56 research outputs found

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    A Hesitant Fuzzy Linguistic Multicriteria Decision-Making Method with Interactive Criteria and Its Application to Renewable Energy Projects Selection

    Get PDF
    A variety of multicriteria decision-making (MCDM) methods for renewable energy projects evaluation have been proposed, of which the premise of using these methods is to assume that the criteria are independent of each other. However, it may be difficult or costly to build independent criteria set in some cases because renewable energy planning is to pursue a balance of economic, social, and environmental goals, which makes the existence of interaction among criteria be of great possibility. In this paper, we consider a highly ambiguous decision situation, where the experts are allowed to give the evaluations in the form of hesitant fuzzy linguistic terms set (HFLTS). We build a hesitant fuzzy linguistic decision-making model handling the interaction among criteria from the perspective of distance measure and apply it to renewable energy projects selection. The proposed method can consider more fuzzy factors and deal with the interaction among criteria more approximately. It can reduce the decision pressure and improve the decision-making efficiency because the decision makers are allowed to express their preference in form of HFLTS and a decision criteria set of which the criteria are independent of each other is not necessary

    An Extended VIKOR Method for Multiple Criteria Group Decision Making with Triangular Fuzzy Neutrosophic Numbers

    Get PDF
    In this article, we combine the original VIKOR model with a triangular fuzzy neutrosophic set to propose the triangular fuzzy neutrosophic VIKOR method. In the extended method, we use the triangular fuzzy neutrosophic numbers (TFNNs) to present the criteria values in multiple criteria group decision making (MCGDM) problems. Firstly, we summarily introduce the fundamental concepts, operation formulas and distance calculating method of TFNNs. Then we review some aggregation operators of TFNNs. Thereafter, we extend the original VIKOR model to the triangular fuzzy neutrosophic environment and introduce the calculating steps of the TFNNs VIKOR method, our proposed method which is more reasonable and scientific for considering the conflicting criteria. Furthermore, a numerical example for potential evaluation of emerging technology commercialization is presented to illustrate the new method, and some comparisons are also conducted to further illustrate advantages of the new method

    A shapley trade-off ranking method for multi-criteria decision-making with defuzzification characteristic function

    Get PDF
    More studies tend to hybrid the game theory technique with the MCDM method to cater to real-situation problems. This paper provides a novel hybrid Shapley value solution concept in the cooperative game with the trade-off ranking method in MCDM. The fundamental methodology of the Shapley value solution concept and trade-off ranking method are explained to make the methodology clear to the readers. A Shapley trade-off ranking (S-TOR) method has been proposed to obtain the best solution to the fuzzy conflicting MCDM in the personnel selection problem. Thus, the triangular fuzzy number is used to represent the DMs evaluation. Then, the fuzzy number be transformed into crisp values using the defuzzification process. The future suggestions are the fuzzy system may be changed to real data for more practical problems, attempt to incorporate a comprehensive method to increase sharing-profit and decrease sharing-loss in the economy or financial problems, and other types of fuzzy numbers may be used to represent an evaluation of the DMs

    A comprehensive review of hybrid game theory techniques and multi-criteria decision-making methods

    Get PDF
    More studies trend to hybrid the game theory technique with the multi-criteria decision-making (MCDM) method to aid real-life problems. This paper provides a comprehensive review of the hybrid game theory technique and MCDM method. The fundamentals of game theory concepts and models are explained to make game theory principles clear to the readers. Moreover, the definitions and models are elaborated and classified to the static game, dynamic game, cooperative game and evolutionary game. Therefore, the hybrid game theory technique and MCDM method are reviewed and numerous applications studied from the past works of literature are highlighted. The result of the previous studies shows that the fundamental elements for both frameworks were studied in various ways with most of the past studies tend to integrate the static game with AHP and TOPSIS methods. Also, the integration of game theory techniques and MCDM methods was studied in various applications such as politics, economy, supply chain, engineering, water management problem, allocation problem and telecommunication network selection. The main contribution of the recent studies of employment between game theory technique and MCDM method are analyzed and discussed in detail which includes static and dynamic games in the non-cooperative game, cooperative game, both non-cooperative and cooperative games and evolutionary gam

    Using Pythagorean Fuzzy Sets (PFS) in Multiple Criteria Group Decision Making (MCGDM) Methods for Engineering Materials Selection Applications

