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A Survey of Evolutionary Continuous Dynamic
Optimization Over Two Decades – Part B

Danial Yazdani, Member, IEEE, Ran Cheng, Member, IEEE, Donya Yazdani,
Jürgen Branke, Member, IEEE, Yaochu Jin, Fellow, IEEE, and Xin Yao, Fellow, IEEE,

Abstract—This paper presents the second part of a two-part
survey that reviews evolutionary dynamic optimization for single-
objective unconstrained continuous problems over the last two
decades. While in the first part we reviewed the components of
dynamic optimization algorithms, in this part, we present an in-
depth review of the most commonly used benchmark problems,
performance analysis methods, static optimization methods used
in the framework of dynamic optimization algorithms, and real-
world applications. Compared to the previous works, this paper
provides a new taxonomy for the benchmark problems used in the
field based on their baseline functions and dynamics. In addition,
this survey classifies the commonly used performance indicators
into fitness/error based and efficiency based ones. Different types
of plots used in the literature for analyzing the performance
and behavior of algorithms are also reviewed. Furthermore, the
static optimization algorithms which are modified and utilized
in the framework of dynamic optimization algorithms as the
optimization components are covered. We then comprehensively
review some real-world dynamic problems which are optimized
by evolutionary dynamic optimization methods. Finally, some
challenges and opportunities are pointed out for future directions.

Index Terms—Unconstrained continuous dynamic optimiza-
tion, Evolutionary algorithms, Dynamic benchmark problems,
Performance indicators, Continuous dynamic real-world prob-
lems, Future directions.

PB-I. INTRODUCTION

IN the first part of this survey [1], we provided a detailed
review of the components of dynamic optimization algo-

rithms (DOAs) developed for single-objective unconstrained
continuous dynamic optimization problems (DOPs). In Part
B, we comprehensively review:
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• DOP benchmarks,
• Performance analysis methods,
• Optimization components, and
• Real-world DOPs.

We then provide an in-depth discussion on the potential future
directions in the field.

A DOP benchmark is usually proposed as a package of
a baseline function that generates the landscape and some
dynamics that change the search space, e.g., by altering the
baseline function parameter values. Although dynamics and
baseline functions are usually not dependent on each other,
up to now, they have never been reviewed separately. Herein,
we provide a detailed review of the baseline functions and
dynamics of the DOP benchmarks separately. This poten-
tially helps the readers to pick desired combinations of a
baseline function and dynamics and to generate more diverse
DOP problem instances. Furthermore, we propose to classify
the baseline functions used in the DOP benchmarks into
basic static functions, moving peaks based functions, and
the composition of basic static functions. Among the above-
mentioned baseline functions, moving peaks based functions
are specifically designed for DOP benchmarks. The generated
landscapes by moving peaks baseline functions are constructed
by assembling several peaks. The number and also some other
attributes of these peaks, such as their locations and heights,
are controllable.

We then review the commonly used performance indicators
and plots that have been used for analyzing and comparing
the performance of DOAs. We classify DOP performance
indicators into fitness/error based and efficiency based ones.
The fitness/error based indicators measure the performance of
DOAs according to the obtained solutions’ fitness/error over
specific points of time (e.g., at the end of each environment).
On the other hand, the efficiency based indicators calculate
the efficiency of DOAs based on some specific aspects, such
as tracking efficiency according to the average distance to
optimum [2], and peak coverage efficiency based on the
number of discovered peaks [3].

Then, we review the static optimization algorithms (with
an emphasis on the evolutionary and swarm intelligence al-
gorithms) used as the optimization component in DOAs. This
survey then provides a comprehensive review of real-world
DOPs that have been solved by DOAs reviewed in the first
part of this survey.

Finally, we point out some remaining issues and limitations
of the field which cause a gap between academic research
and real-world applications. We also indicate some important
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topics in the area which have not received enough attention.
Thereafter, we suggest several important potential future di-
rections.

The organization of the rest of this paper is as follows.
The commonly used benchmark problems in the DOP liter-
ature are reviewed in Section (§) PB-II1. The performance
indicators and plots used for analyzing performance of DOAs
are reviewed in § PB-III. Static optimization algorithms used
as the optimization components in DOAs are reviewed in
§ PB-IV. § PB-V reviews real-world DOPs. § PB-VI provides
some potential future research directions. Finally, § PB-VII
concludes the second part of the survey paper.

PB-II. BENCHMARK PROBLEMS

To assess the effectiveness of DOAs, they are usually tested
on different generated problem instances by DOP bench-
marks. Selection of proper benchmark generators with user-
defined dynamics and landscape characteristics is essential for
examination of DOAs. In this survey, we review the DOP
benchmarks regarding their baseline functions which generate
landscapes, and their dynamics which control environmental
changes.

A. Baseline functions of DOP benchmarks

The baseline functions of the DOP benchmarks can be
classified into three groups:
• Basic static functions, such as Sphere, Ackley, Rastrigin,

Rosenbrock, and Griewank,
• Composition of basic static functions [4], [5], which are

used in the generalized dynamic benchmark generator
(GDBG) [6], and

• Moving peaks baseline functions which can generate
landscapes with a controllable number of peaks (com-
ponents). The attributes of each peak, such as location
and height, are configurable in these functions.

Table PB-I shows where these baseline functions are used
for DOAs performance assessment. As can be seen in this
table, moving peaks baseline functions are the most popular
ones and are used in more than 70% of the DOP literature.
The reason is that they are easy to understand/implement and
highly configurable/controllable.

In the rest of this subsection, we review the moving peaks
baseline functions. Note that the baseline functions of the basic
static functions and their compositions are out of the scope
of this survey since they are originally designed for static
optimization.

1) Moving peaks baseline functions: Generated landscapes
by moving peaks baseline functions are constructed by as-
sembling several components. A max(·) function is normally
used to define the basin of attraction of components. Every
component in moving peaks baseline functions usually con-
tains a peak whose attributes such as height, and location
change over time. The moving peaks benchmark (MPB) [28]
and DF1 [124] are the first DOP benchmarks that use moving

1Labels of all sections, equations, tables, and figures in Part A and Part B
of this survey are prefixed with PA and PB, respectively.

TABLE PB-I
BASELINE FUNCTIONS IN DOP LITERATURE.

Baseline function References

Basic static baseline functionsa [2], [7]–[27]

Moving peaks baselinesb [3], [15], [18], [23], [25]–[173]

Composition of basic static functionsc [6], [75], [97], [106], [111], [114], [115],
[146]–[148], [150]–[172], [174]

Othersd [24], [175]–[177]
a Basic static functions include Sphere, Ackley, Rastrigin, Rosenbrock, and Griewank.
b Including all baseline functions that generate a controllable number of peaks whose

locations can change over time.
c Dynamic composition benchmark generator (CDBG) [6].
d Generated landscapes in these benchmarks have a controllable number of peaks (or

valleys); however, their positions cannot change.

peaks baseline functions. The baseline function of MPB is
defined as below:

f (t)(~x) = max
i∈{1,...,m}

h
(t)
i

1 + w
(t)
i

∑d
j=1

(
xj − c (t)

i,j

)2 , (PB-1)

where m is the number of peaks, xj is the jth dimension of
a solution (~x) in a d-dimensional problem space, c (t)

i,j is the
jth dimension of the center of ith peak in the tth environment
(~c (t)
i ) , and h(t)i and w(t)

i are the height and width of the ith
peak in the tth environment, respectively.

DF1 uses a baseline function that generates landscapes with
conical peaks:

f (t)(~x) = max
i∈{1,...,m}

{
h
(t)
i − w

(t)
i

∥∥∥~x− ~c (t)
i

∥∥∥} . (PB-2)

(PB-2) is also used in the second version of MPB, which is
known as Scenario 2 in the literature [178].

In [133], (PB-2) is modified by adding a threshold β to
determine the minimum fitness value of the problem:

f (t)(~x) = max

{
β, max

i∈{1,...,m}

{
h
(t)
i − w

(t)
i

∥∥∥~x− ~c (t)
i

∥∥∥}} .
(PB-3)

In this baseline function, β is used to create plateau regions
whose fitness values are equal to β.

Gaussian peaks benchmark (GPB) [132] uses another mov-
ing peaks baseline function that is capable of generating
Gaussian peaks:

f (t)(~x) = max
i∈{1,...,m}

h(t)i exp

−
∥∥∥~x− ~c (t)

i

∥∥∥2
2
(
w

(t)
i

)2

 .

(PB-4)

In [6], a dynamic rotation peak benchmark generator
(DRPBG) is proposed whose baseline function is:

f (t)(~x) = max
i∈{1,...,m}

h
(t)
i

1 + w
(t)
i

√∑d
j=1

(~xj−~c (t)
i,j )2

d

. (PB-5)

This baseline function is used as one of the scenarios (F1) of
GDBG and has been frequently used in the DOP literature.
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Generalized moving peaks benchmark (GMPB) [173] is
another benchmark generator whose baseline function gen-
erates landscapes that are constructed by assembling several
components. Unlike other moving peaks baseline functions,
generated components by GMPB’s baseline function can vary
from smooth to highly irregular, unimodal to multimodal,
and symmetric to asymmetric. They also can have circular
contour lines or can be highly ill-conditioned. GMPB uses the
following baseline function:

f (t)(~x) = max
i∈{1,...,m}

{
h
(t)
i −

√
T
((

~x− ~c (t)
i

)>
R

(t)
i

>
, i

)
W

(t)
i T

(
R

(t)
i

(
~x− ~c (t)

i

)
, i
)}

,

(PB-6)

where T(y, i) : Rd 7→ Rd is calculated as:

T (yj , i) =


exp

(
log(yj) + τ

(t)
i

(
sin (η

(t)
i,1 log(yj)) + sin (η

(t)
i,2 log(yj))

))
if yj > 0

0 if yj = 0

− exp
(

log(|yj |) + τ
(t)
i

(
sin (η

(t)
i,3 log(|yj |)) + sin (η

(t)
i,4 log(|yj |))

))
if yj < 0

(PB-7)

where R
(t)
i is the rotation matrix of ith component in tth

environment, W
(t)
i is a d × d diagonal matrix whose diag-

onal elements show the width of ith component in different
dimensions, yj is jth dimension of y, and η

(t)
i,k∈{1,2,3,4} and

τ
(t)
i are irregularity parameters of the ith component. Similar

to the other moving peaks baseline functions, location, height,
and width of each component are controllable in GMPB. In
addition, components of GMPB can have different width val-
ues in different dimensions; therefore, the condition number2

of components is controllable. Using a rotation matrix for
each component, the degree of variable interactions in each
component is adjustable. Also, the irregularity degree and
modality can be controlled using η(t)k∈{1,2,3,4} and τ (t). Finally,

by setting different values for η(t)k∈{1,2,3,4} the symmetry of the
components can be decided (identical values for all four ηk
generate symmetric components).

