813 research outputs found

    Development and Experimental Analysis of Wireless High Accuracy Ultra-Wideband Localization Systems for Indoor Medical Applications

    Get PDF
    This dissertation addresses several interesting and relevant problems in the field of wireless technologies applied to medical applications and specifically problems related to ultra-wideband high accuracy localization for use in the operating room. This research is cross disciplinary in nature and fundamentally builds upon microwave engineering, software engineering, systems engineering, and biomedical engineering. A good portion of this work has been published in peer reviewed microwave engineering and biomedical engineering conferences and journals. Wireless technologies in medicine are discussed with focus on ultra-wideband positioning in orthopedic surgical navigation. Characterization of the operating room as a medium for ultra-wideband signal transmission helps define system design requirements. A discussion of the first generation positioning system provides a context for understanding the overall system architecture of the second generation ultra-wideband positioning system outlined in this dissertation. A system-level simulation framework provides a method for rapid prototyping of ultra-wideband positioning systems which takes into account all facets of the system (analog, digital, channel, experimental setup). This provides a robust framework for optimizing overall system design in realistic propagation environments. A practical approach is taken to outline the development of the second generation ultra-wideband positioning system which includes an integrated tag design and real-time dynamic tracking of multiple tags. The tag and receiver designs are outlined as well as receiver-side digital signal processing, system-level design support for multi-tag tracking, and potential error sources observed in dynamic experiments including phase center error, clock jitter and drift, and geometric position dilution of precision. An experimental analysis of the multi-tag positioning system provides insight into overall system performance including the main sources of error. A five base station experiment shows the potential of redundant base stations in improving overall dynamic accuracy. Finally, the system performance in low signal-to-noise ratio and non-line-of-sight environments is analyzed by focusing on receiver-side digitally-implemented ranging algorithms including leading-edge detection and peak detection. These technologies are aimed at use in next-generation medical systems with many applications including surgical navigation, wireless telemetry, medical asset tracking, and in vivo wireless sensors

    Identification and Mitigation of NLOS based on Channel Information Rules for Indoor UWB Localization

    Get PDF
    Indoor localization is an emerging technology that can be utilized for developing products and services for commercial usage, public safety, military applications and so forth. Commercially it can be applied to track children, people with special needs, help navigate blind people, locate equipment, mobile robots, etc. The objective of this thesis is to enable an indoor mobile vehicle to determine its location and thereby making it capable of autonomous localization under Non-light of sight (NLOS) conditions. The solution developed is based on Ultra Wideband (UWB) based Indoor Positioning System (IPS) in the building. The proposed method increases robustness, scalability, and accuracy of location. The out of the box system of DecaWave TREK1000 provides tag tracking features but has no method to detect and mitigate location inaccuracies due to the multipath effect from physical obstacles found in an indoor environment. This NLOS condition causes ranges to be positively biased, hence the wrong location is reported. Our approach to deal with the NLOS problem is based on the use of Rules Classifier, which is based on channel information. Once better range readings are achieved, approximate location is calculated based on Time of Flight (TOF). Moreover, the proposed rule based IPS can be easily implemented on hardware due to the low complexity. The measurement results, which was obtained using the proposed mitigation algorithm, show considerable improvements in the accuracy of the location estimation which can be used in different IPS applications requiring centimeter level precision. The performance of the proposed algorithm is evaluated experimentally using an indoor positioning platform in a laboratory environment, and is shown to be significantly better than conventional approaches. The maximum positioning error is reduced to 15 cm for NLOS using both an offline and real time tracking algorithm extended from the proposed approach

    Design, simulation and experimental evaluation of indoor localization schemes for 60 GHz millimeter wave systems

    Get PDF
    This thesis targets localization schemes for single-anchor millimeter wave systems. The devised algorithms are evaluated by means of simulations in order to draw initial conclusions about their robustness. The obtained results are then validated via measurements involving commercial pre-standard 60-GHz MMW hardware, showing that by relying only on a single anchor, the algorithms can localize a node with high probability, and in many cases with sub-meter accurac

    A Review of Indoor Millimeter Wave Device-based Localization and Device-free Sensing Technologies and Applications

    Full text link
    The commercial availability of low-cost millimeter wave (mmWave) communication and radar devices is starting to improve the penetration of such technologies in consumer markets, paving the way for large-scale and dense deployments in fifth-generation (5G)-and-beyond as well as 6G networks. At the same time, pervasive mmWave access will enable device localization and device-free sensing with unprecedented accuracy, especially with respect to sub-6 GHz commercial-grade devices. This paper surveys the state of the art in device-based localization and device-free sensing using mmWave communication and radar devices, with a focus on indoor deployments. We first overview key concepts about mmWave signal propagation and system design. Then, we provide a detailed account of approaches and algorithms for localization and sensing enabled by mmWaves. We consider several dimensions in our analysis, including the main objectives, techniques, and performance of each work, whether each research reached some degree of implementation, and which hardware platforms were used for this purpose. We conclude by discussing that better algorithms for consumer-grade devices, data fusion methods for dense deployments, as well as an educated application of machine learning methods are promising, relevant and timely research directions.Comment: 43 pages, 13 figures. Accepted in IEEE Communications Surveys & Tutorials (IEEE COMST

    The Future of the Operating Room: Surgical Preplanning and Navigation using High Accuracy Ultra-Wideband Positioning and Advanced Bone Measurement