    Get PDF
    The process of materials’ selection is very critical during the initial stages of designing manufactured products. Inefficient decision-making outcomes in the material selection process could result in poor quality of products and unnecessary costs. In the last century, numerous materials have been developed for manufacturing mechanical components in different industries. Many of these new materials are similar in their properties and performances, thus creating great challenges for designers and engineers to make accurate selections. Our main objective in this work is to assist decision makers (DMs) within the manufacturing field to evaluate materials alternatives and to select the best alternative for specific manufacturing purposes. In this research, new hybrid fuzzy Multiple Criteria Group Decision Making (MCGDM) methods are proposed for the material selection problem. The proposed methods tackle some challenges that are associated with the material selection decision making process, such as aggregating decision makers’ (DMs) decisions appropriately and modeling uncertainty. In the proposed hybrid models, a novel aggregation approach is developed to convert DMs crisp decisions to Pythagorean fuzzy sets (PFS). This approach gives more flexibility to DMs to express their opinions than the traditional fuzzy and intuitionistic sets (IFS). Then, the proposed aggregation approach is integrated with a ranking method to solve the Pythagorean Fuzzy Multi Criteria Decision Making (PFMCGDM) problem and rank the material alternatives. The ranking methods used in the hybrid models are the Pythagorean Fuzzy TOPSIS (The Technique for Order of Preference by Similarity to Ideal Solution) and Pythagorean Fuzzy COPRAS (COmplex PRoportional Assessment). TOPSIS and COPRAS are selected based on their effectiveness and practicality in dealing with the nature of material selection problems. In the aggregation approach, the Sugeno Fuzzy measure and the Shapley value are used to fairly distribute the DMs weight in the Pythagorean Fuzzy numbers. Additionally, new functions to calculate uncertainty from DMs recommendations are developed using the Takagai-Sugeno approach. The literature reveals some work on these methods, but to our knowledge, there are no published works that integrate the proposed aggregation approach with the selected MCDM ranking methods under the Pythagorean Fuzzy environment for the use in materials selection problems. Furthermore, the proposed methods might be applied, due to its novelty, to any MCDM problem in other areas. A practical validation of the proposed hybrid PFMCGDM methods is investigated through conducting a case study of material selection for high pressure turbine blades in jet engines. The main objectives of the case study were: 1) to investigate the new developed aggregation approach in converting real DMs crisp decisions into Pythagorean fuzzy numbers; 2) to test the applicability of both the hybrid PFMCGDM TOPSIS and the hybrid PFMCGDM COPRAS methods in the field of material selection. In this case study, a group of five DMs, faculty members and graduate students, from the Materials Science and Engineering Department at the University of Wisconsin-Milwaukee, were selected to participate as DMs. Their evaluations fulfilled the first objective of the case study. A computer application for material selection was developed to assist designers and engineers in real life problems. A comparative analysis was performed to compare the results of both hybrid MCGDM methods. A sensitivity analysis was conducted to show the robustness and reliability of the outcomes obtained from both methods. It is concluded that using the proposed hybrid PFMCGDM TOPSIS method is more effective and practical in the material selection process than the proposed hybrid PFMCGDM COPRAS method. Additionally, recommendations for further research are suggested

    The Interval-Valued Intuitionistic Fuzzy MULTIMOORA Method for Group Decision Making in Engineering

    Get PDF
    Multiple criteria decision making methods have received different extensions under the uncertain environment in recent years. The aim of the current research is to extend the application of the MULTIMOORA method (Multiobjective Optimization by Ratio Analysis plus Full Multiplicative Form) for group decision making in the uncertain environment. Taking into account the advantages of IVIFS (interval-valued intuitionistic fuzzy sets) in handling the problem of uncertainty, the development of the interval-valued intuitionistic fuzzy MULTIMOORA (IVIF-MULTIMOORA) method for group decision making is considered in the paper. Two numerical examples of real-world civil engineering problems are presented, and ranking of the alternatives based on the suggested method is described. The results are then compared to the rankings yielded by some other methods of decision making with IVIF information. The comparison has shown the conformity of the proposed IVIF-MULTIMOORA method with other approaches. The proposed algorithm is favorable because of the abilities of IVIFS to be used for imagination of uncertainty and the MULTIMOORA method to consider three different viewpoints in analyzing engineering decision alternatives

    Stochastic multiple attribute decision making with Pythagorean hesitant fuzzy set based on regret theory

    Get PDF
    The objective of this paper is to present an extended approach to address the stochastic multi-attribute decision-making problem. The novelty of this study is to consider the regret behavior of decision makers under a Pythagorean hesitant fuzzy environment. First, the group satisfaction degree of decision-making matrices is used to consider the different preferences of decision-makers. Second, the nonlinear programming model under different statues is provided to compute the weights of attributes. Then, based on the regret theory, a regret value matrix and a rejoice value matrix are constructed. Furthermore, the feasibility and superiority of the developed approach is proven by an illustrative example of selecting an air fighter. Eventually, a comparative analysis with other methods shows the advantages of the proposed methods
    • 

    corecore