Li et al. propose Free Peaks benchmark (FPs) [179], which
generates landscapes containing multiple moving peaks. FPs
divides the landscape by hypercubes, which determine the
basin of attractions of peaks. This property of FPs is dif-
ferent from other moving peaks baseline functions that use
max(·) function to determine the basin of attractions. In
each hypercube, there exists one peak whose boundaries are
limited by this hypercube. The position of a component in a
hypercube, and also hypercube’s boundaries are controllable.
Several single peak baseline functions, such as the conical
peak, are suggested in [179] to be used in each hypercube.

All moving peaks baseline functions are scalable. On the
one hand, if the number of peaks is set to one, the gener-
ated landscape by moving peaks baseline functions is fully
separable [145]. On the other hand, landscapes with more
than one peak are fully non-separable [180]. Consequently,
they are not capable of producing modular (e.g., partially
separable) problem instances, which makes them unsuited

2The ratio of the largest width value of a component to its smallest value
indicates its condition number [173]. If a component’s width value is stretched
in one axis’s direction more than the other axes, then, the component is ill-
conditioned.

for generating large-scale problems [181]. To address this
limitation, some works use composition approaches to generate
modular problems. High-dimensional MPB (HDMPB) [144],
composition MPB (CMPB) [145], and GMPB [173] generate
modular problem instances by summing multiple subfunctions.
In HDMPB and CMPB, the fitness function is constructed
by summing several (PB-2) as subfunctions, while GMPB
uses (PB-6) to do the same. In CMPB and GMPB, the
parameters of subfunctions, such as the number of peaks
and dimensions, can be different, which results in generating
heterogeneous modular problem instances. In addition, in
CMPB and GMPB, each subfunction is multiplied to a weight
parameter to generate imbalance patterns. A consequence of
composing several moving peaks baseline functions is an
exponential growth in the number of peaks [145], [173],
[180]. The number of peaks in the landscape of a composition
function can be as large as the product of the numbers of peaks
in all subfunctions.

To highlight the differences of landscapes generated by
different moving peaks baseline functions, we show some
example landscapes created by each baseline function in Fig-
ures PB-1 and PB-2. Figure PB-1 shows generated landscapes
by (PB-1), (PB-2), (PB-3), (PB-4), and (PB-5) with five peaks
(i.e., components) and identical parameter values for height,
and width values. The search range (i.e., variable domains) for
(PB-2), (PB-3), and (PB-4) is set to [−50, 50], and is set to
[−5, 5] for (PB-1) and (PB-5). We used the same random seed
numbers to generate peak positions in all baseline functions
according to their search ranges. By looking at Figure PB-1
and considering the baseline formulas, we make the following
observations:

• In all problems, the optimum fitness value is equal to
the largest height, and the optimum is positioned in the
center of the peak with the largest height.

• Fitness values of all positions in (PB-1), (PB-4), and
(PB-5) are greater than zero. (PB-2) generates landscapes
that usually contain areas with negative fitness values.
Also, the minimum fitness value in the generated land-
scapes by (PB-3) is equal to β.

• The gradient in the generated flat looking areas by
(PB-1), (PB-4), and (PB-5), is non-zero. Therefore,
DOAs do not face the challenges posed by plateau
areas in the aforementioned landscapes. However, (PB-3)
generates plateau areas which are very challenging for
DOAs. Such plateaus can trap individuals.

• Peaks generated by (PB-1) and (PB-5) are much narrower
than those generated by others using the same width
values. Although we have shrunk the search range to
[−5, 5] in the generated landscapes by these two baseline
functions, their peaks still remain much narrower than
those of others.

• Exploitation and tracking in the landscapes generated
by (PB-1) and (PB-5) (with the same width values) are
relatively more challenging for DOAs as the areas around
the local optima are very sharp and even close positions to
the optimum can have large differences in fitness values.

Figure PB-2 depicts some sample landscapes that are gen-
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(a) A generated landscape by (PB-1).
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(b) Contour plot of the landscape (a).

(c) A generated landscape by (PB-2).
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(d) Contour plot of the landscape (c).

(e) A generated landscape by (PB-3).
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(f) Contour plot of the landscape (e).

(g) A generated landscape by
(PB-4).
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(h) Contour plot of the landscape (g).

(i) A generated landscape by (PB-5).
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(j) Contour plot of the landscape (i).

Fig. PB-1. Generated landscapes with five peaks by the baseline functions
(PB-1), (PB-2), (PB-3) with β = 0, (PB-4), and (PB-5). Each landscape’s
contour plot in the left column is shown in the same row of the right column.
The height (uniformly randomized in [30, 70]), width (uniformly randomized
in [1, 12]), and location of all peak center positions (uniformly randomized
with the same random seed numbers in [−50, 50] for (PB-2), (PB-3), (PB-4)
and in [−5, 5] for (PB-1) and (PB-5)) are similar in all landscapes.

erated by GMPB, FPs, and CMPB/HDMPB. Figure PB-2(a)
shows a generated landscape by GMPB’s baseline function
(PB-6), which is constructed by assembling three compo-
nents3. Unlike all illustrated landscapes in Figure PB-1, this
landscape is highly multimodal. The global optimum is posi-
tioned at the center of the component with the largest height

3For GMPB, we cannot call them peak as they are highly multimodal and
contain many smaller peaks in their basin of attraction.

(a) A generated landscape by GMPB.
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(b) Contour plot of the landscape (a).

(c) A generated landscape by FPs.
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(d) Contour plot of the landscape (c).

(e) A generated landscape by CMPB.

-50 -40 -30 -20 -10 0 10 20 30 40 50

x
1

-50

-40

-30

-20

-10

0

10

20

30

40

50

x
2

(f) Contour plot of the landscape (e).

Fig. PB-2. Generated landscapes by GMPB [173], FPs [179], and
CMPB/HDMPB [144], [145]. The contour plot of each landscape in the
left column is shown in the right column. In (a), a generated landscape by
GMPB (PB-6) with three highly irregular, rotated, ill-conditioned (two of
components), and asymmetric components is shown. (c) shows a generated
landscape by FPs with three conical peaks whose basin of attractions are
determined by their hypercubes. Finally, (e) illustrates a generated landscape
by CMPB/HDMPB, which is constructed by composing two 1-dimensional
landscapes with two and three peaks which are generated by (PB-2).

value. All three generated components by GMPB are irregular
and asymmetric. Moreover, two of the components are ill-
conditioned and rotated. Note that in GMPB, we can control
the intensity of different characteristics of the components, and
in the simplest form, the components will be conical similar
to the components created by (PB-2).

Figure PB-2(c) illustrates how the landscapes divided by
hypercubes in FPs are different from those of other moving
peaks baseline functions with max(·) function. As can be
seen, there are sharp drops alongside the hypercube bound-
aries. Finally, Figure PB-2(e) shows a landscape generated by
CMPB/HDMPB which is constructed by composing two 1-
dimensional subfunctions with two and three conical peaks.

B. Dynamics in DOP benchmarks

In this subsection, we review the frequently used dynamics
in DOP benchmarks. Each dynamic generates environmental
changes with different characteristics. They control the sever-
ity of environmental changes (from gradual to abrupt) and their
patterns (cyclic, reappearing, random, chaotic, and linear).

One of the first introduced dynamics is switching between
landscapes [175]. By switching between a predefined set of
landscapes, the landscapes will reappear over time. Pendulum
MPB (PMPB) [138] is a DOP benchmark which uses this

Authorized licensed use limited to: Newcastle University. Downloaded on June 19,2021 at 05:14:08 UTC from IEEE Xplore.  Restrictions apply. 



1089-778X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3060012, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 5

feature. PMPB works based on a pendulum length parameter
pl and a direction parameter dir. It first generates pl environ-
ments

[
f (1), f (2), · · · , f (pl)

]
. Then, it archives the parameters

of these environments for future reappearances. When the
moments of changes come, an environment is retrieved from
the archive according to the pendulum movement over the
list. For example, given that three environments {A,B,C}
are listed in the archive, their reappearance order will be
{A,B,C,B,A,B,C,B, · · · }.

Another dynamic used in the moving peaks based bench-
marks is peak shape change. This dynamic affects each peak’s
shape and can change the fitness values of all solutions on the
peak’s basin of attraction except the peak summit. FPs [179]
uses this dynamic to change the shape of peaks in hypercubes.
In this benchmark, a predefined set of n basic functions
F = {f1, f2, · · · , fn} are defined, which can be used for gen-
erating each peak in each environment. In each environmental
change, a basic function from F is randomly chosen to define
each peak’s shape in each hypercube. Note that this dynamic
only switches the basic function of a hypercube and it does
not affect other parameters such as peak center positions or
hypercube boundaries. Similarly, this dynamic can be used
for other moving peaks baseline functions, which results in a
landscape with heterogeneous peaks in terms of shape.

Another commonly used dynamic is the landscape shifting.
Angeline first introduced the idea of shifting the landscape of
a static function to generate environmental changes in [16].
In this work, three types of dynamics, called linear, random,
and circular, are applied to a 3-dimensional sphere function
to create environmental changes by shifting the landscape.
Given a severity parameter φ̃, these dynamics are formulated
as below:

φ
(t+1)
i = φ

(t)
i + φ̃, (PB-8)

φ
(t+1)
i = φ

(t)
i + φ̃N (0, 1), (PB-9)

φ
(t+1)
i =


φ
(t)
i + φ̃ sin

2πt

25
i = 1 and 3,

φ
(t)
i + φ̃ cos

2πt

25
i = 2,

(PB-10)

where φ(t)i is the offset of the ith dimension in tth environment
for i ∈ {1, 2, 3}, φ̃ is the shift severity, and N (0, 1) is a
random number drawn from a normal distribution with mean
0 and variance 1. By setting φ̃ from small to large values,
dynamics generate gradual to abrupt environmental changes.
Although these dynamics have been used to shift the landscape
in [16], they can be used for changing other environment’s
control parameters such as the width and height of peaks.
Note that linear and circular dynamics generate predictable
patterns [182]. The idea of shifting the search space is also
expanded to the other static benchmark functions with higher
dimensions [20]. As shown in Table PB-I, DOP benchmarks
which shift the generated landscapes by basic static functions
have been widely used in the literature.

