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On Testing Global Optimization Algorithms for Space
Trajectory Design

M. Vasile* and E. Minisci f
University of Glasgow, Glasgow, G12 8QQ, United Kingdom
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Universitd degli Studi di Torino, Turin, 10149, Italy

In this paper we discuss the procedures to test a global search algorithm applied to a
space trajectory design problem. Then, we present some performance indexes that can
be used to evaluate the effectiveness of global optimization algorithms. The performance
indexes are then compared highlighting the actual significance of each one of them. A
number of global optimization algorithms are tested on four typical space trajectory de-
sign problems. From the results of the proposed testing procedure we infer for each pair
algorithm-problem the relation between the heuristics implemented in the solution algo-
rithm and the main characteristics of the problem under investigation. From this analysis
we derive a novel interpretation of some evolutionary heuristics, based on dynamical system
theory and we significantly improve the performance of one of the tested algorithms.

I. Introduction

In the last decade many authors have used global optimization techniques to find optimal solutions to space
trajectory design problems. Many different methods have been proposed and tested on a variety of cases.
From pure Genetic Algorithms' ™ to Evolutionary Strategies (such as Differential Evolution)® to hybrid
methods,® the general intent is to improve over the pure grid or enumerative search. Sometimes, the actual
advantage of using a global method is difficult to appreciate, in particular when stochastic based techniques
are used. In fact, if, on one hand, a stochastic search provides a non-zero probability to find an optimal
solution even with a small number of function evaluations, on the other hand, the repeatability of the result
and therefore the reliability of the method can be questionable. The first actual assessment of the suitability
of global optimization methods to the solution of space trajectory design problems can be found in two
studies by the University of Reading” and by the University of Glasgow.® The former presented a small set
of test problems mainly focusing on multiple gravity assist trajectories, while the latter included results for
low-thrust transfers using a wide range of global optimizers. One of the interesting outcomes of both studies
was that Differential Evolution, belonging to a subclass of Evolutionary Algorithms, performed particularly
well on most of the problems, compared to other methods. In both studies, the indexes of performance
for stochastic methods were: the average value of the best solution found for each run over a number of
independent runs, the corresponding variance and the best value from all the runs. For deterministic methods,
the index of performance was the best value for a given number of function evaluations. It should be noted
that the application of global methods to space trajectory problems has often considered the problem as
a black-box with limited exploitation of problem characteristics. On the other hand, ad hoc techniques
exploiting problem characteristics” provide a sensible improvement over the simple enumerative search.
In this paper, we propose a testing methodology for global optimization methods addressing specifically
black-box problems in space trajectory design. In particular, we focus our attention on stochastic based
approaches. The paper discusses the actual significance of some performance indexes and proposes some
criteria to evaluate the actual usefulness of an algorithm. Furthermore, the paper presents a benchmark of
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test cases, and an analysis of the relationship between the heuristics implemented in some global optimization
algorithms and the main characteristics of the test cases under investigation. The identification of common
patterns in the relation between solution method and problem features represents a useful guideline for the
selection of the most appropriate approach to a problem. From this analysis we derive a novel formulation
of some evolutionary heuristics, based on dynamical system theory and we propose a modified version of
Differential Evolution that improves significantly over all the standard DE. It is worth to underline that this
paper does not intend to propose any particular benchmark for testing global optimization algorithms, nor
it wants to prove that one approach is better than the others. The goal of this paper is instead to propose a
method of assessment and analysis of stochastic methods for global optimization applied to space trajectory
design problems. A correct analysis of the performance of a particular method applied to a specific class of
problem can be useful to identify which heuristic is most effective.

II. Problem Description

We consider a benchmark made of four different test-cases, with increasing complexity: a direct bi-impulsive
transfer from the Earth to an asteroid, a transfer to Mars via a gravity assist of Venus, a multi-gravity assist
transfer to Saturn with no mid-course manoeuvres and the same transfer but with mid-course manoeuvres.
In all of these cases the objective will be to minimize the total variation of the velocity of the spacecraft due
to all propelled maneuvers, or total Av.

A. Bi-impulsive Earth-Apophis Transfer

A simple, but already significant, application is to find the best launch date ty and time of flight T to transfer
a spacecraft from the Earth to the asteroid Apophis. The transfer is computed as the solution of a Lambert’s
problem.!! The objective function for this problem is the sum of the departure velocity change Avy and the
arrival velocity change Awvy:

f(x) = Av; + Avy (1)

with the solution vector:
X = [t07 T]T (2)

The search space D is a box defining the limits of the two components of the solution vector. In particular,
the launch date from the Earth was taken in the interval [3653, 10958]MJD2000 (i.e. number of elapsed days
since January 1st 2000), while the time of flight was taken in the interval [50, 900] days. A representation of
the search space can be seen in Fig.1 where the value of the objective function was plotted with level curves
against tg and T: dark regions represent local minima.

The known best solution in D is fpest=4.3745658 km/s, Zpes:=[10027.6215924826, 305.12163547522].

B. Earth-Venus-Mars Transfer with DSM

The second test-case consists of a transfer from Earth to Mars with the use of a gravity assist manoeuvre
at Venus and a deep-space manoeuvre (DSM) after Venus. This is the simplest instance of a multi-gravity
assist trajectory with deep-space manoeuvres (MGA-DSM).

1. Trajectory Model

A general MGA-DSM trajectory can be modeled through a sequence of Np — 1 legs connecting Np celestial
bodies (Fig. 2).° In particular if all celestial bodies are planets, each leg begins and ends with an encounter
with a planet. Each leg ¢ is made of two conic arcs: the first, propagated analytically forward in time, ends
where the second, solution of a Lambert’s problem, begins. The two arcs have a discontinuity in the absolute
heliocentric velocity at their matching point M. Each DSM is computed as the vector difference between
the velocities along the two conic arcs at the matching point. Given the transfer time 7; and the variable
a; € [0,1] relative to each leg i, the matching point is at time tpsar; = tfi—1 + a;T;, where ¢y ;_1 is the
final time of the leg i — 1. The relative velocity vector v at the departure planet can be a design parameter
and is expressed as:

Vo = vp[sin d cos @, sin § sin @, cos 6] (3)
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Figure 1. Earth-Apophis search space.

with the angles § and 6 respectively representing the declination and the right ascension with respect to
a local reference frame with the x axis aligned with the velocity vector of the planet, the z axis normal
to orbital plane of the planet and the y axis completing the coordinate frame. This choice allows easily
constraining the escape velocity and asymptote direction while adding the possibility of having a deep space
maneuver in the first arc after the launch. This is often the case when escape velocity must be fixed due to
the launcher capability or to the requirement of a resonant swing-by of the Earth (Earth-Earth transfers).
In order to have a uniform distribution of random points on the surface of the sphere defining all the possible
launch directions, the following transformation has been applied:
7 i;gz cos(d +m/2) +1

2w 2 )

It results that the sphere surface is uniformly sampled when a uniform distribution of points for 4,4 € [0, 1]
is chosen. Once the heliocentric velocity at the beginning of leg ¢, which can be the result of a swing-by
maneuver or the asymptotic velocity after launch, is computed, the trajectory is analytically propagated until
time tpgar,;. The second arc of leg 4 is then solved through a Lambert’s algorithm, from M;, the Cartesian
position of the deep space maneuver, to P;, the position of the target planet of phase i, for a time of flight
(1 — ;)T;. Two subsequent legs are then joined together with a gravity assist manoeuvre. The effect of the
gravity of a planet is to instantaneously change the velocity vector of the spacecraft. The relative incoming
velocity vector and the outgoing velocity vector, at the planet swing-by, have the same modulus but different
directions; therefore the heliocentric outgoing velocity results to be different from the heliocentric incoming
one. In the linked conic model the spacecraft is assumed to follow a hyperbolic trajectory with respect to the
swing-by planet. The angular difference between the incoming relative velocity v; and the outgoing one v,
depends on the modulus of the incoming velocity and on the pericenter radius r;. Both the relative incoming
and outgoing velocities belong to the plane of the hyperbola. However, in the linked-conic approximation,
the maneuver is assumed to occur at the planet, where the planet is a point mass coinciding with its center
of mass. Therefore, given the incoming velocity vector, one angle is required to define the attitude of the
plane of the hyperbola I1. There are different possible choices for the attitude angle ~; the one proposed in
Ref. 7 has been adopted (Fig. 3): ~ is the angle between the vector ny, normal to the hyperbola plane II,
and the reference vector n,, that is normal to the plane containing the incoming relative velocity and the
velocity of the planet vp.

