𝑖 is a set of the

matched keypoints on the other shape vector image. After computing the thin-plate splines

with the above point constraints, the deformation function 𝑓(𝑥, 𝑦) = [𝑓𝑥(𝑥, 𝑦), 𝑓𝑦(𝑥, 𝑦)] can be

obtained to map each point (𝑥𝑖, 𝑦𝑖) to its homolog (𝑥′
𝑖, 𝑦

′
𝑖). The other unconstrained areas will

follow the deformation. At the end, we can register the two shape vector images (i.e., the two

3D surfaces).

3.5 Experiments and Applications on SVID
To evaluate the proposed approach, we have conducted extensive experiments. We have ap-

plied our algorithm on real scanned face models and human neocortex surfaces extracted from

high-resolution MR scans. The surface matching is demonstrated first, followed by the appli-

cation of the framework in the multimodality image analysis and visualization. Our system

is implemented with C++ for the computationally intensive algorithms and VTK/OpenGL for

rendering and visualization. The experiments are conducted on a Dell Precision Workstation

T7400, which has a Xeon CPU with Quad Cores and 4GB RAM.

3.5.1 Repeatability Under Noise

We have tested the repeatability of keypoints detection with noises. The Igea surface model

is added up to 10% Gaussian noise directly on the mesh. The perturbed surfaces with different

noise levels are converted to the shape vector images and then the keypoints are detected with
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our geodesic distance-weighted diffusion method. We compare the repeatability of the detected

keypoints with the ones detected without additive noise. The repeatability result is shown in

Fig. 3.6. Compared to the repeatability results by regular anisotropic diffusion method and

isotropic diffusion method, our method is much more robust under noise. The main reason is

that those two methods have instabilities when moving from finer to coarser scales as described

in Chapter 3.2.2. They are easier to be affected by noise during the diffusion procedure. There-

fore, more keypoints originally detected without noises cannot be repeatedly detected across

scales under noisy circumstances.

Figure 3.6: Repeatability of keypoint features when the Igea model is under different Gaussian

noise levels. The left panel shows the Igea models (with the computed curvature colormaps)

with 4% and 10% additive Gaussian noise and their corresponding shape vector images. The

detected keypoints are shown in the shape vector images. The right panel shows the repeatabil-

ity of the feature points extracted by our geodesic distance-weighted shape vector image diffu-

sion method. The comparison to the conventional anisotropic and isotropic diffusion methods

is demonstrated.
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3.5.2 Surface Matching

For scanned face models, we create the shape vector images using conformal mapping.

Based on this planar parameter domain, we construct the shape vector image by assigning the

𝐻 and 𝜆 values to each corresponding image pixel. Hence, the shape vector image is a two

dimensional vector image [𝐼1, 𝐼2]
⊤, where 𝐼1 = 𝐻 and 𝐼2 = 𝜆. The geodesic distance is

computed and encoded as well. After the shape image is generated, we use the vector diffusion

to create the DoD matrix, of which each row is a sequence of images in different scales in each

channel. ⎛⎜⎝ DoD1

DoD2

⎞⎟⎠ =

⎛⎜⎝ 𝐷𝑜𝐷1
𝑡0 𝐷𝑜𝐷1

𝑡1 . . . 𝐷𝑜𝐷1
𝑡𝑛−1

𝐷𝑜𝐷2
𝑡0 𝐷𝑜𝐷2

𝑡1 . . . 𝐷𝑜𝐷2
𝑡𝑛−1

⎞⎟⎠ (3.14)

By finding the maxima and minima in each row of the matrix as the keypoints, the descriptor

is computed for each point. Each descriptor is a 2*128=256 dimension vector and all these

descriptors form the descriptor database. The matching algorithm is performed to find the

matched points which satisfies the inequality 3.13. Fig. 3.7 shows the matching result of two

faces with different expressions from the same human subject. The average matching accuracy

of 10 such experiments on 10 different subjects reaches 95% in terms of correct keypoint

correspondence.

Figure 3.7: Matching of face models with different expressions from the same subject. The
left panel shows all the matched keypoints between the two surfaces. The right panel shows
the scales of the matched keypoints.
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(a) (b)

Figure 3.8: Matching of two different subjects’ brain surfaces. (a) 10% of matched points are
shown using the linked lines. (b) The overlap test on one registered brain region.

For the neocortex surface, a genus zero surface, conformal mapping is performed to transfer

it to a sphere. The sphere can be mapped to a 2D domain through a reparameterization as

follows,

𝜎(𝜃, 𝜑) = (cos 𝜃 cos𝜑, cos 𝜃 sin𝜑, sin𝜑),

where 𝜃 and 𝜑 are the rows and columns in the 2D domain image. Then, we follow the same

procedure as we use for face models to find the matching keypoints. Fig. 3.8(a) shows the

matching result of two different subjects. In order to allow readers clearly see the matched

points between the two shape images, only 10% of the matched points are shown in the figure.

After matching, we use the matched points as landmarks to register the shape vector images

using the thin-plate spline technique. We have conducted the evaluation on intersubject match-

ing of 20 brain surfaces. The results are evaluated quantitatively in terms of major landmark

(e.g., the central sulcus, the sylvian fissure, the posterior sulcus) overlaps. Fig. 3.8(b) shows

one region that we used to test the registration accuracy, where the green color indicates com-

pletely correct overlap while the red color indicates mismatched areas among all the subjects.

The average mismatch distance error for total 20 different subjects is only 3.98 𝑚𝑚, which

outperforms the latest reported results on inter-subject brain surface registration [14].
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Figure 3.9: The experimental results on matching arbitrary two different brain surfaces ran-

domly selected from 20 subjects. The comparison shows that our method constantly outper-

forms the regular anisotropic diffusion method and the SIFT method.

To further show the efficacy of our approach, we have compared our approach with the

closely-related methods, anisotropic diffusion method and SIFT. Since SIFT can only work

on scalar image, we only input the curvature channel to the SIFT processing. The regular

anisotropic diffusion method is applied on both the curvature and conformal factor channels.

We randomly select a pair of brain surfaces among 20 subjects. Then, our geodesic distance-

weighted shape vector image diffusion method, the regular SIFT method, and the anisotropic

diffusion method are performed for matching and registration. The comparison results are

shown in Fig. 3.9. The main advantage of our method is to introduce geodesic distance into

diffusion space. Therefore, it increases the stability of extrema detection as described in Chap-

ter 3.2.2 and the robustness of shape descriptors. The experimental results confirm that the

keypoints and constructed local shape descriptors together are very robust features well suit-

able for the matching purpose. The computational time of the geodesic distance-weighted

shape vector image diffusion-based feature extraction and matching is recorded for the tested
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models in Table 3.1. Note that, the geodesic distance information is pre-computed offline and

is not included in the recorded time.

Generate SVI Diffusion

Model # vertices SVI (s) SVI Size & Matching (s)

Igea 5,002 12 256× 256 43

Brain 15,102 40 512× 512 172

Face 20,376 35 256× 256 45

Table 3.1: Runtime of the shape vector image (SVI) construction, feature extraction and match-

ing.

3.5.3 Multimodality Analysis

The developed framework is ideal for cross-subject analysis and visualization of multi-

modal brain surface properties. In order to facilitate effective analysis of medical imaging data,

especially related to the human neocortical surface, a combination of noninvasive anatomical

and functional imaging, such as Magnetic Resonance Imaging (MRI), Diffusion Tensor Imag-

ing (DTI) and Positron Emission Tomography (PET), is frequently used. These modalities

provide important, complemental information over the cortex regions. During the preprocess-

ing, a brain surface can be extracted from the MRI volume data. The registration of PET

and DTI volumes to the same subject’s MRI volume can be done with the mutual information

registration algorithm provided in Insight Segmentation and Registration Toolkits (ITK). The

registration is easy since the data is for the same subject. In order to integrate PET and MRI

data, a normal fusion approach is applied in the native space of the registered MRI and PET

volumes of each subject.



37

Figure 3.10: The multimodality image analysis pipeline. The referenced brain is used as the

template SVI (TSVI), and then all other brain SVIs are registered based on this TSVI. Based

on the registered shape vector images, multimodality data such as the PET and DTI, can be

integrated over the SVI images to perform the multimodality analysis.

In this analysis, we choose one normal brain as the template in our framework. All other

normal or abnormal individuals are registered to the template shape vector image (SVI) using

the methods described in Chapter 3.4. Fig. 3.10 shows the idea and flow of our framework.

The last two columns in the figure show the maps of the brain surface PET texture and DTI

texture, computed from PET and DTI volumes, which are also registered across subjects be-

cause their alignments are already registered to their corresponding MRI volumes during the

aforementioned preprocessing. Based on the registered SVIs, PET and DTI maps, statistical

analysis of PET and DTI across subjects can be achieved.

By comparing a patient’s PET texture with a group of normal subjects based upon matched

SVIs, we can identify abnormal PET regions which significantly vary from the normal distri-

bution. Fig. 3.11(a) shows two detected abnormal regions on the PET shape image. Because

we know the mapping and parameterization, we can easily find out the abnormal regions in

the actual brain surface. Fig. 3.11(b) shows the corresponding abnormal regions on the brain
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PET data. The same scheme can be applied to the population-based DTI analysis. During

the preprocessing, the cortico-cortical fiber tracts can be extracted using the brute-force fiber

tracking method as shown in Fig. 3.11(c). Then, these fiber connectivity can be converted to

the fiber connectivity strength ratio and plotted in the shape vector image domain to form a

DTI texture image. The analysis framework can be used to detect the abnormal regions based

on statistical comparison of DTI information between a patient and a group of normal subjects.

Fig. 3.11(d) shows a DTI fiber connectivity strength image of an abnormal subject and the

detected abnormal region as highlighted with a red contour.