DF1 [124] and MPB [28] are among the first proposed
moving peaks baseline functions. The width, height, and center
of each peak in these two benchmarks can change using

some dynamics. DF1 uses a logistic function for changing
the parameters of peaks. In MPB, inspired from (PB-9), the
height and width of all peaks change from one environment
to the next using the following equations:

h
(t+1)
i = h

(t)
i + h̃N (0, 1), (PB-11)

w
(t+1)
i = w

(t)
i + w̃N (0, 1), (PB-12)

where h̃ and w̃ are the severity values of height and width,
respectively. Moreover, a dynamic is presented for relocating
the peaks’ center positions in MPB as follows:

~c
(t+1)
i = ~c

(t)
i + ~v

(t+1)
i , (PB-13)

~v
(t+1)
i = s̃ · (1− λ) · ~u+ λ · ~v (t)

i∥∥∥(1− λ) · ~u+ λ · ~v (t)
i

∥∥∥ , (PB-14)

where s̃ is the severity shift, ~u is a vector of uniformly
distributed numbers in [−0.5, 0.5], and λ ∈ (0, 1) is the
correlation coefficient. A choice of λ = 1 implies that the
relocation of each peak’s center position is fully correlated
with its previous relocation (i.e., it moves in the same direc-
tion) whereas it is uncorrelated if λ = 0 (i.e., it moves toward a
random direction in each environmental change). For (PB-14),
‖~v (t+1)
i ‖ is always equal to s̃ [28]. Severity of environmental

changes can be configured by setting h̃, w̃, and s̃. The larger
the values of these parameters, the more severe environmental
changes will be.

Six different types of dynamics are used in GDBG [183]:
small step, large step, random, chaotic, recurrent, and recur-
rent with noise. These dynamics are formulated respectively
as follows:

∆φ = γrφ̃‖φ‖, (PB-15)

∆φ = φ̃‖φ‖(γsign(r) + r(γmax − γ)), (PB-16)

∆φ = φ̃N (0, 1), (PB-17)

φ(t+1) = Aφ(t)
1− φ(t)

‖φ‖
, (PB-18)

φ(t+1) = φmin +
‖φ‖
2

(sin(
2π

p
t+ ϕ) + 1), (PB-19)

φ(t+1) = φmin +
‖φ‖
2

(sin(
2π

p
t+ ϕ) + 1) + ñN (0, 1),

(PB-20)

where ∆φ is the deviation from the current control parameter
values, ‖φ‖ is the change range of φ, φ(t) is the offset in
tth environment, φ̃ ∈ (0, 1) is the change severity of φ, φmin

is the minimum value of φ, ñ ∈ (0, 1) is the noise severity,
γ, γmax ∈ (0, 1) and A are constant values, r ∈ (−1, 1) is
a random number drawn from a uniform distribution, p is
the period number, and ϕ is the initial phase. It is worth
mentioning that the random dynamic in (PB-17) is similar
to the ones in (PB-9), (PB-11), and (PB-12). Moreover, the
logistic function used for chaotic dynamic in (PB-18) is
similar to the one used in DF1. GDBG [183] uses the dynamics
defined in (PB-15) to (PB-20) for two groups of baseline
functions: DRPBG and CDBG. In CDBG, the position and
fitness offsets of each subfunction, which is a basic static
function, are changed using GDBG’s dynamics. In DRPBG,
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GDBG’s dynamics are used to change the width and height
of peaks. Furthermore, the peaks’ center positions in DRPBG
change using rotation matrices introduced in [184].

In [183], a dynamic is proposed to change the problem
dimensionality. This dynamic can also be used in other DOP
benchmarks to change their number of dimensions (i.e., num-
ber of variables). However, it should be mentioned that in
most existing DOP benchmarks, by adding or removing a
dimension, the optimum position in the old dimensions (as-
suming there is no other type of change) remains unchanged.
Consequently, using this dynamic for reducing the number
of dimensions does not pose any specific challenge in most
existing DOP benchmarks. On the other hand, by increasing
the number of dimensions, the DOAs only need to optimize
the newly added dimensions (assuming that the previous global
optimum was discovered).

In [133], a control parameter is used to determine the
percentage of peaks to change at each environmental change
(peaks are chosen randomly with uniform distribution). This
process makes the change detection more challenging for some
change detection components (see §PA-III-B) as only some
random parts of the environment change [134].

A dynamic is introduced in [142] that changes the number
of peaks over time. Appearance of a new peak in the landscape
can be challenging for change detection components (see
§PA-III-B) since it usually causes a locally environmental
change. This can be even more challenging if this new peak
contains the global optimum.

A general framework for inducing artificial changes (IAC)
in optimization problems is proposed in [185]. IAC uses
different dynamics including 1) shift, 2) rotation, 3) decision
variables permutation, and 4) duplication based dynamics
where a predefined number of decision variables are randomly
copied to other positions. These dynamics can be applied
to any landscape to generate local and global environmental
changes.

C. Discussion on DOP benchmarks

In this section, we provided a review of the DOP bench-
marks in the field based on their baseline functions and
dynamics. As shown in Table PB-I, moving peaks baseline
functions are the most commonly used benchmarks in the DOP
literature. We have comprehensively reviewed moving peaks
baseline functions in § PB-II-A1. Although the corresponding
references of moving peaks baseline functions use a limited
number of dynamics, a variety of dynamics that were reviewed
in § PB-II-B can be applied to them to provide more diverse
types of environmental changes. Table PB-II lists different
DOP benchmarks that use moving peaks baseline functions
with different types of dynamics. This table makes it easier for
readers to find the works that use DOP benchmarks (moving
peaks) with some specific desired characteristics.

Among all DOP benchmarks, the state-of-the-art
GMPB [173] is the most configurable benchmark problem.
GMPB generates modular problem instances, i.e., the
instances which are fully-separable, partially-separable, and
not-separable, where the former two can exhibit heterogeneity

TABLE PB-II
DOP BENCHMARKS THAT USE DIFFERENT MOVING PEAKS BASELINE

FUNCTIONS WITH DIFFERENT TYPES OF DYNAMICS, AND THEIR
CORRESPONDING REFERENCES.

Version References

Moving peaks benchmark (MPB)a [15], [18], [23], [25]–[28],
[30]–[64], [67]–[123], [155],
[156], [166]

DF1b [3], [81], [124]–[130]

Moving valleys benchmark (MVB)c [131]

Gaussian peaks benchmark (GPB) [15], [132]

MPBs with local environmental changesd [133], [134]

MPBs with cyclic and pendulum changese [135]–[138]

Multimodal MPBf [139]

MPBs with varying number of peaks [140]–[143]

MPBs whose peaks have different change severityg [186]

Constrained MPBsh [187], [188]

Modular MPBsi [144], [145], [173]

DRPBGj [6], [75], [97], [106], [111],
[114], [115], [146]–[148],
[150]–[172], [174]

Free peaksk [179]

Generalized MPBl [173]
a Including Scenarios 1 and 2 of MPB.
b DF1 uses the same baseline function as MPB’s Scenario 2, but it uses chaotic dynamics.
c A minimization version of MPB with spherical valleys.
d A portion of peaks are involved in the environmental changes, which results in

generating local changes, which are more challenging to detect.
e The optima reapper in their previous locations, making these benchmark problems

suitable for testing explicit memory/prediction-based methods [28].
f Suitable for multimodal optimization where there exist multiple global optima.
g Suitable for robust optimization over time (ROOT) [189]. Each peak has its own shift,

height, and width severity values which result in generating peaks with different levels
of robustness.

h Using two moving peaks baseline functions (one as the objective function and the
other one as constraint), these benchmark suites generate constrained problems with
multiple moving disjointed feasible regions.

i These problems are suitable to generate large-scale DOPs.
j Using GDBG’s [6] dynamics to change height and width of peaks, and rotation

transforms [184] to change peaks’ locations.
k In Free peaks, the landscape is divided by hypercubes which each contains a peak.
l Generalized MPB is capable of generating modular problem instances whose com-

ponents have a variety of features including different levels of variable interaction,
ill-conditioning, irregularity, and symmetry.

and imbalance properties. Such features make GMPB suitable
for generating low-dimensional to large-scale problem
instances. In addition, generated components by GMPB can
range from smooth, unimodal, symmetric, separable, and
with circular contour lines to highly irregular, multimodal,
asymmetric, fully non-separable, and ill-conditioned. Thus,
GMPB poses new problem characteristics that have not been
captured in other DOP benchmarks. The empirical studies
in [173] indicate that the problem instances generated by
GMPB are quite challenging for the existing DOAs.

In addition to the baseline function and dynamic(s) of
a DOP, change severity (i.e., spatial severity) and change
frequency (i.e., temporal severity) are other two important
factors that determine the characteristics and difficulty of a
DOP. As can be seen in the most of the dynamics in § PB-II-B,
there is a severity parameter that controls the change severity.
Some examples of such parameters are φ̃ in some Angelin’s
and GDBG’s dynamics and s̃ in MPB. The larger the values
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of these severity parameters, the more severe environmental
changes will be. These parameters can also be set to have
different values for different peaks to generate heterogeneous
environmental change severity across the landscape [186]. On
the other hand, the change frequency determines when the
environmental changes should happen by applying dynamics
to the environmental parameters. In DOP benchmarks, the
change frequency parameter ϑ determines the number of
fitness evaluations in each environment, i.e., when a DOA
evaluates ϑ solutions, an environmental change will happen.
Consequently, smaller values of ϑ result in greater change
frequency/temporal severity, and vice versa. DOPs with higher
change frequencies (i.e., smaller values of ϑ) are challenging
due to the limited available computational resources between
environmental changes.

By specifying different values for the parameters relevant
to change severity and frequency, we can generate problem
instances with different characteristics (see § PA-II), such as
progressive, abrupt, and chaotic DOPs [95].