Given the number of legs of the trajectory N;, = Np — 1, the complete solution vector for this model is:

x = [v0,0,6,t0, 01, T, 71,71, @2, Loy ooy Yis Tpiis Tim 1, Q15 ooy YN =15 Tp, N —15 ONp s TN, ] (5)
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Figure 3. Schematic representation of a multiple gravity assist trajectory

where t( is the departure date. Now, the design of a multi-gravity assist transfer can be transcribed into a
general nonlinear programming problem, with simple box constraints, of the form:
i 6

win f(x) (6)
One of the appealing aspects of this formulation is its solvability through a general global search method
for box constrained problems. Depending on the kind of problem under study, the objective function can be
defined in different ways. Here we choose to focus on the problem of minimizing the total Av of the mission,
therefore the objective function f(x) is:

NP
f(x) :UO+ZAvi+AUf (7

i=1

where Av; is the velocity change due to the DSM in the i —th leg, and Awvy is the maneuver needed to inject
the spacecraft into the final orbit.

For a transfer to Mars via Venus, the solution vector in Eq. (5) has six dimensions. In particular the initial
velocity with respect to the Earth is not a free parameter but is computed as the result of the Lambert’s
problem for the Earth-Venus leg. Therefore we can define the following reduced solution vector:

X = [t07T17717rp,13a27T2] (8)
Since the initial velocity is not a free parameter vy is the modulus of the vector difference between the

velocity of the Earth at time ¢ and the velocity of the spacecraft at the same time. Note that the final Avy

4 of 25

American Institute of Aeronautics and Astronautics



the Av needed to inject the spacecraft into an ideal operative orbit around Mars with 3950 km of pericenter
radius and 0.98 of eccentricity. This choice does not alter the nature of the problem but scales down the
contribution of the last impulsive manoeuvre. The search space D is defined by the following intervals: tg €
[3650, 9129] MJD2000, T} € [50,400] d, v1 € [—m, 7], rp1 € [1,5], ag € [0.01,0.9], T € [50,700] d. The best
known solution for this problem in the given search space D is fpest=2.9811 km /s, 2pes:=[4472.01334656364,
172.289324250300, 2.97843388136061, 1, 0.509432880679500, 697.610012389372].

C. Earth-Saturn Transfer

The third test is a multi gravity assist trajectory from the Earth to Saturn following the sequence Earth-
Venus-Venus-Earth-Jupiter-Saturn (EVVEJS). Gravity assist maneuvers are modeled through a linked-conic
approximation with powered maneuvers,” i.e., the mismatch in the outgoing velocity is compensated through
a Av maneuver at the pericenter of the gravity assist hyperbola for each planet. No deep-space maneuvers are
possible and each planet-to-planet transfer is computed as the solution of a Lambert’s problem. Therefore,
the whole trajectory is completely defined by the departure time ¢ty and by the transfer time for each leg T3,
with ¢ = 1,..., Np — 1. The radius of the pericenter r,; of each swing-by hyperbola is derived a posteriori
once each powered swing-by manoeuvre is computed. Thus, a constraint on each pericenter radius has to
be introduced during the search for an optimal solution. The trajectory model for this problem can be
downloaded from the ESA/ACT website . In order to take into account the constraints on the altitude of
the pericenters the objective function is augmented with the weighted violation of the constraints:

Np—2 Np—2
f(X) = Avg + Z Av; + Avf + Z w; (’I“pﬂ‘ — ’/‘pmm,i)Q (9)
=1 =1
with the solution vector:
X = [t07T17T27T37T47T5] (10)

The weighting functions w; are defined as follows:

w; = 0.005[1 — sign(rp,; — Tpmin,i), i =1,...,3 (11)

wy = 0.0005[1 — sign(rp.s — Tpmin.a)]

with the minimum pericenter radii rpmin,1 = 6351.8, Tpmin,2 = 6351.8, Tpmin,3 = 6778.1 and rpmina =
671492. For this case the dimensionality of the problem is six, and the search space D is defined by
the following intervals: ¢, € [—1000,0/MJD2000, T; € [30,400]d, T € [100,470]d, T5 € [30,400]d, Ty €
[400,2000]d, T5 € [1000,6000]d. The best known solution is fpes:=4.9307 km/s, Tpes:=[-789.8055, 158.33942,
449.38588, 54.720136, 1024.6563, 4552.7531].

D. Earth-Saturn Transfer with DSMs

The forth test case is again a multi gravity assist trajectory from the Earth to Saturn following the sequence
Earth-Venus-Venus-Earth-Jupiter-Saturn (EVVEJS) but a deep space manoeuvre is allowed along the trans-
fer arc from one planet to the other. Although from a trajectory design point of view this problem is similar
to problem three, the model is substantially different and therefore it represents a different problem from a
global optimization point of view. Since the transcription of the same problem into different mathematical
models can affect the search for the global optimum, it is interesting to analyze the behavior of the same
set of global optimization algorithms applied to two different transcriptions of the same trajectory design
problem.

The trajectory model for this test case can be downloaded from the ESA/ACT web site . This model
is very similar to the one for problem two, the only differences are in the definition of the attitude angle
~ of the plane of the hyperbola, which is at 90 degrees with respect to the one of problem two, and in
the computation of Avy that is now the modulus of the vector difference between the velocity of Saturn
at arrival and the velocity of the spacecraft at the same time. Although the difference is minimal we pre-
ferred to use the ESA/ACT version since for this problem some reference solutions are already available and

ahttp: //www.esa.int/gsp/ACT /inf/op/globopt/evvejs. htm
Y hitp:/ /www.esa.int/gsp/ACT finf/op/globopt /edvdvdedjds.htm
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therefore a comparison is easier and not affected by any difference in the implementation of the trajectory

model. The best known solution is fpes:=8.4091810440 km/s, Tpest=[-779.060197373242, 3.32046443745595,
0.531333503613675, 0.376218447342955, 168.685775870437, 422.672656805198, 53.3360098337041, 589.777827855018,
2200, 0.718720247401635, 0.532962541494841,

0.159170896444411,0.470495109020601, 0.0986526263521857, 1.46946051297954, 1.05138706406598,
1.30594027188689, 69.8194077461197, -1.60160853231321, -1.9600386515463,

-1.55445003054861, -1.51343200828766].

Note that, prior to run each test we normalized the search space for each one of the trajectory models so
that D is a unit hypercube with each component of the solution vector belonging to the interval [0,1].

III. Optimization Algorithm Description

We tested five stochastic global search algorithms: Differential Evolution (DE) and Genetic Algorithms (GA)
that belong to the generic class of Evolutionary Algorithms (EA), Particle Swarm Optimization (PSO) that
belongs to the class of agent-based algorithms, and Multistart (MS) and Monotonic Basin Hopping (MBH)
that are based on multiple local searches with a gradient method. In a previous paper by the authors®”
we showed how deterministic algorithms, such as DIRECT,'® might work better then stochastic ones on
simple problems, such as the bi-impulsive case. On the other hand, for more complex problems, stochastic
algorithms provide a better solution with a lower number of function evaluations.