(a) (b) (c) (d)

Figure 3.11: Population-based PET and DTI image analysis. (a) The regions within the black

contours are the detected abnormal regions in the PET texture image; (b) The regions in black

are the corresponding abnormalities on the individual’s brain cortical surface. (c) shows a 3D

rendering of a normal DTI fiber connectivity. (d) shows the abnormal DTI map where the

abnormality is contoured in red.

3.6 Summary
In this chapter, we have presented a novel and accurate surface matching method based on

the geodesic distance-weighted diffusion of shape vector images. Through the detected stable

keypoints and their local shape descriptors in the diffusion space, our method converts a 3D

surface matching problem to a 2D shape vector image matching problem. The robust features

facilitate the reliable matching and registration as demonstrated by our experiments. The 2D
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representation allows easier statistical analysis of other modality features directly computed

in the matched 2D domain. The applications to medical image analysis and visualization are

demonstrated through multimodality data integration in the 2D domain to support more accu-

rate localization of brain disorder regions using population study.
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CHAPTER 4

LAPLACIAN SHAPE SPECTRUM IMPLEMENTATION

AND ITS APPLICATION

4.1 Introduction and Motivation
In previous chapter, we have showed that we can geometrically map a 3D shape into a

2D vector image. Then we link the 3D shape analysis problem to the scale space processing

by using the shape vector image diffusion on the 2D shape vector image. Although we can

simplify a 3D problem to a 2D problem, however, the major disadvantage of the geometric

mapping is that it introduces inevitable, large distortions when mapping large, complex and

topologically complicated surfaces to a canonical domain. This unwanted distortion changes

the characteristics of actual 3D shapes and affects the performance in shape matching or other

shape analysis. In addition, it can be very difficult to compute parametrization of certain high

genus-surfaces. Here we are trying to find a diffusion method which can be applied directly to

the shape without the mapping.

To find the solution for shape diffusion, we have to look back to the root of 2D SIFT. Since

the essential of SIFT is the diffusion equation which can create a multi-scale space, scientists

are dedicating to figuring out the solution of diffusion equation for 3D shape. In [9], the

spherical harmonics is used to derive the diffusion equation for a sphere from the spectral point

of view. However, that only works for the sphere because it uses the spherical harmonics. It

would be nice if we have the harmonics for a arbitrary regular shape instead of the spherical

harmonics only for sphere. To find the harmonics, we have to turn to the shape spectrum field

which provides another shape analysis tool from the spectral point of view.

Without geometric mapping from to convert the problem of 3D to 2D, we will later dis-

cuss the construction of the scale space directly on the 3D using the manifold harmonics in the
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spectral point of view. And before we go to that part, in this chapter, we will discuss how to cal-

culate the Laplacian shape spectrum and demonstrate Laplacian shape spectrum is a powerful

tool for surface registration.

Specifically, in this chapter, we developed a novel method for registration between the

supine and prone datasets and reduce the false positive based on their correspondence. Without

matching the centerlines, we employ shape spectrum to extract the shape characteristics as the

signature to find the correspondent regions between the prone and supine lumen surface. The

method is simple yet efficient and accurate. Our contributions can be summarized as follows:

∙ A novel surface registration method based on shape spectrum is invented and applied to

colon surface registration.

∙ We apply the algorithm to the real datasets and the experiments demonstrate the excellent

accuracy of our registration results.

∙ We integrate the registration component into our virtual colonoscopy software for false

positive reduction, which shows that it is an excellent tool aiding polyp diagnosis.

4.2 Laplacian Shape Spectrum and Manifold Harmonics
Shape spectrum is a rather new research topic in computational geometry and shape anal-

ysis [25, 29, 52, 55]. Reuter [52] defined shape spectrum as the family of eigenvalues of

the Laplace-Beltrami operator on a manifold, and used it as a global shape descriptor. Lévy

[29] pointed out that Laplace-Beltrami eigenfunctions are tools to understand the geometry of

shapes and discussed the properties of those eigenfunctions of the Laplace-Beltrami operator.

Rustamov [55] proposed a Laplace-Beltrami shape distribution based on global point signa-

tures using the eigenfunctions and eigenvalues. Karni and Gotsman [25] used the projections

of geometry on the eigenfunctions for mesh compression. The Laplace-Beltrami spectrum,

which has been proved to have many good invariant properties [52], is showing tremendous

power and potential in shape analysis. Most recently, Vallet and Lévy [65, 66] proposed the
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manifold harmonics transform on the mesh which can be considered as a filter in the spectrum

domain. These types of work inspired us to combine spectrum and diffusion together to seek a

new creation of scale space for point cloud shapes from the spectrum domain by integrating the

manifold harmonics with the diffusion equation which is the essential mathematical foundation

for the scale space. Before we go to that far, in this chapter, we will introduce the definition of

Laplacian shape spectrum and manifold harmonics.

4.2.1 Laplacian Shape Spectrum

We consider geometric attribute maps as a set of function spaces defined on a two-manifold

domain. Let 𝑀 denote a two-manifold, the function 𝑓 : 𝑀 → 𝑅𝑛(𝑛 = 1, 2, ...) defines a map.

Different measurements of surface geometry, i.e., mean curvature, Gaussian curvature, and

maximal/minimal curvature ratio, and the normals, are therefore modeled as surface maps 𝑓 .

Laplace operator Δ is a second-order differential operator (the divergence of gradient) de-

fined in Euclidean space ℝ𝑛. Similarly, we can define the Laplace-Beltrami operator in the

𝑛-dimensional Riemannian manifold 𝑀 as the divergence of gradient

Δ𝑀𝑓 =
1√∣𝑔∣
∑
𝑖

∂𝑖(
∑
𝑗

√
∣𝑔∣𝑔𝑖𝑗∂𝑗𝑓), (4.1)

where 𝑔 is the metric tensor over the manifold 𝑀 , and 𝑔𝑖𝑗 is the element of 𝑔−1. The eigen

problem of Laplace-Beltrami operator can be defined as:

Δ𝑀𝐻 = −𝜆𝐻, (4.2)

where 𝜆 and 𝐻 are the eigne-value and corresponding eigenfunction (also called eigen-vector

in discrete form). Here, the minus sign is used to ensure that all 𝜆 ≥ 0.

The spectrum is defined to be the eigenvalues arranged increasingly as

𝜆0 = 0 < 𝜆1 < 𝜆2 < . . . < 𝜆𝑖 < . . . (4.3)
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The appropriately normalized eigenfunction corresponding to 𝜆𝑖 is denoted by 𝐻𝑖.

The spectrum is an isometric invariant as it only depends on the gradient and divergence

which in turn are defined to be dependent only on the Riemannian structure of the manifold

(Eq. 4.1) [52].

4.2.2 Manifold Harmonics

Since the Laplace-Beltrami operator is Hermitian, the eigenfunctions corresponding to its

different eigenvalues are orthogonal:

⟨𝐻𝑖, 𝐻𝑗⟩ =
∫
𝑀

𝐻𝑖𝐻𝑗 = 0, (4.4)

whenever 𝑖 ∕= 𝑗 and it equals 1 whenever 𝑖 = 𝑗. The eigenfunctions 𝐻𝑖 is called manifold

harmonics and the manifold harmonics transform (MHT) is defined as following.

Given a function 𝑓 on the surface, one can expand it in terms of the eigenfunctions

𝑓 = 𝑓0𝐻0 + 𝑓1𝐻1 + 𝑓2𝐻2 + ⋅ ⋅ ⋅ , (4.5)

where the coefficients are

𝑓𝑖 = ⟨𝑓,𝐻𝑖⟩ =
∫
𝑀

𝑓𝐻𝑖. (4.6)

Thus, the eigenfunctions of the Laplace-Beltrami operator give an orthogonal basis for the

space of functions defined on the surface.

Like Fourier transform, Eq. 4.6 which calculates the coefficients is the MHT, and Eq. 4.5 is

the inverse MHT [65]. And in [65], it is used to do the filtering on the shapes. In this disserta-

tion, we will try to construct the scale space on shapes in virtue of the manifold harmonics.
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4.3 Discrete Laplace-Beltrami Operator on Mesh
Eq. 4.2 can be solved by the finite element method [52]. For a triangular mesh, discrete

Laplace-Beltrami operator 𝐾 [39] can be applied using

𝐾(𝑝𝑖) =
1

2𝐴𝑖

∑
𝑝𝑗∈𝑁1(𝑝𝑖)

(𝑐𝑜𝑡𝛼𝑖𝑗 + 𝑐𝑜𝑡𝛽𝑖𝑗)(𝑝𝑖 − 𝑝𝑗), (4.7)

where 𝑁1(𝑝𝑖) includes all the vertices, 𝑝𝑗 , belonging to one ring neighborhood of a vertex, 𝑝𝑖.

𝛼𝑖𝑗 and 𝛽𝑖𝑗 are the two angles opposite to the edge in the two triangles sharing the edge 𝑖, 𝑗,

and 𝐴𝑖 is the Voronoi area of 𝑝𝑖.

For a triangle mesh, the Laplace-Beltrami operator can be constructed as the following

matrix:

𝐿𝑖𝑗 =

⎧⎨⎩
− 𝑐𝑜𝑡𝛼𝑖𝑗+𝑐𝑜𝑡𝛽𝑖𝑗

2𝐴𝑖
if i, j are adjacent,∑

𝑘∈𝑁1(𝑝𝑖)
𝑐𝑜𝑡𝛼𝑖𝑘+𝑐𝑜𝑡𝛽𝑖𝑘

2𝐴𝑖
if i=j,

0 otherwise.

