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ABSTRACT 
 

This dissertation embodies the diversity and creativity of my research, of which much has been 

peer-reviewed, published in archival quality journals, and presented nationally and 

internationally. Portions of the work described herein have been published in the fields of image 

processing, forensic anthropology, physical anthropology, biomedical engineering, clinical 

orthopedics, and microwave engineering. 

The problem studied is primarily that of developing the tools and technologies for a next-

generation surgical navigation system. The discussion focuses on the underlying technologies of 

a novel microwave positioning subsystem and a bone analysis subsystem. The methodologies 

behind each of these technologies are presented in the context of the overall system with the 

salient results helping to elucidate the difficult facets of the problem. 

The microwave positioning system is currently the highest accuracy wireless ultra-wideband 

positioning system that can be found in the literature. The challenges in producing a system with 

these capabilities are many, and the research and development in solving these problems should 

further the art of high accuracy pulse-based positioning.  
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1. INTRODUCTION 

 

Since the inception of human existence, mankind has sought to extend and enrich the length and 

quality of life by performing surgical repairs to the body. Through the use of increasing 

technological prowess, these types of procedures have now become a societal and medical norm. 

From orthotics and prostheses, mankind has a rich and varied history of replacing, repairing, or 

augmenting missing, deficient, or worn parts of the human anatomy. Prior to many technological 

breakthroughs, however, replacing bones and joints wholly within the body was a difficult matter 

due to the high risk of infection. At the beginning of the 20
th

 century, the modern orthopedic 

industry was founded by Revra DePuy and Justin Zimmer, inventor and refiner of the metal 

splint, respectively [1]. As the orthopedic industry has matured over the last century, complete 

replacement of joints has become commonplace. As of 2008, an estimated 500,000 knee 

replacement surgeries per year will be performed in the U.S., with that number jumping to an 

estimated 3.2 million in a decade [2]. Similar surgeries exist for the hip, elbow, ankle, shoulder, 

and spine, with each joint having specific implants fabricated typically using a combination of 

metal and plastic parts designed to articulate a reproduction of anatomical motion. Depending on 

the complexity of the joint and the degree of weight bearing activities, the implant, in 

conjunction with the accuracy of implantation, can determine failure rates for the device [3]. The 

design methodologies of implantable devices have focused on improving the shape and size 

matching between the device, as well as developing new surgical navigation technologies and 

techniques to improve patient outcomes.  
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Precipitated by an ageing population, the increase in frequency of these techniques has fostered a 

high degree of innovation in a field traditionally dominated by a few large orthopedic device 

manufacturers. As the science of metrology has met with new understandings of human 

anatomical variation, orthopedic device manufacturers have developed implants designed for 

segments of the population [4]. Additionally, novel software-based tools allow surgeons new 

ways to plan for surgeries using pre-operative imaging modalities such as Magnetic Resonance 

Imaging (MRI) [6], Computed Tomography (CT) [7], ultrasound [8], video fluoroscopy [9] [10] 

[11], and high-resolution biplanar digital X-rays [12] [13]. By facilitating new ways to visualize 

and measure the human anatomy non-invasively, versus antiquated methods such as calipers, 

rulers, goniometers, or osteometric boards [14], surgeons can be better guided to select the 

correct size and placement of the orthopedic device [15]. This added benefit is realized in two 

ways. First, hospital managers can reduce large inventories of implantable devices when the 

surgeon can select one or two probable sizes prior to the surgical operation. Second, by assessing 

pre-operatively the position and orientation of the implant, any corrective steps can be evaluated 

post-operatively for closed-loop feedback of surgeon performance.  

Another feedback loop necessary to the continuous improvement of implantable devices, is that 

of the orthopedic manufacturer‘s necessary adaptation to the changing needs of the market, 

technological advances in materials, and ultimately the body of surgical knowledge refined by 

surgeons. Traditionally, any device design changes undertaken by the manufacturer‘s exposes 

the company to regulatory risks, and any feedback on the efficacy of the device is muddled in the 

results of often contradictory clinical studies, which can require more than 10 years to complete 

(e.g. [16]). To complicate matters further, the results on device performance can be distributed 
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across multiple hospital locations with procedures performed by different surgeons each using 

one of many techniques [17].  

To ensure that the feedback loops of surgeon performance and implant design performance offer 

the highest degree of reliable information, and by extension, to diminish the effects of variables 

and parameters that cannot be controlled, surgical pre-planning systems and surgical navigation 

systems deliver repeatability, accuracy, and analysis. Such systems, when endowed with some 

level of automation, can provide optimized solutions in cases when compromise is inevitable. 

Surgical pre-planning systems offer the choice of implant size and placement either by surgeon 

manipulation or automatic methods which seek to match patient-specific anatomy originating 

from pre-operative medical images [5]. In the context of a clinical study, for example, if the 

surgical protocol mandated a particular pre-operative templating procedure designed to constrain 

implant placement in some fashion, then finer-grained analyses can take place on variables or 

metrics of interest to the research surgeon or the device design engineer.  

Pre-operative planning and design software has the potential to improve individual patient 

outcomes and, thus, when used as part of a broader research endeavor, empower statistical 

analyses [18]. On the individual level, planning software can be instrumental in reconstruction, 

revision, or trauma cases, when deformed or missing anatomy must be accurately reconstructed 

for complete rehabilitation. Surgical pre-planning systems must offer the surgeon a competing 

view of the surgeon‘s own intuition, to compel usage beyond only the rudimentary. A surgical 

view that defies convention or intuition might not sound optimal; however, when the system can 

mine statistics or infer failure rates from past performances, then adaptation to new and better 

techniques can be accelerated. 
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While pre-operative software can direct the advancement of surgical technique, surgical 

navigation systems working in conjunction can minimize deviations from the surgical plan. The 

desirable features of such a system are information visualization, overall accuracy, rapid 

positioning feedback, and relevant warnings or surgical suggestions. In the context of medical 

practice, the surgeon can exercise a greater level of confidence in the procedure by ameliorating 

the risk of mal-alignment. Clinical research studies using surgical navigation systems can benefit 

from increased levels of quantitative information regarding the procedure such as the angle of 

implantation. Further, surgical navigation systems that report metadata originating from pressure 

sensors [19] for ligament balancing, ultrasound modalities for soft or hard tissue imaging and 

positioning, or inflammation sensors embedded in the implant can facilitate additional 

dimensions of analysis. From a health management perspective, surgical navigation systems can 

add value by minimizing risks due to malpractice claims, albeit at the cost of longer length of 

time spent in the operating room (OR).  

The research encompassed in this dissertation provides a broad range of prospective technologies 

and techniques that will dramatically shape the operating room of the future. Technologies 

developed will offer an alternative to positioning technologies that are currently used for 

computer assisted surgery (CAS), specifically in the area of surgical navigation. The positioning 

system described herein was built using ultra-wideband (UWB) technology operating in the 

microwave range of radiofrequency (RF). These frequency bands were chosen to eliminate 

problems of coherent interferences, multipath, and line-of-sight (LOS) requirements, which limit 

the usability of other technologies currently being used for positioning such as infra-red optical 

sensors and electromagnetic (EM) sensors. Additionally, described as part of the background to 



 

    

 5  

this work is a suite of bone analysis techniques reliant on a statistical representation of bones, 

which, when used in conjunction with the novel UWB positioning system can aid in surgical 

bone preparation pre-planning. 

1.1. Motivation  

A surgical navigation system is desired which can encompass pre-operative planning, 

intraoperative tracking, and post-operative kinematic or gait analysis. A tracking system that 

does not impede the surgeon‘s work flow is another major requisite. Intelligent bone tracking 

and analysis—fused with a preoperative suite of analysis tools—represents the next-generation 

of surgical navigation systems. 

Existing navigation systems use technologies that have several drawbacks [20], the most serious 

of which is restricting the surgeon‘s workable area in the OR. Optical surgical navigation 

systems have a line-of-sight (LOS) requirement which inhibits surgeons and their assistants from 

occupying certain portions of the surgical field. Additionally, electromagnetic (EM) surgical 

navigation systems, while not constrained to LOS operation, become degraded during dynamic 

tracking and in the presence of ferromagnetic interferers. The characteristics of both of these 

technologies are studied in the context of static and dynamic accuracy in realistic surgical 

scenarios in Chapter 2.  

A problem afflicting major surgical navigation systems is implant placement technology, 

including automatic implant sizing and surgical compromise analysis. Many imageless surgical 

navigation systems rely heavily on landmark-based implant fitting strategies which may not be 

optimal when implant placement constraints and size constraints may be disjoint. Also, shape 

analysis software used prior to a surgery by either surgeons or teams of engineers may yield the 



 

    

 6  

ability for rapid prototyping of new implant designs or the capability for patient-specific implant 

design. 

Using UWB technology for the underlying positioning technology can solve several of the 

technological limitations that existing surgical navigation systems currently face. UWB 

technology is not limited to LOS conditions for proper operation and operates accurately in the 

presence of metal. Due to the extremely wide band, UWB has the ability to resolve many 

multipath components, removing the effects of large metal reflectors within a time-evolving, 

cluttered OR environment. 

Also, the use of advanced shape analysis techniques applied to bones or other portions of 

anatomy offers automatic methods for extracting bone shape from medical images and automatic 

methods for surgery pre-planning steps of implant alignment 

1.1.1 Surgical Procedures  

Surgical procedure outcomes for certain surgeries have significant variation based on the 

accuracy of the surgical technique. Given the participatory role of the femur in the largest 

ginglymoidal and enarthrodial joints of the adult body, replacement surgeries for both the knee 

and hip joint, respectively, have the potential to suffer from implant mal-alignment. Total Knee 

Arthroplasty (TKA) involves the complete removal of all articular surfaces of the distal femur 

and proximal tibia. Replacing the articular surfaces are typically titanium alloy implants with a 

polyethylene bearing. Since the bone preparation steps of this procedure determine the final 

implant placement, pre-planning involves selecting which portions of the bone to remove and 

selecting the correct size and shape of implant according to considerations of patient-specific 

anatomy and pathology. Surgical techniques typically seek to either restore the patient‘s original 
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anatomy or correct a deformity. In either case, a pre-planning system that correctly measures the 

bone geometry and ascertains optimal implant fit can lead to improvements in sizing [5]. The 

longevity of the surgical procedure has been related to the implantation accuracy [21].  

Total Hip Arthroplasty (THA) procedures remove the entire articular surface of the acetabulem, 

replacing it with a hemispherical hip cup implant most often with polyethylene, metal, or 

ceramic bearing material. The femoral head is completely removed and a femoral stem is 

inserted into the intramedullary (IM) canal. Similarly, the surgical technique seeks to restore or 

correct patient anatomy with the overall goal to yield the highest range of motion of the joint. 

Success rate of the technique is related to the accuracy of implantation (no impingement), which 

can be improved with pre-operative measurement of acetabular angle [22].
 
Also, recent work has 

analyzed the impact of proximal femoral morphology and its potential for correlation with 

indications of poor bone quality such as osteoarthritis [23].  

1.1.2 Surgical Navigation Systems  

Surgical navigation systems provide real-time feedback and quantitative assessment to the 

surgeon regarding the quality of the surgical process. This typically includes preoperative steps 

such as implant sizing and pre-planned placement as well as intra-operative steps such as bone 

cutting guide placement and kinematic assessment. Figure 1a. shows an EM surgical navigation 

system on a hypothetical knee surgery, while Figure 1b. shows the feedback data available to the 

surgeon on the user interface of a commercial optical surgical navigation system.  

The taxonomy of surgical navigation systems includes both image-based systems, and imageless 

systems [26]. Further, imageless systems can be sub-categorized based on their reliance on either 

land marks to navigate the joint of interest or via dynamic model generation, known as bone 
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Figure 1: a) Medtronic AXIEM™ Electromagnetic tracking [24] b) Stryker eNact™ Knee Optical Navigation System [25] 

 

morphing.  Another metric of classification for surgical navigation systems is that of the 

system‘s guidance to the surgeon. When the surgical navigation system merely provides visual 

feedback to the surgeon, it is termed a passive surgical navigation system. This is the dominant 

category of surgical navigation systems with Medtronic‘s AXIEM™ Electromagnetic system 

and Stryker‘s eNact™ Knee Optical Navigation System (Figure 1) both being categorized as 

passive systems. Some systems provide either robotic positioning of cutting guides, such as 

Zimmer‘s proposed BRIGIT™ system [27], or robot assistance in bone preparation, an example 

being MAKO‘s Tactile Guidance System™ [28] which employs haptic robotic feedback to guide 

the surgeon and prevent gross errors. These two systems would fall under a semi-active category, 

due to the shared role of the navigation system and the surgeon. Another example of such a 

system is Intuitive Surgical‘s da Vinci Surgical System™ [29], where the supervising physician 

navigates the surgery via a co-located control station. A fully active surgical navigation system, 

by comparison, performs robot-controlled bone preparation under the limited supervision and 

guidance of a surgeon. One such system is the ROBODOC™ system [30], which automatically 

prepares bone surfaces with an accuracy of 0.4 mm. 
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With respect to operating room logistics and surgery times, not all surgical navigation systems 

are created equal. Image-based systems, for example, can encumber the operating field with 

bulky equipment, such as an intra-operative C-arm for fluoroscopy or CT / MRI apparatus. 

Imageless systems with large robotic components can significantly reduce the space in the 

operating field. Necessary components such as optical tracking cameras or computer monitors 

can also further constrict space in the OR. Even more importantly, optical probes themselves can 

block the surgeon‘s vision of the surgery, as they are often 10-20 cm in size.  

The system-level performance requirements for surgical navigation positioning technologies are 

demanding, as each system must operate in the cluttered environment of the OR while providing 

real-time positioning feedback to the surgeon. The orthopedic industry standards for accuracy are 

on the order of 1-3 mm of 3D positioning accuracy, with about 1.0⁰ orientation accuracy 

required [31]. Most imageless systems must track multiple bones as well as one or more tools, 

for a total of 3-4 simultaneously tracked objects each requiring position and orientation, or 6 

degrees-of-freedom (DOF). Table 1 highlights system achievable system performance of 

commercially available tracking technologies.  

As with any technology, new and innovative uses for surgical navigation systems are 

continuously developed to aid in new surgical procedures, diagnoses, and basic research. Thus, 

novel systems capable of eliminating shortfalls of existing technologies will begin to see  

Table 1: Performance comparison of EM vs. optical tracking systems used in surgical navigation systems 

 EM Tracking Systems Optical Tracking Systems 

Update Rate 300 Hz (6DOF positions/sec) 60-70 Hz 

Number of Tools 2-4 15  

Accuracy (RMS) 0.7-1.4 mm 0.1 mm (active), 0.25 (passive) 
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Figure 2: a) Hybrid Systems: Combine tracking systems with imaging modalities, for tracked visualization and 

information fusion  b) Positioning system used for post-operative gait lab analysis 

 

widespread use in similar systems in related medical and industrial fields of use. Shown in 

Figure 2a is a conceptual hybrid system fusing various medical imaging modalities with a 

positioning system for information fusion, and also shown in Figure 2b is the potential 

alternative use for tracking systems in gait labs for kinematic analysis. 

1.2. System Overview  

The developed system is comprised of two subsystems, each designed to address shortcomings 

with existing surgical navigation systems. As illustrated in Figure 3, the Surgical Preplanning 

Subsystem interacts with the preplanning phase of the surgical navigation system, storing 

preplanned data for the surgery. The Microwave Positioning Subsystem interacts primarily with 

the surgery phase of the surgical navigation system. Auxiliary uses for the system include a post-

operative gait analysis system, as well as implant design and analysis software. The Surgical 

Preplanning Subsystem is retained for background of the main body of work, which is the 

development of the Microwave Positioning Subsystem. 
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Figure 3: System overview showing the interaction of the surgical preplanning subsystem and the microwave positioning 

subsystem with entities such as surgical navigation, gait analysis, and implant design software 

 

1.2.1 Surgical Preplanning Subsystem Overview  

Prior to surgery, the surgeon uses a host of medical imaging modalities such as CT, MRI, and/or 

X-ray data to plan surgical route, bone portions to resect (including osteophyte removal), as well 

as implant sizing and placement. The pre-planning step is important to the surgical procedure, 

because it provides the surgical navigation system with a basic understanding of the surgical 

procedure to take place. The surgical navigation‘s feedback intra-operatively allows for the 

surgeon to have confidence in the original plan or to make necessary adjustments. After the 

surgery, post-operative analysis can verify the surgical plan‘s success in accurate implant 

placement. 

Currently, the surgical plan is typically created in a manual process using the surgeon‘s 

judgment. However, in order to move beyond this basic form of planning, robust methods must 
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be available to automate the process. As diagramed in Figure 4, steps included in an automatic 

process would be the following: image-based reconstruction of patient anatomy, data 

extrapolation and cleaning, global shape analysis, bone measurement, and finally an overall 

calculation of implant size and fit.  

1.2.1.1 Model Preparation  

Prior to use in preplanning, CT, MRI, or biplanar X-ray image data is segmented or 

reconstructed and transformed into triangulated surface model [32]. This model is then 

normalized and added to a statistical bone atlas [33] using a novel algorithm [34]. This step of 

surface regularization can be used to smooth erroneous data that may arise from the medical 

images or to clear away pathological portions of the bone, as in the case of osteophytes. Figure 5 

depicts a portion of the femur after surface normalization. 

1.2.1.2 Statistical Bone Atlas  

The fundamental characteristic of this type of statistical shape representation, termed a ―bone 

atlas,‖ is a homologous set of matched points across a population of bones [32] [33].  Given such 

a set, Principal Components Analysis (PCA) can be performed to compress the valuable (i.e. 

statistically significant) portions of the shape information into a series of shape descriptors [35]. 

 

Figure 4: Component diagram of the surgical preplanning subsystem 
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Figure 5: Example of a discretized surface mesh of the distal femur 

 

This compact statistical shape representation drives automatic preplanning, performs 

reconstruction (or extrapolation), analyzes global bone shape, automates feature generation, and 

aids in registration to surgical navigation system. To create the bone atlas, the matched points 

between sets of bones are used to calculate a model covariance matrix around the mean bone. 

The task of matching points is difficult considering the anatomical disparities across a population 

of bones. Thus, a novel non-linear iterative warping approach was developed, which is termed 

Mutual Correspondence Warping (MCW)  [34]. This algorithm builds on previous work in the 

field and improves on the final matching step where a number of standardized computer vision 

methods are used to place the bone in a rough alignment.  

1.2.1.3 Global Shape Analysis  

In this portion of the pre-planning steps a single bone or sets of bones can be classified [36]  [37] 

or manually visually inspected for shape variation or deviation from typical population statistics. 

For example, a single bone can be compared to various populations of bones of known pathology 

to classify a bone automatically. Alternatively, two distinct populations of bones can be 

statistically examined to highlight inter-population differences. Each of these potential 
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applications for global shape analysis can have future use for automated feature discovery and 

automated bone measurement. When the FDR-PCA method described by Algorithm A-1 is 

applied to the femur, the resulting magnitudes are applied to a color map, which allows the 

visualization of the distal femur sexual dimorphism directly (Figure 6). It is clear that when 

femoral scale is removed using the FDR-PCA method, the largest differences between the sexes 

exist on the ML aspects of the distal femur. 

1.2.1.4 Surgical Landmark Assignment 

Surgical landmark assignment is the localization of certain points or axes on the bone which are 

of surgical relevance. These landmarks, during a surgery without a surgical navigation system, 

allow the surgeon to approximate the correct locations to make surgical cuts and to align cutting 

jigs. When these landmarks are picked manually, they are subject to observer bias and 

measurement noise. Ultimately, the landmarks used by a surgical navigation system, whether 

 

Figure 6: Images highlighting the difference between male and female femora with the first principal component left out 

according to Algorithm A-1, red represents the largest difference, blue relatively little difference. It is clear that the 

largest differences between males and female occur on the medial and lateral epicondyles 
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created internally, or by a surgeon, are used for final implant sizing and placement, and thus 

accuracy in landmark assignment is crucial. Surgical technique varies according to surgeon 

preference but can influence the necessary compromise between implant size and placement. 

Certain landmarks and surgical axes are of paramount importance during the orthopedic 

surgeries. Often, in the absence of a surgical navigation system, the surgeon will manually 

identify such landmarks to appropriately place the implant. A novel method using the bone atlas 

was created to automatically calculate the surgical landmarks in a deterministic manner, 

removing ambiguity and observer bias typically present in the process [5]. A few of the 

landmarks and axes automatically calculated for the distal femur are shown in Figure 7. 

Using the landmarks and axes previously calculated, the surgical preplanning subsystem can then 

take a surgeon‘s chosen implant technique for implant placement (i.e. ―Posterior Condylar Axes 

plus 3 degrees‖) and automatically place the implant in position, using the correct size and 

optimizing for minimal overhang. Figure 8 shows the results of the implant placement technique 

(implant position relative to the bone), which are then fed into the surgical navigation system for 

surgeon‘s use during the procedure. 

 
Figure 7: Automatic landmarks and axes calculated on the distal femur 
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1.2.1.5 Bone Atlas Applications 

Beyond the applications previously listed, the statistical shape representation of the bone atlas is 

useful in other contexts. For example, segmentation is the process of labeling portions of 

anatomy distinct from the background of medical images. Using a bone atlas as an active shape 

model, 3D bone segmentation can be performed on CT or MRI medical images [34]. As shown 

in Figure 9, this methodology can segment highly complex shapes such as L5 lumbar vertebrae. 

Again, by using the bone atlas as an active shape model, reconstruction of patient anatomy can 

be realized from a series of two or more X-ray images. Using Genetic Algorithms (GA) to 

hypothesize bone position and bone shape, this problem is posed as an 11 DOF non-linear 

optimization problem [38] [39]. Since the bone atlas is a statistical representation, missing bone  

 

Figure 8: Implant placement technique showing alignment to Posterior Condylar Axis +3 degrees. 

 

 

Figure 9: Final 3D segmentation of L5 lumbar vertebrae from a CT volume. The orange model is the result of the 

segmentation algorithm, while the translucent model represents the manual segmentation of an expert. 
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portions can be extrapolated using the least-squares projection of the known points onto the 

model. The resulting extrapolation can then be used to measure or identify characteristics of the 

bone which otherwise would be unavailable, such as overall bone length. Similar to the bone 

extrapolation and the global shape analysis applications mentioned previously, the bone atlas has 

applications in anthropological contexts [40] where comparison to modern population statistics is 

desired  [41].  

1.2.2 Microwave Positioning Subsystem Overview  

The Microwave Positioning Subsystem utilizes a series of high-frequency UWB microwave 

components to provide real-time 3D positioning information to the surgical navigation system. 

The system is characterized by repeated transmission of narrow pulse widths (~300 ps), which 

are modulated using an 8 GHz carrier [42]. UWB as a technology is defined by the Federal 

Communications Commission (FCC) in terms of bandwidth (which must exceed 500 MHz, or 

have a fractional bandwidth greater than 20%) and typically refers to the FCC‘s unlicensed band 

of 3.1-10.6 GHz which can be used for medical as well as industrial purposes. Using the 

computed Time-Difference-of-Arrival (TDOA) of the pulses at various base stations placed at 

known locations around the OR (Figure 10), the system computes the real-time 3D position of 

the surgical instruments and bones [43]. A control station is responsible for processing the 

microwave signals and finally computing the positions of tags (3D point) or probes (6 DOF). 

Until recently, UWB positioning systems have been relegated to lower-accuracy applications 

such as asset and personnel tracking. Several commercial systems and the state-of-the-art 

research systems are highlighted for comparison in Table 2. 
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Figure 10: Microwave positioning subsystem overview showing major components: control station, base station, probe, 

and tag 

 

Table 2: Comparison of commercial and research UWB positioning systems 

Positioning System Type of System Static Accuracy Dynamic Accuracy 

Ubisense
TM 

Commercial – TDOA 15 cm N/A 

Sapphire Dart
TM 

Commercial – TDOA 10 cm N/A 

Low et al. [44] Research – 1D only 1 cm N/A 

Meier et al. [45] Research – Kalman filter, coherent system 0.1 mm 2 mm 
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1.2.2.1 System Characteristics 

The characteristics of the microwave positioning subsystem transmitted signals are shown in 

Figure 11. The frequency domain depiction shows pulse after up-conversion to 8 GHz and also 

indicates the 3-4 GHz range bandwidth requisite of the microwave transmitter and receiver 

components. The time domain graph clearly shows the shape of the 300 ps (full-width half 

maximum FWHM) pulse. 