PB-III. PERFORMANCE ANALYSIS METHODS

Measuring the performance of DOAs is crucial in their
development. By using performance analysis methods, re-
searchers are able to assess the effectiveness of DOAs, an-
alyze their behavior in different situations, and compare their
performance to the existing methods from different aspects.
In the DOP literature, the performance of a DOA is usually
analyzed using plots and performance indicators. The most
commonly used plots demonstrate the convergence behavior
of DOAs and the quality of the obtained solutions over time
in terms of fitness or error. The performance indicators, on
the other hand, show the efficiency of DOAs according to
some specific criteria such as average error/fitness of the best
found solutions over some predefined points of time. In the
following of this section, we provide detailed descriptions of
the well-known performance indicators and plots in the field.

A. Performance indicators

We classify the DOP performance indicators into two
classes: fitness/error based and efficiency based performance
indicators. The fitness/error based group includes indicators
that measure the performance of DOAs according to the
fitness/error of the obtained solutions. The efficiency based
indicators, on the other hand, calculate the efficiency of
DOAs based on some specific aspects, e.g., tracking efficiency
according to the average distance to optimum [2], and peak
coverage efficiency according to the number of discovered
peaks [3].

1) Fitness/error based performance indicators: If the infor-
mation of the global optimum in each environment is available,
then the error of solutions can be calculated. Although in the
real-world applications the information of the global optimum
is not available, this information is accessible in most DOP
benchmarks.

One performance indicator that needs the information of
the global optimum is offline-error [178] (EO). It is the most
commonly used performance indicator in the literature. This

approach calculates the average error of the best found position
over all fitness evaluations using the following equation:

EO =
1

Tϑ

T∑
t=1

ϑ∑
c=1

(
f (t)

(
~x?(t)

)
− f (t)

(
~x∗((t−1)ϑ+c)

))
,

(PB-21)

where ~x?(t) is the global optimum position at the tth envi-
ronment, T is the number of environments, ϑ is the change
frequency, c is the fitness evaluation counter for each en-
vironment, and ~x∗((t−1)ϑ+c) is the best found position at
the cth fitness evaluation in the tth environment. In some
works, a different version of the offline-error is used, where
the errors over all iterations are considered instead of errors
over all fitness evaluations. Since this version of the offline-
error works based on iterations, it is not usually suitable for
comparing the performance of DOAs whose optimization com-
ponents, resource allocation methods, and parameter settings
are different. In such circumstances, the number of iterations
that algorithms run in each environment can be considerably
different. Consequently, using an iteration based offline-error,
we cannot have a fair comparison in many cases.
EBBC [29] is another fitness/error based performance indi-

cator that only considers the last error before each environ-
mental change (i.e., at the end of each environment):

EBBC =
1

T

T∑
t=1

(
f (t)

(
~x?(t)

)
− f (t)

(
~x∗(t)

))
, (PB-22)

where ~x∗(t) is the best found position in tth environment which
is fetched at the end of the environment. However, using the
quality of solutions at the end of environments is not helpful in
realistic circumstances. Indeed, what matters is the quality of
solutions in each environment at the deployment time, which is
when a new solution is fetched to be deployed/implemented.
In many real-world DOPs, DOAs need to find a better solution
after each environmental change according to a deadline that
is defined based on the system tolerance, which is denoted
as quick recovery [190]. To address the aforementioned short-
coming of EBBC, the point of fetching the best found position
is suggested to be the time of deployment of a new solution
instead of the end of environments [180]:

EBBD =
1

T

T∑
t=1

(
f (t)

(
~x?(t)

)
− f (t)

(
~x∗(t−1)∗ϑ+η

))
,

(PB-23)

where η shows the deployment time of the new solution after
each environmental change, and ~x∗(t−1)∗ϑ+η is the the best
found position after η fitness evaluations since the beginning
of the tth environment.

Up until now, all the described performance indicators
needed information about the position and fitness of the global
optimum which is unsuitable for real-world DOPs. Offline-
performance (PO) [28], on the contrary, does not need such
information. This indicator uses the average fitness of the best
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found position over all fitness evaluations which is calculated
by:

PO =
1

Tϑ

T∑
t=1

ϑ∑
c=1

f (t)
(
~x∗((t−1)ϑ+c)

)
. (PB-24)

Unlike the error based performance indicators whose ideal
values are zero (i.e., no error), PO is dependent on the fitness
values of the global optimum in different environments which
makes it unsuitable for fair comparisons between different
algorithms. For example, an algorithm with zero error in
an environment whose optimum value is 40, is considered
worse than an algorithm with an error of 5 in an environment
whose optimum value is 50. To have a fair comparison among
algorithms using this performance indicator, the environmental
parameters of the problem (e.g., heights, widths, and locations
of peaks in moving peaks baseline functions) in all environ-
ments must be identical for all algorithms.

Other fitness/error based performance indicators include
collective mean fitness [191], average local errors [128], and
accuracy [192]. While the collective mean fitness calculates
the average of the best found solution’s fitness value over all
iterations in all runs, the average local errors calculates an
average error according to the peak coverage by DOAs for
all peaks. Accuracy performance indicator, shown by EA is
calculated by:

EA =
1

Tϑ

T∑
t=1

ϑ∑
c=1

f (t)
(
~x∗(t−1)∗ϑ+c

)
− f (t)min

f
(t)
max − f (t)min

, (PB-25)

where f (t)min and f (t)max are the fitness of the worst and the best
positions at the tth environment, respectively, T is the number
of environments, ϑ is the change frequency, c is the fitness
evaluation counter for each environment, and ~x∗((t−1)ϑ+c) is
the best found position at the cth fitness evaluation in the tth
environment. As can be seen, to calculate EA, the fitness value
of the worst position in each environment must be known,
which is not available even in most artificial DOP benchmark
generators. In [122], an accuracy measure is proposed that
does not use the fitness value of the worst position in each
environment.

2) Efficiency based performance indicators: Among the
existing efficiency based performance indicators, the distance
based ones are the most commonly used. Distance to optimum
(DO) based performance indicators work according to the
distance between the closest found solution to the global
optimum. Note that, the distance can be calculated by L2-
norm [2] (i.e., Euclidean distance) or infinity-norm [27]. To
use these performance indicators, the optimum position must
be known. DO can be calculated as the average distance
between the closest found position to the global optimum
over all fitness evaluations, iterations, or at the end of each
environment [129]. DO that measures the tracking efficiency
of DOAs over all fitness evaluations is formulated as:

DO =
1

Tϑ

T∑
t=1

ϑ∑
c=1

∥∥∥~x?(t) − ~x◦((t−1)ϑ+c)∥∥∥ , (PB-26)

where ~x◦((t−1)ϑ+c) is the closest found position to the global
optimum at the cth fitness evaluation in the tth environment.

It is shown in [66] that there is no relation between DO values
and fitness/error based performance indicators (e.g., EO and
EBBC). For instance, consider the case where a solution is
fit, however, it resides on a peak that is far away from the
global optimum. Although this solution is promising based
on fitness/error based performance indicators, it is considered
undesirable when DO is used due to its long distance to the
global optimum. Note that while DO works based on the
closest found solution to the optimum, most of DOAs work
based on fitness. Hence, analyzing the behavior of these DOAs
using such an indicator may not be accurate.

In [7], reaching a predefined distance to the optimum is used
to evaluate the performance of DOAs. Besides, the average
number of iterations needed to reach a predefined error after
each environmental change is used as the performance indi-
cator in [10]. In [122], a fitness adaptation speed measure is
used that determines how quickly a DOA can reach its highest
performance in each environment. Moreover, to measure the
efficiency of DOAs in locating and covering peaks, a peak
coverage measure is proposed in [193], which counts the
number of located and covered peaks by DOAs. Similarly,
a peak coverage rate is used in [3].

B. Plots

Plots of errors and fitness values are widely used in the
DOP literature to facilitate analyzing and comparing the per-
formance of DOAs. Figure PB-3 shows four commonly used
types of plots, called current error, current performance, offline
error, and offline performance. To draw the current error and
offline error plots, we need to know the fitness value of the
global optimum in each environment. The current performance
plot shows the fitness value of the best found position at each
fitness evaluation. Therefore, it illustrates the convergence
behavior of DOAs in each environment, and also shows the
fitness drop after each environmental change. To draw this
plot, the information of the global optimum is not needed,
which makes it suitable for more realistic circumstances where
this information is not available. However, since the value of
the optimum in each environment is unknown, the premature
convergence cannot be recognized from such a plot. On the
other hand, offline performance plot shows the value of offline
performance (PO) at each fitness evaluation, which is the
average value of all previous current performance values.

Unlike current and offline performance plots that do not
need the information of the global optimum, illustrating cur-
rent and offline error plots need this information. Therefore,
the global optimum value must be known in each environment,
which makes current and offline error plots unsuitable for the
situation where this information is not available, including
real-world problems. Current error plot shows the error of the
best found position at each fitness evaluation. This plot illus-
trates most of the information that current performance plot
provides. In addition, the capability of algorithms in finding
the global optimum can be observed from the current error
plots. Offline error plot demonstrates the offline error over all
fitness evaluations whose value at each fitness evaluation is
the mean value of the previous current error values.
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Fig. PB-3. An example of four commonly used plots in the DOP literature.
These plots are obtained by FTmPSO [78] on MPB with the default settings
of Scenario 2 and 10 environments [178]. The plots are obtained by averaging
the results of 31 independent runs.
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Fig. PB-4. Usage percentages of different performance indicators in the
literature.

C. Discussion on performance analysis methods

Table PB-III lists the performance analysis methods used
for comparison and analysis of DOAs together with the corre-
sponding references that use them. As shown in this table, the
majority of the DOP literature only use performance indicators
to analyze the performance of DOAs. Figure PB-4 illustrates
the usage percentages of different performance indicators in
the DOP literature. Note that the performance indicators that
have been rarely used in the DOP literature (less than 2%) are
considered in the others group. As can be seen in this pie-chart,
among all proposed performance indicators in the literature,
four of them have been used frequently, namely EO, EBBC,
PO, and DO. According to this pie-chart, more than 90% of
the used performance indicators in the DOP literature are EO,
EBBC, and PO, which all are of fitness/error based type.

After discussing the most well-known performance indica-
tors, the natural question is: which performance indicator(s)
should be used? To answer this question, one thing to consider
is the complexity of performance indicators. In fact, if the cal-
culation of the performance indicator is complicated, analyzing
the results would be complicated as well. Another factor to
decide upon which indicator to use is availability of necessary
information for the performance indicator. For example, when
the global optimum information is not available, error based
performance indicators cannot be used.