(4.8)

where 𝛼𝑖𝑗 , 𝛽𝑖𝑗 , and 𝐴𝑖 are the same as in Eq. 4.7 for certain 𝑖 and 𝑗. Then, the spectrum problem

Eq. 4.2 turns into the following eigenvalue problem:

𝐿−→𝑣 = 𝜆−→𝑣 , (4.9)

where −→𝑣 is an 𝑛-dimensional vector. Each entry of −→𝑣 represents the function value at one of

𝑛 vertices on the mesh. The equation above can be represented as a generalized eigenvalue

problem which is much easier to solve numerically by constructing a sparse matrix 𝑊 and a



45

diagonal matrix 𝑆 such that

𝑊𝑖𝑗 =

⎧⎨⎩
− 𝑐𝑜𝑡𝛼𝑖𝑗+𝑐𝑜𝑡𝛽𝑖𝑗

2
if i, j are adjacent,∑

𝑘∈𝑁1(𝑝𝑖)
𝑐𝑜𝑡𝛼𝑖𝑘+𝑐𝑜𝑡𝛽𝑖𝑘

2
if i=j,

0 otherwise,

(4.10)

and 𝑆𝑖𝑖 = 𝐴𝑖. Thus, the Laplace Matrix 𝐿 is decomposed as 𝐿 = 𝑆−1𝑊 and the generalized

eigenvalue problem is presented as:

𝑊−→𝑣 = 𝜆𝑆−→𝑣 . (4.11)

As defined above, 𝑊 is symmetric and 𝑆 is symmetric positive-definite. All the eigenval-

ues and eigenvectors are real, and the eigenvectors corresponding to different eigenvalue are

orthogonal in terms of 𝑆 dot-product:

< −→𝜇 ,−→𝜔 >𝑆=
−→𝜇 𝑇𝑆−→𝜔 , (4.12)

where −→𝜇 and −→𝜔 are eigenvectors of Eq. 4.11.

By solving Eq. 4.11, we can get eigenvalues and eigenvectors. Fig. 4.1 shows the first four

eigenvector on the colon surface with color map.

The second eigenvector of the Laplacian is called the Fiedler vector and has interesting

properties, making it a good permutation vector for numerical computations [29]. Fig. 4.2 (a)

and (b) show that it naturally follows the shape of the colon mesh. In other words, the Fiedler

vector defines a (1-demensional) embedding of the surface mesh. We are trying to use the

embedding for the registration of our colon surface. In next two sections we will detail how we

process the colon data and do the registration.
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Figure 4.1: Illustration of eigenvectors with color map on the colon surface. (a) is the first

eigenvector on the colon surface; (b) is the second eigenvector on the colon surface; (c) is the

third eigenvector on the colon surface; (d) is the fourth eigenvector on the colon surface.

4.4 Registration Using Laplacian Shape Spectrum
The second eigenvector of the Laplacian is called the Fiedler vector and has interesting

properties, making it a good permutation vector for numerical computations [29]. Fig. 4.2 (a)

and (b) show that it naturally follows the shape of the mesh. In other words, the Fiedler vector

defines a (1-demensional) embedding of the surface mesh. We are trying to use the embedding

for the registration of surface. First, we will introduce the colon registration problem. Next we

will detail how we do the registration by using the Fiedler vector.

4.4.1 Colon Registration

Computed tomography colonography (CTC) has received increasing attention as a mini-

mally invasive method to examination of the colon [69, 70]. CTC has shown promising results

in the detection of clinically significant polyps. Using the advanced image technique, doctors

can look for polyps throughout the entire colon via fly-through in a virtual colon model which

is constructed from patient’s abdominal images. In the last decade, many computer aided de-

tection and diagnosis systems [4, 11] have been proposed and actively studied to improve the
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Figure 4.2: Illustration of Fiedler vector embedding and landmarks detection. The Fiedler
vector gives a natural ordering of the vertex of the colon meshes in (a) and (b). The vector
value has been normalized and color map. (c) and (d) show the reliable automatic detected
landmarks which are rendering in yellow balls.

performance and reliability. However, most current implementation of the technique is sub-

ject to an important limitation common to all structural colon examinations: the requirement

that patients undergo a rigorous purgation cleansing of the colon prior to exam. The perceived

discomfort and inconvenience associated with this process has been identified as a barrier to

screening [53, 79].

As a result, it has pressing demand on the electronic colon cleansing (ECC) using the image

processing technology. ECC aims to remove the colonic materials from the acquired images

[74]. First, the patient undergoes a less-stressful bowel preparation with oral contrast to tag the

colonic materials, so that the residue stool and fluid have an enhanced image density compared

with the colon/polyp tissues. Taking advantage of image segmentation and pattern recognition

techniques, an ECC method can identify the enhanced colonic materials and restore a cleansed

colon model for VC navigation. Several approaches are applied to the images for segmentation

[79, 13, 67, 38]. Although these approaches somehow mitigate the partial volume (PV) effect

that causes unexpected layers at the air-material interface and the tissue-material interface, the

problem can not be perfectly solved so that false-positive (FP), namely pseudo-polyp, would
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be inevitably created. Especially, sometime the small stool attachment to the colon lumen

looks like polyps and it is so hard to differentiate them that it is risk to remove it during the

segmentation procedure. In order to better differentiate polyps from pseudo-polyps, and to

better view the lumen surface in the presence of fluid, it is common practice to obtain two

CT scans of the patient, one with the patient in the prone position and one in the supine.

Pseudo-polyp material may change its position between the two scans, allowing the radiologist

to differentiate these structures from true polyps. Further, a second view of the colon after

re-positioning may help the doctor determine if a structure is a polyp or simply a fold [44, 10].

As mentioned above, in order to better differentiate polyps from pseudo-polyps, and to bet-

ter view the lumen surface in the presence of fluid, it is common practice to obtain two CT

scans of the patient, one with the patient in the prone position and one in the supine. Based on

this setup, the registration between the supine and prone colons is required. Several methods

have been presented for registration of the supine-prone colons. Acar et al. [1] and Li et al.

[31] have developed methods to map candidate polyps between the supine and prone colons

using their colon wall positions relative to the colon centerlines. This kind of method only

takes into account the local extrema located on the inferior/superior axis which is not reliable

due to colon shifts obliquely when the patient changes position. In such a case, some local

extrema may not be considered. Nain et al. [44] presented a similar approach for aligning

data along the centerlines used dynamic programming. Suh and Wyatt [61] used a piece-wise

centerline matching algorithm and an interpolation and extrapolation method of deformation

field for deformable registration. However, the deformable model requires the good initial

alignment of the two colons and strict constraints. Otherwise, it might create artifacts which,

in worst case, result in pseudo-polyps. Besides the methods based on the centerlines, Näppi et

al. [22] developed a directional region growing method for reducing FP based on correspon-

dence between the supine and prone datasets. Observed from the examples they provided, the

correspondences are loosely enforced. That is why only 3.7% polyp candidates was eliminated
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before their Bayesian Neural Network scheme is applied. Apparently, the registration result is

not good enough for diagnosis purpose.

In this chapter, we developed a novel method for registration between the supine and prone

datasets and reduce the FP based on their correspondence. Without matching the centerlines,

we employ shape spectrum to extract the shape characteristics as the signature to find the

correspondent regions between the prone and supine lumen surface. The method is simple yet

efficient and accurate. Our experiments demonstrate the excellent accuracy of our registration

results.

4.4.2 Piecewise Registration

First of all, after we got the colon surface mesh, we calculated the shape spectrum of the

colon mesh. By constructing matrix 𝑊 and 𝑆 in Chapter 4.3, we solved the Eq. 4.11 to get the

eigenvalues and eigenvectors.

To do the registration efficiently, we first detect reliable anatomic landmarks. Based on

the knowledge of colon anatomy, we expect that the mobility of the colon is at its smallest in

these landmark regions. Four landmarks are established here: cecum, hepatic flexure, splenic

flexure and anus. By using the normalized Fiedler vector value (𝐹𝑣), the cecum and anus are

detected by determination of the smallest and largest 𝐹𝑣. This is done both for supine and

prone datasets. For hepatic flexure and splenic flexure, we first process the supine dataset then

deal with the prone one. For supine dataset, the hepatic flexure is found by detecting the local

maximum z-coordinate whose 𝐹𝑣 is near 0 and the splenic flexure is found by detecting the

local maximum z-coordinate whose 𝐹𝑣 is near 1. For prone dataset, we set the neighborhood

using the 𝐹𝑣 of hepatic flexure in supine as [𝐹𝑣−𝜀, 𝐹𝑣+𝜀]. At this interval in prone dataset, we

detect the local maximum z-coordinate as the hepatic flexure in prone. The splenic flexure in

prone is detected in the same strategy. Fig. 4.2 (c) and (d) show the landmarks both in supine

and prone datasets. After this procedure, we have landmarks in sequences: 𝐿𝑆
1 , 𝐿𝑆

2 , 𝐿𝑆
3 , 𝐿𝑆

4

represent the cecum, hepatic flexure, splenic flexure and anus respectively in supine dataset
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and 𝐿𝑃
1 , 𝐿𝑃

2 , 𝐿𝑃
3 , 𝐿𝑃

4 in prone dataset.