Given the extremely large bandwidth occupied by the transmitted signals, the minimum 

sampling bandwidth of the system given by the Nyquist criterion exceeds that which is 

achievable using low-cost commercial analogue-digital converters (ADC). Consequently, the 

received signals first pass through a high input bandwidth analog sub-sampler (or sequential 

sampler), which compresses the pulse bandwidth, effectively stretching the pulse in the time- 

domain. Figure 12 illustrates an example of the sampled I and Q channels of the 300 ps pulse 

after passing through the sub-sampler. This graph highlights two of the challenges in accurately 

recovering the pulse shape, and thus, the correct position. First is the high frequency corruption 

in both signals which is caused from the use of two distinct Local-Oscillators (LOs) utilized to 

generate the 8 GHz carrier for up/down conversion. These clock sources cannot be synchronized  

 

Figure 11: a) Power spectral density of transmitted UWB pulse after up-converted to 8 GHz carrier 

b) Time domain representation of normalized pulse shape, noting 300 ps pulse width (full-width-half-max) 
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Figure 12: Received signals after down-conversion, sequential analog sampling, and 8-bit AD conversion (red I, blue Q) at 

a rate of 50 MS/s. The the width of each pulse shown is roughly 3 µs 

 

as one is located on the transmitter, while one is on the control station. Secondly, the use of two 

pulse repetition frequency (PRF) clocks—one  on the transmitter and one on the receiver—

causes clock drift and unintentional time scaling. This effect is analogous to trying to measure 

time accurately with two clocks that tick at different speeds and are out of synch. 

1.2.2.2 Digital Signal Processing  

Given the unique characteristics of the system, there are challenges that must be overcome by the 

onboard digital signal processing (DSP). First, UWB Signals have higher bandwidth than can be 

adequately sampled directly. Consequently, an analog sub-sampler is used prior to the ADC 

which time-extends the received pulse. This leads to the following signal processing challenges
 

which will be discussed further
 
 [42]: unintentional time scaling at the receiver due to frequency 

bias between the two asynchronous PRF clocks, jitter in sample point locations, and incoherent 

LOs. The incoherent LOs cause frequency leakage and misalignment in down converted IQ 

(Figure 12). 
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The main steps for the signal processing consist of off-the-shelf components which provide for 

the digital conversion and digital signal processing (Figure 13). First, each IQ channel is sampled 

at each base station. The resultant digital signal is passed to a Field Programmable Gate Array 

(FPGA), which has the primary function of de-noising and ascertaining the time-of-arrival 

(TOA) of the peak. The FPGA processing first reconstructs the envelope of the original pulse, 

then performs digital filtering, and then performs peak detection or leading edge detection. The 

peak position is transformed into a time position index which is transmitted to a secondary 

FPGA, common to all base stations. The control station FPGA subtracts the time position 

indices, creating differenced time-of-arrival values. Finally, the control station FPGA serially 

transmits the values to a PC for final 3D position calculation. 

 

 

Figure 13: Example of UWB positioning. Transmitted pulse originates from omni-directional tag and received by multiple 

base stations. After down conversion (not shown) analog sequential sampling reduces the bandwidth of the received 

signal, which is then digitally sampled, peak detection locates the sample index of the estimated peak. Computing the 

difference yields time-differences which are passed to the TDOA algorithm for 3D position calculation 
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1.2.2.3 Communication Protocols  

Since the finalized system must be able to provide positioning information on a number of tags 

or probes, each tag will communicate with the system during a specified time-slice in a Time-

division-multiple-access (TDMA) scheme. Tag switching, wake up, and sleep commands are 

issued by a microcontroller on the control station and communication will occur over a separate 

wireless technology such as Bluetooth™. Each tag will maintain a unique tag id, the system 

software running on the PC will maintain tag-to-probe associations and related geometry 

information.  

Ultra-wideband systems can also be used for implementing a communication channel and a large 

body of UWB literature exposes principles of communication using the RF band. One such is the 

use of orthogonal-frequency division multiplexing (OFDM) [46], as well as transmitted- 

reference (TR) [47], and time-reversal [48]. Recent work by K. Liu et al. suggests that 

concurrent UWB communication schemes are better suited to channel capacity than TDMA 

methods [49]. While, Zhao and Liu examined rake and prerake systems for UWB 

communication systems that can handle pulse overlapping and narrow-band interference  [50]. 

Subsequent work by others working on this project is to implement tag switching protocols using 

the UWB as a communications layer.  

1.2.2.4 Final 3D Positioning  

The final positioning calculation is completed on a PC, which maintains a list of active tags and 

tools currently in use for the surgical procedure. The positioning algorithm is one of many 

multilateration algorithms, Time-Difference-of-Arrival (TDOA), Time-of-Arrival (TOA), or 

variants of these two, which will be discussed in depth in Chapter 6. The system design 
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expectations for position fixes is a total of 85 tags at a rate of 24 Hz, or roughly 14 tools with full 

6 DOF. The algorithms that perform the peak detection, the 3D positioning calculation, and data 

filtering have been designed using a pipelined approach. Using this approach, a time delay will 

certainly occur between the time the signals are all received at the base stations and when the 

final positioning value is rendered on the computer screen. However, the pipelined approach 

seeks to maximize throughput, and thus the maximum possible rate of position fixes is optimal 

given the digital hardware. Restated, for each point received at the system control station a point 

is calculated and recorded by the system. 
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2. SURGICAL NAVIGATION SYSTEMS: EVALUATING 

ELECTROMAGNETIC VERSUS OPTICAL TECHNOLOGY IN THE OR 

 

This chapter is a slightly revised version of a paper that was recently presented at the Annual 

Meeting of American Academy of Orthopaedic Surgeons, San Francisco, USA, 2008, by 

Brandon C. Merkl, Michael J. Kuhn, Emam Fatah, Mohamed Mahfouz, David DeBoer  [20]. The 

use of ―we‖ refers to the original authors of the paper as listed above. This work was a 

preliminary study of static and dynamic accuracy testing for comparison to the developed UWB 

system. 

2.1. Introduction 

The use of optical and electromagnetic (EM) tracking for computer assisted surgery (CAS) is a 

topic which has been widely discussed  [51] [52]. Hassan et al. mounted both EM and passive 

optical sensors to a mechanical robot which simulated upper limb motion. The robot provided a 

sub-mm reference frame to measure dynamic error of both systems while performing a range of 

arm motions (e.g. flexion-extension, varus-valgus, etc.). Reported results show that an RMS 

difference of less than one degree is possible between the passive optical and EM trackers when 

moving the robot through a realistic compound arm motion, although this required smoothing 

and least squares fitting of the data [52]. Maletsky et al. reported errors of less than one degree 

and less than one millimeter in measuring the relative transformation between two rigid bodies 

with an active optical tracking system  [53]. Shuler et al. report errors upwards of 9 mm in 

testing the ability of an EM tracker to track knee motion under gait analysis [54], although post-
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processing of the data should yield better results, similar to  [52]. Poulin et al. measured the 

errors in an EM tracking system due to normal metal interference that may occur in OR during 

surgery (e.g. lamps, instrument table, arthroscope, etc.)  [55]. Finally, Khadem et al. did an 

extensive analysis of both passive and active optical tracking systems with focus on how system 

jitter limits accuracy  [56].  

As shown in  [51]- [56], extensive analysis has been done in measuring the accuracy of optical 

and EM tracking systems in the OR. Beyond just base system accuracy, some research has also 

focused on how the accuracy of these systems can be used to measure relative transformations, 

which is ultimately used in kinematics (e.g.  [53]). In this work the focus is on how accuracy of 

the tracking system can affect measuring relevant surgical axes in the knee (e.g. 

transepicondylar) and the hip (e.g. anterior pelvic plane). First, the basic static and dynamic 

accuracy of optical and EM systems is discussed, including how metal interference affects EM 

dynamic error. This is followed by experimental results from simulated hip and knee surgeries, 

with the static and dynamic error of the tracking systems being translated into errors in the 

automatic calculation of surgical axes. From these results a quantitative measure is obtained of 

how the performance of these two systems will affect hip and knee surgeries. When analyzing 

the effects of these systems‘ dynamic and static tracking errors in actual surgeries, it is useful to 

delineate their different roles during surgery in terms of landmarking, bone tracking, bone 

morphing (picking point clouds), and use during image guidance surgery. Landmarking is largely 

a static activity while picking point clouds is much more dynamic. This analysis provides a more 

useful metric for surgeons in terms of how these systems can affect the overall surgical outcome. 
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2.2. Materials and Methods 

2.2.1 Static and Dynamic Tracking Experiment 

In order to achieve a baseline measurement for both the EM and optical systems tested, a battery 

of tests was run to determine both static and dynamic tracking error. The tasks were intended to 

be realistic to typical OR use of surgical navigation systems. Environmentally, the lab was 

similar to expected OR conditions; no ferromagnetic shielding was present as this had little effect 

on the outcome of the accuracy testing  [55]. These series of tests were also designed to test the 

three paradigms of use in modern surgical navigation systems, namely: landmarking, bone 

tracking, and bone morphing. For a system to yield highly accurate landmarks, static accuracy is 

of the highest regard. To perform well for bone tracking, both dynamic tracking and static 

accuracy is requisite. For bone morphing algorithms, dynamic accuracy and the refresh rate are 

the largest determiners of success.  

The first experiment involved landmarking on a synthetic distal femur to test the static accuracy 

of both systems. Small reference holes were bored in 8 locations on the bone and the bone was 

mounted in a fixed position relative to the tracking equipment. During this experiment, all metal 

objects were removed at a distance greater than 1.5m from the bone, which was made entirely of 

ABS plastic. The landmarks were placed at the surgically relevant locations of the medial 

epicondyle (TM), lateral epicondyle (TL), anterio-medial condyle (AM), anterio-lateral condyle 

(AL), distal-medial condyle (DM), distal-lateral condyle (DL), posterio-medial condyle (PM), 

and posterior-lateral condyle (PL), as shown in Figure 14. At each location, a series of points 

was digitized and recorded for each system. Care was taken to ensure a good geometric location 

for the synthetic bone, so that the optical probe had a clear line-of-sight (LOS) with each  
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Figure 14: a) Synthetic Femur with machined landmark recesses b) Synthetic femur mounted to EM transmitter c) 

Femur mounted for static optical experiment 

 

landmark position. Using the mean of each digitized point as the true value, the standard 

deviation of measurement was recorded for each system. Next, pairwise distances between all 

landmarks were calculated for each system, similar to how a landmark-based navigation system 

would ascertain relevant surgical axes.  

As a second stage to this experiment, a metal platform (~2kg) was brought next to the transmitter 

and EM sensor, and the landmarking experiment was repeated in order to see the degradation of 

the system with respect to metal in the work area. Again, each landmark was digitized repeatedly 

with the mean value representing the true value. The pairwise distances were again measured 

using this mean value and the distances were compared directly to the static results from the 

optical and EM systems under the metal free conditions.  

The second measurement experiment involved dynamic tracking of the probe on a rotating 

platform shown in Figure 15.  

In this study, the aim was to see how accurately the system could track the sensors while the 

rotating platform revolved at a constant angular velocity. The points were tracked using both 

systems and recorded for the platform to perform one full revolution. Since the EM system 
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Figure 15: Dynamic Tracking Experiment with optical sensor mounted directly to rotating platform 

 

would be affected by the metal present at the rotating platform, a non-ferromagnetic mounting 

structure was used to separate the EM probe from the rotating platform at a distance of roughly 

30 cm. At the onset and end of the revolution, there is an acceleration and deceleration period of 

the platform, respectively, that is disregarded in this analysis of angular tracking error. In this 

experiment, the 3D points were acquired and then fit to a plane using orthogonal distance 

regression. With the plane of rotation known, the center is calculated using a circular regression 

algorithm, using 2D points that have been projected onto the plane. After the plane and the center 

of the 2D circle are known, the points are transformed into cylindrical coordinates using a 

rotating inertial reference frame with constant angular velocity. In this frame, 3 types of errors 

were measured: radial error, out-of-plane error, and angular tracking error. Since the radius of 
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the circle is known, the tracking error is transformed into a linear distance at the radius and 

subsequently recorded. 

2.2.2 Hip Cup Tracking Experiment  

The alignment of the acetabular component is critical in primary Total Hip Arthroplasty (THA) 

[57] [58] [59]. Clinical results have shown that anteversion of the cup of <40
o
 and >60

o
 can 

significantly increase the odds of hip dislocation postoperatively [58] (although the reported 

anteversion is affected by the flexion angle, so it is better to report an adjusted anteversion angle 

as done in [59]). In [57], the performance of a mechanical guide for proper cup placement is 

tested experimentally. By comparing the results of the mechanical guide to a hip navigation 

system, it is shown that a mechanical guide is insufficient for proper cup alignment.  

In this experiment, an optical tracking system (Optotrak 3020, Northern Digital Inc., Toronto 

[60]) and an EM tracking system (Aurora, Northern Digital Inc., Toronto) were compared in hip 

navigation by performing a standard postero-lateral THA on cadaveric specimens with both 

systems, illustrated in Figure 16.  

 

Figure 16: Tracing acetabulem with optical probe 
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This experiment was undertaken by 6 total graduate level biomedical engineering and 

anthropology students. Using a posterior approach mock surgery, a cadaveric specimen was 

opened and the acetabulum was exposed by dislocating the femoral head. In order to obtain the 

Anterior Pelvic Plane (APP), each observer acquired points on the right Anterior-Superior Iliac 

Spine (ASIS) by touching the probe tip to a manually palpated position on the unexposed pelvis. 

The left ASIS point and also the pubis symphysis were recovered by manually picking points on 

the segmented pelvis with a computer. Subsequently, the observer collected points by tracing the 

rim of the acetabulum and making an ‗X‘ pattern in the cup. Before performing this mock 

surgery, each patient was CT scanned and the whole pelvis manually segmented. Figure 17 

shows the APP, which was constructed from the two ASIS points and the pubis symphysis, as 

well as the points traced along the acetabulum overlaid on the segmented pelvis model. 

Next, the cup plane was approximated using auto regression to fit a plane to the point cloud 

taken around the circumference of the acetabulum, as shown in Figure 18. Once the APP and cup 

planes were obtained, the abduction, anteversion, and flexion angles of the cup—which define  

 

Figure 17: Sagittal view of segmented pelvis overlaid by the APP and acetabulum point cloud 
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the orientation of the acetabulum and are critical for a positive outcome of THA—were 

calculated. This calculation was done by defining a coordinate frame where the anterior normal 

of the APP is oriented in positive z, while positive x is defined as the vector pointing from the 

left ASIS point to the right ASIS point, making positive y orthogonal to x and z and in the 

superior direction, as shown in Figure 18. Next, a rotation matrix describing the alignment of the 

cup plane normal (in the anterior inferior direction) relative to the positive z axis was obtained. 

Three rotations were extracted from the rotation matrix, corresponding to the abduction, 

anteversion, and flexion of the acetabulum. This was done using a Z-Y-X Euler rotation, 

corresponding to abduction, anteversion, and flexion. The procedure outlined in [59] for 

adjusting the abduction and anteversion angles was used since these angles are affected by the 

amount of flexion native to the acetabulum. This effect was extreme in these results, due to the 

inherent anatomical differences between the two cadavers studied. Figure 19 shows the  

 

Figure 18: Segmented pelvis overlaid by APP, acetabulum point cloud, and cup plane with APP reference frame 

 

 

Figure 19: Patient comparison with APPs aligned. (a) Frontal view (b) Sagittal view 
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segmented pelves of the two patients analyzed in this study with their anterior pelvic planes 

aligned. The patient with the red pelvis and red cup axis has roughly 11
o
 of flexion while the 

patient with the blue pelvis and blue cup axis has approximately 39
o
 of flexion. The large 

difference in flexion angles significantly shifts the native abduction and anteversion angles, as 

shown in Table 3 contains the mean cup orientation angles averaged over three trials of EM 

combined with three trials of Optotrak for each patient. Correcting for the flexion angle requires 

negating the flexion angle by post-multiplying the overall rotation matrix by a negative rotation 

of the extracted flexion angle about the fixed x-axis. This removes the flexion angle from the 

rotation matrix, allowing the correctly adjusted abduction and anteversion angles to be extracted 

from the rotation matrix. This method was obtained from [59] and the corrected results in  

 agree well with [59]. 

2.2.3 Knee Axes Determination Experiment  

In order to determine the effect of errors in the tracking technology, an evaluation was performed 

on surgically relevant axes calculated from noisy points. Using a representative bone, with the 

axes calculated using an automated procedure previously developed  [5], synthetic Gaussian 

noise was added to each of the landmarks from which the axes are calculated. This effectively 

measures the error due to the positioning system in surgical axes angle calculations. Such 

measurements serve as the inputs to calculate resection plane orientations; consequently, if the  

Table 3: Mean native cup orientation and mean cup orientation corrected for flexion for combined optical and EM 

tracking experiments (six total trials per patient) in degrees 

Patient Abduction Anteversion Flexion 
Abduct - 

Corrected 

Antev - 

Corrected 

1 37.3 32.2 11.2 40.4 25.2 

2 76.8 48.8 39.6 41.1 24.6 
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axes exhibit a significant amount of error, the feasibility of using a positioning system for axes 

calculation may be called into question.  

In this experiment, the worst-case standard deviations of measurement from the static 

landmarking experiment were recorded for the optical system, the EM system in the absence of 

metal, and the EM system with metal nearby. The standard deviation was used to create zero 

mean Gaussian noise around each of the landmarks of the representative bone. Subsequently, the 

axes orientations were calculated and compared to the robust automatic measurements. The data 

was collected for the following axes: Mechanical Axis (MA), Posterior Condylar Line (PCL), 

Distal Bearing Line (DBL), Transepicondylar Axis (TEA), Anterior Capsule Axis (ACA), and 

Distal Anatomic Axis (DAA). 

2.3. Results 

2.3.1 Positioning Results - Static  

Comparing the results from the static landmarking experiment (Table 4, Table 5, and Table 6), 

the salient results indicate that the optical system yields the least landmark uncertainty. 

Following the optical system, the EM system without metal present proceeded to provide similar 

results, though the standard deviations are roughly an order of magnitude larger. When metal is 

introduced to the EM system setup, the performance degrades significantly, increasing the 

standard deviation by another order of magnitude to 0.25 mm on average. 

The pairwise landmark distances were calculated using each of the positioning scenarios. Some 

of these distances (e.g. medial transepicondyle to lateral transepicondyle) represent a surgical 
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Table 4: Optical static landmark results in mm 

 Mean X Mean Y  Mean Z Std. X Std. Y Std. Z 

AL -545.37 84.32 -1846.61 0.002 0.001 0.003 

AM -536.64 52.11 -1839.69 0.017 0.014 0.033 

DL -536.64 89.12 -1807.93 0.017 0.009 0.031 

DM -525.70 89.12 -1801.64 0.023 0.020 0.048 

PL -545.32 88.43 -1789.97 0.011 0.006 0.021 

PM -547.22 52.06 -1784.11 0.013 0.007 0.018 

TL -551.21 103.36 -1813.45 0.008 0.007 0.013 

TM -548.54 30.29 -1810.68 0.012 0.005 0.011 

 

Table 5: EM static landmark results (no metal) in mm 

 Mean X Mean Y Mean Z Std. X Std. Y Std. Z 

AL 72.02 -28.48 -113.60 0.0628 0.0214 0.0684 

AM 58.56 1.020 -121.87 0.0198 0.0000 0.0684 

DL 36.61 -43.04 -137.86 0.0857 0.0569 0.0575 

DM 20.58 3.700 -138.58 0.1110 0.1084 0.0858 

PL 16.51 -50.82 -119.33 0.0122 0.0611 0.0532 

PM 4.470 -11.27 -120.18 0.0167 0.0291 0.0539 

TL 45.00 -55.41 -113.95 0.0369 0.0503 0.0505 

TM 22.28 13.74 -112.21 0.0509 0.0000 0.0414 

  

Table 6: EM static landmark results (with metal table) in mm 

 Mean X Mean Y Mean Z Std. X Std. Y Std. Z 

AL 358.64 165.05 -303.70 0.185 0.246 0.200 

AM 352.62 138.04 -317.10 0.211 0.257 0.253 

DL 390.82 169.36 -336.70 0.266 0.447 0.263 

DM 377.19 122.98 -344.89 0.301 0.189 0.285 

PL 417.94 160.83 -328.15 0.231 0.264 0.169 

PM 408.83 120.52 -333.95 0.248 0.218 0.206 

TL 391.05 180.66 -319.72 0.220 0.336 0.398 

TM 375.07 113.20 -319.20 0.194 0.354 0.237 
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axis while others do not. As indicated in Table 7, Table 8, and Table 9, the pairwise distance 

differences show that the optical measurements agree best with the EM system when no metal is 

present. Some of the pair-wise errors between the systems can be explained when considering 

that the probe tips, being slightly different diameters, fit differently into the machined holes. The 

EM system in the presence of metal does not agree well with either the optical system or the EM 

system without metal. The standard deviations listed in Table 6 cannot be thought of as accuracy, 

but rather system precision under static conditions. 
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Table 7: Optotrak static distances vs. EM static differences in mm 

 AL AM DL DM PL PM TL 

AM       -0.64 

DL      2.78 2.30 

DM     -2.28 -0.62 -2.74 

PL    3.33 4.64 3.66 2.06 

PM   -0.34 -1.05 0.57 -2.71 4.46 

TL  -0.52 -0.81 0.66 -3.16 0.92 1.02 

TM 0.30 1.48 1.66 2.70 3.41 -2.65 -3.85 

 

 
Table 8: Optotrak static distances vs. EM static distances (with metal) in mm 

 AL AM DL DM PL PM TL 

AM       -3.33 

DL      3.75 3.67 

DM     -6.16 -2.20 -3.13 

PL    7.50 7.88 4.92 2.18 

PM   3.25 4.66 4.17 2.18 4.84 

TL  0.70 -1.95 -7.14 -7.25 6.02 5.07 

TM -8.40 -4.66 -1.38 1.99 2.90 3.19 -3.85 

 

Table 9: EM static distances vs. EM static distances (with metal) in mm 

 AL AM DL DM PL PM TL 

AM       -2.70 

DM      0.97 1.38 

DL     -3.88 -1.58 -0.38 

PL    4.16 3.23 1.27 0.12 

PM   3.59 5.71 3.60 4.89 0.38 

TL  1.22 -1.14 -7.80 -4.10 5.10 4.05 

TM -8.70 -6.14 -3.04 -0.71 -0.51 5.84 -3.49 
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2.3.2 Positioning Results - Dynamic Results  

The results in Table 10 and Table 11 clearly indicate a large difference in dynamic errors 

between optical and EM technologies. Comparing the standard deviations of the radii, out-of-

plane, and tracking errors, the optical probe yields higher accuracy and consistency than the EM 

probe. The optical results for the measures of radii and out-of-plane errors are less than 0.1 mm, 

while the tracking error exhibits the largest magnitude. The EM experiments indicate that the 

tracking error exhibits the opposite trend, as the standard deviation of radii and out-of-plane 

errors are slightly larger. Overall, the EM system had roughly 1 mm of error in each of the 

cylindrical coordinate directions. The tracking error corresponds well with the larger uncertainty 

in angular velocity as measured by the EM system relative to the optical system.  

2.3.3 THA - Acetabulum Orientation Results  

The results in Table 12 show that the error between using EM and optical tracking systems in  

 

Table 10: Optical dynamic tracking results 

Exp 

# 

Std. Radii 

(mm) 

Mean Radii 

(mm) 

Std. Out-of-plane 

(mm) 

Mean Ang. 

Vel. 

(radians/sec) 

Std. Ang. 

Vel. 

(radians/sec) 

Std. Track Error 

(mm) 

1 0.030 97.6 0.0721 1.12 0.0219 0.104 

2 0.028 97.6 0.0733 1.12 0.0238 0.106 

3 0.029 97.6 0.0744 1.12 0.0228 0.105 

 

 

Table 11: EM dynamic tracking results 

Exp 

# 

Std. Radii 

(mm) 

Mean Radii 

(mm) 

Std. Out-of-

plane (mm) 

Mean Ang. 

Vel. 

(radians/sec) 

Std. Ang. 

Vel. 