In general, given a solution vector x; in the solution space D, the heuristics implemented in each one of the
global search methods listed above, aim at performing the following three tasks:

e at iteration k take samples in the solution space by generating a variation v; 41 of x; j:
Xik+1 = Xik + Vik+1 (12)
e select a subset of all the samples

e decide when to stop the search

Regarding the stopping rule, in order to make a fair comparison, we will employ the same for all the tested
algorithms, namely we stop the search when the total number of function evaluations n feyq performed by the
algorithm exceeds a predefined value 7 fevaimaz- In the following we will give a brief algorithmic description
of all the algorithms.

1.  Genetic Algorithms

Genetic Algorithms (GAs)!® are stochastic search methods that take their inspiration from natural selection
and survival of the fittest in the biological world. Each iteration of an GA involves a competitive selection
that eliminates poor solutions. The solutions with high fitness are recombined with other solutions by
swapping parts of a solution with another. Solutions are also mutated by making a small change to a single
element, or a small number of elements, of the solution. Recombination and mutation are used to generate
new solutions that are biased towards regions of the space for which good solutions have already been seen.
The GA search process is summarized in Algorithm 1.

Regarding the GA application, only the influence of the population size was considered ([100, 200, 400] for the
bi-impulse test case and [200, 400, 600] for the other three cases, with single values for crossover and mutation
probability, C,. = 0.5 and M,, = 1/d respectively, where d denotes the dimension of the problem. C, = 0.5 is
the probability of transferring one component of a parent solution vector to the child solution vector. The
adopted code uses a single value for generation gap, GGAP = 1, thus n,,, X GGAP new individuals are
produced at each generation, and a single value for the insertion rate, INSR = 0.5, which decides how many
of the offsprings are inserted in the new population, as well. Therefore, in the following GAs are identified
by the population size, for example GA100 stands for Genetic Algorithms with 100 individuals.

2. Differential Evolution

Differential Evolution (DE)!? is a method of mathematical optimization of multidimensional multimodal (i.e.
exhibiting more than one minimum) functions and belongs to the class of Evolution Strategy optimizers.
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Algorithm 1 GA

: Set values for ny0p, GGAP, C,., M, and INSR, set nfepar =0 and k=1
Initialize a population Py, of individuals x;  for all i € [1, ..., npop)
Rank Py according to objective function value

Select individuals from Pj

Recombine selected individuals

Mutate offspring with probability M,

Calculate objective function for offsprings, update nfeyq

Insert INSR best offspring to replace worst parents

k=k+1

Termination Unless 7 feval > N fevatmaz, goto Step 3

H
@

The main idea is to generate the variation vector v; ;41 by taking the weighted difference between two other
solution vectors randomly chosen within a population of solution vectors and to add that difference to the
vector difference between x;;, and a third solution vector:

Vigk+1 = €[(Xig kb — Xik) + F(Xiy 6 — Xiy k)] (13)

where i1 and i, are integer numbers randomly chosen in the interval [1 np,,] C N of indexes of the population,
and e is a mask containing a random number of 0 and 1 according to:

e(j) = (14)

1=r< CR

0=r>Cpg
with j = 1,...,n, r is taken from a random uniform distribution r € U[0,1] and Cg is a constant. The
index i3 can be chosen at random (exploration strategy) or can be the index of the best solution vector
Xpest (convergence strategy). Selecting the best solution vector or a random one changes significantly the
convergence speed of the algorithm. The selection process is generally deterministic and simply preserves the
variation of x; j only if f(x;r + Vir+1) < f(x;x). It is worth noting that the only stochastic components in
the DE process sits in the choice of the indexes i1, 42 and i3. Since the selection is deterministic, the process
tend to preserve only the elements of v; ;41 that yield to an improvement of the population. Therefore,
the whole population evolves toward a similar behavior for all the solution vectors, i.e. vectors with similar
elements. The DE search process is summarized in Algorithm 2.

Algorithm 2 Differential Evolution
Set values for n,0p, Cr and F
Set Nyevar =0 and k=1
Initialize x; , and wu; y for all i € [1,..., npop)
Create the vector of random values r € U[0, 1] and the mask e =r < Cg
for all i € [1,...,ny0p] do
Select three individuals x;, , X;,, X,
Create the vector v; 11 = €[(Xiy k — Xi k) + F(Xig b — Xiy k)]
If f(xin+ Vigt1) < f(Xik) = Xigt1 = Xijk + Vikt1
If f(xip+ Vigs1) > f(Xik) = Xi k41 = Xk
Nfeval = Nfeval +1
: end for
ck=k+1
: Termination Unless nfeval > N fevatmazs goto Step 4

e

We considered six different settings for the DE, resulting from combining three sets of populations, [5d, 10d, 20 d],
where d is the dimensionality of the problem, two strategies, convergence and explore, and single values of
step-size and crossover probability F' = 0.75 and Cr = 0.8 respectively, on the basis of common use. In the
following the six settings will be denominated with DE5¢,DE10c,DE20c for the ones using the convergence
strategy and with DE5e,DE10e,DE20e for the ones using the exploration strategy.
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3. Particle Swarm Optimization

Particle swarm optimization (PSO)'? is a population based stochastic optimization technique developed
by Eberhart and Kennedy in 1995, inspired by social behavior of bird flocking or fish schooling. In PSO,
the potential solutions, called particles, fly through the problem space by following the current optimum
particles. Each particle keeps track of its coordinates in the problem space which are associated with the
best solution it has achieved so far. The particle swarm optimization concept consists of, at each iteration,
changing the velocity of each particle ¢ according to a close-loop control mechanism:

Vik4+l = WV + U4k (15)

where w is a weighting function that in this implementation is proportional to the number of iterations k
w = [0.4 4+ 0.8(kmaz — k)/(kmaz — 1)]-
The control u; ; has the form:
u; k= 171 (Xgi ks — Xi k) + a2 (Xgok — Xi k) (16)

where X, is the position of the best solution found by particle ¢ (individualistic component), x4, % is the
position of the best particle in the swarm (social component), the random numbers 71,75 and the coefficients
c1 and co are used to weight the social and individualistic components. The position of a particle in the
search space is then computed with:

Xi k41 = Xik T VVi k1 (17)

with
v = min([Vmaz, Vi,k+1])/Vi k41 (18)

The search is continued till the decision to stop is taken. The process has two stochastic components given
by the two random numbers r; and ro. The term 171 (Xg; x —Xi %) is an elastic component that tend to recall
the particle back to its old position. The term cpri(Xg0,x — Xi,k) instead is driving the whole population
toward convergence. There is no selection mechanism. The basic scheme of PSO is summarized in Algorithm
3.

Algorithm 3 PSO
: Set values for c1, c2, Npop, Nfevalmaz, S€t kK = 1, compute w
Initialize x; , and v, for all i € [1, ..., npop)
Xgok = argminy, , f(Xix), 7= 1,...; Npop, Nfeval = Npop
for all i € [1,..., 10| do
Create random values ri, 7o € U[0 1]
Update particle velocity v; g41 = wv, i + c171(Xgi k — Xi k) + C2T2(Xgo,k — Xi k)
Check constraint on max velocity and compute v
Update particle position x; y4+1 = X; 1, + VVi k41
Update local best f(xirt1) < f(Xgik) = Xgik+1 = Xi kt1
Update global best f(x; k+1) < f(Xgo,k) = Xgo,k+1 = Xi k+1
Nfeval = Nfeval + 1
: end for
k=k+ 1, update w
Termination Unless nfeval > N fevatmazs goto Step 4

= s
w9

For the PSO algorithm, nine different settings were considered, resulting from the combination of three sets
of population, again [5d, 10d, 20 d], three values for the maximum velocity bound, v,,q. € [0.5,0.7,0.9], and
single values for weights ¢; = 1 and c; = 2. In the following the three population sets will be denominated
with PSO5,PS010,PS020, then we add two digits to identify the value of the v,,4., for example PSO505 is
the PSO algorithm with 5d particles and a limit on the max velocity v,q. = 0.5.
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4.  Multi-Start

The simple idea behind multi-start algorithms is to pick a number of points in the search space and start
a local search from each one of them. The local search can be performed with a gradient method. For the
following tests, points were selected randomly with a Latin Hypercube distribution (we call this algorithm
MS). The basic scheme for MS is described in Algorithm 4.