With the landmarks, we register the colon surface using piecewise registration. For each

segment in supine between 𝐿𝑆
𝑖 and 𝐿𝑆

𝑖+1, we will map it to the segment in prone between 𝐿𝑃
𝑖

and 𝐿𝑃
𝑖+1, 𝑖 = 1, 2, 3. Let

𝐹 𝑆
𝑣 (𝐿

𝑆
𝑖 ), 𝐹

𝑆
𝑣 (𝐿

𝑆
𝑖+1) and 𝐹 𝑃

𝑣 (𝐿𝑃
𝑖 ), 𝐹

𝑃
𝑣 (𝐿𝑃

𝑖+1) (4.13)

represent the Fiedler vector value at the supine and prone location of 𝐿𝑆
𝑖 , 𝐿𝑆

𝑖+1 and 𝐿𝑃
𝑖 , 𝐿𝑃

𝑖+1

respectively. Then, for a examined location 𝐿𝑆
𝑒 in supine between 𝐿𝑆

𝑖 and 𝐿𝑆
𝑖+1, the correspond-

ing location 𝐿𝑃
𝑒 in prone should have this relation of the 𝐹𝑣:

𝐹 𝑆
𝑣 (𝐿

𝑆
𝑒 )− 𝐹 𝑆

𝑣 (𝐿
𝑆
𝑖 )

𝐹 𝑆
𝑣 (𝐿

𝑆
𝑖+1)− 𝐹 𝑆

𝑣 (𝐿
𝑆
𝑖 )

=
𝐹 𝑃
𝑣 (𝐿𝑃

𝑒 )− 𝐹 𝑃
𝑣 (𝐿𝑃

𝑖 )

𝐹 𝑃
𝑣 (𝐿𝑃

𝑖+1)− 𝐹 𝑃
𝑣 (𝐿𝑃

𝑖 )
. (4.14)

It is easy to deduce that

𝐹 𝑃
𝑣 (𝐿𝑃

𝑒 ) = 𝐹 𝑃
𝑣 (𝐿𝑃

𝑖 )+ (4.15)

(𝐹 𝑆
𝑣 (𝐿

𝑆
𝑒 )− 𝐹 𝑆

𝑣 (𝐿
𝑆
𝑖 )) ∗ (𝐹 𝑃

𝑣 (𝐿𝑃
𝑖+1)− 𝐹 𝑃

𝑣 (𝐿𝑃
𝑖 ))

𝐹 𝑆
𝑣 (𝐿

𝑆
𝑖+1)− 𝐹 𝑆

𝑣 (𝐿
𝑆
𝑖 )

.

Then corresponding location in prone is

𝐿𝑃
𝑒 = (𝐹 𝑃

𝑣 )−1(𝐹 𝑃
𝑣 (𝐿𝑃

𝑒 )), (4.16)

where (𝐹 𝑃
𝑣 )−1 is a mapping to find the locations according to the 𝐹 𝑃

𝑣 .

4.5 Experiments and Results

4.5.1 Data Acquisition and Pre-processing

Each patient was limited to the low-fibre diet beginning 1 day before the scheduled morn-

ing CTC. Colonic catharsis was achieved with 250ml 20% mannitol on the evening before
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the examination. Before the examination, the colon was distended with 1500mL of water-

soluble iodinated contrast medium (8𝑔𝐼 + /100𝑚𝑙) using a manual insufflators with a small

rectal catheter. Examinations were performed in supine positions on a 128-MDCT scanner

(SOMATOM Definition AS, SIEMENS, Germany). CT technique consisted of 5.00-mm col-

limation, 1.375 : 1 pitch, 1-mm reconstruction interval, 120 kVp, and 50-100 mAs. Twenty

cases are used for the experiment and all cases were of diagnostic quality, contain mainly fluid,

but could contain feces as well. 10 patients (50%) had 20 confirmed polyps: 5 polyps were 5-10

mm, 12 polyps were 3-4 mm and 3 polyp was under 3 mm. 10 patients (50%) were normal.

In the pre-processing step, the colonic lumens are extracted from the CTC datasets by use

of a level-set segmentation method [28]. Actually, any colon segmentation technique could

potentially be used for the pre-processing step. Meanwhile we calculated the centerline using

the distance field method [71] for later fly-through VC navigation purpose.

4.5.2 Experimental Results

Algorithms described in Chapter 4.5.1 and Chapter 4.4 are performed to process all the

datasets. In order to evaluate the performance of the registration we proposed, a doctor experi-

enced in the interpretation of CTC cases evaluated the 2𝐷 and 3𝐷 visualizations of the colon

by use of the software we developed. Our software is implemented with C++ for the com-

putationally intensive algorithms, OpenGL for visualization and GPU rendering for the 3D

fly-through VC. The experiments are conducted on a Dell Precision Workstation T7400, which

has a Xeon CPU with Quad Cores, 4GB RAM and GeForce 9800 GT video card. The tool

displays the 3𝐷 VC of two intra-patient colons: supine position on the left and prone position

on the right. By clicking on either 3𝐷 colon lumen, it finds the correspondence region in the

other colon lumen, as well as the views of 2𝐷 CTC updated simultaneously to show the same

location in both colons. A doctor can check any location he feels interested in and our system

automatically updates the corresponding regions in an opposite position. The application of the

method resulted in a registration accuracy of 12.6 ± 4.20 mm over 20 datasets. We compared
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our method with the deformable model method [61] based on our datasets. The comparison

result is shown in Table. 4.1. Our method out-performs the deformable model approach, and

more importantly, our method do not create any artifacts resulting in pseudo-polyps but the

deformable model would.

Method Accuracy(mm)

Shape Spectrum Method 12.6± 4.20

Deformable Model 15.4± 6.30

Table 4.1: Results of comparison between shape spectrum method and deformable model.

We integrate our method to the software for FP reduction. First of all, the polyp candidates

are selected by asking doctors to go through all the datasets to find any polyp-like protrusions.

78 polyp candidates from all the CTC datasets are presented, among which 20 polyps are true

positives and 58 polyps are false positives. Since it is impossible for any registration algorithm

to find exact point-to-point correspondence, in practices, it is common to set a interval, 𝐹𝑣,

where the correspondent locations fall in. Specifically, the correspondent interval locations

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑃 (𝐿𝑆
𝑒 ) in prone which are the correspondent locations to 𝐿𝑆

𝑒 in supine would be

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑃 (𝐿𝑆
𝑒 ) = (4.17)

[(𝐹 𝑃
𝑣 )−1(𝐹 𝑃

𝑣 (𝐿𝑃
𝑒 )− 𝜀), (𝐹 𝑃

𝑣 )−1(𝐹 𝑃
𝑣 (𝐿𝑃

𝑒 ) + 𝜀)].

Then we check the polyps candidates in supine position and the correspondent interval lo-

cations in prone; and check the polyps candidates in prone position and the correspondent

interval location in supine as well. Fig. 4.3 shows examples of FP reduction. By checking the

correspondence, 48 FPs are spotted out, which is 83% reduction compared with independent

processing of the datasets, with no true-positive is eliminated.
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Figure 4.3: Illustration of false positive reduction. In (a), in supine position it has a false
positive which the green arrow pointing at. In (b), in prone position it confirms that it is a
pseudo-polyp but not a true polyp. (c) and (d) is the virtual colonoscopy of (a) and (b). (e) and
(f) show another example which has false positives in prone position and can be confirmed as
pseudo-polyps in supine position.
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4.6 Summary
In this chapter, we show how to implement the Laplacian shape spectrum and demonstrate

the surface registration using the shape spectrum. The Fiedler vector naturally following the

shape makes it as a good tool for surface registration. In our test case, we have developed

a piecewise method for registration of the supine and prone CTC datasets. The application

of the method results in an accuracy of 12.6 ± 4.20 mm over 20 datasets with the number

of false positive reduced by 83% compared with independent processing of the datasets. The

experimental results indicate that the method is useful in improving the specificity of the polyps

in CTC.
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CHAPTER 5

SCALE SPACE CONSTRUCTION USING POINT-BASED

MANIFOLD HARMONICS

In this chapter, we present a novel method to create a scale space for the point cloud from

the spectral point of view by using the manifold harmonics. We rigorously derive our solution

from the diffusion equation on the manifold using the point-based manifold harmonics. Utiliz-

ing the manifold harmonics, the creation of scale space on the point clouds can be achieved.

Based on the multiscale structure, we can robustly detect the distinctive features by comparing

the neighbors directly on the point clouds. Shape descriptors associated with the local scale

information can then be defined. With these feature descriptors, the point cloud matching can

be achieved through the feature descriptors matching.

5.1 Review of Related Work
With the fast development of 3D scanning and sensing technology, 3D point clouds become

a more and more popular shape representation of real-world objects and scenes. There is an

increasing need for methods of direct feature detection on point clouds, which can immediately

propel many applications involving 3D sensing and point clouds data, such as autonomous

driving by direct processing of LIDAR (Light Detection And Ranging) point clouds for road,

sign and object detection, large environment scanning, simplification and visualization, feature-

aware surface reconstruction from point clouds, terrain rendering, and so on. However, due to

the lack of explicit connectivity and topology information in point clouds, it is much more

challenging to extend many traditional, powerful methods, such as scale space processing, to

this representation rather than other 3D representations (e.g., polygonal models).

In 2D image domains, scale space theory has been extensively studied and succeeded in

detecting multiscale features and feature matching [33, 37, 41]. Lately, similar frameworks
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have been generalized in an analogical fashion for 3D polygonal surfaces [27, 32, 47, 75, 78].

Kimmel [27] constructed a geometric scale space for images painted on a given surface. Based

on surface parameterizations, scale-space shape representation and subsequent analysis can be

defined on the parametric domain. For example, surface geometry is modeled as a normal map

in [47]. The major disadvantage of this method is that it introduces inevitable, large distortions

when mapping large, complex and topologically complicated surfaces to a canonical domain.

Wu et al. [75] used a similar idea by projecting the scene to the image plane. Li and Igor

[32] constructed a gaussian weighted function on the point clouds to detect multiscale features.

More recently, geometric flow methods [50, 57, 82] were applied by iteratively smoothing the

model to obtain a set of smoothed surfaces that constitute the scale space on shapes. This

kind of methods smooth the 3D coordinates and alter the intrinsic metric which will affect the

feature detection results. In general, all the methods mentioned above are just the analogous

methods to scale space processing on image domains by plugging in a Gaussian kernel with

different strategies for the 3D shapes. It is difficult to explicitly prove the satisfaction of the

properties of the scale space theory.

Most recently, Vallet and Lévy [65] proposed the manifold harmonics transform on the

mesh which can be considered as a filter in the spectrum domain analog to performing the

filtering on the 2D image. Besides the work for the mesh, Belkin et al. [6] constructed Laplace

operator for point clouds making it feasible to compute the eigenfunctions directly on the point

cloud although the matrix form can not be guaranteed to be symmetric which is required for

the manifold harmonics. All these pioneer works lead us into investigating its potential in the

scale-space representation of point cloud using the manifold harmonics.