According to Table PB-III, efficiency based performance
indicators are not popular as they do not focus on the most
important aspect of DOAs which is the quality of the found
solutions. In fact, even the most commonly used efficiency
based indicators, which are the distance to optimum based
ones, have been rarely used in the field. The reason is that,
as mentioned before, the distance between the closest found
solution to the optimum is not always related to the quality
of solutions. Consequently, by only looking at the output of
distance to optimum based indicators, we are generally unable

to analyze the behavior of DOAs accurately.
Although EBBC is very popular, it is not suitable for

practical situations as the best results at the end of environ-
ments cannot be useful to show the performance of DOAs
in real-world problems. As discussed before, the fitness of
the deployed solutions in DOPs is important to measure
the performance of DOAs. Therefore, EBBD (PB-27) with
different system tolerance thresholds (η) can be very useful
to analyze the performance of DOAs in a more practical way.
Note that, if η is set to ϑ−1, the obtained values by EBBD will
be equal to those of EBBC. Additionally, in cases where the
optimum information is not available, EBBD can be changed
from an error based performance indicator to a fitness based
one as follows:

PBBD =
1

T

T∑
t=1

f (t)
(
~x∗(t−1)∗ϑ+η

)
. (PB-27)

Another important consideration to have a fair comparison
among DOAs using the performance indicators is to use the
same environmental parameters for different DOAs. In fact,
environmental changes in DOPs are usually dependent on
several random number generators. Consequently, by using
different random seed numbers, the landscape of the next envi-
ronment can be different in terms of various aspects, especially
its degree of difficulty. Therefore, comparing different DOAs
on problem instances whose environments are different due to
the various random seed values, can be biased significantly.
To address the aforementioned issue, the environments must
be generated and changed with the same sequence of random
seed numbers for all comparing algorithms. This makes the
obtained results by the performance indicators, especially by
the fitness based ones that directly use the average fitness
values (e.g., PO), unbiased.

Finally, the plots of current error/performance should be pre-
sented by researchers since they demonstrate several important
information including the convergence behavior of DOAs and
fitness drops, which cannot be captured by the performance
indicators.

PB-IV. OPTIMIZATION COMPONENTS

Evolutionary and swarm intelligence algorithms (EAs and
SIs) are originally designed for solving static optimization
problems. Hence, they cannot be applied for optimization
of a DOP directly due to the challenges of DOPs, such as
diversity loss. In order to make these algorithms suitable for
the purpose, a DOA uses them together with some other
necessary components. As already discussed in the first part
of this survey, a DOA is usually made by assembling several
components (see § PA-III) to address the challenges of DOPs.

EAs and SIs are the most efficient tools to be embedded
in DOA frameworks to tackle DOPs [182]. In 1966, Fogel
et al. applied an EA to DOPs for the first time [195]. Later
on, in 2000, Carlisle and Dozier initiated the use of SIs to
DOPs [7]. The studies of applying EAs and SIs in DOPs
are known as evolutionary dynamic optimization (EDO) [182]
and swarm intelligence dynamic optimization (SIDO) [196],
respectively. Figure PB-5 shows the popularity of different
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TABLE PB-III
USED PERFORMANCE ANALYSIS METHODS IN THE DOP LITERATURE AND CORRESPONDING REFERENCES.

Measure References

Plots

Current performance [19], [43], [64], [122], [132], [146], [167], [175]
Current error [8], [11]–[13], [16], [17], [22], [96], [122], [145], [176]
Offline performance over time [30], [62]
Offline error over time [12], [57], [62]
Others [125], [177]

Performance indicator

Best before change error [26], [27], [29], [41], [42], [51], [63], [72], [74], [75], [78], [82], [83], [87], [94], [97], [100], [106]–
[108], [113]–[118], [121]–[123], [130], [134], [135], [137], [142]–[144], [147]–[162], [164]–[166],
[168], [170], [172], [174], [194]

Offline performance [18], [28], [35], [43], [62], [122], [126]
Offline error (evaluation based) [15], [18], [22]–[25], [27], [31]–[34], [36]–[40], [44]–[50], [52]–[57], [59]–[63], [67], [68], [71], [73],

[76], [78], [80], [84]–[87], [89]–[94], [96], [98], [99], [101], [103], [105], [106], [108]–[113], [117]–
[122], [127], [136], [138], [140]–[143], [166]

Offline error (iteration based) [26], [29], [58], [69], [70], [79], [81], [102], [104], [158], [163], [169]
Distance based performance indicators [2], [9], [14], [27], [88], [116], [129]
Others [3], [7], [10], [21], [35], [57], [65], [65], [77], [77], [122], [128]

4%
5%

6%
7%16%

42% 20%

Genetic algorithm
Local search operators
Evolutionary strategy
Artificial bee colony

Differential evolution
Particle swarm optimization

Others

Fig. PB-5. Usage percentages of different static optimization algorithms,
including their modified versions, in the DOAs.

static optimization algorithms that have been embedded in
DOAs as the optimization component since 1999. According
to this pie-chart, particle swarm optimization (PSO) [197]
is the most popular optimization tool in the field of DOPs.
The main reasons are high convergence speed, and efficient
exploration and exploitation capabilities of PSO [198] that
make it suitable to be used in DOA frameworks.

While the main optimization component in DOAs is usually
an EA or SI, local search operators mostly have been used
in DOAs to improve the exploitation process around the
best found position in each environment (see § PA-III-E2e).
However, in [90], [101], the local search operators play the role
of the main optimization components and perform locating and
tracking peaks. Note that, using a local search operator as the
main optimization tool can potentially lead to immature/early
convergence. However, as the peaks of the landscapes of the
most commonly used DOP benchmarks are mostly unimodal
and easy to optimize (see § PB-II-A1), using such simple
optimization component can be shown to be efficient.

There have been many attempts to modify and adapt EAs
and SIs to be used by DOAs [7], [38], [44], [73], [119], [152].
To this end, an existing DOA framework is chosen, and the
considered EA or SI is embedded in it. In DynDE [33], DE is
embedded in the introduced DOA framework in [32]. DynDE
is the first EDO based on DE. Charged PSO [229], which
is originally proposed in the context of artificial improvised
music, is used in the presented DOAs in [12], [31], [32], [131].
Charged PSO uses some collision avoidance rules, which make
it capable of maintaining diversity. In [44], [77], cooperative

TABLE PB-IV
STATIC OPTIMIZATION ALGORITHMS USED AS THE OPTIMIZATION

COMPONENT IN DOAS.

Static optimization algorithm Corresponding DOA references using the
static optimization algorithm

Particle swarm optimization [197] [3], [7], [8], [10]–[12], [18], [23], [25],
[27], [31], [32], [34], [36], [37], [39]–[44],
[46]–[49], [51]–[55], [57], [60], [62], [64],
[68]–[72], [74], [77], [78], [80], [86]–[88],
[94], [97], [100], [106]–[108], [116], [118],
[121], [123], [125]–[131], [134], [135],
[137], [142]–[145], [149], [162], [166],
[168], [169], [172], [174], [199]–[208]

Differential evolution [209] [33], [38], [45], [56], [61], [63], [74], [75],
[80], [81], [106], [108], [114], [115], [117],
[134], [140], [141], [143], [145], [146],
[148], [154]–[159], [161], [164], [165],
[168], [170]

Artificial bee colony [210] [22], [24], [96], [99], [102], [104], [109],
[110], [151], [152], [163], [176], [177]

Local search operators [211] [36], [70]–[72], [80], [87], [90], [101]
Genetic algorithm [212] [19], [29], [76], [132], [134], [175]
Evolutionary strategya[213] [2], [9], [13], [14], [17], [20], [21], [145],

[150], [171], [214]
Evolutionary programming [215] [16], [41]
Evolutionary algorithm [216] [15], [26], [28], [30], [217], [218]
Firefly algorithm [219] [67], [85], [92], [120], [136]
Bacterial foraging algorithm [220] [35], [65], [79], [167]
Ant colony optimizationb[221] [147], [154]
Artificial fish swarm algorithm [222] [73], [84], [91]
Harmony search algorithm [223] [83], [111]
Cuckoo search algorithm [224] [89], [93], [103]
Artificial immune system [225] [112], [113], [139], [164], [226], [227]
Others [59], [82], [98], [105], [119]
a Including CMA-ES [228].
b Continuous version [221].

PSO [230], which is a cooperative coevolutionary method,
is embedded in the DOA framework from [32]. In [162],
orthogonal learning PSO [231] is used as the optimization
component in the DOA framework from [15]. Moreover,
in [36], guaranteed convergence PSO [232], that uses some
additional movement rules to perform local search around
the best found position, is used in the DOA framework
from [128]. Crowding DE [233], which is an algorithm that
is originally designed for detecting multiple peaks in static
multimodal optimization problems, has been used to carry
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out exploration and locating multiple peaks in [38], [52],
[81]. Another static multimodal optimization method is vector-
based PSO [234], which is used to cover multiple moving
peaks in [3]. Heterogeneous DE [235] is another algorithm
that is originally designed for global optimization in static
problems that has been adapted to solve DOPs in [170].
Different PSOs with various neighborhood topologies, such as
the closest individual [174], ring [58], Von Neumann [125],
and hierarchical [18], [236], have been used in DOAs.

In addition, some researchers modify the EAs and SIs to
adapt them to DOPs. In [126], a macro-mutation operator is
added to PSO to control its population diversity. An oscillating
inertia weight is designed for PSO in [88] to control the trade-
off between exploration and exploitation capabilities in DOPs.
A PSO with a fuzzy social-only model is proposed in [87],
where the exploration capabilities of the PSO is improved.
In [158], to maintain the population diversity, a DE with
double mutation strategy and modified scaling factors is used.

A list of the static optimization algorithms that have been
used in DOAs and the corresponding references is provided
in Table PB-IV. This table classifies DOAs based on their
optimization components and can be useful for the researchers
who are interested in modifying and adapting different static
optimization algorithms for DOA frameworks.