Algorithm 4 MS

Set k =1, frest = +00

Select point y,, according to a Latin Hypecube distribution

Run a local optimizer a; from y, and let x; be the detected local minimum.

Evaluate the objective function f(x)

f(xk) < fbest = Xpest = Xk, fbest = f(xkz)

Run a local optimizer a; from each f(x;)

Set Neyai = Neval + €valy, where evaly denotes the number of function evaluations required by the k-th
local search.

8: Termination Unless nfepal > N fevalmaz, goto Step 2

5. Monotonic Basin Hopping

Monotonic Basin Hopping (MBH) was first applied to special global optimization problems, the molecular
conformation ones,'?2° and later extended to general global optimization problems.?! 22 In its basic version
it is quite similar to MS. It is also based on multiple local searches and the only difference is represented by
the distribution of the starting points for local searches: while in MS these are randomly generated over the
whole feasible region, in MBH they are generated in a neighborhood N, (x) of the current local minimizer x.
The parameter p controls the size of the neighborhood. Its choice is essential for the performance. Too low a
value would cause to generate points only within the basin of attraction of the current local minimizer; too
large a value would basicall cause MBH to behave like MS. A careful choice of p may lead to results which
strongly outperform those of MS, in spite of the apparently mild difference between the two algorithms. In
this work N,(x) will be a hypercube with edge length 2p centered at x. The effectiveness fo the MBH can
be improved with a global resampling. When the value of the global solution does not changes consecutively
for tun,q, iterations, the search restarts from a point sampled in the whole search space.

Algorithm 5 MBH
1: Select a point y in the solution space D; initialize iun = 0
2: Run a local optimizer a; from y and let x be the detected local minimum.

3: Set Neval = Neval + eval, where eval denotes the number of function evaluations required by the local
search.

4: Evaluate the objective function f(x)

5: Select a candidate point x. € N,(x)

6: Run a local optimizer a; from x. and let x; be the local minimum in N,(x) found by a;

7: Set Neyal = Neval + €val, where eval denotes the number of function evaluations required by the local
search.

8 if f(x;) < f(x) then

9: X «— X;

10: un =0

11: else

12: iun = tun + 1

13: end if

14: if jun > iun,,., then

15: goto Step 1

16: end if

17: Termination Unless 7 teval > M fevaimaz, goto Step 5
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IV. Testing Procedure

In this section we describe testing procedures that can be used to investigate the complexity of the problem
and to derive performance indexes to compare different algorithms. If we call A a generic solution algorithm
and p a generic problem, we can define the procedure in Algorithm 6. Now and in the following we say that

Algorithm 6 Convergence Test

set the max number of function evaluations for A equal to N

apply A to p for n times

for alli € [1,...,n] do ¢(N,i) = min f(A(N),p,1)

end for

compute: Pmin(N) = minie[l,..,,n] A(N, 1), Prmax(N) = max;e[i,...,n] B(N, i)

an algorithm A is globally convergent, when for a number of function evaluations N that goes to infinity
the two functions ¢, and @4, converge to the same value, which is the global minimum value denoted as
fqlobar- An algorithm A is simply convergent, instead, if for N that goes to infinity the two functions ¢,in
and ¢4, converge to the same value, which is not necessarily a global or a local minimum for f.

If we fix a tolerance value tol s, we could consider the following random variable as a possible quality measure
of a globally convergent algorithm

N* =min{N : ¢mar(N') = foropar < toly : ¥ N' > N}.

The larger (the expected value of) N* is, the slower is the global convergence of A. Figures 4a-b show the
convergence profile for the bi-impulsive problem, 50 repeated independent runs Latin hypercube sampling,
local optimization from each sample. Slightly more than 1000 initial samples are required to have a 100%
convergence to the global minimum. However, the procedure in Algorithm 6 can be unpractical since, though
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Figure 4. Convergence of a bi-impulsive direct transfer to Apophis as a function of the total number of function
evaluations a) and number of initial samples b).

finite, the number N* could be very large. In practice, what we would like is not to choose N large enough
so that a success is always guaranteed, but rather, for a fixed N value, we would like to maximize the
probability of hitting a global minimizer. Now, let us define the following quantities:

05 (x) =| farobar — (%) [; 02(x) = [Xgiobar — X|| (19)

In case there is more than one global minimum point, §,(x) denotes the minimum distance between x and
all global minima. Moreover, in case the global minimum point Xgiopq; is not known, we can substitute it
with the best known point Xp.s;. We can now define a new procedure, summarized in Algorithm 7. A key
point is setting properly the value of n. In fact a value of n too small would correspond to an insufficient
number of samples to have a proper statistics. The number n is problem dependent and is related to the
complexity of the problem and to the heuristics implemented in the solution algorithm. A proper value for
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Algorithm 7 Convergence to the global optimum

set the max number of function evaluations for A equal to N
apply A to p for n times
set 7 =0
for alli e [1,...,n] do
H(N, i) = min f(A(N), p, )
x = arg ¢(N, 1)
compute d7(x) and §,(x)
if (07(x) <toly) A (64(x) < toly) then j=j+1
end if
end for

H
@

n should give a little or null fluctuations on the value of j/n, i.e. by increasing n the value of j/n should
remain constant or should have a small variation. The choice of n will be discussed in Section IV.2. Note
that the values of the tolerance parameter toly and tol, depend on the problem at hand. Algorithm 7 is
applicable to general problems either presenting a single solution with value function fgiopar (Or fpest) Or
presenting multiple solutions with value fgiopai (Or frest). On the other hand, in the following we are not
interested in distinguishing between solutions with equal f and different x therefore we will use a reduced
version of Algorithm 7 in which the condition §,(x) < tol, is not considered.

Finally, we remark that the two procedures described in Algorithms 6 and 7 only consider the computational
cost to evaluate f but not the intrinsic computational cost of A. The intrinsic cost of A is related to its
complexity and to the number of pieces of information A is handling. For instance, for a simple grid search
such intrinsic cost is represented by the cost of sweeping through all the N points on the grid at which
the objective function is evaluated. The intrinsic cost varies from algorithm to algorithm, but here we are
assuming that the computational effort of the algorithms is dominated by function evaluations and, therefore,
we do not take intrinsic costs into account.

A. Performance Indexes

After the testing procedure have been defined, we move to the definition of performance indexes.

First we note that if the algorithm A is deterministic, then we can set n = 1. Indeed, each time A is applied
to p, it always returns the same value. Then, for deterministic algorithms, given a value N, a reasonable
performance index is simply J;(N) = ¢(N, 1), i.e. the best value returned by the algorithm.

Instead, for stochastic based algorithms different performance indexes can be defined. Such indexes are
computed by running an algorithm over a problem a sufficiently high number n of times. The indexes should
reveal the ability of the algorithm to identify in a given computational time (or computational effort) the
best solution to a problem by running an algorithm a single time or, alternatively, by running it several
times.

Possible indexes are the best, the mean and the variance of all the results returned by the n runs, or the
probability of success of a single run. These will be discussed in what follows.