5.2 Point-based Laplace-Beltrami Operator
In this section we will detail the construction of point-based Laplace-Beltrami operator

(PB-LBO) which is a symmetric operator. Finally, we will show the point-based manifold

harmonics transform.
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5.2.1 Computing the Approximation of PB-LBO

To build a discrete LBO converging to the continuous LBO Δ𝑀 on the point-sampled

surfaces, it is necessary to approximate Δ𝑀𝑓(𝑝) for all the sample points 𝑝 ∈ 𝑃 . The following

is the algorithm to compute Δ𝑀𝑓(𝑝):

1. Tangent Plane Estimation: Set 𝑟 = 10𝜀, and the point cloud 𝑃 is 𝜀-sampled [6]. Here

10𝜀 is used to ensure that the estimated tangent plane is converging to the real tangent

plane, which is proved in Belkin et al’s paper [6]. Consider the point set 𝑃𝑟 ⊆ 𝑃 within

distance 𝑟 away from 𝑝, i.e., 𝑃𝑟 = 𝑃 ∩ 𝐵(𝑝, 𝑟) where 𝐵(𝑝, 𝑟) is the ball centered at 𝑝

with radius 𝑟. Let 𝑄∗ be the best fitting plane passing through 𝑝 such that 𝑑(𝑃𝑟, 𝑄
∗) is

minimized. Using Har-Peled and Varadarajan’s algorithm [21] (also used by Belkin et

al. [6]), we construct a 2-approximation 𝑇𝑝 of 𝑄∗, i.e., 𝑇𝑝 is a plane passing through 𝑝,

and 𝑑(𝑃𝑟, 𝑇𝑝) ≤ 2𝑑(𝑃𝑟, 𝑄
∗) , where 𝑑(⋅, ⋅) is the Hausdorff distance.

2. Voronoi Cell Estimation: Fix a positive constant 𝛿 ≥ 10𝜀, and consider the set of points

𝑃𝛿 that are within 𝛿 away from 𝑝, i.e., 𝑃𝛿 = 𝑃 ∩ 𝐵(𝑝, 𝛿). Here 𝛿 ≥ 10𝜀 is to ensure we

have enough local neighboring points for approximation. We project the points in 𝑃𝛿 to

𝑇𝑝. When 𝛿 is sufficiently small, this projection is bijective. We denote the projection as

Π̂. Then we build the Voronoi Diagram of Π̂(𝑃𝛿) on 𝑇𝑝. Take the area of the Voronoi

cell 𝑉𝑟𝑇𝑝
(𝑝) on 𝑇𝑝 as an approximation of the Voronoi cell area of 𝑝 on surface, 𝑉𝑟𝑀 (𝑝).

𝑉𝑟𝑇𝑝
(𝑝) is also denoted as 𝑉𝑟𝑇

(𝑝) here to simplify the notation. When the point cloud 𝑃

gets denser, the area of 𝑉𝑟𝑇
(𝑝) is converging to the area of 𝑉𝑟𝑀 (𝑝).

3. Integration Approximation: We compute Δ𝑡
𝑃𝑓(𝑝), an approximation to Δ𝑀𝑓(𝑝), as fol-

lows:

Δ𝑡
𝑃𝑓(𝑝) =

1

4𝜋𝑡2

∑
𝑞∈𝑃𝛿

(𝑒−
∥𝑞−𝑝∥2

4𝑡 (𝑓(𝑞)− 𝑓(𝑝))𝑣𝑜𝑙(𝑉𝑟𝑇
(𝑞))). (5.1)

Here 𝑣𝑜𝑙(⋅) denotes the area of the given Voronoi cell. Because the new operator is

defined on the point cloud 𝑃 and employs the parameter 𝑡, here we denote it as Δ𝑡
𝑃 .
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Similar to Belkin et al’s method [6], 𝑡(𝜀) = 𝜀
1

2+𝜉 , and 𝜉 > 0 is an arbitrary selected

positive fixed number, used to ensure the convergence of Δ𝑡
𝑃 . It can be proved that as

the points get denser, Δ𝑡
𝑃 will converge to Δ𝑀 . In next section, we assemble Δ𝑡

𝑃 into its

matrix form �̂�𝑡
𝑃 .

5.2.2 Construction of the Matrix Form for PB-LBO

Belkin et al. claimed that their discrete LBO matrix 𝐿𝑡
𝑃 [6] is converging point-wisely.

However, their 𝐿𝑡
𝑃 is not guaranteed to be symmetric. In our application, to build the orthogonal

Manifold Harmonic Bases, it is necessary to have a symmetric discrete Laplacian operator. A

trivial way is to use (𝐿𝑡
𝑃 + 𝐿𝑡

𝑃
𝑇
)/2 instead of 𝐿𝑡

𝑃 . However, this trivial extension does not

converge.

Next we will show how to create a symmetric operator, for more detail please refer to

[35]. The LBO matrix �̂�𝑡
𝑃 can be build from the Eq. 5.1 which is linear on the function values

𝑓(𝑝𝑖), for 𝑝𝑖 ∈ 𝑃 . Thus it can be written as Δ𝑡
𝑃𝑓(𝑝𝑖) = 𝑅𝑖

𝑇
𝑓 , where 𝑅𝑖 is an 𝑁 -vector,

𝑓 = [𝑓(𝑝1), 𝑓(𝑝2), . . . , 𝑓(𝑝𝑁)]
𝑇 is the 𝑁 -vector representing the input continuous function 𝑓

sampled at the points, and 𝑁 = ∣𝑃 ∣. Thus the matrix form �̂�𝑡
𝑃 of the discrete LBO Δ𝑡

𝑃 over

the point cloud:

Δ𝑡
𝑃𝑓 = �̂�𝑡

𝑃 ⋅ 𝑓, (5.2)

where 𝑅𝑖
𝑇

is the 𝑖-th row of matrix �̂�𝑡
𝑃 . Then �̂�𝑡

𝑃 can be rewritten as matrix form �̂�𝑡
𝑃 = 𝐵−1⋅𝑄,

where the elements 𝑞𝑖𝑗 of the symmetric matrix 𝑄, and the diagonal elements 𝑏𝑖𝑖 of the diagonal

matrix 𝐵 can be computed as follows:

𝑞𝑖𝑗 = 𝑣𝑜𝑙(𝑉𝑟𝑇
(𝑝𝑖))𝑣𝑜𝑙(𝑉𝑟𝑇

(𝑝𝑗))
1

4𝜋𝑡2
𝑒−

∥𝑝𝑖−𝑝𝑗∥2
4𝑡 , (5.3)

where 𝑖 ∕= 𝑗, ∥𝑝𝑖 − 𝑝𝑗∥ ≤ 𝛿, and 𝑡(𝜖) = 𝜖
1

2+𝜖 , 𝜖 > 0,
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𝑞𝑖𝑖 = −
∑
𝑗 ∕=𝑖

𝑞𝑖𝑗, (5.4)

𝑏𝑖𝑖 = 𝑣𝑜𝑙(𝑉𝑟𝑇
(𝑝𝑖)). (5.5)

By redefining the functional inner product in matrix form as < 𝑓, 𝑔 >= 𝑓𝑇𝐵𝑔, we have:

< 𝑓, �̂�𝑡
𝑃𝑔 > = 𝑓𝑇𝐵(𝐵−1𝑄𝑔)

= 𝑓𝑇𝑄𝑔

= 𝑓𝑇𝑄𝑇 (𝐵𝐵−1)𝑇𝑔

= (𝐵−1𝑄𝑓)𝑇𝐵𝑔

=< �̂�𝑡
𝑃𝑓, 𝑔 >,

(5.6)

where means �̂�𝑡
𝑃 is a symmetric operator.

5.3 Point-based Manifold Harmonics Transform
Having the symmetric LBO matrix �̂�𝑡

𝑃 = 𝐵−1 ⋅𝑄, we can solve the following generalized

eigen problem:

𝑄𝐻 = −𝜆𝐵𝐻. (5.7)

By solving this problem, we have eigen-values {𝜆𝑖} and the corresponding eigen-vectors {𝐻𝑖}.

{𝐻𝑖} are called the Point-based Manifold Harmonic Bases (PB-MHB) of the sampled manifold

surface. PB-MHB can be used for the general spectral processing of 3𝐷 models.

All the eigenvectors are normalized, we have

< 𝐻𝑖, 𝐻𝑗 >= 𝐻𝑇
𝑖 𝐵𝐻𝑗 = 𝛿𝑖𝑗, (5.8)

where ⎧⎨⎩
𝛿𝑖𝑗 = 0 if i ∕= j,

𝛿𝑖𝑗 = 1 if i = j.
(5.9)
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and 𝜆𝑖 ≤ 𝜆𝑗 holds for all 𝑖 < 𝑗. Because < 𝐻𝑖, 𝐻𝑗 >= 𝐻𝑇
𝑖 𝐵𝐻𝑗 = 𝛿𝑖𝑗 holds, the eigen-vectors

𝐻𝑖 can be used to decompose functions defined over point-sample manifold surfaces:

𝑓𝑖 = ⟨𝑓,𝐻𝑖⟩ = 𝑓𝑇𝐵𝐻𝑖, (5.10)

where 𝑓 is the function value sampled on the point cloud. This process is called Point-Based

Manifold Harmonic Transform (PB-MHT).

5.4 Diffusion in Spectral Domain and Feature Detection
As discussed in Chapter 5.3, a function on the point cloud can be decomposed using the

manifold harmonic by the PB-MHT. Based on that, this section describes a novel diffusion-

based algorithm to extract distinctive features from the point cloud. Through the diffusion

in spectral domain, we can identify the robust keypoints and their scales from the computed

diffusion extrema, which are suitable for the matching purpose. In this section, firstly, we

deduce the diffusion in the spectral domain so that we can create the scale space using the

PB-MHT. Then we discuss how to detect the features based on the diffusion.