A. Discussion on the used optimizers in DOAs

A considerable portion of DOP papers focus on modification
of static optimization algorithms to be adapted to an existing
DOA framework. We have reviewed some works that focus on
modifying and adapting the structures of such static optimiza-
tion algorithms to be used in DOA frameworks. Designing
components of DOAs to tackle DOP challenges is another
major topic covered in the literature, which is independent of
the used optimization tool. In such works, after designing a
DOA framework, which is developed by combining several
components (see § PA-III), a static optimization algorithm(s)
is chosen to be embedded in the framework as the optimization
component. According to our readings, PSO (e.g., with global
star neighborhood topology and constriction factor [10]) and
DE (e.g., DE/best/2/bin [56]) are usually the best options for
the optimization component and have been widely used in the
literature. Note that the majority of DOA frameworks show
their best performance when PSO is used as the optimization
component [134], [143], [145], [180].

PB-V. REAL-WORLD DOPS

Changes and uncertainties are natural aspects of many real-
world optimization problems, hence an optimization algorithm
searching in such environments should be able to efficiently
respond to such demands [182]. In this section, we review
some real-world DOPs that have been solved using DOAs
reviewed in § PA-III.

In [199], [200], DOAs are applied to train supervised feed-
forward neural networks in dynamic classification problems
with concept drift4. For pattern selection in the concept

4Drifting concept in classification implies changes in the decision bound-
aries which separate different classes [237].

drift, a sliding window is used, and the change severity is
adjusted using the values of the sliding window’s step size.
The severity of concept drift varies from gradual (slightly
shifting the decision boundaries) to highly severe changes
(randomly creating new decision boundaries) to generate dif-
ferent problem instances [238]. The environmental changes in
this problem are visible (i.e., detectable [182]) and can be
detected by observing the error values. Several PSO based
DOAs, including RPSO [10] (single-population PSO with
randomization after changes for tracking moving optimum),
mCPSO, and mQSO [31], [32] (multi-population PSOs for
tracking multiple moving promising regions with charged and
quantum individuals, respectively), and two back propagation
(BP) methods [239] are used for different problem instances
with various data sets. On the one hand, the results show that
PSO based DOAs outperform both BP methods in problem
instances with relatively moderate change frequencies. On the
other hand, PSOs are deficient in problem instances with
high change frequencies due to the very limited available
computational resources in each environment. In addition,
both mCPSO and mQSO outperform RPSO in problem in-
stances with gradual concept drift shifts where successive
environments are rather similar, and the information from the
previous environment is highly useful to accelerate the process
of tracking the moving optimum. On the other hand, when
the environmental changes are highly severe (abrupt), RPSO
outperforms both mCPSO and mQSO since the information
of the previous environments is significantly less useful for
optimization in the next environment, and reinitializing a
significant portion of the population is in fact more effective.

Kalita and Singh [207] use a DOA to optimize the hyper-
parameters of a support vector machine5 (SVM) in dynamic
environments. Two cases of dynamics are investigated in this
problem: when a stream of data is received gradually, and
when data is received in batches at some points of time.
In the first case, environmental changes are very smooth as
new data arrives gradually over time. On the other hand, the
environmental changes in the second case are more severe
since receiving a batch of data causes a relatively severe
environmental change. It is also shown that the knowledge
of the previous global optimum is useful in this problem
and can lead to acceleration of the optimization process after
environmental changes. To tackle this problem, the authors
applied a multi-population PSO where the main population is
clustered into subpopulations using the niching approach pre-
sented in [234]. In addition, each subpopulation uses quantum
and charged individuals [32] to maintain its local diversity
over time. To address global diversity loss, the exclusion and
anti-convergence [32] components are used in this DOA.

In another study [208], a cutting pattern recognition method
is proposed for shearer in coal mining which is based on an
SVM whose hyper-parameters are optimized by a PSO-based
DOA. In this problem, the training dataset is updated over
time. A chaos-based operator is used in the DOA to increase
diversity. In this method, if the population has converged or
stagnated, a predefined number of individuals are relocated

5This problem is also called SVM model selection.
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using the chaos-based operator.
In [206], a DOA is used for training a neural network

time series forecaster. The time series’ data generating process
is non-stationary, and a sliding window defines the training
data over time. This sliding window shifts on the time series
data when the environmental change happens. The introduced
cooperative quantum PSO in [77] is used as the DOA to tackle
this problem.

Jin et al. [217] applied a DOA to optimize the adaptive
farming strategies, where the problem is to maximize the in-
come by systematically choosing mixed grazing strategies. The
problem is a simulation optimization based on UK farming
data and subsidy policy. It has three dynamics: the biological
dynamics of grouse populations, government subsidies, and
the price of farming products. The environmental changes in
this problem are not abrupt and there are similarities between
successive environments. A single population EA is used as
the optimization method whose mutation rate is considered
relatively high to maintain its diversity over time.

The control strategy parameters for a distribution static
compensator (DSTATCOM) are optimized by a DOA in [226],
[227]. In this problem, the main objective is to control the
parameters of the DSTATCOM in order to minimize the
negative effects of the pulsed loads in an all-electric ship power
system. A real-time digital simulator is used as the objective
function which is capable of simulating the dynamics of the
system. A PSO is used to find an initial static solution in
an initial offline phase. Thereafter, the deviation of voltage is
kept minimum during the real-time process using an artificial
immune system (AIS).

The odor source localization problem is solved by DOAs
in [201]. The main objective of this problem is to locate the
source of chemical odor using mobile robots. The problem
space is highly irregular due to obstacle-filled environments,
and very dynamic due to the wind (changing force and
direction), turbulence in the distribution of odor molecules,
and diffusion of odor. A single-population PSO is used to
solve this problem where there is one source of odor in the
environment. This algorithm uses a change detection method
by monitoring the fitness value of the best found position.
If this value does not improve over a predefined number of
iterations, it is assumed that a change has occurred. After
detecting an environmental change, the algorithm increases
the global diversity by spreading robots in different directions.
In addition, the local diversity is maintained over time using
charged individuals [12]. This work is expanded in [202] to
locate multiple odor sources using a multi-population PSO
method [240]. By considering multiple odor sources, the
problem becomes dynamic multimodal optimization and the
DOA needs to locate and track multiple moving optima.

In [203], [204], DOAs are applied to the dynamic economic
dispatch problem to minimize the operational cost in an elec-
trical power system. In [203], an adaptive single-population
PSO is used. In this variant of PSO, each particle has its
own inertia weight, which is defined based on its fitness
rank in the population. While superior particles have lower
inertia weight to increase their exploitation capability, inferior
particles have larger inertia weights that result in maintaining

their high velocity to preserve diversity. Moreover, if the best
found position does not improve noticeably after a specific
number of iterations, a predefined number of individuals are
randomized across the search space to increase the global
diversity. In [204], the velocity update rule of PSO is modi-
fied to dynamically adjust the trade-off between exploitation
and exploration capabilities. In this method, the velocity is
decreased when the best found position does not improve
significantly over a predefined number of iterations. On the
contrary, the velocity is increased when the best found position
significantly improves over the same number of iterations.
Moreover, a chaotic operator is added to PSO to increase the
global diversity.

Liu et al. [214], [218] apply a DOA to a contaminant
source identification problem in water distribution networks,
for which the dynamics are the result of the partial information
about the problem. Some sensors are used to gather infor-
mation from the environment and whenever the information
is updated, the search space is changed. This problem has a
quick recovery property [190], where there is a deadline to
choose a new solution (a new solution must be chosen before
new observations are received). A multi-population EA [241]
is used to locate several good solutions (peaks) and track them
over time. In this method, an exclusion component is used to
avoid overlapping subpopulations. It is shown that any of the
covered promising regions in this problem may contain the
global optimum as time goes by.

A. Discussion on real-world applications

Despite the importance of the real-world DOPs, the majority
of the literature is focused on the artificial DOP benchmarks
and little attention has been given to application of DOAs for
solving real-world DOPs. The rare studies focused on real-
world application of DOAs mostly investigate the performance
of simple DOAs with limited numbers of dynamic compo-
nents. Hence, the effectiveness of most DOAs in optimizing
real-world DOPs are not entirely clear.

PB-VI. POTENTIAL FUTURE RESEARCH DIRECTIONS

Although tracking the moving optimum in unconstrained
continuous single-objective DOPs has been a hot research
topic over the past two decades with a rich literature, there is
still a considerable gap between academic research and prac-
tical applications. In fact, most of the developed DOAs have
only been tested on artificial functions, i.e., DOP benchmarks.
To the best of our knowledge, the majority of the components
developed for DOAs (see § PA-III) are tailored for such
artificial DOP benchmarks, in particular, for moving peaks
baseline functions (see § PB-II-A1). Although a few DOAs
have been applied to some real-world DOPs (see § PB-V),
the effectiveness of most DOAs for different real-world DOPs
with various characteristics and challenges is not yet entirely
clear. Many real-world DOPs with specific characteristics have
not been adequately investigated in the literature, such as
DOPs with limitations in frequent switching solutions [189],
constrained DOPs [190], [242], high-dimensional DOPs [145],
continuously changing over time DOPs, and time-linkage
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DOPs [243]. Based on the current research status of the field,
we point out the following potential future research directions
to dwindle the gap between academic research and the real-
world applications.

1) Real-world DOPs: Many critical real-world optimiza-
tion problems are dynamic [190]. However, the majority of
the literature is focused on artificial benchmark problems and
only a few works address real-world DOPs (see § PB-V).
One extremely important research direction is to formulate
objective functions for real-world DOPs and design new DOAs
to solve them. Using such formulated objective functions,
we also can examine the effectiveness of the existing DOAs
in solving realistic problems. An important group of real-
world DOPs that have been ignored in the DOP literature are
dynamic covering location problems (DCLPs) [244]. DCLPs
cover a considerable number of critical real-world appli-
cations, such as disaster relief operation [245], large-scale
fire management [246], [247], product positioning [248], and
crowd management/control [249].

2) Analyzing the performance and compatibility of com-
ponents: In a DOA, a combination of several components
are used (see § PA-III). When comparing different DOAs,
the contribution of each component to the performance of
each DOA is unclear. In addition, the compatibility of these
components has been rarely investigated. For example, we yet
do not know how much a particular global diversity control
component is compatible with a specific population division
and management component. Besides, the effectiveness of
components in different classes of DOPs, such as drifting
DOPs with a high change frequency [95], is not entirely clear
yet. Therefore, a comprehensive analysis of the performance
and compatibility of different components in different classes
of DOPs is an important future direction.