1.  Best, Mean and Variance

A common way to evaluate a stochastic algorithm is to collect the best value over a number of runs and to
compute the mean and variance of the best values over the same number of runs. However, the use of best
value, mean and variance presents some difficulties:

e The distribution of the best values is not Gaussian, as can be seen in Fig. 5 where the distribution
of all the solutions found by PSO1009 over 200 runs for the EVM case is represented. Therefore the
distance between the best and the mean values, or the value of the variance in general do not give an
exact indication of the repeatability of the result. Moreover, it changes during the process, therefore
we cannot define a priori the required number of runs to produce a correct estimation of mean and
variance.

e The minimum number of samples that are required to have a sufficient statistics is not well defined for
space problems
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e The use of the best value could be misleading since statistically even a simple random sampling can
converge to the global optimum, on the other hand an algorithm converging on average to a good value
with small variance does not guarantee to be able to find the best possible solution.
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0.4 1
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Figure 5. Probability density function for PSO applied to the solution of the EVM case: discrete, gaussian
(dashed) and kernel based approximation (continuous).

2. Success Rate

An alternative index that can be used to assess the effectiveness of a stochastic algorithm is the success rate
ps, which is related to j in Algorithm 7 by ps; = j/n. Considering the success as the referring index for a
comparative assessment implies two main advantages. First, it gives an immediate and unique indication
of the algorithm effectiveness, addressing all the issues highlighted above, and, second, the success rate can
be represented with a binomial probability density function (pdf), independently of the number of function
evaluations, the problem and the type of optimization algorithm. This latter characteristic implies that the
test can be designed fixing a priori the number of runs n, on the basis of the error we can accept on the
estimation of the success rate. A usual starting point to determine the sample size for a binomial distribution
is to assume that the sample proportion ps of successes (the success rate for a given n in our case) can be
approximated with a normal distribution, i.e. ps ~ Np{6p,0,(1 — 0,)/n}, where 6, is the unknown true
proportion of successes, and that the probability of being ps at distance dey, from 6, Pr(|ps — 6p| < derr|0p)
is at least 1 — y, (see Ref.!9). This leads to expression:

nz 017(1 - ep)Xﬁl),ab/dng (20)

and to the conservative rule:

Eerr

n > 0.25x3) o, /d (21)

obtained if 6, = 0.5. For our tests we required an error < 0.05 (derr = 0.05) with a 95% confidence
(o = 0.05), which according to Eq.(21) yields n > 176, which was extended to 200 for all the tests in the
paper to have a higher confidence in the result.

Fig. 6 shows the variation of the success rate as a function of n for the case of PSO applied to the solution
of the bi-impulsive case. For n < 50, the success is extremely oscillating and the confidence in the estimated
value is poor. Increasing the number of runs to 200 gives a more stable value within the required confidence
interval.
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Figure 6. The influence of sample size. The success rate is shown as function of the number of runs for the
PSO applied to the solution of the bi-impulsive case.

B. Test Results

The results of the tests are summarized in Table 1 and 2, where success probability (Table 1) and best value,
mean and variance of best results (Table 2) are given for each of the 20 settings of the five stochastic solvers.
For both EA and EVM cases, success probability allows a fair classification and gives a clear indication of
the best performing algorithms. If we look only at the set of evolutionary based algorithms (DE,GA and
PSO) algorithms DE10e and DE20e perform undoubtedly better than the others and algorithms GA100/200-
GA200/400-GA400/600 appear to be the worst performing ones. Algorithm DE5e wins a bronze medal, but
if we can be confident in its third position for the EVM problem, we cannot have the same level of confidence
regarding the third position for EA, because of the proximity of other algorithms. Actually, due to the
binomial nature of the success and the adopted sample size, it is not possible to fairly discriminate between
algorithms for which the success distance is smaller than the expected error (0.05 in our computations).
Therefore, algorithm DE10e has to be considered at the same level of algorithms PSO1007, PSO509, for
example, and other PSO settings. For the same reasons, we can say that, among the PSO settings, algorithms
PS0O1007 and PSO509 perform better than algorithm PSO1005 but the remaining PSO algorithms work at
the same level.

An analogous vagueness is displayed by most of the evolutionary based algorithms when applied to EVM
and almost all of them when applied to EVVEJS and EVVEJSdsm. On the other hand, MS and MBH
shows remarkable performance in all the test cases with the simple MS winning over all the others in the EA
case. For the EVVEJS case all the algorithms, but MBH, appear practically unsuccessful, because, even if
the success probability cannot be considered really 0, due to the error margin, it is < 0.12, according to the
expected error. MBH is the only algorithm that can be practically used to solve this problem with a success
< 0.34. For EVVEJSdsm case even MBH is performing poorly, with a success < 0.08.

For cases where the success probability cannot give practically useful information to classify the algorithms,
the user could be tempted to use the values of mean and variance, but this practice is strongly heedless.
Even if we suppose mean and variance are correct (in some way), looking at these two values can bring to
incorrect conclusions. For instance, if we consider the values for the algorithms PSO1009 and GA400 applied
to EVM, we could conclude that algorithm GA400 performs better than algorithm PS0O1009, because of a
smaller mean value and a smaller variance (regarded as an index of robustness). But, if we are interested in
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Table 1. Success for the 20 algorithms on the four test-cases. To compute the success, following tol; values
were used: 0.001 for EA, 3 — fi.sr for EVM, 5 — fiesr for EVVEJS and 8.5 — fp.s¢ for EVVEJSdsm

DE5c DE10c DE20c DE5e DE10e DE20e PSO505 PsSO1005 PS0O2005 PSO507
EA 0.140 0.300 0.355 0.450  0.770 0.855 0.355 0.345 0.410 0.395
EVM 0.050  0.050 0.050 0.150  0.250 0.370 0.040 0.035 0.080  0.045
EVVEJS 0.020 0.005 0.015 0.000  0.000 0.000 0.000 0.005 0.000  0.000
EVVEJSdsm | 0.01 0.000  0.000 0.000  0.000 0.000 0.000 0.000 0.000  0.000

PSO1007 PSO2007 PSO509 PSO1009 PsS0O2009 GA100/200 GA200/400 GA400/600 MS MBH

EA 0.425 0410 0435 0.385  0.420 0.160 0.240 0.105 0.93 0.82
EVM 0.060 0.055 0.035 0.070  0.075 0.005 0.010 0.035 0.625 0.765
EVVEJS 0.000  0.000 0.000 0.000  0.000 0.000 0.000 0.005 0.07 0.29
EVVEJSdsm | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  0.030

global optimal solutions, algorithm PSO1009 is noticeably better: it is able to find the global solution, even
if it is less robust and gets stuck many times in a far basin (see Figs. 5 and 7).

In order to solve an uncertainty condition, for instance when the success probability appears uniformly
null, relaxing the tol; value could be useful. Focusing on the EVVEJS case, there is no way to correctly
discriminate among the algorithms on the basis of data in table 1, but if the success threshold is raised from
5 to 5.3, then a superior performance of GAs is revealed. Most likely, this behavior is due to a combination of
different features, such as larger population, the mutation search operator and a non-deterministic selection
operator, which in this complex case reduces the speed of local convergence, preserves diversity and allows
for a better exploration of the search space.

For the EVVEJSdsm case we are not so “luky”. Raising the success threshold from 8.5 to 9 (see table 3)
allows identifying the MBH as the only one algorithm practically able to handle this problem, but does not
give any useful information to discriminate among the other algorithms. Only DE “c” series and MS are able
to find solutions with objective value under 9, but the success rate is so low and similar that discriminating
between the two would be difficult.

MPGA EVM 20000 feval .MPGA EVM 40000 feval

.MPGA EVM 100000 feval
I discrete

4 —— parzen
- — —gaussian

Figure 7. Pdfs, for the EVM case with the MPGA algorithm.

