868 research outputs found

    A beta-herpesvirus with fluorescent capsids to study transport in living cells.

    Get PDF
    Fluorescent tagging of viral particles by genetic means enables the study of virus dynamics in living cells. However, the study of beta-herpesvirus entry and morphogenesis by this method is currently limited. This is due to the lack of replication competent, capsid-tagged fluorescent viruses. Here, we report on viable recombinant MCMVs carrying ectopic insertions of the small capsid protein (SCP) fused to fluorescent proteins (FPs). The FPs were inserted into an internal position which allowed the production of viable, fluorescently labeled cytomegaloviruses, which replicated with wild type kinetics in cell culture. Fluorescent particles were readily detectable by several methods. Moreover, in a spread assay, labeled capsids accumulated around the nucleus of the newly infected cells without any detectable viral gene expression suggesting normal entry and particle trafficking. These recombinants were used to record particle dynamics by live-cell microscopy during MCMV egress with high spatial as well as temporal resolution. From the resulting tracks we obtained not only mean track velocities but also their mean square displacements and diffusion coefficients. With this key information, we were able to describe particle behavior at high detail and discriminate between particle tracks exhibiting directed movement and tracks in which particles exhibited free or anomalous diffusion

    Single-particle imaging reveals intraflagellar transportā€“independent transport and accumulation of EB1 in \u3cem\u3eChlamydomonas\u3c/em\u3e flagella

    Get PDF
    The microtubule (MT) plus-end tracking protein EB1 is present at the tips of cilia and flagella; end-binding protein 1 (EB1) remains at the tip during flagellar shortening and in the absence of intraflagellar transport (IFT), the predominant protein transport system in flagella. To investigate how EB1 accumulates at the flagellar tip, we used in vivo imaging of fluorescent proteinā€“tagged EB1 (EB1-FP) in Chlamydomonas reinhardtii. After photobleaching, the EB1 signal at the flagellar tip recovered within minutes, indicating an exchange with unbleached EB1 entering the flagella from the cell body. EB1 moved independent of IFT trains, and EB1-FP recovery did not require the IFT pathway. Single-particle imaging showed that EB1-FP is highly mobile along the flagellar shaft and displays a markedly reduced mobility near the flagellar tip. Individual EB1-FP particles dwelled for several seconds near the flagellar tip, suggesting the presence of stable EB1 binding sites. In simulations, the two distinct phases of EB1 mobility are sufficient to explain its accumulation at the tip. We propose that proteins uniformly distributed throughout the cytoplasm like EB1 accumulate locally by diffusion and capture; IFT, in contrast, might be required to transport proteins against cellular concentration gradients into or out of cilia