5.4.1 Construct Scale Space by Diffusion in Spectral Domain

It is already proved that, in a planar domain, smoothing a function with the Gaussian kernel,

𝑔(𝑥, 𝑡) =
1

4𝜋𝑘𝑡
𝑒𝑥𝑝(

−𝑥2

4𝑘𝑡
), (5.11)

is equivalent to making the function evolve under the diffusion equation,

Δ𝑓(𝑥, 𝑡) =
1

𝑘

∂

∂𝑡
𝑓(𝑥, 𝑡), (5.12)
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where Δ is the Laplace operator. When the function 𝑓 is defined on a manifold, it can be

written in terms of the corresponding manifold harmonics,

𝑓 =
∑
𝑖

𝑓𝑖𝐻𝑖, (5.13)

where 𝐻𝑖, 𝑖 = 0, 1, 2, . . . are the manifold harmonics, which can be computed as the eigen-

function of the manifold Laplace operator discussed in Chapter 5.3 using Eq.5.10, and 𝑓𝑖, 𝑖 =

0, 1, 2, . . . are the corresponding coefficients by decomposing 𝑓 with these harmonic basis func-

tions. Here, Δ𝑀 is the Laplace-Beltrami operator, which is a general Laplace operator defined

on the manifold as mentioned in Chapter 4.2. When we replace the Laplace operator Δ in

Eq. 5.12 with the Laplace-Beltrami operator Δ𝑀 , given that,

𝑓𝑖
𝑡
= 𝑓𝑖𝑒𝑥𝑝(−𝜆𝑖𝑘𝑡), (5.14)

it is easy to verify that its solution for Eq. 5.12 has the following form,

𝑓(𝑥, 𝑡) =
∑
𝑖

𝑓𝑖
𝑡
𝐻𝑖 =

∑
𝑖

𝑓𝑖𝑒𝑥𝑝(−𝜆𝑖𝑘𝑡)𝐻𝑖. (5.15)

Let LHS denote the left-hand side and RHS denote the right-hand side of the equation, since

Laplace-Beltrami operator is a linear operator according to Eq. 4.2, by plugging in Eq. 5.15,

the LHS of the Eq. 5.12 becomes

Δ𝑀𝑓 =
∑
𝑖

𝑓𝑖𝑒𝑥𝑝(−𝜆𝑖𝑘𝑡)Δ𝑀𝐻𝑖

=
∑
𝑖

𝑓𝑖𝑒𝑥𝑝(−𝜆𝑖𝑘𝑡)(−𝜆𝑖)𝐻𝑖. (5.16)
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The RHS of Eq. 5.12 will be

1

𝑘

∂𝑓

∂𝑡
=

1

𝑘

∑
𝑖

𝑓𝑖𝐻𝑖∂(𝑒𝑥𝑝(−𝜆𝑖𝑘𝑡))/∂𝑡

=
∑
𝑖

𝑓𝑖𝐻𝑖(−𝜆𝑖)𝑒𝑥𝑝(−𝜆𝑖𝑘𝑡)

=
∑
𝑖

𝑓𝑖𝑒𝑥𝑝(−𝜆𝑖𝑘𝑡)(−𝜆𝑖)𝐻𝑖. (5.17)

This result shows that the diffusion of 𝑓 is equivalent to the diffusion of coefficients 𝑓𝑖, 𝑖 =

0, 1, 2, . . . with kernel function 𝑒𝑥𝑝(−𝜆𝑖𝑘𝑡). In other words, the effect of Eq. 5.15 is equivalent

to convoluting a Gaussian functions of increasing deviations with function 𝑓 on the manifold.

First of all, for 𝑡 = 0,

𝑓𝑖
0
= 𝑓𝑖𝑒𝑥𝑝(−𝜆𝑖𝑘 ⋅ 0) = 𝑓𝑖. (5.18)

The diffusion has no effect on 𝑓𝑖 as expected. A typical requirement for a scale space is the

semigroup-property [9]. That means applying diffusion to an already diffused image turns out

to have the same effect as diffusing the image once, where the time-parameter is the time-

parameters of the concatenated diffusions. We can easily show that our framework has this

property through the following evidence:

(𝑓𝑖
𝑠
)𝑡 = 𝑓𝑖𝑒𝑥𝑝(−𝜆𝑖𝑘𝑠)𝑒𝑥𝑝(−𝜆𝑖𝑘𝑡)

= 𝑓𝑖𝑒𝑥𝑝(−𝜆𝑖𝑘(𝑠+ 𝑡)) = 𝑓𝑖
𝑠+𝑡

. (5.19)

Under this framework, by using Eq. 5.13, Eq. 5.14 and Eq. 5.15, we can now create the

scale space structure for point clouds by the diffusion on point-based manifold harmonics. For

a given function 𝑓 , the coefficients can be obtained by the PB-MHT. Using the decomposition

equation , we calculate the 𝑓𝑖
𝑡

for some scale 𝑡. Then we can reconstruct the function 𝑓(𝑥, 𝑡) at
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Figure 5.1: Diffusion on the camel point cloud model. From left to right are the diffused
curvature function with 𝑡 increasing. As the images show, as the 𝑡 increases, the curvature
function on the camel model becomes smoother and smoother.

𝑡 using Eq. 5.15. In Alg. 1, the detail of the algorithm is described regarding how to calculate

the diffusion.

Algorithm 1 Diffusion using the point-based manifold harmonics
Require: the function 𝑓 on point clouds

1: Calculate 𝑓𝑖 and 𝐻𝑖 to form the manifold harmonics using Eq. 5.13 which is to solve the
eigen problem Eq. 5.7.

2: Execute the diffusion using Eq. 5.14 to obtain 𝑓𝑖
𝑡
.

3: Calculate the diffused function 𝑓(𝑥, 𝑡) using Eq. 5.15.

Then the scale space is generated:

(
𝑓 𝑡0 𝑓 𝑡1 𝑓 𝑡2 . . . 𝑓 𝑡𝑛

)
, (5.20)

which is a sequence of diffusion functions on the manifold, with 𝑡 as the scale, in a vector

format, i.e., each column element, 𝑓 𝑡𝑖 , is the diffused function at scale 𝑡𝑖. Fig. 5.1 shows an

example of the diffusion on the camel model.

5.4.2 Keypoint Detection

In the general scale space analysis of 2D images, all the extrema are detected as keypoints

through all the scales. Therefore, we propose to detect the extrema across the scale space as

our keypoints since they are most robust points at the specific scales which are able to correctly

represent the original point cloud. We sample the scale space by computing a sequence of

diffused functions on point clouds at discrete scales, 𝑡. For each diffusion scale, we use Alg. 1
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to calculate its diffused function which can be expressed in a vector form as Eq. 5.20.

In order to extract the cross-scale extrema, we compute the difference-of-diffusion (𝑓𝐷𝑜𝐷)

using the following equation,

𝑓𝐷𝑜𝐷
𝑡𝑖 = 𝑓 𝑡𝑖+1 − 𝑓 𝑡𝑖 (𝑖 = 0, ..., 𝑛− 1). (5.21)

Consequently, we can obtain,

(
𝑓𝐷𝑜𝐷

𝑡0 𝑓𝐷𝑜𝐷
𝑡1 . . . 𝑓𝐷𝑜𝐷

𝑡𝑛−1

)
. (5.22)

Once 𝑓𝐷𝑜𝐷 is obtained, keypoints are identified as the local minima/maxima of the 𝑓𝐷𝑜𝐷

across the scale domain 𝑡. Since we have to compare feature value of any point with its neighbor

for finding the extrema, we have to define an neighborhood 𝐾𝑁𝑁 for any point in the point

cloud in the first place. This is achieved by using analogical geometric distance which is the

embedding using shape spectrum. Specifically, given a point 𝑝 on the point cloud 𝑃 , we use

the Global Point Signature, 𝐺𝑃𝑆(𝑝) [55],

𝐺𝑃𝑆(𝑝) =

(
1√
𝜆1

𝐻1(𝑝),
1√
𝜆2

𝐻2(𝑝),
1√
𝜆3

𝐻3(𝑝), . . .

)
, (5.23)

to construct the analogical geometric distance. In [55], it was proved that Green’s function can

be written in terms of the eigenfunctions as

𝐺(𝑝, 𝑞) = 𝐺𝑃𝑆(𝑝) ⋅𝐺𝑃𝑆(𝑞), (5.24)

where 𝑝, 𝑞 are two points in the domain. Then the dot product of two infinite-dimensional

vectors shows that the inner product in the 𝐺𝑃𝑆 domain corresponds to nothing but the Green’s

function. The more important thing is that the Green’s function in some sense measures the

extent to which two points are geometrically “bundled” together. Thus, the inner product in the
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Figure 5.2: Illustration of 𝐺𝑃𝑆 embedding. The left image shows the camel model and a red
point – a reference point based on which we can calculate the analogical geometric distance
from all other points. The right image shows the analogical geometric distance to the reference
point with color map from red to blue. The bigger value, towards blue in the color map, means
the closer distance between the current point and the reference point.

𝐺𝑃𝑆 domain is a measure of “togetherness” of two points. For more details, readers can refer

to [55]. As a result, we use the 𝐺𝑃𝑆 embedding to calculate the analogical geometric distance.

Fig. 5.2 shows an example of the 𝐺𝑃𝑆 embedding and how the analogical geometric distance

works. From the example figure, it clearly shows that the 𝐺𝑃𝑆 embedding can be used as

the analogical geometric distance. Note that, when 𝐺(𝑝, 𝑞) is bigger, 𝑝 and 𝑞 becomes closer.

However, for a distance function, we want it to be smaller when 𝑝 and 𝑞 is closer. Therefore,

after normalization, we set 𝐺(𝑝, 𝑞) = 1−𝐺(𝑝, 𝑞).