In Figs. 8 to 11 we present two interesting cases. Figs. 8 and 9 represent the pdf and the success rate for the
MBH algorithm with p = 0.1 applied to the EVVEJS case with no deep space manoeuvres while Figs. 10 and
11 represent the pdf and the success rate of the DE5c algorithm applied to the same case. MBH distributes
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Table 2. Indexes: Best value, Mean Best, Variance Best.

EA (N=5000) EVM (N=100000) EVVEIJS (N=400000) EVVEJSdsm (N=600000)
DE5c 437 47 0.07 | 298 3.6 032 | 493 1251 15.07 8.42 16.37  11.93
DE10c 437 457 0.03 ] 298 351 0.09 | 493 1137 15.75 8.62 16.07  11.68
DE20c 437 452 0.02 ] 298 343 0.08 | 4.93 9.97 15.93 8.7 16.02  20.33
DEbe 437 451 0.02 | 298 329 0.03 5.3 8.15 9.75 14.41  26.87 6.06
DE10e 437 442 0.01 | 298 3.23 0.03 5.3 6.39 5.01 21.91 28.72 2.6
DE20e 4.37  4.39 0 298 3.17 0.03 5.3 5.56 1.4 24.86  30.08 2.03
PSO505 437 451 0.01 | 298 382 0.68 | 503 1268 16.49 | 1242 23.13 8.52
PSO1005 | 437 451 0.01 | 298 3.78 0.63| 496 11.97 18.7 12.48  23.32  10.46
PSO2005 | 4.37 4.5 0.01 | 298 3.65 0.52 5.3 11.19 1792 | 1532 23.74 6.67
PSO507 437 451 0.01 | 298 404 1.01]| 501 11.v4 17.73 | 11.37 22.06 9.54
PSO1007 | 4.37 449 0.01 | 298 393 083 | 506 1073 17.27 | 13.61 22.53 7.53
PSO2007 | 437 4.5 0.01 | 298 3.73 0.6 5.02 1047 1843 | 10.19 2217 8.55
PSO509 4.37 4.5 0.01 | 298 422 1.06 | 525 11.83 21.71 | 11.83 22.08 8.83
PSO1009 | 437 455 037 | 298 397 0.87| 502 10.56 1843 | 1213 22.09 9.86
PSO2009 | 437 45 0.01 | 298 381 0.75| 5.03 10.53 15.13 | 12.08 22.07 8.59
GA200 437 457 003 ] 299 378 024 ]| 516 1065 15.19 9.65 19.98  13.53
GA400 437 45 0.01 | 299 354 0.14 ] 5.02 8.31 9.91 9.1 18.6 13.35
GA600 437 445 0.01 | 298 345 0.1 4.98 6.98 6.68 10.74 18.36  10.91
MS 4.37  4.39 0 298 3.02 0 4.94 5.28 0.03 8.62 14.52 4.92
MBH 437 441 0 298 3.01 0 4.93 5.19 0.39 8.41 12.64 9.74

Table 3. Successes for the 20 algorithms on the EVVEJSdsm test-case, with the threshold varying from
8.5 — fbest to 9.0 — fbest

DE5c DE10c DE20c DE5e DE10e DE20e PSO505 PSO1005 PSO2005 PSO507
8.5 — fpest | 0.01 0 0 0 0 0 0 0 0 0
8.6 — fpest | 0.02 0 0 0 0 0 0 0 0 0
8.7— frest | 0.05  0.04 0 0 0 0 0 0 0 0
8.8 — frest | 0.06  0.06  0.02 0 0 0 0 0 0 0
8.9 — frest | 0.06  0.06  0.05 0 0 0 0 0 0 0
9.0 — fyrese | 0.06  0.06  0.06 0 0 0 0 0 0 0

PSO1007 PSO2007 PSO509 PSO1009 PS0O2009 GAIOU/ZOO GA200/4OO GABDO/GOO MS MBH

8.5 — frest 0 0 0 0 0 0 0 0 0 0.03
8.6 — frest 0 0 0 0 0 0 0 0 0 0.07
8.7 — frest 0 0 0 0 0 0 0 0 002  0.15
8.8 — frest 0 0 0 0 0 0 0 0 002  0.19
8.9 — frest 0 0 0 0 0 0 0 0 0.02  0.22
9.0 — frest 0 0 0 0 0 0 0 0 0.02  0.23

the solutions over few distant minima for a low number of function evaluations but then quickly converge
only to a neighborhood of the best known solution as soon as the number of function evaluations increases.
DEb5c instead maintain a practically unchanged distribution of the solutions. In fact DEb5c converges very
fast and then tend to remain trapped in local minima.

Figs.12(a) to 13(b) represent the distribution of all the local minima in the search space, found by all the
search algorithms over all the runs. In particular, we defined some specific intervals (or levels) of values
for the objective function and then we computed: the average value of the relative distance of a given local
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Figure 9. Success rate of the MBH applied to the solution of the EVVEJS case with no DSMs.

minimum with respect to all the local minima in the same interval of objective values d;; (or intra-level
distance) and the average value of the relative distance of a given local minimum with respect to all the local
minima in the interval with lower values of the objective function dy (or trans-level distance). The figures
give an immediate representation of the diversity of the local minima in the search space (different colors
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Figure 10. Pdf for the DE applied to the solution of the EVVEJS case with no DSMs.
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Figure 11. Success rate of the DE applied to the solution of the EVVEJS case with no DSMs.

correspond to different levels). Note that the two quantities d;; and dy can be related to the Shannon’s
diversity index.?® In fact, if both dy and d;; are large then the solutions belonging to each species (the
intervals of f) are well spread and distant from the solutions of the lower level. We can then redefine the
species and associate a species to each solution and the value of the diversity index would be high. If both
dy and d;; are small the solutions are clustered and close to each other, therefore species are made of large
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Figure 13. Relative distance of the local minima for the EVVEJS with and without DSM’s.

groups of solutions and the diversity index would be low. The index would be low also for d;; small and
dy; large and would be large for d;; large and dy small. It should be noted that dy; and d;; give a better
representation of the actual diversity because they consider also the reciprocal distance in the solution space
while the Shannon’s index is generally associate only to the separation in the criteria space.?%

More precisely, Fig.12(a) is telling us that for the bi-impulsive case the minima are quite spread, not clustered
if not in pairs. The EVM case, in Fig.12(b), presents an almost continuous distribution of minima. However,
the minima of one level appear to be quite distant from the minima of the lower level.

Fig.13(a) presents a quite different structure. There are a number of clusters and in particular three of them,
corresponding to level 1,2 and 3, have values of d;; and d;; lower than 0.2. The existence of clusters of minima
with low dy; and low d;; suggests an easy transition from one level to an another. An easy transition among
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Figure 14. Examples of pdfs, for the EVVEJS case with DSM and the MBH optimizer.

levels favors the search mechanism of MBH and represent a clue of a possible underlying funnel structure.?°

Both Figs. 13(b) and (14) suggest, instead, a different landscape for the EVVEJSdsm case. The solutions are
quite spread and with values of both dy; and d;; higher than 0.5. This case appears to be highly multi-modal,
with relatively distant minima. Gradient based methods (MS and MBH) converge to local minima and get
stuck. Even if the re-sampling allows the MBH to better converge to the global solution, the variance of the
best solutions is still very high. Note that in the case of the EVVEJS problem with no deep-space manoeuvre
running the MBH with no re-sampling provides an increase in performance from 29% to 37.5%.