(radians/sec) 

Std. Track Error 

(mm) 

1 0.839 99.9 0.990 1.13 0.234 0.918 

2 1.040 100. 1.01 1.13 0.248 0.893 

3 1.050 100. 1.03 1.12 0.297 0.835 

4 0.964 99.8 1.03 1.13 0.224 0.836 
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calculating the corrected abduction and anteversion angles in hip navigation is negligible. The 

corrected abduction and anteversion angles in Table 12 agree well with the results obtained in 

[59]. It should be noted that the sampling rate for the EM system was three to five times larger 

than that of the optical system, resulting in 3-5x as many points obtained in picking points and 

tracing the acetabulum for the EM system when compared to the optical system. This means that 

the error in picking points with the EM system is higher than optical, but since this can be solved 

with a higher sampling rate for the EM tracking system, it does not pose a problem in practice. 

2.3.4 TKA - Axes Results  

The results in Table 13 show that for all positioning scenarios, shorter axes (ACA, PCL, and 

DBL) experience greater error in angular orientation than longer axes due to uncertainties. The 

longest axis was the MA. This axis experienced the least amount of orientation error relative to 

the other axes. In general, the optical system had the greatest performance with respect to all 

axes when compared to the EM system. The presence of metal near the EM system increased the 

maximum error by a factor of about four. For the longer axes, this amounted to negligible error; 

however, the shorter axes had maximum errors of 2.43-4.76 degrees. Considering TKA 

placement protocols that call for PCL alignment plus 3 degrees, this magnitude is deemed 

significant. 

Table 12: Mean and standard deviation of corrected cup orientation for optical and EM tracking systems averaged over 

both patients (in degrees) 

Tracking System 
Abduct - 

Corrected 

Antev - 

Corrected 

Flexion - 

Patient 1 

Flexion - 

Patient 2 

Optical 39.3 +/- 1.91 24.0 +/- 2.24 11.2 +/- 1.36 37.6 +/- 1.11 

EM 40.8 +/- 0.92 24.9 +/- 2.64 11.4 +/- 0.66 39.2 +/- 2.99 
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Table 13: Static errors of positioning systems and the contribution to surgical axis error 

Exp 

Type 
 MA (deg) ACA (deg) PCL (deg) DBL (deg) TEA (deg) DAA (deg) 

Optotrack Std. Error 0.00 0.08 0.10 0.05 0.03 0.02 

 Max Error 0.02 0.34 0.51 0.21 0.14 0.09 

EM no metal Std. Error 0.01 0.18 0.28 0.11 0.06 0.04 

 Max Error 0.05 0.89 1.21 0.53 0.29 0.22 

EM w/ metal Std. Error 0.04 0.66 1.11 0.42 0.24 0.18 

 Max Error 0.20 2.76 4.76 2.43 1.19 0.93 

 

2.4. Discussion 

Tested were two competing tracking technologies used in surgical navigation systems through 

measuring static and dynamic tracking error and quantitatively studying how these errors affect 

automatic axes calculation during TKAs and THAs. Both systems underwent static, dynamic, 

and cadaveric testing. The results from the static error analysis also lead to a simulated testing of 

surgical axes calculations. Both systems proved adequate in the static results, although the 

performance of the EM system seriously degraded when metal was placed in proximity to either 

the transmitter or the EM sensor. In dynamic testing, the optical system provided an order of 

magnitude higher accuracy over the EM system. Under these conditions, both systems would be 

adequate for range-of-motion measurement, especially considering the refresh rate of the EM 

system is typically kept three to five times higher than that of the optical. The increased number 

of samples effectively reduces the observed tracking error of the EM system down to levels 

comparable to optical tracking when the EM data is down-sampled to the refresh rate of the 

optical system. This effect, as mentioned in the hip cup experiment, caused the EM and optical 

systems to perform similarly in hip navigation as there was little difference between the systems 
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in the final cup axis calculation. However, when both systems were used to calculate surgical 

axes based on known landmarks, the optical system‘s higher accuracy created a negligible 

difference in angular orientation with respect to automatically calculated axes. Metal placed in 

proximity to the EM system caused a noticeable degradation in surgical axes calculation. Of the 

three primary uses of surgical navigation systems, namely landmarking, bone morphing, and 

dynamic bone and instrument tracking, the optical system was superior or comparable to the EM 

system. The EM system has the distinct advantage of not requiring line-of-sight between the 

tracking sensors and the system. As a result, it is the finding of this study that optical systems can 

be used in large incision total joint surgeries or in instances where the highest levels of accuracy 

are needed. EM systems have lower performance when used in highly dynamic or ferromagnetic 

conditions but have advantages with point acquisition and thus remain viable for bone morphing 

and static landmarking. Finally, both systems have certain disadvantages, leaving the door open 

for new tracking technologies, such as wireless tracking, assuming new systems can reduce error 

levels to the accuracy of EM and optical systems. 
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3. INVESTIGATION OF HIGH ACCURACY INDOOR 3-D POSITIONING 

USING UWB TECHNOLOGY 

 

This chapter is a slightly revised version of a paper that was recently published in the journal 

IEEE Transactions on Microwave Theory and Techniques by Mohamed Mahfouz, Cemin Zhang, 

Brandon Merkl, Michael Kuhn, and Aly Fathy  [42]: 

 

Investigation of High Accuracy Indoor 3-D Positioning Using UWB Technology 

Mohamed R. Mahfouz, Senior Member, IEEE, Cemin Zhang, Student Member, IEEE, Brandon 

C. Merkl, Student Member, IEEE, Michael J. Kuhn, Student Member, IEEE, Aly E. Fathy, 

Fellow, IEEE 

 

The use of ―we‖ refers to the original authors of the paper as listed above. My specific 

contributions to this work, in order of importance, include: (1) development and description of 

the Iterative Peak Detection algorithm, (2) study and literature review of existing channel 

modeling techniques in conjunction with receiver-side peak detection, (3) experimental testing of 

various peak detection techniques, (4) development and description of PDOP calculation and 

resulting analysis of system error as a result of PDOP, (5) analysis of unintentional time scaling, 

(6) testing of modified TDOA algorithm to mitigate time scaling, (7) theoretical time scaling 

calculations.  

 

 

Abstract — There are many challenges in building an ultra wideband (UWB) indoor local 

positioning system for high accuracy applications. These challenges include reduced accuracy 
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due to multipath interference, sampling rate limitations, tag synchronization, and antenna phase 

center variation. Each of these factors must be addressed to achieve mm or sub-mm accuracy. 

The developed system architecture is presented where a 300 ps Gaussian pulse modulates an 8 

GHz carrier signal and is transmitted through an omni-directional UWB antenna. Receiver-side 

peak detection, a low cost sub/sequential-sampling mixer utilizing a direct digital synthesizer, 

high fidelity 10 MHz crystals, and Vivaldi phase center calibration are utilized to mitigate these 

challenging problems. Synchronized and unsynchronized experimental results validated with a 

sub-mm accurate optical tracking system are presented with a detailed discussion of various 

system errors. 

 

3.1. Introduction 

Wireless local positioning has many diverse applications and has been extensively studied [60] 

[61]. While Global Positioning Systems (GPS) use ultra high precision atomic clocks to measure 

time-of-flight [62], a more standard method for indoor localization systems is Time Difference of 

Arrival (TDOA), where all of the base stations or receivers are synchronized, and the difference 

in time is measured between each pair of receivers to triangulate the position of an 

unsynchronized tag [60]. Two main technologies have emerged as possible solutions for TDOA 

systems: frequency-modulated continuous-wave (FMCW) and UWB. FMCW systems can be 

found both in the literature  [63] [64] [65] and as commercial products  [66] with various levels 

of accuracy. For example, Stelzer et al. achieved accuracy of greater than 10 cm for an outdoor 

application tracking a car around a 500 m
2
 racecar track  [63] while Wiebking et al. achieved 

accuracy around 20 cm for an indoor application covering a 15x25 m
2
 2-D area [67]. Finally, 

Roehr et al. achieved accuracy of 1 cm in a line-of-sight (LOS), multipath free environment 
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using a novel chirp technique centered at 5.8 GHz  [68]. Meanwhile, interest in UWB for radar 

applications has increased greatly following the Federal Communications Commission‘s (FCC) 

decision to open up the bands from 3.1 - 10.6 GHz and 22 – 29 GHz for UWB use in 2002 [43]. 

UWB technology has inherent advantages for indoor applications in terms of robustness to 

multipath interference and potential for high ranging accuracy [69]. 

Commercial systems are already available which utilize UWB sensors for indoor asset tracking. 

For example, Multispectral Solutions, Inc. has the Sapphire DART™ system which can operate 

in indoor environments of greater than 50 m ranges while using TDOA in conjunction with 

UWB sensors to achieve accuracy of 10 cm [70]. Ubisense has a comparable indoor system 

which uses UWB in conjunction with TDOA and Angle of Arrival (AOA). It has an operating 

range of up to 50 – 100 m and can detect sensors with accuracy of 15 cm [71]. Higher accuracy 

has been reported in the literature for indoor UWB positioning systems. For example, Low et al. 

achieved centimeter-range accuracy in a 1-D short range indoor LOS environment utilizing 

UWB pulse signals [44]. Zetik et al. reported sub-mm 1-D accuracy but with only extremely 

short displacements while accuracy decreased to 1.5 cm for 2-D localization over a 2x2 m
2
 area 

[72]. Recently, Meier et al. designed a 24 GHz system which uses a Kalman filter combined with 

correlation and phase information to reduce the uncertainty of a static point to 0.1 mm, although 

the uncertainty increases to 2 mm when the tag is in motion [45]. These experimental results 

show that UWB technology has the potential for high precision indoor localization even in harsh 

environments with significant multipath effects.  

Commercial UWB systems have localization accuracy of 10 - 15 cm. Certain short-range 

industrial and medical applications such as dynamic part tracking, structural testing, and 
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computer-assisted therapy require significantly higher accuracy than commercial UWB systems. 

Current technologies used for these applications include infrared (IR), electromagnetic (EM), 

and ultrasound tracking, which have mm or even sub-mm accuracy. However, IR has a short 

transmission range and can be easily disturbed by a fluorescent lamp or other light sources in a 

room. EM has reduced performance near metal. Finally, ultrasound has limitations due to 

multipath interference because of its limited bandwidth compared to UWB. UWB tracking 

systems have inherent advantages over these existing technologies since UWB does not suffer 

from the drawbacks mentioned.  

However, there are many challenges in developing such a real-time indoor UWB localization 

system which has accuracy orders of magnitude greater than existing commercial systems. These 

challenges include multipath interference, sampling rate limitations, synchronization errors, and 

antenna phase center error.  Errors associated with these design issues must be accounted for to 

develop a system for these high accuracy applications. In this chapter, a system is proposed [73] 

[74] and various system-level design issues in the context of prototyping a high accuracy UWB 

localization system are discussed. Through advanced sub-sampling techniques, receiver-side 

signal processing, a modified TDOA algorithm, and antenna phase center calibration, mm-range 

accuracy in a real-time system is possible as will be demonstrated here.  

This chapter is organized as follows. In Section 3.2 an overview of the positioning system is 

presented including a block diagram of major system components, the mobile tag architecture, 

and a detailed discussion of the sub-sampling mixer. In Section 3.3, synchronization issues are 

addressed with focus given to how they affect overall system accuracy. Section 3.4 details the 

peak detection algorithm used to identify pulse peak position in dense multipath environments. 
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Experimental results are included to show how multipath interference contributes to system 

error. The effects of phase center variation of the base station antennas on system accuracy are 

discussed in Section 3.5. Synchronized and unsynchronized localization experiments including 

results are outlined in Section 3.6. Finally, Section 3.7 concludes. 

3.2. System Architecture 

3.2.1 Overview 

A GPS-like scheme is utilized along with TDOA to locate 2-D and 3-D transmitting tag 

positions, as shown in Figure 20. The average output power spectral density for indoor systems 

has an upper bound of -41.3 dBm/MHz [43] as specified by the FCC. One typical UWB 

localization method is the use of Impulse Radio (IR) UWB, where a baseband UWB pulse is 

filtered by a UWB antenna to conform to FCC regulations [44]. However, with IR-UWB the 

received signals are noisy due to the complex transmitted waveform and added multipath signals, 

which makes it difficult to accurately locate the position of the received LOS signal. In the 

system, we modulate an UWB pulse with an 8 GHz carrier signal which resides at the upper end 

of the 3.1 – 10.6 GHz band. The use of this band reduces the size of the wideband RF 

components in the transmitter and receiver and also bypasses many of the interfering frequency 

bands that exist at the lower end of the 3.1 – 10.6 GHz band. 

The complete experimental setup of the developed system is shown in Figure 21. In the 

developed system, we transmit a modulated narrow Gaussian pulse with a carrier frequency and 

demodulate it at the receiver side. The source of the UWB positioning system is a step-recovery 

diode (SRD) based pulse generator with a pulse width of 300 ps and bandwidth of greater than 3 
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Figure 20: GPS system analogy: (a) GPS system, (b) UWB indoor positioning system. 

 

GHz, shown in Figure 22. A detailed discussion can be found in [74]. At the input of the 

traditional delay-line type pulse generator [75], a novel input matching network has been 

introduced to prevent pulse echoing, minimize pulse width broadening, and suppress any 

significant pulse distortion. The modulated Gaussian pulse is then transmitted through an omni-

directional UWB antenna. Multiple base stations are located at distinct positions in an indoor 

environment to receive the modulated pulse signal. The received modulated Gaussian pulse at 

each base station first goes through a directional Vivaldi receiving antenna and then is amplified 

through a low noise amplifier (LNA) and demodulated to obtain the I/Q signals. After going 

through a low pass filter (LPF) with a passband of DC-5 GHz to suppress the 8 GHz carrier 

signal, the I/Q signals are sub-sampled using an UWB sub-sampling mixer, extending them to a 

larger time scale (i.e. s range) while maintaining the same pulse shape. The sub-sampling mixer 

uses extended time techniques to achieve equivalent sampling rates in excess of 100 GS/s, which 

yields mm-range sample spacing and provides the peak detection algorithm with ample data. 

Finally, the extended I/Q signals are processed by a conventional analog to digital converter 

(ADC) and standard Field Programmable Gate Array (FPGA) unit. 
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Figure 21: Block diagram of indoor localization system showing one tag and three base stations which feed into the main 

system controller. 
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Figure 22: Gaussian pulse which serves as system UWB source: (a) time domain exhibiting 300 ps pulse width, (b) 

frequency domain highlighting bandwidth in excess of 3 GHz. 
 

The transmitting tag uses an elliptical monopole structure combined with a modified ground 

plane which provides an omni-directional radiation pattern [76]. The base stations use a single 

element Vivaldi antenna with a flared-antipodal design which has demonstrated almost a 

constant gain and beamwidth over a wide band [77] [78].  

The output power spectral density of the transmitted signal in the system has been measured and 

plotted in Figure 23. The modulated pulse signal has a 10 dB bandwidth of approximately 6 

GHz, exceeding the 500 MHz minimum bandwidth required under the FCC rules governing 

UWB. Its average output power spectral density satisfies the FCC indoor limit by a margin of 

more than 3 dB for a majority of the useable bandwidth. The 8 GHz carrier signal leaks through 

the mixer and is shown as a peak at -16 dBm in Figure 23. This leakage could be suppressed by 

adding a band-notched filter or utilizing a band-notched monopole [79].  
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A clear Gaussian pulse signal with a signal-to-noise ratio (SNR) of about 20 dB was detected at a 

range of up to 3.8 m. The sampler, described in Section 3.2.2, has a sensitivity of -45 dBm [80]. 

Figure 21 shows the receiver chain. The two amplification stages increase the signal by 25 dB 

while the I/Q down-converter has 8 dB conversion loss. This makes the overall sensitivity of 

each base station around -62 dBm. The dynamic range of the system is limited by the sampler 

and is over 50 dB. The proposed system can be extended to more than 5 m considering the 

transmitted signal spectrum has a margin of 3 dB below FCC limitations. Figure 24 shows the 

current layout of the tag. A microcontroller is currently used to implement a Time Division 

Multiple Access (TDMA) scheme for communicating with multiple tags. TDMA is the preferred 

multiple access scheme in current UWB commercial systems  [70] [71]. The modulation scheme 

used is On-Off Keying (OOK) with the 8 GHz carrier signal, although pulse modulation could be 

used to increase system dynamic range. A unique ID is stored on each tag. Each tag is in a low 

power or sleep state until activated by the main control station. The control station calls each tag 

in a round robin fashion.  

 
Figure 23: Power spectral density of modulated pulse signal showing double sideband modulated signal with bandwidth 

of 6 GHz and carrier leakage at 8 GHz of -16 dBm. 
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3.2.2 UWB Sub-Sampling Mixer 

To detect narrow pulses on the order of a few hundred picoseconds (i.e. 300 ps or 3 GHz 

bandwidth in the system), analog to digital converters with at least 6 GS/s are needed to satisfy 

the Nyquist criterion. However, such high performance ADC units are currently either not 

commercially available or too expensive for most applications. A realistic alternative approach to 

real-time sampling is to sub-sample the UWB pulses while maintaining the initial pulse shape 

through extended time techniques. The extended UWB signals can then be handled by readily 

available commercial ADCs, reducing overall system cost [81] [82]. We have developed a 

compact UWB sub-sampling mixer integrated with a fast strobe generator for this purpose [80]. 

The sampler utilizes a simple broadband balun structure [83] and a balanced topology. Figure 25 

shows the schematic of the designed sampler. 

 
Figure 24: Block diagram of current tag layout showing OOK digital communication and UWB transmitting architecture. 

 

 
Figure 25: Schematic of the sampling mixer highlighting the broadband balun and balanced topology [80]. 
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The designed sampler based on the sub-sampling method uses the same technique as the 

commercial off-the-shelf (COTS) high speed sampling modules, such as the Tektronix 80E01 

[84] and Picosecond 7040 [85]. The comparisons between the designed sampler and the 

commercial sampling modules are listed in Table 14. The Picosecond 7040 sampling module, for 

example, utilized the nonlinear transmission line (NLTL) technique to achieve a fast rise time of 

14 ps, and the associated bandwidth of 25 GHz. The 90 ps rise time of the designed sampler is 

limited by the SRD transition time and the utilized microwave integrated circuit (MIC) 

fabrication. However, the designed sampler with 4 GHz bandwidth is adequate to sample the 300 

ps pulse signal shown in Figure 22a. The compact size of the sampler compared to the 

commercial samplers in Table 14, combined with the low fabrication cost, make it an attractive 

and necessary alternative to current COTS products. An even wider bandwidth could be 

potentially achieved by setting a proper gating duration through adjusting the strobe impulse 

amplitude [80]. 

For measurement, a direct digital synthesizer (DDS) circuit is used to trigger the strobe-step 

generator with a pulse repetition frequency (PRF) of PRF2 = fo ±Δf. The original transmitted 

Gaussian pulse has a repetition frequency of PRF1 = fo =10 MHz. If the added offset frequency  

 

Table 14: Comparison of the Designed Sampler with Commercial Sampling Modules  

 

 Tektronix 80E01 Picosecond 7040 Designed sampler 

Rise time 7 ps 14 ps 90 ps 

Bandwidth 50 GHz 25 GHz 4 GHz 

Sampling rate N/A Up to 10 MHz Up to 35 MHz 

Fabrication N/A MMIC MIC 

Size (cm
3
) 13.5x7.9x2.5 5.1x3.8x1.3 4.3x3.0x2.0 

Cost Very High High Very Low 
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 (Δf) is set to be 100 Hz, the corresponding extending ratio is α= fo / Δf =100,000. Noticeable 

ranging errors can occur during the time extension process due to the stability of PRF1 and PRF2. 

This is due to drifting between the two clocks during the 10 ms interval needed to time extend 

the signal. Section 3.3 discusses how the clock stability affects system accuracy.  

3.3. Synchronization  

There are three synchronization issues for the proposed localization system in Figure 21: 1) LO 

and PRF synchronization between receivers, 2) carrier frequency synchronization between the 

tag and receiver, and 3) PRF1 and PRF2 synchronization between the tag and receiver. 

Synchronization between different receivers is solved by wiring the N receivers together to use a 

single crystal clock (PRF2) for transmission of clock data output from DDS. Also, a single 

carrier (LO2) is used between all the base stations. 

3.3.1 Tx-Rx Carrier Synchronization 

Carrier frequency synchronization between transmitting tag and receiver is solved by direct I/Q 

down-conversion. The transmitted signal s(t) from the tag is given by 

))()(sin()( Ktptts c  (1) 

where p(t) is the Gaussian pulse signal, K is the carrier signal leakage factor, and ωc is the carrier 

frequency generated by LO1. The received I and Q signals before passing through the low pass 

filter are given by 

)}cos()]2cos(1[)sin()2]{sin()([
2

1

)sin()])(()[sin(

ttttKtp

ttKtptI

cc

cc

 
(2) 



 

    

 52  

)}sin()]2cos(1[)cos()2]{sin()([
2

1

)cos()])()([sin(

ttttKtp

ttKtptQ

cc

cc

 

(3) 

where Δω is a small offset frequency of LO2 relative to the carrier ωc generated by LO1 from the 

tag. After passing through the LPF with a passband of DC-5 GHz which suppresses the 8 GHz 

carrier signal, the I and Q signals become 

)cos(])([
2

1
tKtpI

 

)sin(])([
2

1
tKtpQ  

(4) 

(5) 

 

Finally, the filtered I and Q data are sampled and processed by the FPGA, and the reconstructed 

received signal is given by  

])([
2

1
)( 22 KtpQItp  (6) 

From (6), the recovered signal )(tp  is not affected by the offset carrier frequency ωc and 

contains the same information as the transmitted Gaussian pulse signal p(t) with a DC bias K/2 

which can be blocked using a DC block after the LPF. To validate the above analysis and study 

how the offset frequency Δω between the tag and base stations would affect the signal 

performance, a system level simulation using Agilent ADS2006A has been carried out. The 

simulation in Figure 26 was conducted with four randomly chosen offset frequencies, 19.9 MHz, 

53 MHz, 100 MHz and 118 MHz. As shown in Figure 26, the original pulse has been 

successfully reconstructed with four different LO offset frequency conditions.  



 

    

 53  

 
Figure 26: ADS simulation showing the effect of Tx-Rx LO frequency offset on reconstructed sub-sampled pulse: a) 

original signal, b) reconstructed signal with LO offsets of 19.9 MHz, 53 MHz, 100 MHz and 118 MHz. 

 

3.3.2 Tx-Rx PRF Synchronization 

 The PRF1 and PRF2 clock signals between the tag and receiver in this system are not 

synchronized. This results in an interesting synchronization problem when incorporating the sub-

sampling mixer (discussed in Section 3.2.2) since 100,000 pulses are needed to extend the pulse 

from 300 ps to 30 s, which corresponds to a 1000 GS/s sampling rate. In the prototyped system, 

the extended time signal can then be adequately sampled with a 50 MS/s ADC, given the 

bandwidth of the sub-sampled signal is 0.03 MHz, although in the actual system the 50 MS/s 

ADC can be replaced by a higher performance ADC (e.g. 24 bit, 250 MS/s). This can potentially 

increase system performance by reducing quantization error through extending the dynamic 

range and increasing the sampling rate with little difference in chip and manufacturing costs. 

 Techniques exist to calculate clock jitter in the time domain given the phase noise of the crystal 

[86], and crystal manufacturers provide crystal stability specs in terms of parts-per-million 

(ppm).  On the surface, the stability factor would appear to have less of an effect than actual 

clock jitter.  For instance, the stability factor of ±0.5 ppm for the 10.0 MHz Vectron VTC4-

A0AA10M000 crystal yields clock jitter of 50 fs  [87]. However, the effects of the stability 

factor are amplified during the sub-sampling process and cause time-scaling to occur.  