    Get PDF
    This dissertation embodies the diversity and creativity of my research, of which much has been peer-reviewed, published in archival quality journals, and presented nationally and internationally. Portions of the work described herein have been published in the fields of image processing, forensic anthropology, physical anthropology, biomedical engineering, clinical orthopedics, and microwave engineering. The problem studied is primarily that of developing the tools and technologies for a next-generation surgical navigation system. The discussion focuses on the underlying technologies of a novel microwave positioning subsystem and a bone analysis subsystem. The methodologies behind each of these technologies are presented in the context of the overall system with the salient results helping to elucidate the difficult facets of the problem. The microwave positioning system is currently the highest accuracy wireless ultra-wideband positioning system that can be found in the literature. The challenges in producing a system with these capabilities are many, and the research and development in solving these problems should further the art of high accuracy pulse-based positioning

    Hardware Development of an Ultra-Wideband System for High Precision Localization Applications

    Get PDF
    A precise localization system in an indoor environment has been developed. The developed system is based on transmitting and receiving picosecond pulses and carrying out a complete narrow-pulse, signal detection and processing scheme in the time domain. The challenges in developing such a system include: generating ultra wideband (UWB) pulses, pulse dispersion due to antennas, modeling of complex propagation channels with severe multipath effects, need for extremely high sampling rates for digital processing, synchronization between the tag and receivers’ clocks, clock jitter, local oscillator (LO) phase noise, frequency offset between tag and receivers’ LOs, and antenna phase center variation. For such a high precision system with mm or even sub-mm accuracy, all these effects should be accounted for and minimized. In this work, we have successfully addressed many of the above challenges and developed a stand-alone system for positioning both static and dynamic targets with approximately 2 mm and 6 mm of 3-D accuracy, respectively. The results have exceeded the state of the art for any commercially available UWB positioning system and are considered a great milestone in developing such technology. My contributions include the development of a picosecond pulse generator, an extremely wideband omni-directional antenna, a highly directive UWB receiving antenna with low phase center variation, an extremely high data rate sampler, and establishment of a non-synchronized UWB system architecture. The developed low cost sampler, for example, can be easily utilized to sample narrow pulses with up to 1000 GS/s while the developed antennas can cover over 6 GHz bandwidth with minimal pulse distortion. The stand-alone prototype system is based on tracking a target using 4-6 base stations and utilizing a triangulation scheme to find its location in space. Advanced signal processing algorithms based on first peak and leading edge detection have been developed and extensively evaluated to achieve high accuracy 3-D localization. 1D, 2D and 3D experiments have been carried out and validated using an optical reference system which provides better than 0.3 mm 3-D accuracy. Such a high accuracy wireless localization system should have a great impact on the operating room of the future

    Amplitude Modeling of Specular Multipath Components for Robust Indoor Localization

    Get PDF
    Ultra-Wide Bandwidth (UWB) and mm-wave radio systems can resolve specular multipath components (SMCs) from estimated channel impulse response measurements. A geometric model can describe the delays, angles-of-arrival, and angles-of-departure of these SMCs, allowing for a prediction of these channel features. For the modeling of the amplitudes of the SMCs, a data-driven approach has been proposed recently, using Gaussian Process Regression (GPR) to map and predict the SMC amplitudes. In this paper, the applicability of the proposed multipath-resolved, GPR-based channel model is analyzed by studying features of the propagation channel from a set of channel measurements. The features analyzed include the energy capture of the modeled SMCs, the number of resolvable SMCs, and the ranging information that could be extracted from the SMCs. The second contribution of the paper concerns the potential applicability of the channel model for a multipath-resolved, single-anchor positioning system. The predicted channel knowledge is used to evaluate the measurement likelihood function at candidate positions throughout the environment. It is shown that the environmental awareness created by the multipath-resolved, GPR-based channel model yields higher robustness against position estimation outliers

    Improving fingerprint-based positioning by using IEEE 802.11mc FTM/RTT observables

    Get PDF
    Received signal strength (RSS) has been one of the most used observables for location purposes due to its availability at almost every wireless device. However, the volatile nature of RSS tends to yield to non-reliable location solutions. IEEE 802.11mc enabled the use of the round trip time (RTT) for positioning, which is expected to be a more consistent observable for location purposes. This approach has been gaining support from several companies such as Google, which introduced that feature in the Android O.S. As a result, RTT estimation is now available in several recent off-the-shelf devices, opening a wide range of new approaches for computing location. However, RTT has been traditionally addressed to multilateration solutions. Few works exist that assess the feasibility of the RTT as an accurate feature in positioning methods based on classification algorithms. An attempt is made in this paper to fill this gap by investigating the performance of several classification models in terms of accuracy and positioning errors. The performance is assessed using different AP layouts, distinct AP vendors, and different frequency bands. The accuracy and precision of the RTT-based position estimation is always better than the one obtained with RSS in all the studied scenarios, and especially when few APs are available. In addition, all the considered ML algorithms perform pretty well. As a result, it is not necessary to use more complex solutions (e.g., SVM) when simpler ones (e.g., nearest neighbor classifiers) achieve similar results both in terms of accuracy and location error.This research was partially supported by MCIN/AEI/10.13039/ 501100011033 and ERDF “A way of making Europe” under grant PGC2018-099945-BI00, and by the European GNSS Agency (GSA) under grant GSA/GRANT/04/2019/BANSHEEPeer ReviewedPostprint (published version
    • …
    corecore