    Studies of Single-Molecule Dynamics in Microorganisms

    Get PDF
    Fluorescence microscopy is one of the most extensively used techniques in the life sciences. Considering the non-invasive sample preparation, enabling live-cell compliant imaging, and the speciļ¬c ļ¬‚uorescence labeling, allowing for a speciļ¬c visualization of virtually any cellular compound, it is possible to localize even a single molecule in living cells. This makes modern ļ¬‚uorescence microscopy a powerful toolbox. In the recent decades, the development of new, "super-resolution" ļ¬‚uorescence microscopy techniques, which surpass the diļ¬€raction limit, revolutionized the ļ¬eld. Single-Molecule Localization Microscopy (SMLM) is a class of super-resolution microscopy methods and it enables resolution of down to tens of nanometers. SMLM methods like Photoactivated Localization Microscopy (PALM), (direct) Stochastic Optical Reconstruction Microscopy ((d)STORM), Ground-State Depletion followed by Individual Molecule Return (GSDIM) and Point Accumulation for Imaging in Nanoscale Topography (PAINT) have allowed to investigate both, the intracellular spatial organization of proteins and to observe their real-time dynamics at the single-molecule level in live cells. The focus of this thesis was the development of novel tools and strategies for live-cell SingleParticle Tracking PALM (sptPALM) imaging and implementing them for biological research. In the ļ¬rst part of this thesis, I describe the development of new Photoconvertible Fluorescent Proteins (pcFPs) which are optimized for sptPALM lowering the phototoxic damage caused by the imaging procedure. Furthermore, we show that we can utilize them together with Photoactivatable Fluorescent Proteins (paFPs) to enable multi-target labeling and read-out in a single color channel, which signiļ¬cantly simpliļ¬es the sample preparation and imaging routines as well as data analysis of multi-color PALM imaging of live cells. In parallel to developing new ļ¬‚uorescent proteins, I developed a high throughput data analysis pipeline. I have implemented this pipeline in my second project, described in the second part of this thesis, where I have investigated the protein organization and dynamics of the CRISPR-Cas antiviral defense mechanism of bacteria in vivo at a high spatiotemporal level with the sptPALM approach. I was successful to show the diļ¬€erences in the target search dynamics of the CRISPR eļ¬€ector complexes as well as of single Cas proteins for diļ¬€erent target complementarities. I have also ļ¬rst data describing longer-lasting bound-times between eļ¬€ector complex and their potential targets in vivo, for which only in vitro data has been available till today. In summary, this thesis is a signiļ¬cant contribution for both, the advances of current sptPALM imaging methods, as well as for the understanding of the native behavior of CRISPR-Cas systems in vivo

    Multiple CaMKII Binding Modes to the Actin Cytoskeleton Revealed by Single-Molecule Imaging.

    Get PDF
    Localization of the Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) to dendritic spine synapses is determined in part by the actin cytoskeleton. We determined binding of GFP-tagged CaMKII to tag-RFP-labeled actin cytoskeleton within live cells using total internal reflection fluorescence microscopy and single-molecule tracking. Stepwise photobleaching showed that CaMKII formed oligomeric complexes. Photoactivation experiments demonstrated that diffusion out of the evanescent field determined the track lifetimes. Latrunculin treatment triggered a coupled loss of actin stress fibers and the colocalized, long-lived CaMKII tracks. The CaMKIIĪ± (Ī±) isoform, which was previously thought to lack F-actin interactions, also showed binding, but this was threefold weaker than that observed for CaMKIIĪ² (Ī²). The Ī²E' splice variant bound more weakly than Ī±, showing that binding by Ī² depends critically on the interdomain linker. The mutations Ī²T287D and Ī±T286D, which mimic autophosphorylation states, also abolished F-actin binding. Autophosphorylation triggers autonomous CaMKII activity, but does not impair GluN2B binding, another important synaptic protein interaction of CaMKII. The CaMKII inhibitor tatCN21 or CaMKII mutations that inhibit GluN2B association by blocking binding of ATP (Ī²K43R and Ī±K42M) or Ca(2+)/calmodulin (Ī²A303R) had no effect on the interaction with F-actin. These results provide the first rationale for the reduced synaptic spine localization of the Ī±T286D mutant, indicating that transient F-actin binding contributes to the synaptic localization of the CaMKIIĪ± isoform. The track lifetime distributions had a stretched exponential form consistent with a heterogeneously diffusing population. This heterogeneity suggests that CaMKII adopts different F-actin binding modes, which is most easily rationalized by multiple subunit contacts between the CaMKII dodecamer and the F-actin cytoskeleton that stabilize the initial weak (micromolar) monovalent interaction

    BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells

    Get PDF
    Genome maintenance by homologous recombination depends on coordinating many proteins in time and space to assemble at DNA break sites. To understand this process, we followed the mobility of BRCA2, a critical recombination mediator, in live cells at the single-molecule level using both single-particle tracking and fluorescence correlation spectroscopy. BRCA2-GFP and -YFP were compared to distinguish diffusion from fluorophore behavior. Diffusive behavior of fluorescent RAD51 and RAD54 was determined for comparison. All fluorescent proteins were expressed from endogenous loci. We found that nuclear BRCA2 existed in oligomeric clusters, and exhibited heterogeneous mobility. DNA damage increased BRCA2 transient binding, presumably including binding to damaged sites. Despite its very different size, RAD51 displayed mobility similar to BRCA2, which indicates physical interaction between these proteins both before and after induction of DNA damage. We propose that BRCA2-mediated sequestration of nuclear RAD51 serves to prevent inappropriate DNA interactions and that all RAD51 is delivered to DNA damage sites in association with BRCA2

    High resolution imaging reveals heterogeneity in chromatin states between cells that is not inherited through cell division

    Get PDF
    BACKGROUND: Genomes of eukaryotes exist as chromatin, and it is known that different chromatin states can influence gene regulation. Chromatin is not a static structure, but is known to be dynamic and vary between cells. In order to monitor the organisation of chromatin in live cells we have engineered fluorescent fusion proteins which recognize specific operator sequences to tag pairs of syntenic gene loci. The separation of these loci was then tracked in three dimensions over time using fluorescence microscopy. RESULTS: We established a work flow for measuring the distance between two fluorescently tagged, syntenic gene loci with a mean measurement error of 63Ā nm. In general, physical separation was observed to increase with increasing genomic separations. However, the extent to which chromatin is compressed varies for different genomic regions. No correlation was observed between compaction and the distribution of chromatin markers from genomic datasets or with contacts identified using capture based approaches. Variation in spatial separation was also observed within cells over time and between cells. Differences in the conformation of individual loci can persist for minutes in individual cells. Separation of reporter loci was found to be similar in related and unrelated daughter cell pairs. CONCLUSIONS: The directly observed physical separation of reporter loci in live cells is highly dynamic both over time and from cell to cell. However, consistent differences in separation are observed over some chromosomal regions that do not correlate with factors known to influence chromatin states. We conclude that as yet unidentified parameters influence chromatin configuration. We also find that while heterogeneity in chromatin states can be maintained for minutes between cells, it is not inherited through cell division. This may contribute to cell-to-cell transcriptional heterogeneity. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12860-016-0111-y) contains supplementary material, which is available to authorized users

    Studying Large Multi-Protein Complexes Using Single Molecule Localization Microscopy

    Get PDF
    Biology would not be where it is today without fluorescence microscopy. It is arguably one of the most commonly used tools in the biologists toolbox and it has helped scientists study the localization of cellular proteins and other small things for decades, but it is not without its limitations. Due to the diffraction limit, conventional fluorescence microscopy is limited to micrometer-range structures. Science has long relied upon electron microscopy and X-ray crystallography to study phenomena that occur below this limit. However, many of lifes processes occur between these two spatial domains. Super-resolution microscopy, the next stage of evolution of fluorescence microscopy, has the potential to bridge this gap between micro and nano. It combines superior resolutions of down to a few nanometers with the ability to view objects in their natural environments. It is the ideal tool for studying the large, multi-protein complexes that carry out most of lifes functions, but are too complex and fragile to put on an electron microscope or into a synchrotron. A form of super-resolution microscopy called SMLM Microscopy shows especially high promise in this regard. With its ability to detect individual molecules, it combines the high resolution needed for structural studies with the quantitative readout required for obtaining data on the stoichiometry of multi-protein complexes. This thesis describes new tools which expand the toolbox of SMLM with the specific aim of studying multi-protein complexes. First, the development of a novel fluorescent tagging system that is a mix of genetic tagging and immuno-staining. The system, termed BC2, consists of a short, genetically encodable peptide that is targeted by a nanobody (BC2 nanobody). The system brings several advantages. The small tag is not disruptive to the protein it is attached to and the small nanobody can get into tight spaces, making it an excellent tag for dense multi-protein structures. Next, several new variants of some commonly used green-to-red fluorescent proteins. The novel variants, which can be converted with a combination of blue and infrared light are especially useful for live-cell imaging. The developed fluorescent proteins can also be combined with photo-activatable fluorescent proteins to enable imaging of several targets with the same color protein. Finally, an application of the latter technique to study the multi-protein kinetochore complex and gain first glimpses into its spatial organization and the stoichiometry of its subunits