V. A Dynamical System Prospective

In this section we look at some evolutionary heuristics from a different prospective in the attempt to better
understand the dynamics of the search process regardless of the problem under investigation. This analysis
will be used to improve the performance of one of the algorithms tested above. In particular, we note that
both DE and PSO can be rewritten in a compact form as a discrete dynamical system:

Vik+1 = (1 —c)vip +uwig

(22)
X b1 = Xi g + VS (Xi g + Vi kt1) Vi k41

with
v = min([Vmaz, Vi,k+1])/Vi k41 (23)

The control u;  defines the next point that will be sampled for each one of the existing points in the solution
space, the vectors x;; and v;j define the current state of a point in the solution space at stage k of the
search process and c¢ is a viscosity, or dissipative coefficient, for the process. Eq. (23) represents a limit
sphere around the point x; ; at stage k of the search process.

In addition to Eq. (22) and Eq. (23) each optimization algorithm has heuristics responsible for selecting
the new candidate points generated with u; ;. The selection operator is expressed through the function
S(Xik + Vi k+1) which can be either 1 if the candidate point is accepted or 0 if it is not accepted.
Differential Evolution, in its basic form, has the u,; ; defined by Eq.(13), viscosity ¢ = 1 and vimqe = +00.
The selection function S can be either 1 or 0 depending on the relative value of the objective function
of the new candidate individual generated with Eq.(13) with respect to the one of the current individual
(see Algorithm 2).Particle swarm optimization has the u;j defined in Eq.(16) with the viscosity term ¢ =
1 —10.4 + 0.8(kmaz — k)/(kmaz — 1)], no mask and no selection, therefore S is always equal to 1 but v is
constrained by Eq. (23). Note that if we take coro = Fe, cir1 = e and replacing x4, 5 with one of the
individuals in the population, then PSO translates into DE and vice versa we can go from DE to PSO just
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by defining properly the selection of the individuals x;, i, Xi, i, Xi5 %, the value of the coeflicients ¢, c1, ca, v
and the selection function S.
The discrete dynamical system in Egs. (22) can be rewritten in matrix form as follows:

[ Xi k+1 ] _ Ji,k{ Xk } (24)

Vik

and if we consider all the individuals in the population:

{ Xk41 } :Jk{ Xk } (25)

Vi+1 Vi

The map (25) allows for a number of considerations on the evolution of the search process and therefore on
the properties of the global optimization algorithm. In particular the map can:

e Diverge to infinity. In this case the discrete dynamical system is unstable, the global optimization
algorithm is not convergent.

e Converge to a fixed point in D. In this case the global optimization algorithm is simply convergent in
D and we can define a stopping criterion. Once the search is stopped we can define a restart procedure.
Depending on the convergence profile, the use of a restart procedure can be more or less efficient.

e Converge to a limit cycle in which the same points in D are re-sampled periodically. Even in this case
we can define a stopping criterion and a restart procedure.

e Converge to a strange (chaotic) attractor. In this case a stopping criterion cannot be clearly defined
because different points are sampled at different iterations.

We have seen in the previous sections that the heuristics implemented in MBH is particularly effective.
MBH is based on a Newton (or quasi-Newton) method for local minimization and on a restart of the search
within a neighborhood N, of a local minimum. We can view such local optimization methods as dynamical
systems where the evolution of the systems at each iteration is controlled by some map Ji. Under suitable
assumptions the systems converge to a fixed point. For instance, if f is convex and C? in a small enough
domain Dy containing a local minimum which satisfies some regularity conditions, Newton’s map converges
quadratically to a single fixed point (the local minimum) in Dj.

The motivations for using different dynamical systems are: dropping the requirement for the continuity and
differentiability of f; automatically reducing the size of the region in which a candidate point is generated (the
basic version of MBH has a constant size of N,); performing not only a local exploration of the neighborhood,
but also a global one.

For instance, in the specific case of simple Differential Evolution, ¢ = 1 and v = 1, therefore we have the
reduced map:

Xi k1 = Xi g +S(Xi g + W k) Wik (26)

or in matrix form for the entire population x;11 = Jixg. The interest is now in the properties of map (26).
We start by observing that if S(x; +ux) =1 < f(xi +ug) < f(xx) the global minimizer x, € D is a fixed
point for (26) since every point x € D is such that f(x) > f(xg).

Then, let us assume that at every iteration & we can find two connected subsets Dj, and D}, of D such that
f(xk) < f(x5), VK € Dy, Vx; € Df\ Dy and Py, € Dy, while P41 € Df. If x; is the lowest local minimum
in Dy, then x; is a fixed point in Dy, for (26). In fact, every point generated by (26) (or (25)) must be in Dy,
and f(x/) < f(x),¥x € Dy

Now we want to know if there are other fixed points for the dynamics (26) and if we can always have a simple
convergence in Dj. First of all we note that if for every k, P, € Dy and P11 € Dj, then the reciprocal
distance of the individuals cannot grow indefinitely because of the map (26), therefore the map cannot be
divergent.

Then, if we assume that the function f is strictly quasi-convex?® in Dy we can prove that (26) converge to
a fixed point in Dy. We first need the following lemma.
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LEMMA V.1 If f is continuous and strictly quasi-conver on a compact set D;, the following minimization
problem with F € (0,1) has a strictly positive minimum value 6, (€):

or(€) = min  g(y;,ys) = f(Y2) — f(Fy + (1 = F)y)
st. Y, Y € Dy
Y1 — woll > €
fly) < fy,)

Proof Since f is strictly quasi-convex ¢(y;, y2) > 0, Vy;, yo € D; furthermore, the feasible region is
compact and, therefore, according to Weierstrass’ theorem the function g attains its minimum value over
the feasible region. If we denote by (y7,y3) a global minimum point of the problem, then we have

6r(€) = g(y1,¥3) > 0. (28)

(27)

THEOREM V.2 Given a function f that is strictly quasi-convexr over Dy and a population Py € Dy, then if
F e (0,1) and S(xr, + wi) = 1 < f(xr + wi) < f(xr) , the population Py converges to a fized point in Dy,
for k — oo.

Proof We propose two distinct proofs for this result. The first one is simpler but requires an additional
assumption. The second one is more complicated but also more general.

The first simpler proof requires the additional assumption that the population always has an individual
X, strictly better than the others, ie. f(x;x) < f(x;x) for any ¢ # j, then the map (26) at each iter-
ation k can generate with strictly positive probability a displacement (x;, — X; ) for all the members of
the population. This means that at each iteration we have a strictly positive probability that the whole
population collapses into a single point. Then, for £ — oo the whole population collapses to a single point
with probability one.

The more complicated and more general proof is the following. By contradiction let us assume that we
have not convergence to a fixed point. Then, it must hold that:

irgfmax{”xi,k — Xkl 45 €1, s npop)} > €>0 (29)

At every generation k the map can generate with strictly positive probability a displacement F'(x;+ j —X;= k),
where i* and j* identify the individuals with the maximal reciprocal distance, such that the candidate point
is Xeand = Fxi= i + (1 — F)xj+ pp with f(x;- ) < f(x;+ k). Since the function f is strictly quasi-convex, the
candidate point is certainly better than x;- ; and, therefore, is accepted by S. Now, in view of (29) and of
Lemma (V.1) we must have that

f(Xeana) < f(x5,6) — 0r(€). (30)
Such reduction will occur with probability one infinitely often, and consequently the function value of at
least one individual will be, with probability one, infinitely often reduced by ¢, (¢). But this way the value
of the objective function of such individual would diverge to —oo, which is a contradiction because f is
bounded from below over the compact set Dy.

In particular, the above result shows that, when the population of DE lies at each iteration in the neigh-
borhood of a local minimum satisfying some regularity assumption (e.g., the Hessian at the local minimum
is definite positive, implying strict convexity in the neighborhood), then DE will certainly converge to a
fixed point. For general functions, we can not always guarantee that the population will converge to a fixed
point, but we can show that the maximum difference between the objective function values in the population
converges to 0, i.e. the points in the population tend to belong to the same level set.

