778 research outputs found

    Applications of Agent-Based Methods in Multi-Energy Systems—A Systematic Literature Review

    Get PDF
    The need for a greener and more sustainable energy system evokes a need for more extensive energy system transition research. The penetration of distributed energy resources and Internet of Things technologies facilitate energy system transition towards the next generation of energy system concepts. The next generation of energy system concepts include “integrated energy system”, “multi-energy system”, or “smart energy system”. These concepts reveal that future energy systems can integrate multiple energy carriers with autonomous intelligent decision making. There are noticeable trends in using the agent-based method in research of energy systems, including multi-energy system transition simulation with agent-based modeling (ABM) and multi-energy system management with multi-agent system (MAS) modeling. The need for a comprehensive review of the applications of the agent-based method motivates this review article. Thus, this article aims to systematically review the ABM and MAS applications in multi-energy systems with publications from 2007 to the end of 2021. The articles were sorted into MAS and ABM applications based on the details of agent implementations. MAS application papers in building energy systems, district energy systems, and regional energy systems are reviewed with regard to energy carriers, agent control architecture, optimization algorithms, and agent development environments. ABM application papers in behavior simulation and policy-making are reviewed with regard to the agent decision-making details and model objectives. In addition, the potential future research directions in reinforcement learning implementation and agent control synchronization are highlighted. The review shows that the agent-based method has great potential to contribute to energy transition studies with its plug-and-play ability and distributed decision-making process

    Traveling Salesman Problem

    Get PDF
    The idea behind TSP was conceived by Austrian mathematician Karl Menger in mid 1930s who invited the research community to consider a problem from the everyday life from a mathematical point of view. A traveling salesman has to visit exactly once each one of a list of m cities and then return to the home city. He knows the cost of traveling from any city i to any other city j. Thus, which is the tour of least possible cost the salesman can take? In this book the problem of finding algorithmic technique leading to good/optimal solutions for TSP (or for some other strictly related problems) is considered. TSP is a very attractive problem for the research community because it arises as a natural subproblem in many applications concerning the every day life. Indeed, each application, in which an optimal ordering of a number of items has to be chosen in a way that the total cost of a solution is determined by adding up the costs arising from two successively items, can be modelled as a TSP instance. Thus, studying TSP can never be considered as an abstract research with no real importance

    樹状突起ニューロン計算および差分進化アルゴリズムに関する研究

    Get PDF
    富山大学・富理工博甲第118号・陳瑋・2017/03/23富山大学201

    Volatile opinions and optimal control of vaccine awareness campaigns: chaotic behaviour of the Forward-Backward Sweep algorithm vs heuristic direct optimization

    Get PDF
    In modern societies the main sources of information are Internet-based social networks. Thus, the opinion of citizens on key topics, such as vaccines, is very volatile. Here, we explore the impact of volatility on the modelling of public response to vaccine awareness campaigns for favouring vaccine uptake. We apply a quasi-steady-state approximation to the model of spread and control of Susceptible-Infected-Removed diseases proposed in (d’Onofrio et al., PLoS One, 2012). This allows us to infer and analyze a new behavioural epidemiology model that is nonlinear in the control. Then, we investigate the efficient design of vaccine awareness campaigns by adopting optimal control theory. The resulting problem has important issues: (i) the integrand of its objective functional is non-convex; (ii) the application of forward-backward sweep (FBS) and gradient descent algorithms in some key cases does not work; (iii) analytical approaches provide continuous solutions that cannot rigorously be implemented since Public Health interventions cannot be fully flexible. Thus, on the one hand, we resort to direct optimization of the objective functional via heuristic stochastic optimization, in particular via particle swarm optimization and differential evolution algorithms. On the other hand, we investigate the non-convergence of the FBS algorithm with tools of the statistical theory of nonlinear chaotic time-series. Finally, since the direct optimization algorithms are stochastic, we provide a statistical assessment of the obtained solutions