 

    

 54  

Any frequency offset occurring between PRF1 and PRF2 would cause apparent time-scaling in 

the sub-sampled signal. The ±0.5 ppm stability of the crystal equates to 5 Hz of variation in the 

clock signal. This causes the nominal frequency of PRF1 to be 10.000000 MHz ± 5 Hz and the 

nominal frequency of PRF2 to be 9.999900 MHz ± 5 Hz, with the worst case scenario being a 

difference of 10 Hz between the two signals. If the offset frequency (Δf) is set to be 100 Hz, the 

corresponding extending ratio is  α = fo / Δf =100,000. However, with a potential offset of ± 10 

Hz, Δf has the potential to be 100 ± 10 Hz, thus α = 100,000 ± 11,111. This time scaling may be 

time-varying depending on the thermal stability of the clocks, although this is a slow variation 

with a drift rate of less than 10 Hz, which allows the TDOA algorithm to calibrate such 

systematic error. Since all the base stations acquire synchronous samples clocked by PRF2, the 

time-scaling effect will be unknown, but consistent across receivers. Consequently, the 1-D 

ranging errors will be roughly ±11%. The TDOA algorithm using time differences will likewise 

be affected. A simulation was enacted to test the ability to calibrate out the scale factor in a post-

processing step. In this simulation, 4-8 base stations in realistic constellations were used to 

localize a simulated tag trajectory that varied within a volume defined by half of the constellation 

radius. Using an iterative approach, the TDOA algorithm was allowed to calculate a position 

using an estimate of the scaling factor, initially set at 100,000. The calculated location was then 

used to determine a new least squares estimate of the scaling factor, based on the original ranges. 

Iterating these steps between 3-5 times yielded accuracy consistent with the system‘s 1-D 

accuracy of 1.49 mm of error, as discussed in Table 17. This problem has been examined in the 

field of geolocation [88], and has been likened to multidimensional scaling [89]. In these 

contexts, this time-scaling problem has been successfully solved even in situations when each 
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receiver undergoes unique scaling, which may indicate that base stations synchronized by PRF2 

are not necessary. 

Besides stability, the jitter of these 10 MHz clocks must be examined. When the phase noise is 

integrated from 1 Hz – 5 MHz using an Agilent E5052A Signal Source Analyzer, RMS jitter for 

the crystal is found to be between 1 – 1.5 ps  [87] [90].  This technique is the most accurate way 

to measure clock jitter of highly stable crystals. If 1.5 ps of RMS jitter is assumed for both 10 

MHz crystals, total system RMS jitter σsys due to the two unsynchronized clocks of 2.12 ps is 

obtained through  

2
2

2
1 clkclksys  (7) 

where σclk1 and σclk2 are assumed to be uncorrelated normal random variables [86] [91] of mean μ 

= 0  and standard deviation σ = 1.5 ps. The jitter described in (7) will cause normally distributed 

noise of μ = 0, σ = 2.12 ps (corresponds to 0.64 mm error) to be added to each sampled point. A 

simulation using Agilent ADS2006A has been carried out to study how such jitter affects the 

sampler performance during the sub-sampling process. Based on the ADS simulation results 

shown in Figure 27, we notice that such jitter would cause tiny signal distortion, and could be 

significantly reduced after simple digital processing such as a low pass filter.  

Figure 28 outlines the experimental setup used to test the jitter effect caused by the 

unsynchronized PRF clock signals. A coaxial cable was utilized to connect the pulse generator 

and the sampler so that no channel noise is included. Figure 29 shows the measured time 

variation of the pulse peak position at consecutive measurement cycles. The peak to peak 

variation is below 10 ps while the RMS jitter is 3.48 ps. The measured RMS jitter, of 3.48 ps, is 

1.36 ps larger than the theoretical result of 2.12 ps, which can be interpreted as the added jitter  
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Figure 27: ADS simulation of the reconstructed sub-sampled pulse with and without 3 ps of PRF clock jitter. 
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Figure 28: Experimental setup with the unsynchronized PRF clock sources to measure the effect of PRF clock jitter. 
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Figure 29: Time variation of the pulse peak position acquired over n sample points. 
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from the sub-sampling mixer, DDS, and ADC circuitry. The measured system clock jitter of 3.48 

ps corresponds to 1.05 mm error. 

3.3.3 Temperature Effects on Synchronization 

 The variation in phase noise (and hence jitter) is negligible for both the 10 MHz crystals 

and also the 8 GHz LOs over the anticipated operating temperature range of 10°C to 30°C. The 

10 MHz crystal has stability of ±0.5 ppm over this temperature range. Although this introduces 

time-scaling, this effect can be removed with a revised TDOA algorithm, as mentioned in 

Section 3.3.2.  The 8 GHz LOs in the current setup do vary in frequency from 7.983-8.017 GHz 

over the anticipated operating temperatures. These effects can be mitigated by using I/Q down-

conversion (outlined in Section 3.3.1) given that the temperature has a slow rate of variation or 

by using the phase locked dielectric resonator oscillator (PLDRO) with extremely low phase 

noise and minimal temperature sensitivity.  

3.4. Receiver-Side Peak Detection 

Much study and devoted work has been accomplished in the field of indoor UWB positioning. 

The foundations of this work lie with the exploration of UWB channel models as a description of 

the actual propagation expected in indoor environments. To develop a highly accurate 

positioning system it is necessary to construct an algorithm with knowledge of expected 

propagation effects. Beginning with the Saleh-Valenzuela (S-V) indoor propagation model [92], 

many adjustments and refinements have been added. Cramer, Sholtz and Win [93] used arrays of 

antenna measurements to better model angle-of-arrival and waveform shape. Kunisch and Pamp 

[94] used a battery of measurements to model the frequency dependence of the channel impulse 

response. Building on this concept, Irahhauten, et al. [95] modeled the frequency-domain 
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impulse response with an autoregressive (AR) model. Wong and Lee [96] examined a minimum 

description length (MDL) method to extract the best fitting model while minimizing the number 

of parameters. Recently Sibille et al. [97] looked into incorporating antenna effects by looking at 

the joint antenna-channel problem concluding that channel angular dependence must be taken 

into account. Also, recently the IEEE 802.15.4a task group approved an extended and greatly 

parameterized version of the S-V channel model [98]. 

Further study has been undertaken to translate channel models into achievable ranging systems. 

The core problem to this task is achieving high-accuracy pulse peak detection or leading edge 

detection. Relevant methods to UWB positioning in multipath environments can be decomposed 

into three major categories: frequency-domain spectrum fitting [99] [100], covariance methods 

[101] [102] such as Hankel-Total-Least-Squares (HTLS) [103], and pulse detection and 

subtraction in the time domain [104] [105] [106]. The peak detection and subtraction method has 

also been used in frequency domain analysis to extract spectral content [107]. The computational 

complexity of the frequency-domain spectrum fitting involves a priori knowledge of the number 

of multipath components and a potentially expensive optimization step. The covariance-based 

methods employ matrix inversion and eigenvalue decomposition which become costly when 

more points are taken to form the covariance matrix. 

Alternatively, simplified methods using only matched filters employed by Low et al. [44] cannot 

offer high accuracy in cases where multipath components experience delay of less than half of 

the pulse width. Consequently, the proposed algorithm, Iterative Peak Subtraction, follows the 

track of the ―search and subtract‖ paradigm, with additional preprocessing (Algorithm 1, steps 3-

4, following in Section 3.4.1) and a peak selection evaluation step (Algorithm 1, Step 7). We 
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evaluated the additions against two popular basic estimates for time-of-arrival: Received Signal 

Strength (RSS) and first detected peak. In Section 3.4.1, all three algorithms were tested using 

experimental data, and 1-D ranging errors are presented for each. 

3.4.1 Iterative Peak Subtraction Algorithm 

This algorithm was developed to subtract multipath peaks from the received multipath signal 

using a clean template to obtain an accurate estimation of the main peak. This algorithm was 

developed first as a post-processing step using Matlab. The aim was first high accuracy, 

secondarily speed. The critical portions of this algorithm are subsequently being implemented on 

a digital hardware device for additional speedup. Primitive FPGA implementations of this 

algorithm have already been constructed, and it should be feasible to run this algorithm in real-

time on time extended signals. The algorithm begins using a normalized received signal envelope 

without any multipath components to form a clean template used for peak subtraction, as shown 

in Figure 30. The received pulse in Figure 30 contains added dispersion compared to Figure 22a 

due to the indoor channel as well as the receiver hardware. 

The received UWB signal h0(t) with multipath components is represented by a summation of  

 

 
Figure 30: Normalized received signal without multipath components (i.e. clean template). 
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pulses of varying amplitude and time delays as given by equation  

n

nn ttstath ))(()()(0

 
(8) 

where an(t) represents the amplitude and τn(t) represents the time delay of each multipath pulse. 

Here only one cluster is considered in this simplified version of the S-V channel model [92] 

which has been used by many others [93] [94] [95] [96] [99] [100] [101] [102] [104] [105] [106]. 

For the purpose of localization geared towards high accuracy LOS conditions, this assumption 

remains valid. For conditions where non-line-of-sight (NLOS) is unavoidable, slight 

modifications can be made to the selection function presented in the following algorithm (which 

models the intra-cluster delay time of the first cluster) for increased performance. A treatment of 

associated NLOS errors is given by Denis et al. [100] suggesting that first detected peak is 

optimal. The phases of received rays within this signal are considered to be matched to sample 

points constituting the minimum resolvable delay bins. To accurately measure the main peak 

location, the effects of the multipath signal must be detected and removed, where in general an(t) 

and τn(t) are not known a priori. The actual received multipath signal used as illustration is 

shown in Figure 31. 

 
Figure 31: Actual received signal with severe multipath. 
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Algorithm 1: Iterative Peak Subtraction 

1. The received signal is passed through an averaging filter to remove noise and is denoted by   

)]([)( thavety i  (9) 

where hi(t) represents a windowed moving average of the received signal after the i
th

 iteration 

(discussed in step 6), initially h0(t). A zero-phase filter ave[
.
] is needed to insure no shifting of 

the peak occurs. 

2. The averaged signal is then subtracted from the initial received signal to get a measure of the 

channel noise as shown  

)()()( 0 tythtn
 (10) 

The noise is assumed to be Gaussian and the standard deviation is calculated and denoted by n. 

3. A large window (~200 ps) parabolic filter is used to detect large regions of positive and 

negative concavity and is denoted by  

)]([)( tybtw  (11) 

where b[·] represents application of the parabolic filter to the averaged signal y(t).   

4. The concavity information held within w(t) is used to localize regions of negative concavity 

within the averaged signal y(t). The lower and upper time limits of the first region of negative 

concavity (which represents the first temporal peak) are obtained from w(t) as shown 

)]([),( twgul  (12) 

where g[·] is the function used to obtain the lower and upper limits l and u. 

5. The peak in the region (l,u) is then located. If it has an amplitude greater than 3 n, it is 

recorded  

)],([),( ulyxmapp i

a

i

t  (13) 
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where
i
tp is the time position and

i
ap is the amplitude of the i

th
 peak. If the amplitude is smaller 

than 3 n, steps 4 and 5 are repeated on subsequent regions of negative concavity until a peak 

with amplitude larger than 3 n (6 dB above the noise floor) is found. If no relevant peaks are 

located, the algorithm terminates. 

6. The first detected peak )( 00
ta ptsp  is subtracted from the original received signal h0(t) and is 

denoted by h1(t). Each subsequent detected peak is subtracted in an iterative process as shown  

)()()(1

i

t

i

aii ptspthth  (14) 

This process is repeated (steps 1, 3-6) until all relevant peaks (> 3 n) have been detected and 

removed. 

7. After all relevant peaks have been detected and subtracted, the main peak position Pt and 

amplitude Pa are detected by locating the peak with maximum amplitude after application of a 

weighting function (decaying exponential) as shown   

Mi
pp

pexpxmaPP t

i

ti

aat 0,
)(

),(
0

 
(15) 

where  is a time constant, set to  = 651 ps, and M is the total number of relevant detected 

peaks.  

The time constant   is set to the intra-cluster decay time constant for the first cluster ( o) used in 

the 802.15.4a LOS industrial channel model (CM 8) [98].  Figure 32 shows the original received 

multipath signal (also shown in Figure 31) with the detected peak positions and amplitudes 

marked by vertical bars. The decaying exponential is also overlayed to illustrate the behavior of 

the weighting function. 
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Figure 32: Original received multipath signal overlaid with selection function and detected peaks. 

 

8. All peaks that occur after the main peak Pt are assumed to be multipath peaks. These peaks are 

located using 

LjPppzMPMP t

i

a

i

t

j

a

j

t 0,),,(),(  (16) 

where z(·) returns the multipath peak positions 
j

tMP  and amplitudes 
j

aMP  for the L multipath 

peaks, respectively.  

9. The new received signal is obtained by subtracting the detected multipath peaks from the 

original received multipath signal h0(t) as seen 

L

j

j

t

j

a MPtsMPthtr
0

0 )()()(

 
(17) 

where r(t) is the estimated received signal without any multipath components. 

10. The last step is cross correlation of the estimated received signal r(t) with the multipath-free 

received signal s(t) as indicated  

)]()([ tstrxmaFPt
 (18) 

where FPt is the temporal position corresponding to the maximum cross correlation value of the 

signals. Before performing cross correlation, all negative values in the estimated signal r(t) are 

set to zero. FPt represents the final main peak position of the received signal with all multipath 

components subtracted out. 

Main peak 

     Artifact 

Multipath Peaks decaying  

exponential 

selection  

function 

 

Time in ns 
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It should be noted that the signals used in the cross correlation of step 10 have not been placed 

through any type of averaging filter. The large scale in which cross correlation is performed 

inherently filters out the uncorrelated Gaussian noise contained in r(t) and s(t). Also, as seen in 

Figure 32, there is a tendency for a small artifact found in front of the main peak in multipath 

conditions; this artifact is not subtracted. Figure 33 shows the estimated received signal r(t) 

along with the original received multipath signal h0(t). All of the multipath peaks present in the 

original signal have been subtracted out. 

3.4.2 Experimental Results 

Testing of the three algorithms was performed against actual signals acquired in various 

multipath conditions. These experiments were performed by holding the transmitter and receiver 

in fixed positions, while progressively placing metal objects near the transmitter, as shown in 

Figure 34, with the purpose of evaluating the performance of the algorithms in worsening 

multipath conditions. 

Initially no metal objects were placed near the transmitter and a signal was measured with no 

multipath interference. Each algorithm was allowed to determine the peak for this interference- 

free signal, the position for each algorithm was recorded. As additional pieces of metal were 

 
Figure 33: Received multipath signal h0(t) and estimated main peak signal r(t). 
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Figure 34: Omni-directional transmitting antenna placed in a severe multipath environment surrounded by numerous 

closely spaced metal objects. 
 

 
Table 15:  1-D Multipath Experiment 

Method 

Ave. 

Bias 

(mm) 

RMSE 

(mm) 

RSS 10.4 160 

First Peak (6dB threshold) -3.26 58.6 

First Peak (15dB 

threshold) 
3.00 4.10 

Iterative Peak Subtraction 0.0938 2.77 

 

placed near the transmitter, causing multipath interference, each algorithm again determined a 

new peak position. This new peak position was compared with the original peak position for the 

particular algorithm, which allows for direct comparison of the error metrics across the various 

algorithms. In these experiments, the dominant ray originating from a LOS path was always 

preserved. A total of two multipath-free signals and six multipath signals were recorded for a 

fixed position. As shown in Figure 31, one of the received severe multipath signals was obtained 

from this experiment. Table 15 records the evaluation of the spatial Root Mean-Squared Error 

(RMSE) and average bias error given by each algorithm over the course of this experiment. 

The iterative peak subtraction algorithm performs better than the other basic algorithms, but at 

higher processing cost. Only pulses that lag by less than one pulse width influence the peak 

position of the first pulse. The algorithm can be simplified to only search for pulses that are less 

Transmitting 

Antenna 
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than one pulse width from the leading pulse. This will reduce the computational cost associated 

with finding all multipath peaks. In the situations encountered in this experiment the multipath 

peaks are spaced at intervals of roughly equal or larger size to the pulse width (Figure 31). This 

allows highly accurate results to be obtained from the iterative peak subtraction algorithm while 

the RSS algorithm results in relatively larger error, due to a small number of gross 

mispredictions. The large positive bias in the RSS algorithm is due to several instances where the 

maximum signal is significantly later than the original peak. The iterative peak subtraction 

algorithm performs marginally better than the first peak algorithm, when the first peak algorithm 

assumes a 15dB signal-to-noise ratio (SNR) to calculate an appropriate threshold. The 

performance of the first peak algorithm degraded significantly when the threshold value was set 

under a 6dB SNR assumption. 

 The effect of coherent interference (e.g. 802.11a) on receiver-side peak detection deserves 

consideration. Coherent narrowband and wideband interference can affect TOA or TDOA UWB 

systems, as outlined in [108]. Intelligent thresholding when detecting the peak of the incoming 

signal can significantly mitigate the effects of narrowband and wideband interferers in UWB 

positioning systems [108]. 802.11a signals (5.0 – 5.83 GHz) can also be filtered out either by the 

antenna acting as a bandpass filter or by the addition of a bandreject filter since this frequency 

band only includes a small portion of one of the sidebands of the UWB signal. Through filtering 

of the coherent interference or through intelligent thresholding of the incoming signal, or through 

a combination of these two techniques, we anticipate mitigating the effects of this type of 

interference. We do not expect this effect to be magnified by the extra time needed to do the sub-

sampling since the same interference will be present in each frame needed to reconstruct the time 



 

    

 67  

extended signal, which implies that, even if the narrowband interference is included in the signal, 

the signal itself can be assumed to be constant in shape over the duration of cycles needed to 

create the time extended reconstruction. Lastly, if a leading edge detection scheme is used at the 

base stations instead of peak subtraction, this will make the system even more robust to any time 

shifts which could be introduced via 802.11a interference.   

3.5. Antenna Phase Center Variation 

Accounting for antenna phase center variation at the transmitters and receivers is critical for 

performance in high accuracy localization systems. Ideally all frequencies contained in the pulse 

are radiated from the same point of the UWB antenna and thus would have a fixed phase center  

[109]. In this case, all frequencies travel the same distance within the same time, and the pulse 

can be received undistorted.         

In practice, however, the phase center varies with both frequency and direction. For localization 

systems that require high accuracy, this can result in significant localization errors. For example, 

to compensate for phase center variation in GPS antennas, automated high precision robots are 

used in a calibration procedure to move a GPS antenna into 6000 – 8000 distinct orientations 

[110]. In the case of the transmitting antenna, which is an UWB monopole, phase center 

variation is less than 1 mm and is considered negligible (both across the frequency band from 6 – 

10 GHz and as the azimuth angle is varied). Phase center variation along the broadside direction 

was simulated to estimate the axial position of the Vivaldi phase center. Figure 35 shows the 

simulated phase center variation over the desired frequency band at broadside using CST 

software, with the original point set at the input of the Vivaldi antenna, as shown in Figure 36.  
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Figure 35: Simulation of broadside Vivaldi phase center location versus frequency. 
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Figure 36: Experimental setup of Vivaldi antennas in an anechoic chamber used to measure Vivaldi antenna directivity-

dependent phase center variation. 

 

The variation in phase center over frequency can be further reduced by placing a dielectric rod 

over the end-fire portion of the Vivaldi antenna [111]. The average phase center position across 

the frequency band of 6 – 10 GHz is obtained at 39.5 mm which is later used as the ―apparent 

phase center‖ in directivity-dependent phase center measurements. 

Since the UWB pulse contains broadband frequency information, a more accurate method for 

defining the phase center variation of the Vivaldi antenna is to employ time domain techniques. 

As shown in Figure 36, an experiment was setup in an anechoic chamber to quantify how the 

phase center is affected by the directivity based on time domain measurement. Both transmitting 

and receiving Vivaldi antennas were put face to face and separated by a distance of 1.5 m. The 
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receiving antenna was rotated around the calculated ―apparent phase center‖ (at 39.5 mm, shown 

in Figure 36) from -45
0
 to 45

0 
at 5

0 
per step.  The apparent phase center was tracked on the 

receiving Vivaldi antenna as it was rotated from -45
0
 to 45

0 
with an optically tracked probe. 

These reference points from the optical system were used to calculate the actual center of 

rotation during the experiment.  This allowed changes in the actual phase center as the receiving 

antenna was rotated to be separated from physical movement of the apparent phase center, 

shown in Figure 36. 

Figure 37 shows the measured phase center displacement for both the E and H cuts. As shown in 

Figure 37, the measured phase center variation versus rotating angle indicates a small phase 

center variation of less than 2 mm within ±20
o
 while the variation degrades dramatically with an 

angle greater than 30
o
. TDOA-related error due to this phase center error can be minimized by 

varying the number of base stations and their orientation in a standard size room. Additionally, 

other techniques to calibrate out the phase center error in a practical system by either assuming 

or measuring orientation for each base station is required to achieve sub-mm accuracy.  

 

 
Figure 37: Measured Vivaldi phase center error versus angle for E-cut and H-cut. 
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3.6. Localization Experiments 

3.6.1 Synchronized Experiments 

In the early experimental trials, 1-D, 2-D, and 3-D localization experiments were performed to 

test the system. In order to test the feasibility of a high accuracy short range system, the 

equivalent time Tektronix TDS8200 oscilloscope was used instead of the receiver architecture 

outlined in Figure 21. Also, for these experiments the tag clock PRF1 was synchronized with the 

base station clock PRF2. This allows errors due to the system architecture and TDOA algorithm 

to be isolated by accounting for clock synchronization, receiver-side sampling, etc. These 

experiments provide a benchmark on achievable system accuracy. When testing a 3-D 

localization system for mm-range accuracy, a highly accurate reference positioning system is 

required for calibration and validation.  For this purpose the Optotrak 3020 [112] is used to 

obtain accurate reference data. It is a 3-D IR tracking system that provides 3-D positioning data 

with accuracy of less than 0.3 mm, which is needed to validate the developed UWB positioning 

system. The indoor environment for the 1-D, 2-D, and 3-D experiments is in a laboratory with 

dense multipath effects including reflection from side walls, floor, furniture, ceiling, test 

equipment, and human bodies. UWB signals that pass through or refract off the human body 

(e.g. high permittivity materials) will exhibit a large time delay [113]. This introduces significant 

error into the TDOA system. Consequently, in these experiments only LOS cases were studied. 

The monopole transmitting antenna was constantly within ±20
o
 of broadside direction from the 

Vivaldi antennas to minimize the phase center variation at the base stations.   

1-D and 2-D measurements similar to [76] were conducted by moving the UWB monopole 

antenna along a precision optical rail.  Results for the 1-D and 2-D experiments are included in 
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Table 17. Figure 38(a) shows the experimental setup with 6 base stations put at fixed locations 

around the transmitting tag under test. Both the tag and base stations were put on the supporting 

rails. The tag was then moved along the rail over 8 discrete positions.  

The placement of the base stations is critical for the accuracy of a TDOA localization system. 

Ideally, the base stations would be spherically positioned around the volume of interest. If only 

four base stations are used, placing them at the nodes of a tetrahedron gives optimal results, 

although this may not be possible in actual indoor environments. Therefore, the number of base 

stations used for TDOA is varied, and the effect this has on overall system accuracy is analyzed. 

Figure 38(b)-(d) outline the other three configurations considered where only 4 or 5 base stations 

were used in TDOA localization. It should be noted that the data from the experiment outlined in 

Figure 38(a) is used for all configurations by leaving out specific base stations to realize the 

other three configurations. 

 

 
Figure 38: 3-D synchronized localization experiments: (a) 6 base stations. (b) 5 base stations. (c) 4 base stations with low 

position dilution of precision (PDOP). (d) 4 base stations with poor coverage in x-direction resulting in high PDOP. 

(a) (b)

(c) (d)
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Table 17 summarizes the mean, standard deviation and worst case error of overall distance for 

the 1-D, 2-D, and 3-D experiments. The 3-D experiment includes two 4 base station scenarios, 

one with 5 base stations, and a 6 base station configuration, as shown in Figure 38. As shown in 

Table 17, using all 6 base stations yields the highest accuracy at 2.45 mm. The system accuracy 

gets progressively better as the number of base stations is increased from 4 to 6.  Also, the largest 

error is seen using the 4 base station configuration shown in Figure 38(d).  All of the base 

stations in this configuration reside on the +x side of the tag. As shown in Figure 34, this results 

in large error in the x position, which can be attributed to poor base station placement relative to 

the tag, also known as position dilution of precision (PDOP). PDOP is discussed in detail in the 

following section. 