Based on the distance, we can define the neighborhood 𝐾𝑁𝑁 . The neighborhood 𝐾𝑁𝑁

of point 𝑝 is extracted by 𝑘 nearest points near 𝑝. 𝐾𝑁𝑁 is formulated as

𝐾𝑁𝑁 = {{𝑥1, 𝑥2, . . . , 𝑥𝑘} ∣ 𝑑𝑖𝑠𝑡(𝑥1, 𝑝) ≤ 𝑑𝑖𝑠𝑡(𝑥2, 𝑝)

≤ . . . ≤ 𝑑𝑖𝑠𝑡(𝑥𝑘, 𝑝), 𝑥1, 𝑥2, . . . , 𝑥𝑘 ∈ 𝑃}, (5.25)

where 𝑑𝑖𝑠𝑡(𝑥, 𝑝) denotes the distance between points 𝑥 and 𝑝.

With this 𝐾𝑁𝑁 definition, the local extrema can be detected. It is done by comparing

each point in the 𝑓𝐷𝑜𝐷
𝑡𝑗 to its 𝐾𝑁𝑁 neighbors at the same scale 𝑡𝑗 and 𝐾𝑁𝑁 neighbors in
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Figure 5.3: Feature point detection directly on point clouds. (a) A point cloud model; (b) The
detected feature points (in red) on the point cloud model; (c) The point cloud model with a
different pose; (d) The feature points (in red) directly detected from point clouds.

Figure 5.4: Keypoint detection on the camel model. From left to right are the keypoints de-
tected on the model with scale 𝑡 increasing. From the figure, it is clear that at the finer scales,
more sophisticated feature points will be detected and in the coarse scales, the number of key-
points decreases.

each of the adjacent scales 𝑡𝑗−1 and 𝑡𝑗+1. If the function value at the point is the maximum

or minimum among all compared points, it is selected as a keypoint. This algorithm is carried

out through all the 𝑓𝐷𝑜𝐷. The maxima and minima found in all the diffusion sub-space will

be considered as the keypoints. Fig. 5.3 shows the feature point detection on the human body

scan point cloud models and Fig. 5.4 shows another example of feature point detection on the

camel model.

5.4.3 Curvature Function of Point Clouds

In order to apply our spectral diffusion to multiscale processing of point clouds, we need

to compute the geometric attribute function 𝑓 from the point clouds. Curvature-based features
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are salient, with proofs from psychophysical experiments that the human visual system decom-

poses complex shapes into parts based on curvature. Hence, in this work, we will use curvature

function instead of others function.

Assume the normal directions of the points are known, the curvature of each sample can

be calculated by local fitting [76]. However, in the local PB-LBO calculation, a delaunay

triangulation in the neighborhood is built, thus we can directly use this connectivity information

and carry out the curvature calculation on the triangular mesh [39].

5.5 Feature Descriptor and Matching
For the purpose of matching and visualization of cross subject data, the main task is to find

their local features for matching. We construct a feature descriptor for the keypoints detected

using the algorithms discussed in Chapter 5.4. Based on the descriptors, the matching of point

cloud can be achieved. In this section, firstly we discuss how to create the feature descriptor

and how to match the descriptor. Then, we talk about how to match the point cloud based on

the feature descriptors matching.

5.5.1 Feature Descriptor and Matching

The descriptor Dp for point 𝑝 is computed using a support region, defined using a neigh-

borhood 𝑆𝑁 based on the scale information. Like the spin image [24], firstly we compute the

projection of the 𝑆𝑁 into the tangent plane of 𝑝. Then based on the tangent plane plane we

create a shell-sector model to form a descriptor. Detail steps are listed below:

a) Scale-based Neighborhood 𝑆𝑁 . The neighborhood 𝑆𝑁 of point 𝑝 is extracted by 𝑘

nearest points near 𝑝 within the ball with radius 𝑟. The value of 𝑟 is a function of diffusion time

𝑡, 𝑟 =
√
2𝑡. Then the 𝑆𝑁 is formulated as

𝑆𝑁 = {𝑥 ∣ 𝑑𝑖𝑠𝑡(𝑥, 𝑝) < 𝑟, 𝑥 ∈ 𝑃}, (5.26)

where 𝑑𝑖𝑠𝑡(𝑥, 𝑝) denotes the distance between points 𝑥 and 𝑝.
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b) Tangent Plane Projection. In Chapter 5.2.1, the tangent plane can be estimated. Then

we calculate the projection of each point 𝑥 ∈ 𝑆𝑁 on the tangent plane. Then each point 𝑥 has

a projection 𝒫𝑥 on the tangent plane.

c) Shell-Sector Model Histogram. Fig. 5.5 shows an example of 3 shells and 4 sectors

model. The numbers on the figure are the indices. After the tangent plane projection, the

projection 𝒫𝑥 lies in a area with a specific index. We calculate the mean gradient magnitudes

to form a histogram in each indexed area. For example in Fig. 5.5, we will have 𝑏𝑜 = 12 bins

histogram and use the indices as the orientation information. Then, the orientation histogram

can be formed. Eventually, the Dp is a 𝑏𝑜 dimensional vector:

Dp = {𝐷𝑝(1), 𝐷𝑝(2), . . . , 𝐷𝑝(𝑏0)}. (5.27)

All these histogram vectors form a feature descriptor database which will be used for matching.

d) Descriptor Matching. Based on the orientation histogram, we can computer the Eu-

clidean distance between any two descriptors Dp, Dq. When we match two descriptors, we

have to rotate the bins to calculate the minimum distance between them. Taking Fig. 5.5 as an

example, there are 𝑁𝑠 = 4 possible alignments between two shell-sector model; for each align-

ment 𝑗 we calculate the similarity 𝐷𝑆(𝑝, 𝑞, 𝑗), 𝑗 ∈ 𝑁𝑠 and chose the smallest value 𝐷𝑆(𝑝, 𝑞)

as the similarity of these two descriptors:

𝐷𝑆(𝑝, 𝑞, 𝑗) =
∑
𝑖∈𝑏𝑜

∥Dp(𝑖)−Dq(𝑖)∥, (5.28)

𝐷𝑆(𝑝, 𝑞) = 𝑚𝑖𝑛{𝐷𝑆(𝑝, 𝑞, 𝑗)}, 𝑗 ∈ 𝑁𝑠. (5.29)

5.5.2 Point Cloud Matching

In our framework, shape matching is to match the feature points in the point clouds of

different objects since these points are considered as reliable representative points of point set
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Figure 5.5: Shell-sector model: the numbers are the bin-indices.

shapes. In Chapter 5.5.1, we have explained how the feature descriptor for each feature point

is constructed and how a feature descriptor database is formed. Next, we will discuss how to

match the point clouds based on the descriptors.

We used a similar matching strategy as described in [7, 64]. Basically, it is to solve the

problem of finding an optimal matching by minimizing a cost function defined over correspon-

dences. The cost function is defined by the match quality and the geometric distortion of a

correspondence. We use the similarity of these two descriptors (e.g. Di and Dj) as the match

cost and use the analogical geometric distance as the distortion cost. Then, an optimal corre-

spondence can be obtained by minimizing the cost function. Specifically, a correspondence is

a mapping 𝜎 indicates that 𝑝𝑖 corresponds to 𝑞𝜎(𝑖), which is sometimes abbreviated as 𝑞𝑖′ . In

other words, the cost function is defined by two terms: one is for the match quality and the

other is for the geometric distortion of a correspondence:

𝑐𝑜𝑠𝑡(𝜎) = 𝑤𝑚𝐶𝑜𝑠𝑡𝑚𝑎𝑡𝑐ℎ(𝜎) + 𝑤𝑑𝐶𝑜𝑠𝑡𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛(𝜎) (5.30)

where the 𝑤𝑚 and 𝑤𝑑 are weights. The match cost for a correspondence is

𝐶𝑜𝑠𝑡𝑚𝑎𝑡𝑐ℎ(𝜎) =
∑
𝑖

𝑐(𝑝𝑖, 𝑞𝑖′) (5.31)
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where 𝑐(𝑝𝑖, 𝑞𝑖′) is the cost of matching 𝑝𝑖 to 𝑞𝑖′ in a correspondence. We used the similarity of

these two descriptors (e.g. Di and Dj) as the cost, which is 𝐷𝑆(𝑖, 𝑗) computed using Eq. 5.28

and Eq. 5.29. The distortion measure is expressed as

𝐶𝑜𝑠𝑡𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛(𝜎) =
∑
𝑖,𝑗

𝑈(𝑝𝑖, 𝑞𝑖′ , 𝑝𝑗, 𝑞𝑗′) (5.32)

where 𝑈(𝑝𝑖, 𝑞𝑖′ , 𝑝𝑗, 𝑞𝑗′) is the distortion cost of mapping model points 𝑝𝑖 to 𝑞𝑖′ and 𝑝𝑗 to 𝑞𝑗′ ,

respectively. We restrict these measures based on the two analogical geometric distances 𝑟𝑖𝑗 =

𝐺(𝑝𝑖, 𝑝𝑗) and 𝑠𝑖′𝑗′ = 𝐺(𝑞𝑖′ , 𝑞𝑗′) using Eq. 5.24. With these definitions, the distortion cost

becomes

𝐶𝑜𝑠𝑡𝑑𝑖𝑠𝑡𝑜𝑟𝑡𝑖𝑜𝑛(𝜎) =
∑
𝑖,𝑗

𝑑𝑙(𝜎), (5.33)

where

𝑑𝑙(𝜎) =
∣𝑠𝑖′𝑗′∣ − ∣𝑟𝑖𝑗∣

∣𝑟𝑖𝑗∣ . (5.34)

In order to find an assignment to minimize the cost function described by the terms in

Eq. 5.31 and Eq. 5.32 above, the correspondence problem can be written as an Integer Quadratic

Programming (IQP) problem:

𝑐𝑜𝑠𝑡(𝑥) =
∑
𝑎,𝑏

𝑈(𝑎, 𝑏)𝑥𝑎𝑥𝑏 +
∑
𝑎

𝑐(𝑎)𝑥𝑎 (5.35)

where the binary indicator variable 𝑥 has entries 𝑥𝑎, that if 1, indicate 𝜎(𝑎𝑖) = 𝑎𝑗; 𝑐(𝑎) =

𝑐(𝑎𝑖, 𝑎𝑗) and 𝑈(𝑎, 𝑏) = 𝑈(𝑎𝑖, 𝑎𝑗, 𝑏𝑖, 𝑏𝑗) from Eq. 5.31 and Eq. 5.32. We constrain x to represent

an assignment,
∑

𝑗 𝑥𝑖𝑗 = 1 for each i, by writing 𝑥𝑖𝑗 in place of 𝑥𝑎𝑖𝑎𝑗 . These linear constraints

are encoded as 𝐴 and 𝑏. Eventually, we are going to solve the IQP in matrix from as:

𝑚𝑖𝑛𝑐𝑜𝑠𝑡(𝑥) = 𝑥′𝑈𝑥+ 𝑐′𝑥 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜,

𝐴𝑥 = 𝑏, 𝑥 ∈ {0, 1}𝑛
(5.36)
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By solve Eq. 5.36, we can obtain the optimal correspondences. For more details about solving

this equation, readers can refer to [7, 64].