THEOREM V.3 Given a function f and a population Py € Dy, then if F € (0,1) and S(xx + ui) = 1 &
flee +we) < f(x) , the following holds

- Inax | f(zj) — f(@ik) [— 0,
4,7€[1,...,;npop]

as k — oo.
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Proof Let S} denote the set of best points in population Py, i.e.

Sp =A%k + f(x) < f(Xik) Vi€l npopl}

At each iteration k there is a strictly positive probability that the whole population will be reduced to S} at
the next iteration. In other words, there is a strictly positive probability for the event that the population
at a given iteration will be made up by points all with the same objective function value. Therefore, such
event will occur infinitely often with probability one. Let us denote with {kj, },=1, . the infinite subsequence
of iterations at which the event is true, and let

Ay = f(xi,kh) - f(Xi7kh,+1)

be the difference of the objective function values at two consecutive iterations kj, and kp4+1 (note that, since
at iterations kj, h = 1,... the objective function values are all equal, any ¢ can be employed in the above
definition). It holds that for all 4, € [1,. .., npep)

| F(x%6) — F(xig) [ An Yk € [kn, knit)-

Therefore, if we are able to prove that Ay — 0, as h — 00, we also prove the result of our theorem. Let
us assume by contradiction that Ay # 0. Then, there will exist a § > 0 such that A; > ¢ infinitely many
times. But this would lead to function values diverging to —oo and, consequently, to a contradiction.

As a consequence of these results, a possible stopping criterion for DE would be to stop when the difference
between the function values in the population drops below a given threshold. However, though it is true
according to V.3 that we can converge to a level set with Ay = 0 it is not true if A;, = 0 the algorithm has
converged. Therefore, since the most likely situation is the convergence to a single point, we can alternatively
use as a stopping criterion the fact that the maximum distance between points in the population drops below
a threshold.

—— max distance
min distance 16
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7 12r
1 2
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§
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i .
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Figure 15. Dissipative properties of Differential Evolution:a) max and min distance of the individuals in the
population from the origin, b) eigenvalues with the number of evolutionary iterations.

To further verify the contraction property of the dynamics in Eq. (26) we can look at the eigenvalues of the
matrix J.

If the population cannot diverge the eigenvalues cannot have norm always > 1. Furthermore, according to
theorem (V.2) if the function f is strictly quasi-convex in Dj the population converges to a fixed point in
Dy, which implies that the map (26) is a contraction in Dy, and therefore the eigenvalues should have norm
on average lower than 1. This can be illustrated with the following test. We consider a population of 8
individuals and a Dy, enclosing the minimum of a paraboloid with minimum in the origin. We compute, for
each step k, the distance of the closest and farthest individual form the local minimum and the eigenvalues
of the matrix J. Fig.15 shows the behavior of the eigenvalues and of the distance from the origin. From
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Algorithm 8 Inflationary Differential Evolution Algorithm (IDEA)

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:

1
2
3
4
5:
6
7
8
9

Set values for npop, Cr and F, set nyepqr = 0 and k = 1, set threshold tolcon.
: Initialize x; , and v, ; for all ¢ € [1, ..., npop)
: Create the vector of random values r € U0, 1] and the mask e =r < Cp
: for all i € [1,...,np0p] do
Select three individuals x;, , X, , Xi,
Create the vector u; ; = e[(Xiy . — Xi k) + F(Xiy o — Xiy k)]
Vikr1 =1 —c)vigp+ ik
Compute S and v
Xi k41 = Xi g + SUV,p1
Nfeval = Nfeval +1
end for
k=k+1
pa = max(||x; x — X;k||]) for Vx; g, Xj 5 € Psup C Pg

if ps < tolecon, then
Define a bubble D, such that x; ; € D; for Vx; ; € Psyp and Pgyp, C Py
Ay = Ay + {Xpest } where Xpeqr = argmin; f(x; )
Initialize x; , and v, for all ¢ € [1, ..., ny0p], in the bubble D; C D
end if
Termination Unless nfeval > N fevatmaz, goto Step 3

the figure we can see that for all iterations the value of the norm of all the eigenvalues is in the interval
[0, 1] except for one eigenvalue at iteration 12. However, since on average the eigenvalue is lower than 1 the
population contracts as represented in Fig.15a.

IDEA 100000 feval IDEA 200000 feval
3 4
N e D |
2 - — — Gaussian
El
1

0 = \\\_/L

0 5 10 15
Foest Foest
IDEA 300000 feval IDEA 400000 feval
3 3
- I Discrete
I Discrete Parzen
2 —Parzen 2 - — —Gaussian
— — — Gaussian
B |
1 1
A\ \
/| \ / \
0 - N am O - AN
0 5 10 15 0 5 10 15
f f
best best

Figure 16. Pdf for IDEA applied to the solution of the EVVEJS case with no DSMs.

If multiple minima are contained in Dy then it can be experimentally verified that the population contracts
to a number of clusters initially converging to a number local minima and eventually to the lowest among
all of the identified local minima. Now, if a cluster contracts we can define a bubble D; C D, containing the
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Figure 17. Success rate of IDEA applied to the solution of the EVVEJS case with no DSMs.

cluster, and re-initialize a subpopulation Py, in D; when the maximum distance p4 = max(||x; —x;||) among
the elements in the cluster collapses below a value tol.on,. Every time a subpopulation is re-initialized the
best solution Xpes+ of the cluster is saved in an archive A,. This process leads to the modified DE algorithm
8. Note that the contraction of the population given for example by the metric p4 is a stopping criterion
that does not depend explicitly on the value of the objective function but on the contractive properties of
the map in Eq.(26).

The new algorithm was tested again on the EVVEJS case without DSM. Instead of restarting each cluster we
restarted the whole population when maximum distance among its individuals was below tol.oy,. The result
is represented in Figs. 16 and 17. With respect to the original version of DE (see Fig. 11) the improvement
in the success rate is remarkable and reaches almost 40%. Unlike the MBH version in Fig. 8 for IDEA
we did not operate a re-sampling over the entire D when no improvement was registered. This could be
the reason for the lower success rate when the tolerance tol; is increased. On the other hand, we should
remark that IDEA manages to converge to the best known solution, while MBH remains slightly above that
value (both with and without re-sampling). This is due to the fact that in a small neighborhood of the best
known solution there is a large number of local minima, all with similar values but irregularly distributed.
In this case the ability of the DE map to adapt automatically the size of the region in which it generates the
candidate points, represents an advantage over the fixed neighborhood N, of MBH.

VI. Conclusion

In this paper we presented an approach to test global optimization algorithms applied to the solution of
space trajectory design problems. We discussed the relevance of some performance indexes, in particular
mean, variance, best value and success rate. The last one offers a better and more precise estimation
of the actual performance of an algorithm when applied to a standard benchmark. The selection of the
test cases in the benchmark is quite important since the characteristics of the problem, and therefore the
performance of a given algorithm, can change significantly even by changing the modeling of the same
problem, as demonstrated by the two models for the same EVVEJS transfer. The use of the success rate
offers a distinctive advantage of a precise a priori definition of the required number of runs to correctly
estimate the success rate. The use of mean and variance, instead, showed to be misleading in some cases
and inconclusive in others since the distribution of the results was demonstrated to be non-Gaussian.

Finally we presented a dynamical system interpretation of some evolutionary heuristics. By analyzing some
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dynamical properties of differential evolution in relation to the characteristics of the problems in the bench-
mark we derived a new algorithm that outperformed the standard DE and all the tested EA, becoming
competitive against the best performing tested stochastic method, the MBH.

An interesting result of the analysis presented in this paper is that even a single specific heuristic can improve
significantly the performance of a search method applied to a particular class of problems. On the other
hand, this fact highlights the importance of a proper coupling between heuristics and problem structure
which is not always possible a priori.
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