3) Automatic parameter tuning: Although various compo-
nents are developed for DOAs, those with adaptive parameter
tuning are rare. The majority of components work on the
basis of some constant thresholds which need to be tuned
for every problem. The performance of such components is
highly dependent on the values decided for these thresholds.
Besides, the optimal values of these thresholds depend on the
characteristics of the current environment, hence, may change
over time. This shows the need for components with automatic
parameter tuning [250].

4) Hyperheuristics: In § PA-III, we discussed the strengths
and weaknesses of different components of DOAs in solving
DOPs. An important point here is that if the characteristics of a
DOP change over time (e.g., it becomes unpredictable while it
used to be predictable in the previous environments), choosing
a proper set of components becomes difficult or sometimes
even impossible. In such DOPs, hyperheuristic approaches
can be used in DOAs to choose the best set of components
depending on the current status of the problem [251], [252].
Hyperheuristic approaches can also be used for selecting
the optimization update rules (e.g., update rules of PSO or
DE) [253]. Using hyperheuristic approaches to choose the
most proper set of components and/or metaheuristics for DOPs
whose characteristics and challenges change over time is a
promising future direction.

5) Computational resource allocation: In the literature,
little attention has been given to the management of com-
putational resources and assigning them to subpopulations.
Most existing multi-population DOAs use the simple Round
Robin/parallel method for running subpopulations in each
iteration. However, using a systematic computational resource
allocation method seems essential for DOPs with limited
available computational resources in each environment. This
need becomes more important when different covered regions
by subpopulations may go under different change severity,
hence, subpopulations covering them need different amount of
computational resources to fulfill the tracking task. Developing
new resource allocation methods that take the importance, role,
progress, and rank of subpopulations into consideration, is a
potential future work.

6) Source codes: Looking at the DOP literature, the results
reported for a given DOA can sometimes be significantly
different. This issue occurs as the source codes of many DOAs
and benchmark problems are not available. Since DOAs are
usually very complex algorithms, re-implementing them is
usually error prone which leads to reporting false results.
Therefore, providing a collection of source codes of the
state-of-the-art and popular DOAs and benchmark problems
is necessary. Providing a proper set of source codes as a
platform implemented in popular programming languages,
similar to [254], can be very useful for fair and accurate
comparisons in the future.

7) Extension to other related types of DOPs:
a) Robust optimization over time: The majority of the

works in the field are focused on the tracking of a moving
optimum, which does not meet the needs of some real-
world problems. Tracking a moving optimum is suitable for
DOPs in which changing solutions is not costly [255]–[257],
while in many real-world DOPs with high switching costs,
it is desirable to keep the current solution while it is of an
acceptable quality. Such solutions are called robust solutions
which can maintain their qualities after a number of envi-
ronmental changes (at least one environmental change). The
process of finding robust solutions is called robust optimization
over time (ROOT) [189]. ROOT can be tackled effectively
by extending DOAs that have been originally designed for
tracking moving optima [180]. Hence, extending DOAs by
adding new components to tackle ROOT, designing benchmark
problems which generate areas with higher robustness over
time, and solving real-world problems with high switching
costs using ROOT algorithms are all promising future research
directions.

b) Constrained DOPs: Despite the importance of con-
strained DOPs, little attention has been given to them in the
literature. In fact, many real-world DOPs are subjected to
constraints. Constrained DOPs are difficult to optimize since
their objective function and constraints may change over time.
These problems can become more challenging when there
are multiple disjointed moving feasible regions [242]. We
can adapt DOAs to optimize constrained DOPs by equipping
them with constraint handling mechanisms, such as penalty
methods [242] and Deb’s rules for selections and compar-
isons [258]. Thus, by using such mechanisms, DOAs will
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also be capable of tracking moving optimum in constrained
DOPs. However, tracking moving optimum by just using con-
straint handling mechanisms without additional components
that consider multiple moving feasible regions, will not be
effective [187]. Hence, an important future work direction is
to extend and design DOAs to handle constrained DOPs.

c) Time-linkage DOPs: Although many real-world DOPs
have time-linkage property [178], [190], only few works have
investigated DOPs with such a feature. In time-linkage DOPs,
the chosen solution in one environment influences the envi-
ronment encountered in the future. To tackle such problems,
DOAs usually need to use prediction/estimation components
to consider the future impact of the current solutions [190].
Considering time-linkage DOPs is a potential future work.

d) Large-scale DOPs: Many real-world DOPs have a
large number of variables, which causes scalability issues and
the curse of dimensionality [180]. Only a few works have
investigated large-scale DOPs, such as the work done in [145],
where a cooperative coevolutionary algorithm is proposed on
the basis of a multi-population DOA to effectively solve large-
scale DOPs. Large-scale DOPs are difficult problems since the
available computational resources in each environment can be
very limited to perform optimum tracking in high-dimensional
search space. This is even more critical for multi-population
DOAs which track multiple moving promising regions using
several subpopulations that need a lot of computational re-
sources. In partially separable large-scale DOPs, the overall
number of peaks can exponentially grow [180] which makes
them even more challenging. Hence, designing DOAs to solve
large-scale DOPs is an important future direction.

e) DOPs with a huge number of promising regions
(peaks): Search space of some real-world DOPs may contain
a huge number of promising regions. In the DOP literature,
the effectiveness of DOAs has rarely been investigated on
such DOPs (number of peaks in the problem instances has
rarely exceeded 200). Since the population size is limited
in DOAs, covering and tracking too many moving optima
will be almost impossible. Therefore, performance of many
existing DOAs deteriorates in tackling these DOPs. Designing
population division and management and global diversity
control components to address the challenges posed by DOPs
with a huge number of promising regions is an interesting
future work.

f) DOPs that continuously change over time: Almost all
DOAs are designed for DOPs with environmental changes
happening over discrete time. However, there are real-world
DOPs whose environments continuously change over time or
their change frequencies are extremely high. The majority
of the existing DOAs are change-dependent (change reaction
based), hence, are incapable of tackling such DOPs efficiently.
Targeting these DOPs involves many new challenges that need
further investigations.

g) Dynamic multi-objective optimization problems: Dy-
namic multi-objective optimization problems (DMOPs) have
several conflicting objective functions that must be considered
simultaneously. The works on DMOPs mostly focus on finding
Pareto optimal set (POS) for each environment [259], [260]. In
these works, the found POS from the previous environment(s)

is usually used to accelerate the process of finding the new
POS after each environmental change [261]. As finding POS is
computationally more expensive than finding a single solution
(i.e., the global optimum in single-objective), algorithms de-
veloped for DMOPs often struggle with very limited available
computational resources in each environment [261]. Develop-
ing components for accelerating the process of tracking the
POS in DMOPs is another potential future direction.

8) Theoretical investigations: In the DOP literature, the
performance of DOAs have been usually investigated empir-
ically, and little attention has been given to theoretical stud-
ies [182], [262]. Due to the importance of theoretical studies
in understanding the behavior of DOAs and their strength and
weakness in tackling DOPs with different characteristics, more
attention should be dedicated to such investigations.

PB-VII. CONCLUSION

In this two-part survey, we reviewed the field of evolutionary
continuous dynamic optimization over the last two decades.
Part A of this survey was focused on the components of dy-
namic optimization algorithms (DOAs). In Part B, we provided
a detailed review of dynamic optimization problem (DOP)
benchmarks, DOP performance indicators and plots used for
analyzing the performance of DOAs, static optimization al-
gorithms used as optimization components in DOAs, and the
real-world applications of some DOAs reviewed in Part A.
We also discussed the current shortcomings of the field and
provided some important potential future research directions.
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[188] G. Pamparà and A. P. Engelbrecht, “A generator for dynamically
constrained optimization problems,” in Genet. Evol. Comput. Conf.
Association for Computing Machinery, 2019, p. 1441–1448.

[189] X. Yu, Y. Jin, K. Tang, and X. Yao, “Robust optimization over time—a
new perspective on dynamic optimization problems,” in IEEE Congr.
Evol. Comput. IEEE, 2010, pp. 1–6.

[190] T. T. Nguyen, “Continuous dynamic optimisation using evolutionary
algorithms,” Ph.D. dissertation, University of Birmingham, 2011.

[191] R. W. Morrison, “Performance measurement in dynamic environ-
ments,” in GECCO workshop on evolutionary algorithms for dynamic
optimization problems, no. 5-8. ACM, 2003.

[192] K. Weicker, “Performance measures for dynamic environments,” in
International Conference on Parallel Problem Solving from Nature.
Springer, 2002, pp. 64–73.

[193] J. Branke, Evolutionary optimization in dynamic environments.
Springer Science & Business Media, 2012, vol. 3.

[194] C. Li, S. Yang, and M. Yang, “Maintaining diversity by clustering in
dynamic environments,” in IEEE Congr. Evol. Comput. IEEE, 2012,
pp. 1–8.

[195] L. J. Fogel, A. J. Owens, and M. J. Walsh, “Artificial intelligence
through simulated evolution,” 1966.

Authorized licensed use limited to: Newcastle University. Downloaded on June 19,2021 at 05:14:08 UTC from IEEE Xplore.  Restrictions apply. 



1089-778X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3060012, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 19

[196] M. Mavrovouniotis, C. Li, and S. Yang, “A survey of swarm intelli-
gence for dynamic optimization: Algorithms and applications,” Swarm
Evol. Comput., vol. 33, pp. 1 – 17, 2017.

[197] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of ICNN’95-International Conference on Neural Networks,
vol. 4. IEEE, 1995, pp. 1942–1948.

[198] M. R. Bonyadi and Z. Michalewicz, “Particle swarm optimization for
single objective continuous space problems: a review,” pp. 1–54, 2017.

[199] A. Rakitianskaia and A. P. Engelbrecht, “Training neural networks with
pso in dynamic environments,” in IEEE Congr. Evol. Comput. IEEE,
2009, pp. 667–673.

[200] A. S. Rakitianskaia and A. P. Engelbrecht, “Training feedforward
neural networks with dynamic particle swarm optimisation,” Swarm
Intelligence, vol. 6, no. 3, pp. 233–270, 2012.

[201] W. Jatmiko, K. Sekiyama, and T. Fukuda, “A pso-based mobile
robot for odor source localization in dynamic advection-diffusion with
obstacles environment: theory, simulation and measurement,” IEEE
Computational Intelligence Magazine, vol. 2, no. 2, pp. 37–51, 2007.