    Applied Metaheuristic Computing

    Get PDF
    For decades, Applied Metaheuristic Computing (AMC) has been a prevailing optimization technique for tackling perplexing engineering and business problems, such as scheduling, routing, ordering, bin packing, assignment, facility layout planning, among others. This is partly because the classic exact methods are constrained with prior assumptions, and partly due to the heuristics being problem-dependent and lacking generalization. AMC, on the contrary, guides the course of low-level heuristics to search beyond the local optimality, which impairs the capability of traditional computation methods. This topic series has collected quality papers proposing cutting-edge methodology and innovative applications which drive the advances of AMC

    On testing global optimization algorithms for space trajectory design

    Get PDF
    In this paper we discuss the procedures to test a global search algorithm applied to a space trajectory design problem. Then, we present some performance indexes that can be used to evaluate the effectiveness of global optimization algorithms. The performance indexes are then compared highlighting the actual significance of each one of them. A number of global optimization algorithms are tested on four typical space trajectory design problems. From the results of the proposed testing procedure we infer for each pair algorithm-problem the relation between the heuristics implemented in the solution algorithm and the main characteristics of the problem under investigation. From this analysis we derive a novel interpretation of some evolutionary heuristics, based on dynamical system theory and we significantly improve the performance of one of the tested algorithms

    Multi-Criteria Performance Evaluation and Control in Power and Energy Systems

    Get PDF
    The role of intuition and human preferences are often overlooked in autonomous control of power and energy systems. However, the growing operational diversity of many systems such as microgrids, electric/hybrid-electric vehicles and maritime vessels has created a need for more flexible control and optimization methods. In order to develop such flexible control methods, the role of human decision makers and their desired performance metrics must be studied in power and energy systems. This dissertation investigates the concept of multi-criteria decision making as a gateway to integrate human decision makers and their opinions into complex mathematical control laws. There are two major steps this research takes to algorithmically integrate human preferences into control environments: MetaMetric (MM) performance benchmark: considering the interrelations of mathematical and psychological convergence, and the potential conflict of opinion between the control designer and end-user, a novel holistic performance benchmark, denoted as MM, is developed to evaluate control performance in real-time. MM uses sensor measurements and implicit human opinions to construct a unique criterion that benchmarks the system\u27s performance characteristics. MM decision support system (DSS): the concept of MM is incorporated into multi-objective evolutionary optimization algorithms as their DSS. The DSS\u27s role is to guide and sort the optimization decisions such that they reflect the best outcome desired by the human decision-maker and mathematical considerations. A diverse set of case studies including a ship power system, a terrestrial power system, and a vehicular traction system are used to validate the approaches proposed in this work. Additionally, the MM DSS is designed in a modular way such that it is not specific to any underlying evolutionary optimization algorithm

    A Survey of Evolutionary Continuous Dynamic Optimization Over Two Decades:Part B

    Get PDF
    Many real-world optimization problems are dynamic. The field of dynamic optimization deals with such problems where the search space changes over time. In this two-part paper, we present a comprehensive survey of the research in evolutionary dynamic optimization for single-objective unconstrained continuous problems over the last two decades. In Part A of this survey, we propose a new taxonomy for the components of dynamic optimization algorithms, namely, convergence detection, change detection, explicit archiving, diversity control, and population division and management. In comparison to the existing taxonomies, the proposed taxonomy covers some additional important components, such as convergence detection and computational resource allocation. Moreover, we significantly expand and improve the classifications of diversity control and multi-population methods, which are under-represented in the existing taxonomies. We then provide detailed technical descriptions and analysis of different components according to the suggested taxonomy. Part B of this survey provides an indepth analysis of the most commonly used benchmark problems, performance analysis methods, static optimization algorithms used as the optimization components in the dynamic optimization algorithms, and dynamic real-world applications. Finally, several opportunities for future work are pointed out
    corecore