3,935 research outputs found

    Evolutionary design of digital VLSI hardware

    Get PDF

    Some Optimizations of Hardware Multiplication by Constant Matrices

    Get PDF
    International audienceThis paper presents some improvements on the optimization of hardware multiplication by constant matrices. We focus on the automatic generation of circuits that involve constant matrix multiplication, i.e. multiplication of a vector by a constant matrix. The proposed method, based on number recoding and dedicated common sub-expression factorization algorithms was implemented in a VHDL generator. Our algorithms and generator have been extended to the case of some digital filters based on multiplication by a constant matrix and delay operations. The obtained results on several applications have been implemented on FPGAs and compared to previous solutions. Up to 40% area and speed savings are achieved

    Evolvable hardware platform for fault-tolerant reconfigurable sensor electronics

    Get PDF

    A CAD tool for design space exploration of embedded CPU cores for FPGAs.

    Get PDF

    Design synthesis for dynamically reconfigurable logic systems

    Get PDF
    Dynamic reconfiguration of logic circuits has been a research problem for over four decades. While applications using logic reconfiguration in practical scenarios have been demonstrated, the design of these systems has proved to be a difficult process demanding the skills of an experienced reconfigurable logic design expert. This thesis proposes an automatic synthesis method which relieves designers of some of the difficulties associated with designing partially dynamically reconfigurable systems. A new design abstraction model for reconfigurable systems is proposed in order to support design exploration using the presented method. Given an input behavioural model, a technology server and a set of design constraints, the method will generate a reconfigurable design solution in the form of a 3D floorplan and a configuration schedule. The approach makes use of genetic algorithms. It facilitates global optimisation to accommodate multiple design objectives common in reconfigurable system design, while making realistic estimates of configuration overheads and of the potential for resource sharing between configurations. A set of custom evolutionary operators has been developed to cope with a multiple-objective search space. Furthermore, the application of a simulation technique verifying the lll results of such an automatic exploration is outlined in the thesis. The qualities of the proposed method are evaluated using a set of benchmark designs taking data from a real reconfigurable logic technology. Finally, some extensions to the proposed method and possible research directions are discussed
    corecore