3.6.2 Position Dilution of Precision 

PDOP can be computed upon convergence of the TDOA algorithm as in [114] and is dependent 

solely on the base station geometry relative to the tag position.  The TDOA algorithm involves 

linearizing the relative range measurements of each of the base stations about a position estimate  

 

Figure 39: Error in x, y, and z illustrating high PDOP for base station distribution shown in Figure 38 (d). This shows the 

reduction in accuracy that results from poor base station spatial arrangement. 
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using matrix H [115] 

RDH x  (19) 

where R represents a matrix with the range difference elements, and Dx is the position update 

vector. The least squares solution of (19) is shown in (20) 

RHHHD TT

x

1)(  (20) 

where Dx can be used to update the current position estimate Pi  

xii DPP 1  (21) 

The dilution of precision parameters can be calculated using (22) 

1

2
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zzyzx
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 (22) 

Combining the diagonal elements the overall PDOP is found  

222

zyxPDOP
 

(23) 

Alternatively, the PDOP can be explicitly defined for each coordinate direction as  

|| xxPDOP  (24) 

The 3-D error can be estimated by combining the PDOP of the geometric configuration with the 

1-D uncertainty of the system [62] as shown in (25) 

DD PDOP 13  (25) 

For each of the base station configurations the mean PDOP is reported across the eight tag 

positions for each of the coordinate axes as well as the overall PDOP. The results are reported in 

Table 16. 

  



 

    

 74  

Table 16: PDOP Summary – Synchronized Localization Experiments 

 
Mean 

PDOPx 
Mean 

PDOPy 
Mean 

PDOPz 

Mean 
Overall 
PDOP 

6 BS 0.87 0.44 1.61 1.88 

5 BS 0.90 0.59 1.70 2.02 

4 BS - 
Fig. 19(c) 

1.40 0.60 1.89 2.43 

4 BS - 
Fig. 19(d) 20.2 1.71 3.33 20.6 

 
Table 17: Error Summary – Synchronized Localization Experiments  

 
Mean 
Error 
(mm) 

Std. Dev. 
Error 
(mm) 

Worst 
Case 
(mm) 

Mean 
PDOP 

1-D 1.49 0.69 3.0 - 

2-D 2.61 0.69 3.6 - 

3-D 

6 BS 2.45 0.93 3.3 1.88 

5 BS 3.13 1.20 4.2 2.02 

4 BS - Fig. 19(c) 3.62 1.53 5.6 2.43 

4 BS - Fig. 19(d) 43.3 32.4 96.1 20.6 

 

3.6.3 Unsynchronized 1-D Experiment 

A 1-D experiment with unsynchronized LOs and PRF clock sources was also carried out to 

validate the theory in Section 3.3 and to test the robustness of the system. The experimental setup 

is shown in Figure 40. Two base stations are needed for 1-D measurements. The low bandwidth 

output of the sub-sampler is fed through an ADC. Next, the signal is fed to the FPGA which uses 

RSS rather than the peak subtraction algorithm to locate peak position. As seen in Figure 41, 

mm-range accuracy was consistently achieved for 1-D unsynchronized measurements at 8 

separate locations with a 5 cm distance between two successive measurements, although system 

jitter does cause noticeable short term variation in the error at each static point of roughly ±10 

mm. This short term variation was mitigated by averaging 16 pulses at each static point. As 

shown in Table 17 and Table 18, the mean error in measuring 1-D static points increases from 

1.49 mm to 3.07 mm. The increase in error of 1.58 mm is comparable to the measured error of  
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Figure 40: Experimental setup for 1-D unsynchronized positioning measurement. 
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Figure 41: Measured error of 1-D unsynchronized experiment. 
 

Table 18: Error Summary – Unsynchronized 1-D Experiment 

 
Mean 
Error 
(mm) 

Std. Dev. 
Error 
(mm) 

Worst 
Case 
(mm) 

Mean 
PDOP 

1-D  3.07 2.39 6.4 - 
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1.05 mm due to PRF clock jitter shown in Figure 29. The error also includes time scaling effects, 

which were not removed in post processing of the data. 

3.6.4 Error Discussion 

The data in Table 17 and Table 18 can be understood by considering the following points. 

The PDOP values for each coordinate direction can be understood by examining the 6 base 

station experiment as shown in Figure 38(a).  The spatial spread of the base stations along the y-

axis is the largest (1.86 m), thus the PDOPy value listed in Table 16 is the lowest among the 

coordinate axes. This is a common trait to the experimental set up in Figure 38(b-c), and 

consequently the PDOP values are consistent across these experiments. In these experiments the 

PDOPz values are consistently the highest, due to the maximum range of base station positions 

along the z-axis being relatively the smallest (0.57 m). Figure 38(d), which represents a poor 

geometric configuration, has PDOPx as the worst due to the low spatial diversity of base stations 

along the x-axis.  

The phase center of the Vivaldi receiving antenna varies with directivity, which can have large 

effects on system accuracy especially when the tag is in locations on the border or outside of the 

target volume. We insured in this experiment that all tag positions remained within ±20
o
 of the 

broadside direction of each single element Vivaldi in order to minimize phase center effects. The 

error originating from this effect is estimated to be less than 1 mm, although if the angle from 

broadside increases beyond ±20
o
, the phase center error increases dramatically. 

Multipath interference from extremely close metal (e.g. metal bar supporting transmitting tag) 

causes pulse peak shifting. The developed algorithm can handle dense multipath situations but 

still has substantial uncertainty of around 3 mm under severe multipath conditions, as shown in 
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Table 15. These localization experiments were done with strong LOS signals and only minimal 

amounts of multipath interference. 

As discussed in Section 3.3, LO and PRF clock jitter and LO frequency offset from the tag 

relative to the base stations can affect the sub-sampling process and introduce error into the 

TDOA measurements. For the synchronized experiments, the LOs and PRF clock sources for 

both the tag and base stations were synchronized to evaluate overall system accuracy in the 

absence of clock jitter and frequency offset. As shown in Table 17, mean error of 2.45 mm is 

possible in localizing 3-D points with 6 base stations. 

A 1-D experiment was conducted where the LOs and PRF clock sources for the tag and base 

stations were unsynchronized. With 16x averaging, the mean error was 3.07 mm, roughly twice 

that observed in the 1-D synchronized case. Using the PDOP from the 6 base station experiment 

and (25), the expected 3-D mean error for the unsynchronized system is 5.77 mm. This error 

could be reduced by applying the peak subtraction algorithm to the received signals. More 

investigation of how the 3-D real-time, unsynchronized system performs in terms of overall error 

will be investigated in future work.  

The overall system error can be significantly reduced by increasing the number of base stations. 

This is highlighted by considering the different sources of error outlined previously.  As shown 

in Table 17, the PDOP decreases with a higher number of base stations. Also, system error due to 

multipath interference is reduced with increased number of base stations since the received 

signals at each base station will traverse through a different UWB channel realization. Next, by 

calibrating the system to determine base station orientations, phase center effects can be 

drastically reduced. This calibration step is more accurate with increased number of base 
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stations. Also, the error due to LO frequency offset, which affects the I/Q down conversion, is 

reduced with increased number of base stations since LO2 is mixed with the received pulse at 

different phase offsets for each base station depending on the distance between each base station 

and the tag. Additional base stations result in additional measurements at random phases of LO2 

which reduces this effect. Finally, the 1-D ranging error of 1.49 mm represents inherent 1-D 

system error and can be considered an unbiased Gaussian random variable. Filtering the 1-D 

ranging values or increasing the number of base stations can minimize the impact of this 1-D 

ranging error on overall 3-D system accuracy.  

3.7. Conclusion 

A short range UWB indoor localization system with mm-range accuracy has many promising 

applications. Conversely, many challenging problems must be overcome in order to realize such 

a system in practice. We are proposing a system architecture similar to available commercial 

systems but equipped with more advanced receiver-side hardware for sub-sampling the incoming 

pulse train and detecting the main LOS peak. We have addressed the main challenges being 

faced in building this system, including sampling limitations, multipath interference, phase 

center error, and timing errors due to clock jitter, LO offsets, temperature effects, etc. Sub-

sampling techniques, sophisticated receiver-side leading edge detection, increased number of 

base stations, phase center calibration, and high fidelity PRF crystals combined with a TDOA 

approach have been proposed as solutions to these problems while the experimental results show 

the feasibility of achieving mm-range accuracy with an UWB indoor positioning system in 

highly reflective indoor environments. The sub-sampling mixer is a viable option for sampling 

the incoming pulse train with a high sample rate. The effects of clock jitter can be mitigated by 
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using PRF clocks with low phase noise and temperature compensation, although the total effect 

of PRF clock jitter on the sub-sampling process can cause substantial error on the order of 1 mm. 

Time scaling originating from PRF clock stability has been shown through simulation to not 

impact final system accuracy by using a modified version of the TDOA algorithm. The designed 

peak subtraction algorithm is robust to multipath interference. System performance in dense 

indoor environments can be further increased by greater number of base stations and optimal 

base station placement. Base station phase center error has been shown to be significant. In the 

finalized system, calibration of base station orientation will allow this error to be removed. We 

have shown that, by using a system level approach, various errors encountered in designing a 

mm-accuracy UWB positioning system can be eliminated or reduced.  
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4. CHANNEL MODELING FOR UWB POSITIONING 

 

4.1. Background 

In the field of UWB channel modeling, two approaches have dominated the literature over the 

recent years. The first approach seeks to classify the environments in which the channel exists 

(e.g. indoor office space, industrial, outdoor, etc.) and to what degree the environment affects or 

determines a number of statistical parameters on which the model depends. Essentially, by 

categorizing the various possible environments, the model quantifies on a macro scale the 

density of metal reflectors and the presence or absence of other dielectrics. This type of channel 

modeling further describes whether the propagating signals have a LOS component or are 

received purely as either reflected or refracted signals in a NLOS condition.  

To develop and subsequently quantify the accuracy and efficacy of such models, researchers 

make time-domain or often frequency-domain measurements in the various LOS or NLOS 

conditions across a variety of environments [116]. The measurements seek to approximate the 

widely-varying situations in which a UWB communication link or a positioning system might be 

placed and ultimately attempt to statistically describe the channel impulse response. The 

drawbacks of this paradigm center on the inability of a finite set of measurements to be entirely 

representative of an entire class of environments, even supposing that the set of environments is 

complete. For example, the statistical model may fail when transmissions that originate in an 

office space terminate in an urban canyon. A second criticism for this type of channel modeling 

involves the resolution of the measurements and their potential suitability for other purposes. If a 

battery of tests is performed, for example, with low-resolution positioning in mind, to what 
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degree can information contained in the model be utilized for the development of a high-speed 

wireless communication channel? Despite these limitations, the most broadly studied aspects of 

the UWB channel have been modeled using this statistical description technique.  

Another promising, yet under-developed, channel modeling method is that of a deterministic 

description of the channel using computational or analytical ray-tracing. In this channel 

modeling technique, the geometry of the environment is explicitly defined, including but not 

limited to, the position and orientation of the transmitter and receiver, the location and 

orientation of metal surfaces, and the relative permittivity, size, and location of dielectric 

materials. Thus, this model only considers a particular volume of interest, and as such, signals 

that would propagate from reflections and electromagnetic interactions outside of this region are 

intrinsically discarded. Models described using ray-tracing techniques cannot possibly account 

for any and all possible transmission paths within the volume of interest, and thus are limited to 

the first several rays, which are expected to be of the highest power. Alternatively, analytical 

simulation software can search for all possible rays with only a few reflections or refractions. 

The advantages of the ray tracing methodology are clear when the geometry is well known or is 

unchanging, such as transmission paths from base stations in a large city  [117]. However, in 

time-evolving channels or cases when the transmission geometry cannot be known a priori, the 

ray tracing channel modeling method is less successful in accurately predicting the channel 

realization. 

4.2. Statistical Channel Modeling 

A large amount of study and devoted work have been performed in regard to channel modeling 

in the field of indoor UWB communications [116]. The foundations of this work lie with the 
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exploration of UWB channel models as a description of the actual propagation expected in 

indoor environments, fitting under the statistical parameter-based technique. Beginning with the 

Saleh-Valenzuela (S-V) indoor propagation model [92], many adjustments and refinements have 

been added. The S-V model defines the UWB channel impulse response as: 

 where klj

kle  is the complex amplitude, Tl is the time of the l
th

 cluster, and kl is the arrival of the 

k
th 

 ray within the l
th

 cluster (Figure 42). 

By modeling the inter-cluster arrival times and inter-ray arrival times as Poisson processes, the 

S-V model can adequately describe mean excess delay and RMS delay spread metrics, which 

have important consequences in terms of communication applications. In positioning 

applications, however, the received signals coming after the LOS, or direct ray, carry relatively 

inaccurate positioning information. In the absence of a direct ray, it has been shown [100] that 

selecting the first ray out of the first detected NLOS cluster is considered optimal. Due to 

measurements conducted in realistic environments, the S-V model was extended with additional 

statistical parameters [98]. 

 

Figure 42: Power delay profile of multi cluster, S-V UWB channel model 

 

l k

kll

j
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Writrisal and Pausini derived the first and second order statistics of the autocorrelation and cross-

correlation functions of UWB channel modeling [118]. Cheng et al. modeled the underwater 

acoustic channel as a modified version of the S-V UWB channel model, which uses the TOA 

algorithm for final positioning  [119]. Gaertner and Nuallain showed the relatively smaller 

degree of small scale signal power fading of wideband signals versus narrowband signals across 

a distance of 5 m [120]. Research has also attempted to unify deterministic channel models, such 

as ray tracing and purely statistical models, by computing joint TOA/AOA statistics for 

particular scatterer geometries [121]. 

4.3. Ray Tracing Channel Model 

Ray tracing methodologies take a different approach than typical statistical modeling methods. 

For example, ray tracing seeks to model the complex channel impulse response against specific 

transmitter-receiver geometries by deterministically finding the strongest set of rays. Each ray 

originates from the transmitter and terminates at the receiver, undergoing multiple reflections, 

refractions, and/or attenuations based on the various mediums encountered. While the goals of a 

statistical model involve more generalized metrics as the previously mentioned mean excess 

delay and RMS delay spread, ray tracing involves close inspection of received signals and 

purports to explain such effects as fast fading, slow fading, and time-dependent fading, as well as 

provide an estimation of the frequency dependence of the channel. As shown in Figure 43, rays 

originating at the transmitter each travel different path lengths based on the whether the path is 

LOS or NLOS, noting that the phase response of the reflection or refraction can change the 

received signal phase angle. In the ray tracing paradigm, the rays are collectively summed at the  
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Figure 43: Ray Tracing diagram showing three rays: one line-of-sight ray, and two non-line-of-sight rays 

 

receiver in the complex domain to measure constructive or destructive interference present in the 

channel. 

As an alternative to the S-V model, a simple simulation was developed to test the presence of 

multipath interferers when the UWB transmitter and receiver were placed at varying distances 

away from a highly reflective metal wall. A total of 34 measured locations were used in this 

simulation and corresponding experiment. The measurements were classified into four categories 

based on the proximity of the transmitter and receiver to a metal wall: Near Wall/Near Wall, 

Near Wall/Far Wall, Far Wall/Near Wall, and Far Wall/Far Wall. The simulation portion 

involved a ray tracing model of 6 primary rays: LOS, metal wall reflection, ceiling reflection 

(concrete, εr = 15), a wall-ceiling reflection, ground reflection (concrete, εr = 15), and wall-

ground reflection.   Using parameters of the system (300 ps pulse, with a carrier of 8 GHz), the 

E-field of the transmitting and receiving plane was  oriented vertically. One assumption used in 

this experiment was that all rays experience 1/R
2
 path loss, which is a relatively optimistic path 
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loss value, considering the constrained indoor environment in which the experiment took place. 

Additionally, the reflection coefficient was not considered to be frequency dependent. 

The purpose of this experiment and simulation was three-fold. First, the purpose was to examine 

the pulse distortion and attenuation under several realistic conditions. Secondly, the time delay of 

the multipath components can be measured directly. Finally, this ray tracing model serves the as 

the benchmark generative model for comparison of peak-detection/leading edge algorithms 

discussed in the remainder of this chapter. 

Categorically, the configurations where the transmitter and receiver were both close to the metal 

wall (Figure 44), suffered the greatest distortion and attenuation when compared to the other 

studied configurations. Another configuration involved when the transmitter was near the wall 

and the receiver was placed away from the wall (Figure 45), showing a slight delay (~35 ps). 

Similarly, when the transmitter was placed farther away from the wall and the receiver was 

placed near the wall, results were very similar due to symmetry (Figure 46). When both the 

transmitter and receiver were placed far away from the metal wall, the power received by the 

dominant ray was the highest out of the four categories of experiments (Figure 47). 

 

Figure 44: a) Simulated ray tracing results for transmitter and receiver 1 cm away from metal wall, the signal without the 

presence of the metal wall (green) is severely attenuated by destructive interference in the received signal with the wall 

present (red) b) Experimental results for the same configuration, noting the similarities of destructive interference in the 

received signal 
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Figure 45: a) Simulated ray tracing results for transmitter 1 cm and receiver 104.5 cm away from metal wall, respectively, 

the signal without the presence of the metal wall (green) is slightly shifted by destructive interference in the received 

signal with the wall present (red) b) Experimental results for the same configuration, noting the similarities of the strong 

dominant ray 

 

 

Figure 46: a) Simulated ray tracing results for transmitter 1.00 m and receiver 1.0 cm away from metal wall, respectively, 

the signal without the presence of the metal wall (green) is slightly shifted by destructive interference in the received 

signal with the wall present (red) b) Experimental results for the same configuration, noting the similarities of the strong 

dominant ray 

 

  

Figure 47: a) Simulated ray tracing results for transmitter 1.02 m and receiver 1.00 mm away from metal wall, 

respectively, the signal without the presence of the metal wall (green) is no longer shifted by destructive interference in 

the received signal b) Experimental results for the same configuration, noting the similarities of the strong dominant ray, 

and absence of significant multipath signals 
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A second type of analysis that resulted from this 6-ray model was that of the frequency 

dependence of the channel, also known as frequency fading  [117]. In the Near Wall/Near Wall 

case, shown in Figure 48, the frequency fading occupies a 10 dB range across the frequency 

bandwidth of the pulse (5-11GHz), yielding an only slightly distorted pulse in the time domain. 

While in the Near Wall/Far Wall case (and by symmetry, the Far Wall/Near Wall case), shown in 

Figure 49, the frequency fading has a range of nearly 30 dB, leading to significant distortion to 

the received pulse. Also, in this case note that the highest relative power is 17 dB below that of 

the Near Wall/Near Wall case, indicating significant power loss due to destructive interference 

between the LOS and the secondary wave. Lastly, in the Far Wall/Far Wall case, depicted in 

Figure 50, the frequency fading trend is similar to the Near Wall/Near Wall case, except with 

roughly a 4 dB lower overall power. Consequently, in this case the pulse undergoes very slight 

distortion (Figure 50b). 

In addition to the developed 6-ray model, a commercial software package, InSite
TM

 (Remcom 

Inc.) [122], was also used to compare the previous simulation and experimental results. The 

 

 

Figure 48: Near Wall/Near Wall situation a) Frequency dependence of the channel, noting 10 dB range b) Simulated 

received pulse (red) showing only slight distortion referencing the transmitted pulse (blue) 
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Figure 49: Near Wall/Far Wall and Far Wall/Near Wall situations a) Frequency dependence of the channel, noting 30 dB 

range b) Simulated received pulse (red) showing stronger distortion referencing the transmitted pulse (blue) 

 

 

Figure 50: Far Wall/Far Wall situation a) Frequency dependence of the channel, noting nearly 15 dB range b) Simulated 

received pulse (red) showing weak distortion referencing the transmitted pulse (blue) 
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geometry used in the InSite software simulation included the entire lab as shown in Figure 51. 

Consequently, the received rays found by the InSite simulator include rays not explicitly 

simulated in the 6-ray model previously mentioned. 

The results of these simulations compare favorably with the prior 6-ray simulation and 

experimental results, but with a few important differences. The InSite results for the Near 

Wall/Near Wall case (Figure 52) did not compare well with either the experimental data, or the 

6-ray model. It would seem that the InSite results did not take destructive interference effects 

into account. Both the Near Wall/Far Wall (Figure 53) and the Far Wall/Near Wall (Figure 54) 

InSite results are consistent with the 6-ray model and the experimental results, with the 

characteristic pulse delay shift, and the slight attenuation. In the simpler case of Far Wall/Far 

Wall, the InSite results shown Figure 55 agree well with the 6-ray model and the experimental 

results. 

Another way to consider the problem of interacting rays is to view the ray tracing problem in 

terms of more generalized geometries. A particularly simple geometry to consider is that of the 

Fresnel ellipse [117]. The Fresnel ellipse, or ellipsoid when considering three dimensions, has 

foci at the transmitter and receiver locations, respectively. The waist or widest point of the 

ellipsoid is centered at the midpoint of the line segment with endpoints at the transmitter and 

receiver given by 

 (27) 

where r is the distance between the transmitter and receiver and λ is the wavelength of interest. 

Scatterers shown to be interior to the Fresnel ellipsoid will have a significantly stronger effect on 

the channel impulse response than those exterior. The wavelength corresponding to the center   
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Figure 51: InSite software simulation of ray tracing experiment. Transmitter positions (red squares) are varied in 

distance from the metal wall (yellow, bottom), while receiver positions are moved in two parallel tracks (green squares) 

relative to the transmitter. 

 

 

Figure 52: Insite software simulation corresponding to transmitter and receiver each 1 cm away from the metal wall, 

corresponding to the experimental and simulation results of Figure 44 
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Figure 53: Insite software simulation corresponding to transmitter 1.0 cm and receiver 1.0 m away from the metal wall, 

corresponding to the experimental and simulation results of Figure 45. Inset is a magnified view of the dominant peak. 

 

 

Figure 54: Insite software simulation corresponding to transmitter 1.0 m and receiver 1.0 cm away from the metal wall, 

corresponding to the experimental and simulation results of Figure 46. Inset is a magnified view of the dominant peak 
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Figure 55: Insite software simulation corresponding to transmitter 1.0 m and receiver 1.0 m away from the metal wall, 

corresponding to the experimental and simulation results of Figure 47 

 

frequency of the 8 GHz system is nominally 3.74 cm. Consequently, a 1.0 meter transmitter-

receiver distance will have a Fresnel ellipsoid with a maximum waist diameter of 19.3 cm. As 

seen in the Near Wall/Near Wall and Near Wall/Far Wall cases highlighted in the simulations 

and experiments above, the system undergoes dramatic changes until all reflectors are outside of 

this zone. Also, to a lesser degree, a similar ellipsoid can be drawn by substituting the 

wavelength for the spatial width of the 300 ps pulse, specifically 9.0 cm. The interior of this 

ellipsoid will describe spatial points where reflected pulses will overlap with the LOS pulse 

(Table 19).  

A final experiment was enacted to demonstrate antenna effects on received signals. As shown in 

the InSite geometry of Figure 51, multipath signals can impinge on the receiving antenna from a 

wide set of possible angles. If the correct direction of the signal is roughly known, then proper 

antenna selection can be used to remove signals received from unwanted directions. Using a 

omni-directional monopole antenna as both a transmitter and receiver, allows for the fullest 

capture of all multipath signals, while using an antenna with higher directivity can eliminate 
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multipath signals. As shown in Figure 56, the received signal using a Vivaldi antenna with 

higher directivity eliminates multipath signals that can be clearly discerned from the received 

signal when an omni-directional monopole is used as the receiving antenna. It is noted in this 

application, the transmitting antenna must always be omni-directional as it is not possible for the 

transmitting tag to communicate with only one base station using the TDOA approach. This is a 

consequence of needing to measure simultaneous time-difference-of-arrival values between base 

stations.  

Table 19: Fresnel Ellipsoid Maximum Waist Diameters for several typical Tx-Rx distances, assuming a 300 ps pulse 

Tx-Rx Distance Maximum Waist Diameter 

1 m 43.3 cm 

2 m 60.6 cm 

5 m 95.2 cm 

 

 

Figure 56: Comparison of high directivity receiving antenna (blue, Vivaldi) with omni-directional receiving antenna (red, 

monopole), when an omni-directional monopole is used as transmitter in both cases 
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5. PULSE AND LEADING EDGE DETECTION 

5.1. Background 

As has been mentioned in Chapter 3, a large body of work has been presented in the literature 

discussing methodology and challenges in pulse and leading edge detection, often referred to as 

TOA estimation. R. Fontana states, ―Among the most significant problems encountered in the 

measurement of the time-of-flight for a short pulse emission are the deleterious effects of 

multipath cancellation and reverberation [123].‖ The field of TOA estimation typically 

approaches the problem from a macroscopic viewpoint with less stringent accuracy constraints 

than those of this project (~1 mm). For example, Kamil examines TOA estimation techniques, 

such as the CLEAN and generalized maximum likelihood (GML) algorithms, and measures error 

in nanoseconds [124], which corresponds to a spatial error on the order of 30 cm. Also, Saeed et 

al. adds a synchronization scheme to TOA estimation, using OFDM and Direct Sequence (DS) 

UWB positioning and found that the lower bound of errors ranged from 3 cm to 12 cm 

depending on the UWB standard used [125]. Overall, TOA estimation has focused primarily on 

large-range, low-accuracy applications, such as tracking users via cellular communication 

networks or local area networks (LAN), where even meter-range errors are acceptable [126]. 