    Dynamic actin-mediated nano-scale clustering of CD44 regulates its meso-scale organization at the plasma membrane

    Get PDF
    Transmembrane adhesion receptors at the cell surface, such as CD44, are often equipped with modules to interact with the extracellular matrix (ECM) and the intracellular cytoskeletal machinery. CD44 has been recently shown to compartmentalize the membrane into domains by acting as membrane pickets, facilitating the function of signaling receptors. While spatial organization and diffusion studies of membrane proteins are usually conducted separately, here we combine observations of organization and diffusion by using high spatio-temporal resolution imaging on living cells to reveal a hierarchical organization of CD44. CD44 is present in a meso-scale meshwork pattern where it exhibits enhanced confinement and is enriched in nanoclusters of CD44 along its boundaries. This nanoclustering is orchestrated by the underlying cortical actin dynamics. Interaction with actin is mediated by specific segments of the intracellular domain. This influences the organization of the protein at the nano-scale, generating a selective requirement for formin over Arp2/3-based actin-nucleation machinery. The extracellular domain and its interaction with elements of ECM do not influence the meso-scale organization, but may serve to reposition the meshwork with respect to the ECM. Taken together, our results capture the hierarchical nature of CD44 organization at the cell surface, with active cytoskeleton-templated nanoclusters localized to a meso-scale meshwork pattern

    Loss-of-function of the ciliopathy protein Cc2d2a disorganizes the vesicle fusion machinery at the periciliary membrane and indirectly affects Rab8-trafficking in zebrafish photoreceptors

    Full text link
    Ciliopathies are human disorders caused by dysfunction of primary cilia, ubiquitous organelles involved in transduction of environmental signals such as light sensation in photoreceptors. Concentration of signal detection proteins such as opsins in the ciliary membrane is achieved by RabGTPase-regulated polarized vesicle trafficking and by a selective barrier at the ciliary base, the transition zone (TZ). Dysfunction of the TZ protein CC2D2A causes Joubert/Meckel syndromes in humans and loss of ciliary protein localization in animal models, including opsins in retinal photoreceptors. The link between the TZ and upstream vesicle trafficking has been little explored to date. Moreover, the role of the small GTPase Rab8 in opsin-carrier vesicle (OCV) trafficking has been recently questioned in a mouse model. Using correlative light and electron microscopy and live imaging in zebrafish photoreceptors, we provide the first live characterization of Rab8-mediated trafficking in photoreceptors in vivo. Our results support a possibly redundant role for both Rab8a/b paralogs in OCV trafficking, based on co-localization of Rab8 and opsins in vesicular structures, and joint movement of Rab8-tagged particles with opsin. We further investigate the role of the TZ protein Cc2d2a in Rab8-mediated trafficking using cc2d2a zebrafish mutants and identify a requirement for Cc2d2a in the latest step of OCV trafficking, namely vesicle fusion. Progressive accumulation of opsin-containing vesicles in the apical portion of photoreceptors lacking Cc2d2a is caused by disorganization of the vesicle fusion machinery at the periciliary membrane with mislocalization and loss of the t-SNAREs SNAP25 and Syntaxin3 and of the exocyst component Exoc4. We further observe secondary defects on upstream Rab8-trafficking with cytoplasmic accumulation of Rab8. Taken together, our results support participation of Rab8 in OCV trafficking and identify a novel role for the TZ protein Cc2d2a in fusion of incoming ciliary-directed vesicles, through organization of the vesicle fusion machinery at the periciliary membrane
    • ā€¦
    corecore