[202] W. Jatmiko, A. Nugraha, R. Effendi, W. Pambuko, R. Mardian,
K. Sekiyama, and T. Fukuda, “Localizing multiple odor sources in
a dynamic environment based on modified niche particle swarm opti-
mization with flow of wind,” WSEAS Transactions on Systems, vol. 8,
no. 11, pp. 1187–1196, 2009.

[203] B. Panigrahi, V. R. Pandi, and S. Das, “Adaptive particle swarm
optimization approach for static and dynamic economic load dispatch,”
Energy conversion and management, vol. 49, no. 6, pp. 1407–1415,
2008.

[204] Y. Wang, J. Zhou, Y. Lu, H. Qin, and Y. Wang, “Chaotic self-adaptive
particle swarm optimization algorithm for dynamic economic dispatch
problem with valve-point effects,” Expert Systems with Applications,
vol. 38, no. 11, pp. 14 231–14 237, 2011.

[205] A. Klyne and K. Merrick, “Intrinsically motivated particle swarm
optimisation applied to task allocation for workplace hazard detection,”
Adaptive Behavior, vol. 24, no. 4, pp. 219–236, 2016.

[206] S. A. Abdulkarim and A. P. Engelbrecht, “Time series forecasting with
feedforward neural networks trained using particle swarm optimizers
for dynamic environments,” Neural Computing and Applications, pp.
1–17, 2020.

[207] D. J. Kalita and S. Singh, “Svm hyper-parameters optimization using
quantized multi-pso in dynamic environment,” Soft Comput., vol. 24,
no. 2, pp. 1225–1241, 2020.

[208] X. Liu, S. He, Y. Gu, Z. Xu, Z. Zhang, W. Wang, and P. Liu, “A robust
cutting pattern recognition method for shearer based on least square
support vector machine equipped with chaos modified particle swarm
optimization and online correcting strategy,” ISA transactions, vol. 99,
pp. 199–209, 2020.

[209] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4–31,
2010.

[210] D. Karaboga and B. Akay, “A comparative study of artificial bee colony
algorithm,” Applied mathematics and computation, vol. 214, no. 1, pp.
108–132, 2009.

[211] F. Neri and N. Khan, “Two local search components that move
along the axes for memetic computing frameworks,” in Foundations
of Computational Intelligence. IEEE, 2014, pp. 62–69.

[212] M. Srinivas and L. M. Patnaik, “Genetic algorithms: A survey,”
computer, vol. 27, no. 6, pp. 17–26, 1994.

[213] T. Back, F. Hoffmeister, and H.-P. Schwefel, “A survey of evolution
strategies,” in Proceedings of the fourth international conference on
genetic algorithms, vol. 2, no. 9. Morgan Kaufmann Publishers San
Mateo, CA, 1991.

[214] L. Liu, S. R. Ranjithan, and G. Mahinthakumar, “Contamination source
identification in water distribution systems using an adaptive dynamic
optimization procedure,” Journal of Water Resources Planning and
Management, vol. 137, no. 2, pp. 183–192, 2011.

[215] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, 1999.

[216] T. Back, Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford
university press, 1996.

[217] N. Jin, M. Termansen, K. Hubacek, J. Holden, and M. Kirkby,
“Adaptive farming strategies for dynamic economic environment,” in
IEEE Congr. Evol. Comput. IEEE, 2007, pp. 1213–1220.

[218] L. Liu, E. M. Zechman, E. D. Brill, Jr, G. Mahinthakumar, S. Ranjithan,
and J. Uber, “Adaptive contamination source identification in water
distribution systems using an evolutionary algorithm-based dynamic

optimization procedure,” in Water Distribution Systems Analysis Sym-
posium 2006, 2008, pp. 1–9.

[219] X.-S. Yang et al., “Firefly algorithm,” Nature-inspired metaheuristic
algorithms, vol. 20, pp. 79–90, 2008.

[220] R. M. Thomas, “Survey of bacterial foraging optimization algorithm,”
International Journal of Science and Modern Engineering (IJISME),
vol. 1, no. 4, p. 11, 2013.

[221] K. Socha and M. Dorigo, “Ant colony optimization for continuous
domains,” European journal of operational research, vol. 185, no. 3,
pp. 1155–1173, 2008.

[222] D. Yazdani, S. Sadeghi-Ivrigh, D. Yazdani, A. Sepas-Moghaddam, and
M. R. Meybodi, “Fish swarm search algorithm: A new algorithm for
global optimization,” Int. J. Artif. Intell., vol. 13, no. 2, pp. 17–45,
2015.

[223] M. Mahdavi, M. Fesanghary, and E. Damangir, “An improved harmony
search algorithm for solving optimization problems,” Applied mathe-
matics and computation, vol. 188, no. 2, pp. 1567–1579, 2007.

[224] X. Yang and Suash Deb, “Cuckoo search via levy flights,” in Nature
Biologically Inspired Computing. IEEE, 2009, pp. 210–214.

[225] D. Dasgupta, “Advances in artificial immune systems,” IEEE compu-
tational intelligence magazine, vol. 1, no. 4, pp. 40–49, 2006.

[226] P. Mitra and G. K. Venayagamoorthy, “An adaptive control strategy
for dstatcom applications in an electric ship power system,” IEEE
Transactions on power electronics, vol. 25, no. 1, pp. 95–104, 2009.

[227] ——, “Real time implementation of an artificial immune system based
controller for a dstatcom in an electric ship power system,” in 2008
IEEE Industry Applications Society Annual Meeting. IEEE, 2008, pp.
1–8.

[228] N. Hansen and A. Ostermeier, “Completely derandomized self-
adaptation in evolution strategies,” Evol. Comput., vol. 9, no. 2, pp.
159–195, 2001.

[229] T. M. Blackwell and P. Bentley, “Improvised music with swarms,” in
IEEE Congr. Evol. Comput., vol. 2. IEEE, 2002, pp. 1462–1467.

[230] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach to
particle swarm optimization,” IEEE Trans. Evol. Comput., vol. 8, no. 3,
pp. 225–239, 2004.

[231] Z. Zhan, J. Zhang, Y. Li, and Y. Shi, “Orthogonal learning particle
swarm optimization,” IEEE Trans. Evol. Comput., vol. 15, no. 6, pp.
832–847, 2011.

[232] E. S. Peer, F. van den Bergh, and A. P. Engelbrecht, “Using neighbour-
hoods with the guaranteed convergence pso,” in Swarm Intelligence
Symposium. IEEE, 2003, pp. 235–242.

[233] R. Thomsen, “Multimodal optimization using crowding-based differ-
ential evolution,” in IEEE Congr. Evol. Comput., vol. 2. IEEE, 2004,
pp. 1382–1389.

[234] I. L. Schoeman and A. P. Engelbrecht, “A parallel vector-based particle
swarm optimizer,” in Adaptive and Natural Computing Algorithms,
B. Ribeiroet al., Ed. Springer Vienna, 2005, pp. 268–271.

[235] Z.-H. Zhan, X.-F. Liu, H. Zhang, Z. Yu, J. Weng, Y. Li, T. Gu, and
J. Zhang, “Cloudde: A heterogeneous differential evolution algorithm
and its distributed cloud version,” IEEE Transactions on Parallel and
Distributed Systems, vol. 28, no. 3, pp. 704–716, 2016.

[236] S. Janson and M. Middendorf, “A hierarchical particle swarm opti-
mizer,” in IEEE Congr. Evol. Comput., vol. 2. IEEE, 2003, pp. 770–
776.

[237] J. C. Schlimmer and R. H. Granger, “Incremental learning from noisy
data,” Machine learning, vol. 1, no. 3, pp. 317–354, 1986.

[238] A. Tsymbal, “The problem of concept drift: definitions and related
work,” Computer Science Department, Trinity College Dublin, vol. 106,
no. 2, p. 58, 2004.

[239] R. Hecht-Nielsen, “Theory of the backpropagation neural network,” in
Neural networks for perception. Elsevier, 1992, pp. 65–93.

[240] R. Brits, A. P. Engelbrecht, and F. van den Bergh, “Locating multiple
optima using particle swarm optimization,” Applied Mathematics and
Computation, vol. 189, no. 2, pp. 1859–1883, 2007.

[241] E. M. Zechman and S. R. Ranjithan, “An evolutionary algorithm to
generate alternatives (eaga) for engineering optimization problems,”
Engineering Optimization, vol. 36, no. 5, pp. 539–553, 2004.

[242] T. T. Nguyen and X. Yao, “Continuous dynamic constrained optimiza-
tion—the challenges,” IEEE Trans. Evol. Comput., vol. 16, no. 6, pp.
769–786, 2012.

[243] ——, “Dynamic time-linkage problems revisited,” in Workshops on
Applications of Evolutionary Computation. Springer, 2009, pp. 735–
744.

[244] R. Z. Farahani, N. Asgari, N. Heidari, M. Hosseininia, and M. Goh,
“Covering problems in facility location: A review,” Computers &
Industrial Engineering, vol. 62, no. 1, pp. 368 – 407, 2012.

Authorized licensed use limited to: Newcastle University. Downloaded on June 19,2021 at 05:14:08 UTC from IEEE Xplore.  Restrictions apply. 



1089-778X (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3060012, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 20

[245] Q. Gong and R. Batta, “Allocation and reallocation of ambulances
to casualty clusters in a disaster relief operation,” IIE Transactions,
vol. 39, no. 1, pp. 27–39, 2007.

[246] H. Zhang, Z. Liang, H. Liu, R. Wang, and Y. Liu, “Ensemble frame-
work by using nature inspired algorithms for the early-stage forest fire
rescue—a case study of dynamic optimization problems,” Engineering
Applications of Artificial Intelligence, vol. 90, p. 103517, 2020.

[247] K. M. S. Islam, “Spatial dynamic queueing models for the daily
deployment of airtankers for forest fire control,” Ph.D. dissertation,
University of Toronto, Toronto, Canada, 1998.

[248] J. Brimberg, P. Hansen, N. Mladenovic, and S. Salhi, “A survey
of solution methods for the continuous location-allocation problem,”
International Journal of Operations Research, vol. 5, no. 1, pp. 1 –
12, 2008.

[249] S. Senanayake, “Tracking of large crowds with a swarm of aerial
robots,” Ph.D. dissertation, Monash University, 2015.

[250] C. Huang, Y. Li, and X. Yao, “A survey of automatic parameter tuning
methods for metaheuristics,” IEEE Trans. Evol. Comput., vol. 24, no. 2,
pp. 201–216, 2019.
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