5.2. Sampling Requirements Simulation 

In considering TOA estimation, there exists a direct relationship to sampling rate and the 

potential for temporal error. Without using any super-sampling techniques, the sampling error is 

dictated by the spatial width of the samples. The worst case occurs when the point to be detected 

occurs midway between two samples and is given by: 
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 (28) 

where Fs is the sampling frequency in Hz and c is the speed of light, and p is a uniformly 

distributed random variable on [0,1]. This model supposes that in the case that the true peak or 

leading edge surpasses the midpoint between two samples it will always will be resolved to the 

next sample. In the presence of uniformly distributed distances, the expectation of error due to 

this phenomenon is 

 (29) 

where E[ ] represents the statistical expectation operator. A small study was enacted to test the 

system sampling requirements when considering this effect alone in conjunction with 4 or more 

base stations used for positioning. In this simulation, 4, 6, or 8 base stations were randomly 

distributed over a 3 m radius sphere, representing the various geometries possibly encountered in 

real environments. A simulated tag trajectory involved 81 positions in a helix pattern generated 

by Equations (79)-(80), between x-axis values of R/2. A nominal sampling frequency was 

selected between 1 GS/s and 512 GS/s in powers of two. For each tag position-base station pair, 

the true ranging value was rounded to the nearest integer multiple of the spatial sample width. 

Finally, the TDOA algorithm was run on these degraded range values, and the maximum error 

and RMS error were averaged over 10 trials.  Figure 57 shows the case of the 4-base station 

experiment, where it becomes apparent that 1 cm mean RMS accuracy is possible with a 128 

GS/s sampling rate (or 2.34 mm spatial sample width). Figure 58 shows the case of the 6-base 

station experiment, where it becomes possible to achieve 1 cm mean RMS accuracy at about 70 

GS/s sampling rate (or 4.3 mm spatial sample width). 
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Figure 57: TDOA system simulation on the effect of sampling error when N=4 base stations are used in the positioning 

calculation 

 

 

Figure 58: TDOA system simulation on the effect of sampling error when N=6 base stations are used in the positioning 

calculation 
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Figure 59: TDOA system simulation on the effect of sampling error when N=8 base stations are used in the positioning 

calculation 

 

Using 8 base stations, 1 cm mean RMS accuracy is possible at about 50 GS/s (6 mm spatial 

sample width) (Figure 59). Further, sub-mm mean RMS accuracy is achievable when a 512 GS/s 

sampling frequency is used, which corresponds to 0.58 mm spatial sample width. 

Given the target accuracy of 1 mm, the nominal value of the sample spacing used for much of 

the finalized system testing was 0.6 mm. This corresponds to α = 10,000 scaling factor on the 

sampling mixer discussed in Chapter 3 and a 50 MS/s ADC, which gives an equivalent 

resolution of a 500 GS/s sampling rate. This offers an attractive trade-off: setting α = 10,000  

will only cause ±1.1% unintentional scaling error (Figure 60), while spatial sampling error will 

only be responsible for a minimal portion of the total system error. When α is set at 100,000 the 

system accuracy is 11% with a 0.5 ppm clock stability figure. 
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Figure 60: Maximum percent scale factor error vs. scale factor (α) for two clock stability values, 0.5 ppm (blue) and 1.0 

ppm (red) 

 

5.3. Iterative Peak Subtraction 

5.3.1 Iterative Peak Subtraction Algorithm Validation - Simulation 

The described peak subtraction algorithm (Chapter 3) was compared against both the RSS and 

first peak-finding algorithms in extremely severe multipath conditions. The first comparison was 

done using simulated multipath data. These signals were constructed by placing the clean 

received pattern in a known temporal location and adding a time delayed version of the same 

pattern with various amplitudes and time delays. The secondary peak was delayed over a range 

of 0 ps to 440 ps and the secondary peak amplitude was varied from 1% to 125% (-40dB to 

1.9dB) of the primary peak amplitude. A synthetic multipath signal representing the primary 

peak combined with a secondary peak at a lag time of 440 ps with relative amplitude of 110% is 

shown in Figure 61.  
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Three principal algorithms are compared: RSS, first peak-finding similar to [44], and the 

developed IPS method. In Figure 62 the errors (in mm) of the three methods in finding the true 

peak are compared for the simulated multipath signal shown in Figure 61. The errors for first 

peak-finding and iterative peak subtraction algorithms are highest when the first two multipath 

peaks begin to exhibit extensive overlap (< 300 ps). With large separation, RSS has large errors 

due to the algorithm exclusively finding the secondary peak. It should be noted that the RSS and 

first peak-finding algorithms will return identical results for all situations where the primary peak 

has the largest amplitude as well as situations where any additional multipath peak(s) add to the 

main peak to form one large, combined peak. Figure 63 and Figure 64 explain the cause of this 

error. 

Initially, the primary and secondary peaks are nearly aligned. Even though the two peaks 

combine to form one combined peak, the center of this combined peak is positioned in close 

proximity to the center of the true peak.  This results in low errors for separations in the range of 

0-50 ps. As the separation between the two peaks increases, the center of the combined peak 

shifts.  This results in increased error between the center of the combined peak and the center of 

the true peak, as shown in Figure 63. Finally, as the two peaks continue to become more 

separated, the combined peak splits into two distinct peaks.  This once again reduces the error in 

locating the center of the true peak, as is shown in Figure 64. This behavior indicates that the 

error due to this effect is initially small, increases to a maximum near 150 ps (half the pulse 

width), and decreases back towards zero as the peaks become separated from each other. 

The maximum errors found across various time delays over a range of amplitudes are 

summarized for each of the primary peak detection methods in Table 20. The iterative peak 
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Figure 61: Simulated multipath signal with a secondary peak 110% of the main peak delayed 440 ps. 

 

 
Figure 62: Comparison of error (in mm) for the three peak finding algorithms versus separation of primary and 

secondary peaks for secondary peak amplitude of 110% Figure 61. 

 

 

Figure 63: Interference of two 300 ps Gaussian pulses separated by 138 ps with the amplitude of the secondary pulse 

110% that of the primary pulse. The large overlap between the pulses causes a significant shift in the peak of the 

combined pulse. 
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Figure 64: Interference of two 300 ps Gaussian pulses separated by 262 ps with the amplitude of the secondary pulse 

110% that of the primary pulse. The increased separation between the pulses reduces the lagging shift, and consequently 

the error in locating the peak position 

 

subtraction algorithm yields considerably better results than either RSS or first peak-finding, 

especially for multipath conditions where the secondary peak has an amplitude as large or larger 

than the primary peak. It is necessary to note that in these simulations, the secondary peak was 

extremely close to the primary peak. In actual received multipath signals this is not often the 

case, indicating that the iterative peak subtraction algorithm will accurately detect the correct 

peak with a high degree of accuracy. Also, the Max-Ratio Algorithm has improved results over 

the Iterative Peak Subtraction algorithm and will be discussed in depth in the next section. 

5.4. Max-Ratio Leading Edge Detection 

In order to solve some of the inconsistencies of the IPS algorithm, a secondary algorithm was 

developed that was based on the LOS Ray tracing results discussed previously. The Max-Ratio 

algorithm seeks to reduce the overall algorithm complexity, minimize the use of floating point 

operations, and eliminate iteration steps. The main rationale for the algorithm is the simplified 

channel model described by Equation (8). In this model the most uncorrupted portion of the 
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Table 20: Comparison of maximum error for varying secondary peak amplitudes  

Relative Height of Second Peak 

normalized amplitude - dB 

RSS 

(mm) 

First Peak 

(mm) 

Iterative Peak Subtraction 

(mm) 

Max-Ratio 

Algorithm 

(mm) 

0.01 -40 dB 1.50 1.50 0.37 0.05  

0.05 -26 dB 2.25 2.25 0.37 0.25    

0.1 -20 dB 3.00 3.00 2.62 0.53 

0.25 -12 dB 6.00 6.00 4.50 1.47    

0.5 -6.0 dB 10.9 10.9 8.24 2.54   

0.75 -2.5 dB 16.1 16.1 12.4 3.79    

1.0 0.0 dB 133 22.1 16.5 5.86     

1.1 0.8 dB 133 25.1 18.7 6.54    

1.25 1.9 dB 133 58.5 37.1 7.65 

 

signal that can be used for positioning is the rising edge of the first (LOS) ray. Additionally, in 

NLOS conditions selecting the first ray is considered optimal
 
[100]. 

Algorithm 2: Max-Ratio Leading Edge Detection 

 
1. The received signal is described in the discrete time domain as 

n

nn tsath ][][0
 (30) 

where an is the ray amplitude, and τn is the ray arrival time. The signal s[t] represents the clean 

signal envelope. 

2. The received signal is passed through a sliding window average filter given as 

)16],[avewindow(][ 0 thty  (31) 

where the function avewindow(.) maps the original signal to a filtered version of the signal using 

a window size given by the second parameter. 

3. The averaged signal is then passed through two sliding window max filters 

)16],[maxwindow(][16max_ tyt  (32) 

)256],[maxwindow(][256max_ tyt  (33) 
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where the function maxwindow(.) returns the value of the maximum valued sample within the 

window. 

4. By taking a ratio of these two maximum filtered signals and comparing the ratio to a fixed 

threshold 

])[256min_4*][16(min_][ tttr  (34) 

where the value 4 is taken as the threshold, a resulting binary valued signal r[t] is created which 

can be used to indicate the time of arrival of the leading edge. 

5. Alternatively, the time of the leading edge can be solved using a least-squares approach to 

calculate sub-sample resolution for the leading edge arrival time. 

)])[256min_4*][16((min_minarg 2ttFP
t

t  (35) 

Figure 65 shows an example of the Max-Ratio pulse detection algorithm displayed graphically. 

 

 

Figure 65: Example of Max-Ratio Leading Edge Detection. The original leading-edge signal ho [t] (blue) is averaged y[t] 

(solid red), subsequently two max-window filters max_16[t] (dashed red) and max_256[t] (dashed green) operate on y[t], 

the result r[t] (light blue) makes a positive transition when the ratio of max_256[t]:max_16[t] is less than 4 
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5.4.1 Max-Ratio Leading Edge Simulation Results 

In order to simulate the performance of this algorithm under multipath interference conditions, a 

simulation was performed to examine the effect of 1 secondary multipath peak on the leading 

edge calculation. In this experiment, the LOS metal reflector model was used to generate the 

characteristics of the signal containing the secondary multipath peak. In simulating the worst 

case, a multipath peak with relative powers ranging from -40 dB to 1.9 dB with respect to the 

LOS peak was shifted by different time offsets. The algorithm has a very consistent error profile 

(< 2.0 mm) when the multipath peak offset exceeds 220 ps (66 mm spatially) as shown in Figure 

66. Considering the final column in Table 20, the maximum error for a worst-case signal such as 

+1.9 dB relative to the LOS peak is only 7.65 mm. Compared to 133 mm, 58.5 mm, and 37.1 

mm for RSS, First Peak, and Iterative Peak Subtraction, respectively, this result is a considerable 

improvement. 

Once the final pulse position has been calculated, optionally, a fixed-point interpolant can be 

used to compute a sub-sample pulse position. Using this method and varying the pulse between 

 

Figure 66: Max-Ratio Leading Edge Simulation: Error in positioning due to multipath peaks with various power levels 

(1.9 dB to -40 dB) as detected by max-ratio leading edge algorithm. Note the maximum values are recorded in Table 20 
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Figure 67: Max-Ratio Leading Edge Simulation: Error in positioning due to sub-sample shifts in peak location, noting 

that very little error results in this case 

 

successive pulse indices has exceedingly small errors (<< 1 mm), as seen in Figure 67. This can 

be taken to mean that should the correct leading edge location occur between two samples, the 

error due to the sample spacing is bounded. 

In order to characterize this pulse detection method in the presence of Additive White Gaussian 

Noise (AWGN) the following noise model was adopted as an extension to (8) 

 (36) 

where n(t) is drawn from a zero mean homoskedastic i.i.d. process. In order to report the results 

with the highest degree of specificity, the SNR of the received signal ho(t) was measured using 

the technique, 

 (37) 

 (38) 

 (39) 
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 (40) 

where the received signal is composed as signal r(t) and noise n(t) components. The RMS power 

for each component can then be found using (38) and (39), where Tp represents the segment of 

time containing only the LOS pulse and N is the number of samples in region Tp. Finally, the 

SNR is computed the usual way. By using this procedure, effects such as multipath interference 

and pulse ringing do not artificially inflate the SNR values, and thus, offer a more precise picture 

of noise degradation effects on this algorithm. A simulation was enacted, by creating 10 

instantiations of random noise using SNR values that ranged from roughly -2 dB to 95 dB. As 

demonstrated in Figure 68, error as a result of noise degradation has a fairly linear decrease from 

2 dB to 15 dB, with the exception of one outlier. For this algorithm, error was bounded by 1 cm 

for SNR values greater than 14 dB, and error was bounded by 1 mm for SNR values greater than 

30 dB. 

 

Figure 68: Max-Ratio Leading Edge Simulation: Error resulting from degradation in SNR due to AWGN, 10 random 

trials. Note that with the exception of one outliner, error decrease is roughly linear for SNR values between 2.5 to 15 
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In Figure 69, an instantiated signal is shown which represents the case of the algorithm operating 

in a high SNR environment (~30 dB) and a correspondingly low error (0.56 mm) when 

compared to a noise-free reference signal. Shown in Figure 70 is a medium SNR (~15 dB) 

environment, with increased error (4.3 mm). Also, Figure 71 demonstrates an instantiated signal 

in a low SNR environment (3.2 dB), with correspondingly high error of (28.7 mm). Also 

displayed in each of these examples is a noise threshold which is determined by sampling the 

noise prior to the onset of the pulse. For these simulations, the maximum of a 100 sample 

window is used as the noise threshold. Considering this threshold, any peaks that are found while 

the signal level is strictly below the threshold are discarded. Note that this threshold computation 

is realistic in the finalized system (and has been implemented as such). This is due to the fact that 

the pulse repetition period (PRP) after sequential sampling is 1 ms, which allows for sufficient 

noise sampling between successive pulses. Additionally, in scenarios where round-robin or 

TDMA protocols are used to compute many tag locations, the noise level may be dynamically set 

on an individual tag per pulse basis, thus increasing the robustness of the system. 

5.4.2 Digital Design of Max-Ratio Leading Edge Detection 

The Max-Ratio Leading Edge Detection algorithm has been implemented on an FPGA using 

Verilog HDL and been verified using a digital signal software simulator (ModelSim, Mentor 

Graphics [127]). The design methodology for the FPGA implementation follows a pipeline 

approach facilitating real-time peak detection and minimizing overhead typically associated with 

memory storage or convolution steps. In this pipeline design methodology, data is input to the 

device on the rising edge of a global clock signal, and after a fixed time delay, the corresponding 

determination of the leading edge point is available as a binary signal taken off the device. The 
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Figure 69: Max-Ratio Leading Edge Simulation: Instantiated signal (blue) with high SNR (30.0) and associated low error 

(0.56 mm), showing calculated noise threshold (black) 

 

 

Figure 70: Max-Ratio Leading Edge Simulation: Instantiated signal (blue) with medium SNR (14.6) and associated 

medium error (4.30 mm), showing calculated noise threshold (black) 
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Figure 71: Max-Ratio Leading Edge Simulation: Instantiated signal (blue) with low SNR (3.2) and associated higher error 

(28.7 mm), showing calculated noise threshold (black) 

 

time delay of the pipeline is solely dependent on the nominal values of parameters of the Max-

Ratio Algorithm. Another core philosophy driving the design of this device is reconfigurability, 

allowing the device to be used in different configurations or for perhaps different applications, 

such as IR communication schemes. Based on the capacity limits of the FPGA itself, two Max-

Ratio algorithm modules can be placed on one chip. As shown in Figure 72, the schematic shows 

the general layout of the input and output pins of the device, while all of the processing is 

encapsulated in the Base Station Module. At the basic level, the Base Station Module has two 

input buses—one for each data stream inputted into the Max-Ratio algorithm implemented on 

the device. Also, the Base Station Module has several other debugging and tuning inputs, such as 

a threshold adjustment input, push button reconfiguration of the PRP, the system clock, and a 

synchronous reset. At the exit, the device displays the current PRP on the 4-segment LCD 

display, the noise threshold is displayed dynamically on an 8 LED array, and most importantly 

the module emits a binary valued signal indicating a leading edge has been detected. This  
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Figure 72: Xilinx schematic describing pin inputs and outputs when Base Station Module is configured in one sample 

channel (I) per base station configuration as depicted in Figure 73 
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detected signal has the same period as the PRP so that the resultant signal can be used as a 

trigger for other functionality. Essentially, the leading edge of this signal is at a slight delay with 

respect to the detected leading edge, but with a fixed offset as previously discussed.For the 

primary configuration, the Base Station Module handles the signal processing and leading edge 

detection for two base stations as can be visualized in Figure 73, where the DSP boxes in this 

case represent instantiations of the Max-Ratio Algorithm. In this setup, each base station has its 

corresponding in-phase down converted signal (I) sampled by each channel of a two channel 

ADC. Thus, the inputs are each digitized signal and the outputs are the leading edge of each 

pulse, respective to each base station. The downside to this approach is that each of the two base 

stations feeding the FPGA must be located in close enough proximity to be wired to the same 

device.  

A second configuration as illustrated in Figure 74, shows the device connected such that the in-

phase (I) and quadrature (Q) down sampled signals originating from the same base station are 

sampled using a two-channel ADC. The signals are independently passed to the Max-Ratio 

leading edge detection modules on the FPGA, and independent values of detected leading edges 

are passed out of the device. In subsequent processing, the time-locations of these leading edges 

can be averaged or processed in some other filtered manner to produce a final TOA result. This 

 

Figure 73: One sample channel (I) per base station configuration 
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configuration offers an attractive option to processing I/Q data, given that the I and Q channels 

have been found to be non-overlapping by a fixed offset (see Figure 12). The downside to this 

configuration is that it requires one ADC, one FPGA, and two sampling mixers per base station. 

In the testing and discussion that follows, the previous configuration (Figure 73) is the 

configuration that was chosen to perform the final system testing and validation, due to a lack of 

availability of two sampling mixers per base station. 

Supposing that the I/Q channel offset can be calibrated, a third configuration is possible. In this 

configuration, the signal envelope can be directly calculated on the FPGA as I
2
+Q

2
. In this 

situation, two base stations can be served by one FPGA in conjunction with two ADCs. It is 

further noted that by using this configuration, the discrete time low-pass filter (LPF) module and 

the rectification module in the description that follows could be safely eliminated.  

As implemented, the digital signal processing (DSP) steps will now be described in more detail. 

In the description that follows, it is assumed that the device is operating on non-enveloped single 

channel data (i.e. I or Q only). Shown in Figure 75 are the main sub-modules of rectification 

(denoted by I
2
), low pass filtering (LPF), peak detection, and signal hold, as well as the auxiliary 

modules of function select and noise detection. As the signal is received by this device, it 

represents the raw digitized data transmitted by the ADC. The data width is nominally 10-bits  

 

Figure 74: Two sample channels (I and Q) per base station configuration 
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Figure 75: Overall diagram of FPGA implementation of DSP module 

 

and while the architecture is parameterized to this width, it can be readily changed in the design 

software. The 10-bit midpoint of the raw data is subtracted and the result is squared, resulting in 

strictly positive data.  

Subsequently, the data is passed to the LPF module as depicted in Figure 76, which implements a 

7-pole equiripple FIR filter (shown is only a 4 pole filter). In this step, the data is converted to 16 

bits for full resolution of the filter, and subsequently returned to 10 bit values at the output. Due 

to the limited number of full bit multipliers available on the FPGA, the 7-pole filter is the 

optimal design considering two channels per FPGA. 

Depending which function is selected by the Function Select Module, either the Peak Detect 

Module (Figure 77) is enabled when the system is in Peak Search Mode, or the Noise Detect 

Module is enabled when the DSP Module is in Noise Sampling Mode. Supposing that the Peak 

Detect Module is enabled the LPF data is viewed by the Peak Detect Module as potentially 

containing a leading edge. Also, a positive valued noise estimate is also passed to the module, 

representing the maximum valued sample of LPF data when the DSP Module was last in Noise 

Sampling Mode. The data is passed to each of two MaxWindow Modules, one with a window  
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Figure 76: Module-level diagram showing internal structure of FIR LPF 

 

 

Figure 77: Module-level diagram showing internal structure of Peak Detection functionality 
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size of 272 and one with a window size of 16. Because MaxWindow Modules differ in window 

size (by design) the data exiting the modules is misaligned by the difference of the window sizes. 

In this case a simple first-in-first-out (FIFO) buffer of nominal length 256 is used to realign the 

data. In order to compare the data according Max-Ratio Algorithm fixed threshold of 4 

(Algorithm 2, step 5), the MaxWindow signal corresponding to the filter size of 272 is bit-shifted 

right and compared to the delayed signal corresponding to the MaxWindow filter of size 16. This 

intermediate result is combined using a logical AND operation with another intermediate 

comparison, which ensures that both signals are above the Noise Estimate input. The final binary 

valued signal is passed to the Hold Module where a positive value is retained for half of the 

PRP.After the Hold Module has retained the signal for half of the PRP, the Hold Module triggers 

the Function Select Module to switch states placing the DSP Module in Noise Sampling Mode. 

This state change enables the Noise Detect Module shown in Figure 78. This module also has a 

parameter value representing the PRP as a total number of samples (not shown), which can be set 

by user depression of a push-button on the evaluation board. Since this module is triggered near 

the midpoint of the pulse repetition cycle (i.e. between two successive pulses), the noise 

sampling can use any fraction up to one half of the PRP to perform noise sampling, though in 

 

Figure 78: Module-level diagram showing internal structure of Noise Detect module 
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practice PRP/4 or PRP/5 is sufficient for noise characterization. At the onset of the noise 

sampling, the MaxWindow module is reset to eliminate any leftover data. The MaxWindow 

module window size is set to the appropriate fraction of the PRP and sampling takes place for 

exactly the length of one window. Upon completion the maximum valued sample is stored in a 

register which provides the Noise Estimate value when the DSP Module exits the Noise 

Sampling Mode. Should an extreme noise sample value artificially inflate the Noise Estimate 

value, the Peak Detection Module will likely not detect the next pulse. If no pulse is detected, the 

control signals of the Hold Module will keep the DSP Module in Peak Search Mode, 

consequently, the Noise Detect Module will not be enacted to adjust its erroneous Noise 

Estimate value. In this case, a Counter Module signals a single right bit-shift operation of the 

Noise Estimate, thus reducing the threshold by a factor of two, at the end of each PRP. In the 

typical case when a pulse is detected each cycle this functionality is never utilized. In cases when 

the SNR degrades completely, the Noise Estimate value is reduced ad infinitum until a detected 

pulse again places this module in Noise Sampling Mode. Optionally, switches located on the 

FPGA board have been used to implement a user-settable lower limit on the Noise Estimate 

value. When used in combination with tag switching protocols, this functionality would need to 

be carefully interleaved to ensure that the Noise Estimate is not corrupted by pulses of the 

previous tag transmission.  

5.4.3 Digital Design of Max-Ratio Leading Edge Detection  

5.4.3.1 Device Simulation Testing 

Upon design completion of the Max-Ratio algorithm in Verilog HDL, verification was needed to 

complete the design and ensure that the design matched the results of the simulation in Section 
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5.4.1. Using ModelSim, test signals were constructed from raw data collected from the ADC 

under a previous FPGA architecture. Shown in Figure 79 are the simulation results showing 

input signals and resulting leading edge output signal. 

Across multiple signals, the simulated result differed from the ModelSim result by a constant 

difference of -1, as tabulated in Table 21. The constant offset originated in a fundamental 

difference in how each program handled indexing. Essentially, any fixed difference between two 

base stations would be eliminated using TDOA or TOA techniques which are discussed in more 

detail in Chapter 6. 