5.5.3 Experiments and Results

Our algorithm is implemented with C++ for the computationally intensive algorithms and

VTK/OpenGL for rendering and visualization. The experiments are conducted on a Dell XPS

630i, which has Intel Core(TM)2 Quad CPU Q9550 with 4GB of RAM.

3D shape matching is a fundamental task in computer vision and geometry processing.

This experiment is performed on isometric matching and non-isometric matching to analyze

the performance of our proposed framework. A scale-associated shape representation is em-

ployed as the local shape descriptor and the descriptor matching is obtained using the algorithm

discussed in Chapter 5.5. Firstly, the method is evaluated under isometric transformation. Sec-

ondly, we test our framework on a real face scans database which has different expressions of

human subjects.

a) Isometric matching

This experiment is to test the feature detection and matching under isometric transforma-

tion. The input point cloud is a scanned human model shown in the left image in Fig. 5.6. Then,

the character put the hands down to generate another scan shown in the right image in Fig. 5.6.

We perform our feature detection algorithm and point cloud matching algorithm to obtain the

matching as shown in Fig. 5.6, where the lines linked between feature points indicate the cor-

respondence. The matching result shows that the algorithm works well for matching objects

with isometric deformations.

b) Face matching

This experiment is performed on the 3D face database to analyze the performance of our

proposed framework. Two types of experiments are conducted: (1) matching the same subject

with different expressions (i.e., undergoing non-isometric deformation); (2) matching different

subjects. Our method can correctly match the same subject with different expressions while
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Figure 5.6: Illustration of the matching result. Matched points are connected by linked lines.

(a) (b)

(c) (d)

Figure 5.7: Face matching. (a) Matching between the same subject with different expressions.
(b) Matching between two different subjects. (c) and (d) are the point cloud views of (a) and
(b) respectively.
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Figure 5.8: Statistical results. The red curve shows the inter-subject matching and the blue one
shows the intra-subject matching.

differentiating different subjects based on the number of matched keypoints.

The example of face matching is shown in Fig. 5.7. The left image in Fig. 5.7(a) is the

neutral expression and the right image is the smile expression. In Fig. 5.7(b), it shows two

faces from two different subjects. The result shows the differentiation between two differ-

ent subjects, where the number of matched keypoints is significantly fewer than the case in

Fig. 5.7(a). Then, we conducted a statistical experiment on 20 subjects with 5 different expres-

sions each subject. Fig. 5.8 shows the statistics of the numbers of matched keypoints among

the 20 subjects. As we can see, the numbers of matched keypoints are significantly greater in

the intra-subject matching (same subject different expressions) against those found in the inter-

subject case (between different subjects). The number of matched keypoints is descriptive

enough to differentiate models from different subjects and meanwhile retrieve distinct expres-

sions of the same person. The experiments indicate that our method is effective for the face

point cloud matching and has great potential for the retrieval task in face scan data.
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5.6 Summary
In this chapter, we have presented a framework to generate the scale space on point clouds

using point-based manifold harmonics. Built upon the point-based manifold harmonics trans-

form, we generalize the diffusion function directly on the point clouds to create the scale space.

Subsequently, feature detection can be performed to detect keypoints together with their scale

size. We construct a multiscale descriptor for each feature point which is effective for matching

point clouds. The performance of our framework is thoroughly evaluated through our experi-

ments which demonstrate excellent matching performance for point cloud data.



75

CHAPTER 6

CONCLUSION

The purpose of this chapter is twofold. We first summarize the contributions made by this

dissertation, then we point towards the future work.

6.1 Contributions
Shape analysis is a fundamental aspect of many problems in computer graphics and com-

puter vision, including surface matching and surface registration. There has been a lot of re-

search on 3D shape analysis. Modern methods are trying to imitating the 2D SIFT to construct

a multiscale structure for 3D shape. Our research focus on developing a multiscale structure in

shape vector image using the geometric mapping and the one directly on the 3D shape using

manifold harmonics. Our main contributions include:

∙ Shape Vector Image Diffusion Framework (Chapter 3). We try to link the 3D shape

analysis to the scale space processing by using the geometric mapping. In virtue of the

geometric mapping, we construct the shape vector image for the 3D shape. We then

propose the shape vector image diffusion framework for multiscale diffusion space con-

struction. In the diffusion space, we detect the cross-scale extrema as the feature points.

Then we construct feature descriptors for feature matching. The matching of feature

points can be utilized for shape matching and registration. Experiments demonstrate the

excellent performance of the proposed method and it is a powerful tool for analyzing

surfaces with multidimensional textures.

∙ Laplacian Shape Spectrum Implementation and Its Application (Chapter 4). We intro-

duce Laplacian shape spectrum and implement the Laplace-Beltrami operator on mesh

using the discrete settings. By investigating the Laplacian shape spectrum, we propose

the surface registration using the Fiedler vector from Laplacian shape spectrum. We reg-
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ister the colon surface using piecewise registration using the Fiedler vector value. We

apply the algorithm to the real CTC datasets and our experiments show excellent regis-

tration results on colon surface registration and it shows excellent potential in reducing

the false positive when it is used to determine polyps through correspondences between

prone and supine images.

∙ Scale Space Construction Using Point-based Manifold Harmonics (Chapter 5). In order

to construct the scale space for 3D shape without using the geometric mapping, we rigor-

ously derive our solution from the diffusion equation on the manifold using the manifold

harmonics. Not only confined on mesh, we implement the Laplace-Beltrami operator

on 3D point cloud data. By constructing the scale space directly on point cloud, based

on the multiscale structure, we can robustly detect the distinctive features and construct

descriptors from the neighbors using the GPS. Then the point cloud matching can be

achieved through the feature descriptors matching. Our experiments demonstrate that

our method is showing excellent matching performance for point cloud data.

These contributions are described in more detail and validated in the main body of the

dissertation. Please refer to the corresponding chapters for details.

6.2 Future Work
This dissertation work also opens several venues for future work, with the focus on visual

object processing and analysis.

1. 2D/3D feature matching. We try to propose a novel method to match the 2D/3D features

automatically. As discussed in previous chapters, to extract the 3D feature points, we

can use the manifold harmonics to create the scale space in virtue of the shape spectrum

for the 3D feature detection. After the feature detection, for each feature point we adopt

perspective projection to project the characteristics to a image. Then we will try SIFT

matching on the 2D texture image and perspective projected images. Finally, through the
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relationship between the perspective projected images and 3D object, we can identify the

correspondences between the 2D image and the 3D object.

2. Shape retrieval. The topic has recently gained popularity in computer vision and pat-

tern recognition communities. With the development of 3D scanning technique, large

databases of 3D models available in the public domain have created the demand for shape

search and retrieval algorithms capable of finding similar shapes in the same way a search

engine responds to text or image queries. Since many shapes manifest rich variability,

shape retrieval is often required to be invariant to different classes of transformations and

shape variations. One of the most challenging settings is the case of deformable shapes,

in which the transformations vary in different forms. I plan to propose a shape spectrum

based invariant characteristic for the deformable shape. I will explore its shape spectrum

features and try to combine with other statistical methods. The long-term goal in this

research direction embodies two lines: retrieval of different actions of the same object

and retrieval of the same action of different objects.
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Shape analysis is a fundamental aspect of many problems in computer graphics and com-

puter vision, including shape matching, shape registration, object recognition and classifica-

tion. Since the SIFT achieves excellent matching results in 2D image domain, it inspires us

to convert the 3D shape analysis to 2D image analysis using geometric maps. However, the

major disadvantage of geometric maps is that it introduces inevitable, large distortions when

mapping large, complex and topologically complicated surfaces to a canonical domain. It is

demanded for the researchers to construct the scale space directly on the 3D shape.

To address these research issues, in this dissertation, in order to find the multiscale pro-

cessing for the 3D shape, we start with shape vector image diffusion framework using the

geometric mapping. Subsequently, we investigate the shape spectrum field by introducing the

implementation and application of Laplacian shape spectrum. In order to construct the scale

space on 3D shape directly, we present a novel idea to solve the diffusion equation using the

manifold harmonics in the spectral point of view. Not only confined on the mesh, by using the

point-based manifold harmonics, we rigorously derive our solution from the diffusion equation

which is the essential of the scale space processing on the manifold. Built upon the point-

based manifold harmonics transform, we generalize the diffusion function directly on the point
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clouds to create the scale space. In virtue of the multiscale structure from the scale space, we

can detect the feature points and construct the descriptor based on the local neighborhood. As

a result, multiscale shape analysis directly on the 3D shape can be achieved.
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