83,334 research outputs found
Experimental Validation of Multiphase Flow Models and Testing of Multiphase Flow Meters: A Critical Review of Flow Loops Worldwide
Around the world, research into multiphase flow is performed by scientists with hugely diverse backgrounds: physicists, mathematicians and engineers from mechanical, nuclear, chemical, civil, petroleum, environmental and aerospace disciplines. Multiphase flow models are required to investigate the co-current or counter-current flow of different fluid phases under a wide range of pressure and temperature conditions and in several different configurations. To compliment this theoretical effort, measurements at controlled experimental conditions are required to verify multiphase flow models and assess their range of applicability, which has given rise to a large number of multiphase flow loops around the world. These flow loops are also used intensively to test and validate multiphase flow meters, which are devices for the in-line measurement of multiphase flow streams without separation of the phases. However, there are numerous multiphase flow varieties due to differences in pressure and temperature, fluids, flow regimes, pipe geometry, inclination and diameter, so a flow loop cannot represent all possible situations. Even when experiments in a given flow loop are believed to be sufficiently exhaustive for a specific study area, the real conditions encountered in the field tend to be very different from those recreated in the research facility. This paper presents a critical review of multiphase flow loops around the world, highlighting the pros and cons of each facility with regard to reproducing and monitoring different multiphase flow situations. The authors suggest a way forward for new developments in this area
Experimental validation of multiphase flow models and testing of multiphase flow meters: A critical review of flow loops worldwide
Around the world, research into multiphase flow is performed by scientists with
hugely diverse backgrounds: physicists, mathematicians and engineers from
mechanical, nuclear, chemical, civil, petroleum, environmental and aerospace
disciplines. Multiphase flow models are required to investigate the co-current or
counter-current flow of different fluid phases under a wide range of pressure and
temperature conditions and in several different configurations. To compliment
this theoretical effort, measurements at controlled experimental conditions are
required to verify multiphase flow models and assess their range of applicability,
which has given rise to a large number of multiphase flow loops around the
world. These flow loops are also used intensively to test and validate multiphase
flow meters, which are devices for the in-line measurement of multiphase flow
streams without separation of the phases. However, there are numerous
multiphase flow varieties due to differences in pressure and temperature, fluids,
flow regimes, pipe geometry, inclination and diameter, so a flow loop cannot
represent all possible situations. Even when experiments in a given flow loop are
believed to be sufficiently exhaustive for a specific study area, the real
conditions encountered in the field tend to be very different from those recreated
in the research facility. This paper presents a critical review of multiphase flow
loops around the world, highlighting the pros and cons of each facility with
regard to reproducing and monitoring different multiphase flow situations. The
authors suggest a way forward for new developments in this area
Recommended from our members
A High Performance Lattice Boltzmann Solver with Applications to Multiphase Flow in Porous Media
Multiphase flow is significant to many industrial processes such as the geologic storage of CO2 and oil recovery. Microscale simulation of flow in complex geological formations such as saline aquifers or oilfields is a complex and challenging task. The main goal of our study is to overcome high computational demand of multiphase flow simulations by using high performance computing. To model multiphase flow in porous media, we used a multiphase flow lattice Boltzmann (LB) method, which is recognized as an alternative to the classical computational fluid dynamics (CFD) methods. The developed LB model used an extended Color-Gradient approach with improved numerical stability, and it can be used to compute multiphase flow simulations with low capillary number and high viscosity ratios. To optimize computational efficiency, we apply the LB model to a parallel scheme written in C++ using the Message Passing Interface (MPI). Highly parallel runs of these simulations were performed using the HPC system at the Texas Advanced Computing Center at the University of Texas at Austin. We herein introduce the capability of our tool for multiphase flow simulation in porous media and present its application to CO2 sequestration in geological formations. The model has been applied to the simulation of CO2 and brine in sandstone rocks, by employing three-dimensional micro-CT images of rock samples. Injection of supercritical CO2 into the brine-saturated rock samples is simulated and complex displacement patterns under various reservoir conditions are identified.Texas Advanced Computing Center (TACC
A Machine Learning Approach for Virtual Flow Metering and Forecasting
We are concerned with robust and accurate forecasting of multiphase flow
rates in wells and pipelines during oil and gas production. In practice, the
possibility to physically measure the rates is often limited; besides, it is
desirable to estimate future values of multiphase rates based on the previous
behavior of the system. In this work, we demonstrate that a Long Short-Term
Memory (LSTM) recurrent artificial network is able not only to accurately
estimate the multiphase rates at current time (i.e., act as a virtual flow
meter), but also to forecast the rates for a sequence of future time instants.
For a synthetic severe slugging case, LSTM forecasts compare favorably with the
results of hydrodynamical modeling. LSTM results for a realistic noizy dataset
of a variable rate well test show that the model can also successfully forecast
multiphase rates for a system with changing flow patterns
Three-Dimensional Multi-Relaxation Time (MRT) Lattice-Boltzmann Models for Multiphase Flow
In this paper, three-dimensional (3D) multi-relaxation time (MRT)
lattice-Boltzmann (LB) models for multiphase flow are presented. In contrast to
the Bhatnagar-Gross-Krook (BGK) model, a widely employed kinetic model, in MRT
models the rates of relaxation processes owing to collisions of particle
populations may be independently adjusted. As a result, the MRT models offer a
significant improvement in numerical stability of the LB method for simulating
fluids with lower viscosities. We show through the Chapman-Enskog multiscale
analysis that the continuum limit behavior of 3D MRT LB models corresponds to
that of the macroscopic dynamical equations for multiphase flow. We extend the
3D MRT LB models developed to represent multiphase flow with reduced
compressibility effects. The multiphase models are evaluated by verifying the
Laplace-Young relation for static drops and the frequency of oscillations of
drops. The results show satisfactory agreement with available data and
significant gains in numerical stability.Comment: Accepted for publication in the Journal of Computational Physic
Measurement and analysis of water/oil multiphase flow using electrical capacitance tomography sensor
The paper investigates the capability of using a portable 16-segmented Electrical Capacitance Tomo-graphy (ECT) sensor and a new excitation technique to measure the concentration profile of water/oil multiphase flow. The concentration profile obtained from the capacitance measurements is capable of providing images of the water and oil flow in the pipeline. The visualization results deliver information regarding the flow regime and concentration distribution of the multiphase flow. The information is able to help in designing process equipment and verifying the existing computational modeling and simu-lation techniques
Droplet collision simulation by multi-speed lattice Boltzmann method
Realization of the Shan-Chen multiphase flow lattice Boltzmann model is considered in the framework of the higher-order Galilean invariant lattices. The present multiphase lattice Boltzmann model is used in two dimensional simulation of droplet collisions at high Weber numbers. Results are found to be in a good agreement with experimental findings
Three dimensional hysdrodynamic lattice-gas simulations of binary immiscible and ternary amphiphilic flow through porous media
We report the results of a study of multiphase flow in porous media. A
Darcy's law for steady multiphase flow was investigated for both binary and
ternary amphiphilic flow. Linear flux-forcing relationships satisfying Onsager
reciprocity were shown to be a good approximation of the simulation data. The
dependence of the relative permeability coefficients on water saturation was
investigated and showed good qualitative agreement with experimental data.
Non-steady state invasion flows were investigated, with particular interest in
the asymptotic residual oil saturation. The addition of surfactant to the
invasive fluid was shown to significantly reduce the residual oil saturation.Comment: To appear in Phys. Rev.
- …