5.4.3.2 Device Experimental Testing 

 

The Max-Ratio algorithm has led to vast improvements over the RSS-type algorithm that was 

previously implemented for the system. The main flaw with the RSS algorithm, as with many 

signal strength dependent algorithms is that the RSS algorithm was extremely sensitive to a  

 

Figure 79: ModelSim signal simulation showing Max-Ratio Algorithm as implemented in Verilog HDL targeted for 

FPGA 
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Table 21: Comparison of Max-Ratio algorithm simulation result and ModelSim result, demonstrating a consistent leading 

edge result 

Signal Name 
Simulation 

Result 

ModelSim 

Result 
Difference 

I1 243 242 -1 

Q1 251 250 -1 

I2 250 249 -1 

I3 262 261 -1 

I4 258 257 -1 

 

manually defined threshold  set on the FPGA board by the prospective user. This threshold had 

nefarious effects on the 1D positioning values due to the changing received signal level as the tag 

was translated. Essentially, there was a large system non-linearity as the tag was translated, due 

to the previous algorithm‘s dependence on the frequency offset between the tag and system LOs. 

Since the Max-Ratio algorithm relies on dynamic thesholding, sensitivities to the current noise 

level are minimized by dynamically setting the threshold on every pulse cycle (Figure 80).  

5.5. Genetic Programming Edge Detection 

Genetic programming (GP) is an automatic method for developing expressions or programs, first 

proposed by John Koza [128]. The literature is rich with genetic programming used in signal 

processing tasks. Such uses include discovering signal peptides in peptide chains [129], 

customizing control programs for prostheses, solving DSP problems of channel equalization, 

noise cancellation, interference removal
 

[131], and vector-based GP for symbol rate 

detection[132].   

Recently, computational intelligence techniques have been used in UWB applications. Hatscher 

and Diskus [133] used a genetic optimization technique in a see-through-wall [134] [133] 

application to fit model parameters to multipath echoes, ultimately for accurate signal  
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Figure 80: Average 1D error in mm versus sample index for prior fixed-threshold algorithm (red) and Max-Ratio 

algorithm (blue), noting that both the maximum error and the average error show significant improvement 

 

reconstruction. These imaging applications essentially have the same problems as positioning 

systems, which is finding acceptable signal characters to map to the spatial domain. Positioning 

accuracy in 1D and similarly axial resolution in imaging applications can be related to time 

domain resolution. In imaging applications, cross-range accuracy can be improved via use of 

synthetic aperture techniques, whereas in positioning applications 3D accuracy is improved by 

reducing GDOP by the addition of well-positioned base stations. Khanbary and Vidyarthi used 

genetic optimization techniques to provide channel allocation optimization in an array of base 

stations [136]. Also, Colman and Willink used genetic algorithms to optimize base station signal 

processing on overloaded networks. In this technique, the GA was initialized using soft biased 

method to ensure adequate population diversity upon algorithm commencement [137]. A 

motivation for using GP techniques in this body of research is to allow for the automated testing, 

developing, and optimizing of novel algorithms to perform the peak/leading edge detection. 
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5.5.1 Genetic Programming Peak Detection 

To use genetic programming for the purpose of peak detection, it is important to consider the 

representation of the genetic program in order that the signal processing steps are capable of 

implementation on an FPGA. In Figure 81, a tree structure is shown which indicates the 

connectivity between several nodes each of which is a function or module which can be 

instantiated on FPGA hardware. In this example, the terminal nodes, or inputs, to this signal 

processing algorithm are the IQ channel data streams as well as several constants (i.e. 1, 2, 4, 

etc.). Since the data from the ADC continuously flows into the FPGA device, simulating this 

algorithm requires vectors of data that are representative of the IQ data stream. At each time 

instant, the current values for the IQ data are set at each terminal node, and the tree is evaluated 

using a post-order traversal method.  

Figure 82 highlights some of the high-level GP algorithm choices that have been selected for this 

study. Given that the purpose of any peak detection algorithm used for the system is aimed at 

minimizing the potential for error, the objective function was chosen as the Mean Negative 

Variance (MNV) of the computed peak location over several IQ channel realizations. This metric 

was chosen as opposed to a metric which designates a certain position on the signal. This choice 

 

Figure 81: Example of a signal processing algorithm in tree representation for use in genetic programming 
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Figure 82: Genetic Programming Algorithm Choices 

 

was to allow the GP result to find the most useful portion of the signal. The algorithm progresses 

using crossover and mutation between various trees and selection of the best performing trees to 

increase peak detection performance. 

 

5.5.2 Functional and Terminal Node Selection 

For any algorithm to be able to be implemented on an FPGA, only functions which can be 

implemented as Verilog modules are included for use. Table 22 gives a partial list of functional 

nodes which have been tested as part of this study. The number of parameters of a function 

dictates the number of child nodes a particular functional node contains.  

One of several problems encountered during the selection of functional nodes during this study, 

is the digital verifiability of the functional node itself. While the digital verification of nodes 

such as addition, subtraction, and multiplication remains trivial, functions such as delay are 

intractable. This is primarily due to the abstraction of memory provided by the HDL design 

software. For example, in the case of a delay node the 2
nd

 parameter governs the delay length, 

which may be variable. Since the on-board memory is limited, variable delay length in the 

Verilog implementation has a fixed cut-off, which in practice causes divergence between the  

Objective 
Function

•Mean Negative 
Variance (MNV) 
of Peak 
Locations

•MNV + Minimum 
Description 
Length

Initialization

•Ramped ½ & ½

Crossover

•Subtree 
switching 
(Maximum Depth 
Protection)

Mutation

•Random Sub-
tree Deletion 
with replacement

Selection

•Roulette (Fitness 
Proportionate)

•Ranked
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Table 22: Partial List of functional nodes used with genetic programming 

Function # of 

Parameters 

Description 

delay 2 Delay 1
st
 by 2

nd
 

maxwindow 2 Max of 1
st
 in window size 2

nd
 

dot 2 Cumulative dot product 

+ 2 Element-wise sum 

* 2 Element-wise product 

sq 1 Element-wise square 

ema 2 Exponential Moving Average (FIR filter) 

 

software simulation of the GP performance and on-chip performance. Secondly, it is important 

for every operation performed on the data stream to be closed. In the software simulation, this 

requirement is fulfilled by each node accepting vector types as input and producing one vector 

type as output. The Dot Product Node, for example, is implemented as a cumulative dot product, 

thus, the intermediate results of a full dot product operation are available as the output vector. 

Again, practical implementation constraints inherent to FPGA design force the use of fixed width 

integers to serve as the underlying data type. Thus, while the final dot product value may 

conform to the closure property, intermediate results may experience overflow or underflow. 

Even if the operation were to be implemented internally with higher bit width integers or fixed 

point numbers, the intermediate results could still suffer from overflow/underflow problems. If 

the synthesized algorithm is dependent on properly-valued intermediate results to function 

correctly, then the software simulation and the FPGA implementation would yield different 

results. 

Terminal nodes serve as the input to the signal processing program. In one set of simulations, the 

terminal nodes consist of the IQ digital channels as well as the integer constants: 0, ±1, ±2, ±4. 

This IQ simulation represents the idealized case, as properly aligned and sampled I and Q 

channels should enable unambiguous envelope calculation. To facilitate this simulation, 30 
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instances of synthetic I and Q channel data were created and corrupted with AWGN to an SNR 

of 30 dB. A second simulation used 60 instances of actual I-channel data, which were acquired 

from the system in a static LOS experiment. This data was used to provide a realistic scenario in 

which only one channel was available.  

5.5.3 Genetic Programming Parameters 

While several runs of the GP algorithm were performed to test parameter settings with which the 

GP run produces adequate results, the ultimate goal of these simulations was to find a solution 

which adequately provided a comparable program to the previously discussed Max-Ratio 

algorithm. Table 23 gives the primary parameters controlling a single GP run. These nominal 

values achieved results that were consistent with algorithm convergence, although occasionally 

the resultant program was too complex to be implemented on the FPGA. Often this came in the 

form of too many gates being required for the FPGA implementation, but sometimes it was a 

result of the GP-generated program consuming too much of one of the finite resources on the 

chip. Since any delay functionality is essentially implemented as a FIFO buffer, on-board 

memory was occasionally consumed by an excess of delay nodes. Also, the particular chip used 

in this study only supports ten 18x18-bit multipliers, so excessive amounts of multiply or dot 

product nodes could exceed this maximum.  

Table 23: Parameters studied controlling one GP Run 

Parameter 
Settings 

Tested 

Generations 50 

Population Size 100 

Percent Mutation 30% 

Percent Crossover 25%,55%,75% 

Max Tree Height 6,8,10,12 

Repetitions 10 times 

Training, Testing Percentages 33%, 33% 

Probability of Terminal in ―grow‖ mode 50% 
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The number of new members per generation is given by: 

)( perpersizeindiv XoverMutationPN  (41) 

5.5.4 Genetic Programming Challenges 

Using Negative Mean Variance for the objective function, sometimes the algorithm converges to 

consistent values, but just uses deterministic combinations of the constants (i.e. does not fully 

utilize IQ signals). A solution to this problem is to use randomized small shifts (Figure 83) to the 

peak locations (±10 sample positions) to prevent this happening. By subtracting off the small 

peak shifts from final peak location, deterministic solutions will be eliminated due to adverse 

score.  

This solution was essentially required for proper solution convergence of a GP run. Without this 

functionality, any deterministic program would satisfy a MNV value of 0, which is the highest 

possible score. Deterministic programs found in this manner would be excessively propagated to 

future generations corrupting the results significantly.  

Another problem plaguing the GP paradigm in general is that of program bloat. Over the course 

of the GP run the resulting programs have a tendency to grow excessively large. The solution to 

 

Figure 83: Diagrammatic view of shifts applied to noisy signals, to avoid deterministic genetic programs 
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this problem is two-fold. A hard cap is used to prevent any trees from exceeding a certain height 

(―Max Tree Height‖ in Table 23) under mutation and crossover operations. A soft cap is also 

used to put trees that are increasingly complex at a scoring disadvantage relative to programs 

which are simpler. In order to implement the soft cap the principle of MDL is utilized as a score 

adjusting mechanism. As given by 

)1(log10 nodesNMDL
 (42) 

MDLMNVS  (43) 

where the MDL term consists of the log10 of one plus the total number of nodes in the tree. To 

compute the adjusted score, the objective function subtracts the MDL from the MNV. Thus, if 

the number of nodes is increased by a factor of ~10, then the MNV would have to decrease by 

one unit for the solution to be viable. 

5.5.5 Genetic Programming with Boosting  

In order to achieve a robust algorithm that can deal with various situations, the boosting meta-

algorithm is proposed as a solution. The boosting algorithm is useful for combining previous 

solutions of GP output into a weighted combination. As implemented for the UWB positioning 

system, this consists of weighting the final peak position output (as opposed to weighting the 

intermediate signals) (Figure 84). 

 

Figure 84: Example of how to apply the boosting meta-algorithm to improve genetic programming results 
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While boosting was examined briefly, the trees produced by combining either 4 or 8 sub-trees 

were typically too large to implement on the FPGA, while not offering a significant 

improvement in error. Also, as will be discussed in Chapter 6, non-linear pulse position filtering 

was found to have excellent statistical characteristics versus the linear combinatorial form 

illustrated in Figure 84. 

5.5.6 Tree Simplification Engine 

An interesting effect of implementing programs created using GP on an FPGA device is that 

intermediate signals, while solved for recursively in software, may be reused in hardware. Thus, 

simplification routines were developed to reduce the nodes from the final solution of a GP run, to 

a representation which is useable as a connected set of Verilog modules. This engine takes into 

account commutativity rules associated with each functional node. The routines that provide this 

functionality are highlighted in Appendix C. 

5.5.7 Genetic Programming Simulation Results 

Using the Max-Ratio Algorithm for reference and IQ synthetic data as input, Table 24 shows the 

GP resulting program which has a higher score of -1.478 vs. -5.15 (indicating a higher accuracy 

over a battery of noisy input signals). Note that the GP result has almost half the number of 

nodes required by the Max-Ratio Algorithm, and the tree height is also smaller. The tree height  

Table 24: Synthetic Data Genetic Programming Results 

Case Tree 

Height 

Number 

of Nodes 

Score Signal Processing Program 

Max-Ratio 

Algorithm 
9 57 -5.15 

(  (  (  (  (  ( sq ( I) + sq ( Q) ) ema 4 ) delay  ( sq( sq ( 4)) - sq ( 4) ) ) *  ( sq ( 

sq ( sq ( 4))) *  ( 4 * 2 ) ) ) > 1 ) AND  ( (  (  (  (  ( sq ( I) + sq ( Q) ) ema 4 ) 

maxwindow sq ( 4) ) * 4 ) delay  ( sq ( sq ( 4)) - sq ( 4) ) ) >  (  (  ( sq ( I) + sq 

( Q) ) ema 4 ) maxwindow sq (sq ( 4)) ) ) ) 

GP Result 8 29 -1.478 
(  (  (  (  (  ( sq ( I) + sq ( Q) ) ema sq ( sq ( 4)) ) delay first ( first ( cumsum ( 

I))) ) *  ( sq ( sq ( sq ( 4))) *  ( 4 * 2 ) ) ) > 1 ) AND  ( 3 . I ) ) 
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can be thought of as the ―critical path‖ when the program is implemented, as this is the minimum 

number of sequential steps from the input data to the final output.  

Poor algorithm convergence clearly results if the maximum tree depth is set to six as shown in 

Figure 85. Across ten runs using the synthetic dataset, the best population member remains 

nearly constant, while the population mean makes progress in only several of the runs. The 

average best member is computed using only the MNV portion of the score. In this case, an 

average best member score of -4.70 corresponds to a standard deviation of 1.30 mm, assuming 

sample spacing of 0.6 mm per sample. Despite the algorithm‘s poor convergence, this is still an 

acceptable solution to the peak detection problem. 

When the maximum tree depth is increased to eight, immediately noticeable are progression of 

the best member and population mean (Figure 86). Unusually, past the 20-30 generation mark,  

 

 

 

Figure 85: Genetic programming run on synthetic IQ data (30 signals), (blue best member, green average member, red 

worst member), for maximum tree depth 6, 30% mutation rate, 55% crossover, MDL scoring, 100 individuals. 
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Figure 86: Genetic programming run on synthetic IQ data (30 signals), (blue best member, green average member, red 

worst member), for maximum tree depth 8, 30% mutation rate, 55% crossover, MDL scoring, 100 individuals 

 

the population mean typically decreases, while the best member consistently increases. This may 

be an artifact of program bloat despite using MDL as a scoring metric. 

When the maximum tree depth is increased to ten (Figure 87), the resultant average best member 

shows marked improvement over the case when the tree depth is limited to six. This indicates 

that a tree depth of six is insufficient to fully represent a solution to the signal processing 

problem. Also, the best member convergence is more rapid and consistent across the ten runs.  

Comparing crossover rates between tree depths of eight and ten, lowering the crossover rate 

slightly improves the average best member of the depth eight run (Figure 88), while slightly 

increasing the average best member of the depth 10 run (Figure 89). 

5.5.8 Genetic Programming Experimental Data Results 

For this section of the genetic programming simulation, the programs operated on 60 instances of 

captured I-channel data in addition to the constant terminal nodes of 0, ±1, ±2, and ±4. 
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Figure 87: Genetic programming run on synthetic IQ data (30 signals), (blue best member, green average member, red 

worst member), for maximum tree depth 10, 30% mutation rate, 75% crossover, MDL scoring, 100 individuals. 

 

 

Figure 88: Genetic programming run on synthetic IQ data (30 signals), (blue best member, green average member, red 

worst member), for maximum tree depth 8, 30% mutation rate, 25% crossover, MDL scoring, 100 individuals 
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Figure 89: Genetic programming run on synthetic IQ data (30 signals), (blue best member, green average member, red 

worst member), for maximum tree depth 10, 30% mutation rate, 25% crossover, MDL scoring, 100 individuals. 

 

Consequently, the signal envelope cannot be directly calculated, thus, ambiguities in the pulse 

position pose a much more difficult problem for the signal processing program to solve. In 

comparing these results to the previous section, it is clear that the positioning programs do not 

perform as well. Examining Figure 90, a tree depth of eight, with 30% mutation rate, 75% 

crossover rate, and MDL scoring, results in an average best member of -326.1 or 

correspondingly a standard deviation of 10.8 mm. An example Verilog implementation 

generated by GP is shown in Appendix B, which was generated from the best member (score: -

134.4) of the Figure 90 run.  When the maximum tree depth is increased to ten (Figure 91), a 

slight performance increase is noted in the average best member. Also, the convergence of the 

population mean is rapid and more consistent than the previous case. However, increasing the 

tree depth to size twelve, shown in Figure 92, fails to demonstrate any significant advantage over 

the depth ten case. 
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Figure 90: Genetic programming run on experimental I-only data (60 signals), (blue best member, green average 

member, red worst member), for maximum tree depth 8, 30% mutation rate, 75% crossover, MDL scoring, 100 

individuals. 
 

 

 

Figure 91: Genetic programming run on experimental I-only data (60 signals), (blue best member, green average 

member, red worst member), for maximum tree depth 10, 30% mutation rate, 75% crossover, MDL scoring, 100 

individuals. 
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Figure 92: Genetic programming run on experimental I-only data (60 signals), (blue best member, green average 

member, red worst member), for maximum tree depth 12, 30% mutation rate, 75% crossover, MDL scoring, 100 

individuals. This run utilized the full set of functional nodes 

 

The best member (score: -142.18) from the run depicted in Figure 92 was selected for FPGA 

implementation. This member was 31 nodes after simplification, and included the fullest possible 

set of functional nodes: add2, sub2, mult2, neg, square, dot, delay, cumsum, ema, maxwindow, 

first, AND2, OR2, and greater. The resulting peak detection algorithm was synthesized and 

integrated onto the FPGA in the single-channel per base station mode. The resultant peak 

detection algorithm failed to produce a single detected peak when attached to the RF microwave 

system. This could occur for any number of reasons previously mentioned, such as 

overflow/underflow under the operations cumulative summing or cumulative dot product. Also, 

the genetic program may have been tuned to one specific amplitude where the peak typically 

occurred. 

On a second attempt at producing a valid peak detection signal processing routine, the functional 

node set was reduced. In this secondary experiment, the functional nodes were: add2, sub2, 

mult2, neg, square, delay, cumsum, maxwindow, AND2, OR2, and greater. The parameters of 
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this run, shown in Figure 93, were identical to the run shown in Figure 92, with the exception of 

the functional node set. The result of this implementation was tested for 1D static ranging error 

(Figure 94) compared to the Max-Ratio algorithm. One of the striking differences is that the 

Max-Ratio algorithm has lower maximum error as well as consistently lower average error. One 

of the potential reasons is the possible reliance of the GP algorithm on a fixed-height pulse, or 

loss of precision issues previously discussed. In light of these challenges, further work would 

need to be added to the GP portion of this study, to ensure that the simulation and scoring portion 

of the GP software exactly matches the constraints and data representations of the FPGA. Also, 

the experimental data provided to the GP software simulator should have a larger swing of SNR 

values, pulse positions, and types of multipath corruption to ensure a robust solution. 

 
Figure 93: Genetic programming run on experimental I-only data (60 signals), (blue best member, green average 

member, red worst member), for maximum tree depth 12, 30% mutation rate, 75% crossover, MDL scoring, 100 

individuals. This run utilized a sub-set of the possible functional nodes 
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Figure 94: Average 1D error in mm versus sample index for GP algorithm (red) and Max-Ratio algorithm (blue), noting 

that both the maximum error and the average error are worse for the GP algorithm than the Max-Ratio algorithm or the 

previous fixed threshold method (Figure 80) 
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6. ROBUST 3D POSITIONING IN MULTIPATH ENVIRONMENTS 

 

6.1. Background 

In the field of 3D positioning, a significant body of research exists that demonstrates various 

techniques in transforming 1D range values from a number of base stations into a 3D location. 

The most basic of these are RSS measurements at each base station. In this scheme, the actual 

amplitude of the received signal is used to infer the distance between the tag and the base station. 

The RSS positioning algorithm must assume a path-loss function to perform this inference, and 

thus, blockages and varying transmitter power levels will disrupt this type of positioning. The 

methods of multidimensional scaling (MDS) [89] and maximum-likelihood estimation (MLE) 

are used by Li [138] to study collaborative localization in received signal strength (RSS) sensor 

networks. In this study the purpose was to evaluate positioning of multiple tags through the 

collaborative measurement of each tag. The TDOA algorithm is well known [116] and used in a 

variety of wireless and wired positioning applications. This algorithm is well-suited to UWB 

positioning because it does not require that the transmitter and the receiver be synchronized. 

Chan and Ho examined the problem of time scale and TDOA positioning, in the case that the 

mobile tag movement causes a Doppler shift in received signals [88] similar to [139]. TOA 

algorithms [62] rely only on time-of-flight information and are heavily used in the field of GPS. 

Similar to the TDOA algorithm, TOA algorithms do not require explicit synchronization 

between transmitter and receiver. Both TDOA and TOA algorithms degrade when sufficient 

short-term jitter or long-term wander between clocks alters the perceived nominal time scale. If 



 

    

 136  

receiving antenna arrays are used, AOA [140] methods may be used as a standalone algorithm or 

in conjunction with TOA methods [141]. 

6.1.1 Robust Positioning Methods 

According to differing system conditions, various positioning methods have advantages and 

disadvantages. A frequently used algorithm for UWB positioning is the TDOA method, which 

has been previously discussed. This algorithm works well when all base stations are 

synchronized with the same PRF clock and, in general, offers higher performance when the PRF 

clock is also coherent with the tag transmission PRF clock. In GPS, the TOA algorithm is widely 

used, because the satellites are highly synchronized via atomic clocks, but the user receiver 

remains unsynchronized with the system. Thus, the TOA algorithm provides the time bias of the 

user with respect to the system as part of its positioning solution. In the Microwave Positioning 

Subsystem the transmitter and receiver use high-grade 10.0 MHz crystals with ±0.5 ppm 

stability. Despite the clock‘s excellent stability, when these two clocks are used in conjunction 

with a Direct Digital Synthesizer (DDS) to provide for the sequential sampling,  an  unintentional 

time scaling of ±11% is theoretically possible when a scale factor of α = 100,000 is used [42]. To 

deal with these wide fluctuations in scale, a new algorithm is proposed, termed scaled-time-of-

arrival (STOA). The TDOA algorithm, by comparison, ignores any time offset between 

transmitter and receiver and assumes no frequency bias between clocks [62]. While the TOA 

directly solves for the time bias, the STOA algorithm interprets any systematic lengthening or 

shortening of 1D range values as a change in scale. Table 25 compares the input vector and the 

output solution for all three algorithms, where Δt is the time bias and Δs is scale figure based on  
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Table 25: Comparison of various positioning algorithms, the input vector represents the measured values passed to the 

algorithm, while the solution vector represents the available solution upon algorithm completion 

 TDOA TOA STOA 

Input Vector    

Solution Vector    

 

current frequency offset between tag and receiver. It remains difficult to solve for both Δt and Δs 

simultaneously due to poor matrix conditioning. 

6.1.2 TDOA Algorithm 

Algorithm 3: TDOA Algorithm 

 
There are four receivers at known positions Rx1 or (x1, y1, z1), Rx2 or (x2, y2, z2), Rx3 or (x3, y3, 

z3), and Rx4 or (x4, y4, z4), and a tag at unknown position (xu, yu, zu) (Figure 95). The measured 

distance between four known receivers to the unknown tag can be represented as 1 , 2 , 3 , 

and 4 , which is given by 

),,,(

)()()( 222

uuuu

uuiuiuii

tzyxf

ctzzyyxx
 (44) 

where i = 1, 2, 3, and 4, c is speed of light, and tu is the unknown time delay in hardware. 

The differential distances between four receivers and the tag can be written as 
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where k = 2, 3, and 4, and the time delay tu in hardware has been cancelled. 

Differentiating this equation will give 
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In equation (46), ux , uy , and uz  are treated as known values by assuming some initial values  

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3)

(x4,y4,z4)

(xu,yu,zu)

X

Y

Z

1

2

3

4

Rx1

Rx2

Rx3

Rx4

Tag

 

Figure 95: Calculation of tag position based on TDOA approach 
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for the tag position. udx , udy , and udz  are considered as the only unknowns. From the initial 

tag position the first set of udx , udy , and udz can be calculated.  

These values are used to modify the tag position ux , uy , and uz . The updated tag position ux , 

uy , and uz  can be considered again as known quantities. The iterative process continues until 

the absolute values of  udx , udy , and udz are below a certain predetermined threshold given by 

222

uuu dzdydx
 

(47) 

The final values of ux , uy , and uz are the desired tag position. 

The matrix form expression of equation (3) is 
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The solution of equation (49) is given by 
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where [ ]
-1

 represents the inverse of the  matrix. If there are more than four receivers, the 

least-squares approach can be applied to find the tag position. 

6.1.3 TOA Algorithm 

Algorithm 4: TOA Algorithm 

 
1. Again, there are four receivers at known positions Rx1, Rx2, Rx3, and Rx4, and a tag at 

unknown position , with an unknown time bias between two clocks tu. The 

measured distance between four known receivers to the unknown tag can be represented as 1 , 

2 , 3 , and 4 , which is given in the same form as (44). 

2. By using an approximate position , an approximation to the range value 

can be found 

  (51) 

3. Assuming the position consists of an approximate location and time bias, plus an offset 

 

 

 

 

(52) 

4. The first order partial derivatives yield 
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(53) 

where   

 (54) 

5. To find the step which minimizes the error with respect to the current location , we 

define 

 

 

 

 

(55) 

6. Thus, 

 

      

(56) 

describes the linear system  
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 (57) 

which can be solved as in (50) for the update step that minimizes the range errors. If there are 

more than four receivers, the least-squares approach can be applied to find the tag position. 

6.1.4 STOA Algorithm 

In this novel algorithm, compared with the previous TOA algorithm, the clocks are not assumed 

to be biased, but rather operate with an unknown frequency bias. As previously discussed, this 

frequency bias creates the effect of unintentional time scaling. In this derivation, an unknown 

parameter s will be used to represent the scale, where a scale value of unity will represent the 

case when the frequency offset is zero. 

Algorithm 5: STOA Algorithm 

 
1. Again, there are four receivers at known positions Rx1, Rx2, Rx3, and Rx4, and a tag at 

unknown position , with an unknown frequency bias between two clocks 

represented as a scale factor su. The measured distance between four known receivers to the 

unknown tag can be represented as 1 , 2 , 3 , and 4 , which is given in a similar form as 

(44) and (58). 

2. By using an approximate position , an approximation to the range value 

can be found 

  (58) 

3. Assuming, the position consists of an approximate location and scale factor, plus an 

offset 
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4. The first order partial derivatives yield 

 

 

 

 

(60) 

where   

 (61) 

5. To find the step which minimizes the error with respect to the current location , we 

define 

 

 

 

 

 

(62) 

6. Thus, 
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(63) 

describes the linear system  

 (64) 

which can be solved as in (50) for the update step that minimizes the range errors. If there are 

more than four receivers, the least-squares approach can be applied to find the tag position. It 

must be noted that if the ranging values provided to this algorithm contain both a scale factor and 

a significant time bias, then any bias will be approximated by the scale factor that minimizes the 

resulting error. As a consequence to this property, this algorithm must be used in coherent 

systems where any hardware delays are known and fixed. As such this algorithm was not tested 

in the final non-coherent system testing.  

6.1.5 Positioning Algorithms Simulation Results 

Using several realistic configurations of base stations, each algorithm was tested with ±11% 

scaling and 1D jitter values with a standard deviation 10.0 mm; this was repeated 25 times for 

each of 84 tag positions. The system was assumed to be previously calibrated for cable length 

offset. Since the STOA algorithm was able to accommodate a changing scale figure in the 

provided solution, it provided strictly lower error values for each configuration (Table 26). 
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Table 26: Comparison of simulation error results across differing positioning algorithms when 11.0% scaling error is 

present using various base station configurations. *indicates the algorithm failed to converge 

 Configuration 

(# of Base Stations)  

TDOA 

(mm)  

TOA 

(mm)  

STOA 

(mm)  

 

Flat 9 136.1 132.1 0.833 

 

Curved 9 4.23 4.12 0.569 

 

Flat 7 124.3 123.7 0.920 

 

Curved 7 4.47 4.37 0.765 

 

Flat 5 143.9* 144.7* 3.83 

 

Curved 5 5.64 5.53 2.11 
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Repeating the experiment above using the same base station configurations except a 1.1% 

scaling error was applied to each raw 1D range (Table 27). In this case, the STOA algorithm did 

not perform as well. The TOA algorithm performed generally better than the STOA algorithm 

with lower number of base stations in the curved configuration. In the flat configuration, the 

STOA algorithm provided superior results.  

The difference in PDOP values between these configurations is apparently a large source of the 

error in these experiments, as can be seen in Figure 96. This can be directly seen in Table 27, as 

the large factor of error in the TDOA column between the Flat 9 configuration and the Curved 9 

configuration. 

6.2. Kalman Filtering 

Kalman filtering is widely used in GPS [62] and positioning systems [45] since it offers an 

attractive dynamical model which can change filter weights based on system characteristics. In 

the Microwave Positioning Subsystem, there are two distinct ways with which to incorporate a 

Kalman filter. The first option is to use the Kalman filter to filter the individual range values, 

while the second is to Kalman filter the 3D position as returned by the positioning algorithm. 

Preliminary investigation has found roughly equal accuracy performance from these two options,  

Table 27: Comparison of simulation error results across differing positioning algorithms when 1.1% scaling error is 

present using various base station configurations.  

 

Configuration 

(# of Base Stations)  

TDOA 

(mm)  

TOA 

(mm)  

STOA 

(mm)  

Flat 9 4.54 3.82 0.789 

Curved 9 0.649 0.540 0.600 

Flat 7 4.23 3.88 0.890 

Curved 7 0.705 0.634 0.703 

Flat 5 11.84 11.52 3.47 

Curved 5  1.92 1.85 2.12 
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Figure 96: For the TDOA algorithm, the degradation in PDOP due to geometric differences between the Flat 9 

configuration and the Curved 9 configuration 

 

with the later representing less computation time. Since the Kalman filter requires two matrix 

inversion steps, the Kalman filter operating on a 3D position represents a more compact 

representation than in the case of the Kalman filter operating on the raw range values. 

In preliminary testing the Kalman filter was applied to raw 3D position values returned by the 

TDOA algorithm when the tag was maintained in a static position. The Kalman filter assumed a 

propagation model of constant velocity and filter error estimates were set using the 3D variances 

of the raw data. Figure 97 shows the raw system error, with extreme ranging errors of greater 

than 10
4 

mm. After the Kalman filter was applied to the same data it is clear in Figure 98 that the 

Kalman filter has excellent performance in filtering extrema. Upon filter stabilization, around 

sample 700, the error remains on the order of 10-12 mm. 

In this example the Kalman weights were set with an overly pessimistic view of the data, with 

the measurement noise covariance matrix set with such extreme values, effectively only static 

points will be able to be acquired due to lengthened acquisition time (e.g. 700 samples in the 
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Figure 97: Raw static positioning error using TDOA algorithm and a cable length calibration 

 

 

Figure 98: A Kalman filtered result of the exact data contained in Figure 97, note that after the filter stabilizes around 

sample 700 error approaches 10-12 mm 
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previous example). With two techniques presented subsequently, the Kalman filter measurement 

noise covariance may be set lower with the added benefits of protecting the Kalman filter from 

entering erroneous points. 

 

6.3. Protected Kalman Filtering 

Kalman filtering can handle error-prone points, but extreme outliers can cause an over-estimate 

of the process error covariance matrix, especially in high dynamic situations. A new approach is 

to discard (or pre-filter) outliers using the Mahalanobis distance, or other distance metric, before 

the point is fed to Kalman filter 

)()( 1

1

1 tt

T

ttM xyRxyD  

)6[)( mt Donydiscard  

(65) 

where yt is an observed 3D point calculated by TDOA, TOA, etc. and xt-1 is the previous state of 

a Kalman filter, R can be the measurement error covariance or can be reweighted based on 

geometry, and DM is the  Mahalanobis distance. With DM set at 6, Figure 99 shows elimination of 

the largest spikes as would be expected using this metric. If DM were set even lower (i.e. 3), 

several of the remaining large spikes would be removed, but dynamic motion would be 

restricted. 

6.3.4 Position Dilution of Precision Combined with Kalman Filtering 

The topic of Position Dilution of Precision (PDOP) or more generally known as Geometric 

Dilution of Precision (GDOP) is widely analyzed in the field of GPS [62]. A discussion of PDOP 

and its relation to this Microwave Positioning Subsystem is presented as follows. The use of 

PDOP values in conjunction with Kalman filtering is a topic that has not been completely 
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Figure 99: Dynamic simulation comparing Kalman Filtering 3D position data (red) with Kalman Filtering with 

Mahalanobis Protection (blue). Note that the largest spikes have been eliminated.  

 

investigated. A previous method weighted Kalman filter output from subsets of GPS satellite 

configurations by the inverse of the configuration‘s PDOP value to yield a combined solution 

[142]. A novel approach is to use the PDOP as a geometry-specific method to pre-filter points 

entering into the Kalman filter. This method utilizes PDOP values to measure the impact of base 

station constellation geometry on final system error given 1-D ranging errors. There are two 

main ways this can be accomplished. The first is to use element-wise reweighting of the base 

measurement error covariance by the current scalar PDOP value as 

PDOPRRw 0  (66) 

where R0 represents the initial or base error measurement covariance matrix and RW is the re-

weighted version which would be used to filter this particular 3D point. Secondly, the 

measurement error covariance is set using the appropriate components of the inverse of the 

TDOA or TOA error covariance matrix D as 
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2

1

12

1 )( D

T

Dw HHDR  (67) 

where σ
2

1D is an initial estimate or a system maintained estimate of the 1D ranging variance. 

Since this representation carries a relatively large amount of information regarding the predicted 

error covariance for a particular geometry, this representation is used for the primary testing of 

this technique. Essentially, (66) is a scaled approximation to (67) using the square root of the 

trace of the D matrix (as in (23)). As shown in Figure 100, a dynamic simulation showed that D 

matrix protection in the form of (67) significantly reduced error versus an unprotected Kalman 

filter. This is intuitive when considering that in areas where the PDOP values of one coordinate 

axis degrade severely, the Kalman filter can selectively filter these values with a lower degree of 

sensitivity.  

6.4. Non-Linear Filtering 

Upon further inspection of the raw time indices determined by the Max-Ratio algorithm in  

 

Figure 100: Dynamic simulation comparing Kalman Filtering 3D position data (red) with Kalman Filtering with D-

Matrix Protection (blue), note that the RMS error has been significantly reduced 
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experimental testing, it was found that the noise characteristics of the data were distinctly non- 

Gaussian. As can be visualized in Figure 101, the ripples in the I-only channel data are caused 

when non-coherent LOs are used for up-conversion and down-conversion of the transmitted 

pulse. Despite the fact that the Max-Ratio algorithm dynamically calculates a threshold based on 

25% of the maximum height of the pulse, this threshold is still sensitive to the non-linearities of 

the leading edge of the pulse. As a consequence, the computed leading edge location can 

oscillate between two rather stable positions on the pulse. 

As displayed in Figure 102, the raw data (blue) originating from the Max-Ratio algorithm 

maintains fairly consistent bounds. However, the data oscillates primarily between two values (-

225 and -295), corresponding to an overall swing of roughly 35 mm, which is unacceptable 

given the target system accuracy. When a windowed box filter was applied to the data (green), 

the filtered data exhibited less variance but exhibited short term wander which is undesirable. A 

windowed median filter, which is a simple rank order filter, was also applied to the data, 

 

Figure 101: Synthesized I^2 channel data corrupted by transmitter-receiver 8 GHz LO frequency offset 
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shown in dark red. Finally, by plotting the cumulative distribution of the same raw data (Figure 

103), it is clear that the stable regions of the distribution are approximately located at the first 

and third quartiles. As such, a windowed Mid Inner Quartile Range (MIQR) filter was devised to 

remove the effects of this consistent oscillation. The results of the MIQR filter are shown in 

Figure 102 in yellow and exhibit the highest level of stability and correspondingly the lowest 

amount of variance. 

From the previous work in this chapter, it is noted that the TDOA algorithm solves sets of non-

linear equations. Given this, another hypothetical filtering technique was tested termed Multi-

Base filtering. In this technique, one or more range values originating from the same base station 

were collected. Using these extra ranging values the TDOA algorithm solution (50) was solved 

using the Moore-Penrose pseudo-inverse, where redundant base station positions were 

considered with the duplicate ranging data. Table 28 and Table 29 show the 3D RMS errors and 

3D 95% confidence intervals, respectively, for these types of non-linear and linear filtering 

 

Figure 102: Effect of several types of windowed TOA index filters on the raw data (blue), also represented in Figure 103, 

each of the windows are size 16, the MIQR filter (yellow) has the lowest variance of the three types 
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techniques when used with the TDOA algorithm. In this case, the Multi-Base filtering technique, 

the window size refers to the number of ranging value assigned to each unique base station 

position. It should be highlighted that the two filtering techniques with the lowest RMS error and 

smallest 95% confidence interval are the averaging filter and the MIQR filter. 

 

Figure 103: Cumulative distribution of pulse TOA index values showing non-Gaussian structure 

 

Table 28: 3D Positioning RMS errors in mm for various index filtering techniques used in conjunction with the Max-

Ratio Algorithm 

Window 

Size Raw Median MIQR Ave 

Multi-

Base 

1 16.018 16.018 16.018 16.018 16.018 

5 16.018 7.781 6.973 7.508 12.036 

9 16.018 7.506 4.162 5.434 11.667 

13 16.018 7.113 2.888 4.298 11.05 

17 16.018 6.65 2.572 3.713 10.517 

21 16.018 6.769 2.434 3.382 10.509 

25 16.018 6.479 2.233 3.108 10.66 

29 16.018 6.015 2.047 2.86 10.563 
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Table 29: 3D Positioning 95% C.I. in mm for various index filtering techniques used in conjunction with the Max-Ratio 

Window 

Size Raw Median MIQR Ave 

Multi-

Base 

1 15.295 15.295 15.295 15.295 15.295 

5 15.295 11.562 8.62 8.31 19.009 

9 15.295 10.696 6.914 6.029 19.291 

13 15.295 10.338 4.919 4.601 18.691 

17 15.295 9.777 4.334 4.254 17.943 

21 15.295 9.543 4.229 4.143 18.474 

25 15.295 9.416 3.797 4.855 18.49 

29 15.295 8.757 3.307 4.928 18.219 
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7. SYSTEM CALIBRATION AND VERIFICATION 

 

This chapter focuses on the challenges of calibrating systematic error in order to produce results 

which not only offer the highest level of precision, but also ensure that the total system error 

relative to a reference optical tracking system is minimized. In a rudimentary fashion, a primary 

contributor to the final system error is the unknown lengths of the cables that connect each base 

station to the control station. These cables are of fixed length and any length differences between 

the electrical lengths of base stations directly corrupt TDOA values. A second contributor of 

systematic error is that of nominal PRF clock frequency bias and nominal ADC clock values 

differing from system calculated values. In this case, a calibration algorithm is developed which 

simultaneously solves for small scale factor differences as well as cable length offsets. This 

algorithm also relies on a known positioning reference. Supposing that a rudimentary calibration 

based on one of these techniques has been performed during system fabrication, a final algorithm 

is simulated to demonstrate the feasibility of a final installed system calibration which does not 

require a positioning reference. This final algorithm can solve for small bias values as well as 

base station orientation, which contributes to non-linear errors with respect to tag trajectories. 

7.1. System Cable Length Calibration 

The system requires a cable length calibration step due to electrical length differences that cause 

constant bias in measured time difference (Figure 104). To perform positioning once the 

calibration step has been completed, the biases are subtracted from measurements using offset 

values stored in the system software. These bias values can be inferred from those offsets which 

minimize error when a UWB tag is in a known and static location.  
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Figure 104: Diagram showing cable length offsets and consequent need for system calibration 

 

7.1.4 System Cable Length Calibration Algorithm 

A step-wise error minimizing calibration algorithm is shown in Algorithm 6. This algorithm 

works by minimizing system error when the tag is in a known location. Since the cable length 

problem affects each positioning algorithm, each positioning algorithm requires an offset 

calibration step. 

Algorithm 6: Remove Cable Length Bias from System Measurements 

 
1. Initialize Offset:   

O := [ d01 , d02 , d03 ] (68) 

2. Measure System Error against true value:   

ESYS := Puwb – Ptrue (69) 

3. Sum the squared system error vector over 20 iterations, and take the mean value: 

MSE = ∑ (ESYS .^2)/20 (70) 

4. Adjust the offsets in each direction given step size: 

Onew  := [ d01 ± dS , d02 ± dS , d03 ± dS ] (71) 

5. Record Onew with lowest ESYS then alter Ds = 0.9*Ds. 
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7.1.5 System Cable Length Calibration Results 

The results of the calibrated system are shown in Figure 105. In the best case, the calibration 

algorithm reduced the system error for the TDOA algorithm from roughly 1000 mm to 54.95 mm 

in 200 iterations and an initial step size of 150 mm. When a 10-point averaging filter was applied 

to the points, the error was further reduced to 11.92 mm.  

The calibrated system was used in combination with a 1000-point averaging filter. The results 

shown in Figure 106 highlight the system drift that is present due to clock frequency bias 

(between asynchronous 10 MHz clocks), which causes time-scaling. It should be noted that for 

this experiment α was set to 100,000, thus a ±11% scale factor error is the likely contributor of 

this systematic error. 

The potential downside of this algorithm is that while it effectively can calibrate offsets if the tag 

is fixed, it cannot be used if the tag is in dynamic motion or if the location of the tag is unknown. 

Additionally, if the nominal scale factor is significantly different than the system expectation, 

then any scale factor differences get masked by the calibrated offsets. As the clocks drift relative 

to each other, the nominal scale factor will change and thus be evidenced. 

 

Figure 105: Experimental results showing the error trend of sampled data positioned using the cable length calibration 

algorithm combined with the TDOA algorithm with no filtering 
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Figure 106: Experimental results showing the error trend of sampled data positioned using the TDOA algorithm with a 

1000-point averaging filter, and alpha =100,000 scale factor, noting the possibility for ±11% scale factor error 

 

7.2. System Time-Scale and Offset Calibration 

As noted above in Figure 106, the system may have some long-term drift associated with a 

frequency bias between the 10 MHz PRF clock located on the tag and the 10 MHz clock PRF 

source that feeds each of the base stations. Additionally, a 50 MHz clock drives each of 

theFPGAs and associated ADCs. Consequently, due to the unintentional time scaling 

phenomenon described in Chapter 3, the period of the sample spacing as interpreted by the 

positioning software may be 2-3% different than the calculated nominal value when α = 10,000. 

In this form of calibration, not only is any nominal offset between the base stations removed, but 

also a scale factor is calculated for each of the received time differences. In contrast to the cable 

length calibration algorithm, this algorithm cannot be enacted at a solitary point, but rather 

requires a diversity of points be taken throughout the working volume for the most accurate 

results. Similarly, however, a positioning reference is needed to record the points taken with a 

high degree of accuracy. To compute this transform using a least squares approach, first 

      (72) 

 (73) 
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where  is the range differences computed by the reference positioning system and are 

the range differences computed by the UWB system as in (45) and t represents the time index of 

the acquired ranges. Next the transformation H is solved for in the linear system, 

 (74) 

 (75) 

       (76) 

 (77) 

In general this technique is realistic if a reference system can be used to perform the calibration. 

Since a wide diversity of points must be used to ensure that ΔP and ΔR are full rank, this 

calibration technique is termed dynamic calibration, as it requires movement of the tag and 

reference positioning system. 

7.3. Base Station Calibration Algorithm using Arbitrary Path Motion 

A critical step that must be undertaken for final system error to yield mm or sub-mm range 

accuracy is the accurate calibration of the base station orientation. The orientation is important 

due to the Vivaldi base station antenna sensitivity to phase-center (and thus positioning) 

variation with respect to the angle-of-arrival (AOA). As Figure 107 shows, as the AOA varies 

from 0
o
 to 45

o
 the phase center error variation is roughly 10 mm. A base station calibration 
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algorithm is developed in Section 7.3.5.3 which uses an arbitrary path motion to calibrate base 

station orientation if the base station position is known.  

7.3.4 Introduction 

 

A method has been proposed to correct three-dimensional (3D) positioning error due to base 

station antenna orientation that takes into account non-boresight electrical length differences due 

to antenna phase center errors. An automated algorithm is used to calibrate an ultra-wideband 

(UWB) system using only a starting estimate of the base station position and acquired positions 

central to the base stations. The true positions of the acquired 3D calibration points are unknown 

to the calibration algorithm. Upon completion of the algorithm, the base station orientation is 

estimated, along with estimates of electrical length offsets due to potential cable length 

differences. This method is designed to minimize small errors due to base station position and 

orientation uncertainty. The algorithm is shown to be robust given that the availability of 

accurate 1D ranging can be provided by the system.    

 
Figure 107: Measured Vivaldi phase center error versus angle for E-cut, H-cut, average of E and H cuts, and centered 

quadratic fit 
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In designing and constructing a high accuracy (~1mm) UWB positioning system [42] [76], 

several types of errors and biases that are safely ignored on the decimeter scale become 

significant to overall system performance. One such effect is that of phase center errors 

originating from transmitter-receiver mal-alignment. These errors can be successfully removed 

using the TDOA algorithm with knowledge of the receiving antenna orientations. However, 

ignoring this type of error proves impossible for the TDOA algorithm to remove. Even in a trial 

case involving 100 base stations, phase center errors are correlated and create considerable 

system error. Thus, the accuracy of the TDOA algorithm is highly dependent on the accuracy of 

the differences in the TOA of the UWB pulses. 

Using an iterative approach, an algorithm has been developed and tested under simulated line-of-

sight (LOS) conditions where ranging error was modeled as a zero mean Gaussian random 

variable with a variance equal to the amount of ranging error present in the UWB system. 

Currently, commercial UWB positioning systems of Sapphire DART (Multispectral Solutions, 

Inc.) and Ubisense have indoor positioning accuracy of 10 cm and 15 cm, respectively [70]. 

Interesting results presented by Zetik et al. and Meier et al. indicate that ranging has the potential 

to achieve mm or even sub-mm accuracy levels [72] [45]. Recent work in UWB positioning 

algorithms has focused on increasing the accuracy of TOA measurements in Non-Line-of-Sight 

(NLOS) conditions [143], increasing TOA resolution [144], and increasing TOA accuracy in the 

presence of interference [108] .  

7.3.5 Materials and Methods 

The purpose of the experiments described previously was to expose and eliminate the error due 

to antenna phase center and simultaneously positioning error due to the antenna bore sight 
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direction uncertainty. First, a short discussion of the phase center error is included for relevance 

to this calibration procedure. 

7.3.5.1 Antenna Phase Center Error 

The single element Vivaldi antenna is used on the receiver side of the system. The design of the 

antenna is shown in Figure 108. The z-axis points in the direction of the ―end fire‖ radiation 

pattern typical of antipodal antennas. This particular design of antenna is particularly sensitive to 

phase center variation in both the E-plane (parallel with the plane of the antenna, xz-plane in 

Figure 108) and H-plane of the antenna radiation pattern as shown in Figure 107 [42]. The 

average error between the E-cut and H-cut are used to approximate the error as a function of any 

angle of incidence relative to the boresight direction. A quadratic approximation was chosen and 

is of the form  

2)(00000364.0)(E  (78) 

where  is calculated as the full angle in degrees between the angle of incidence and the 

boresight direction and Φ is positioning error in meters.   

7.3.5.2 Orientation Error Simulation 

An experiment was undertaken to discover the effects of the phase center error on the TDOA 

algorithm when combined with a large amount of base stations. In this case, it was hypothesized 

that the redundancy in the large number of base stations would tend to cancel out the phase 

center errors.  

In this simulation a virtual scene is created with N=100 base stations randomly distributed on a 

sphere of radius R=3 m. In this experiment base stations are assumed to all be oriented directly  
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Figure 108: Designed Vivaldi antenna, with the +z axis being the boresight direction 

 

toward the center of the sphere, which is the origin of the coordinate system (0,0,0). The tag 

travels in a helical path between x-axis values of R/2 according to  

))cos(),sin(,( iHiiHii

T

i xwrxwrxP  (79) 
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x
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2
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(80) 

where xi are M=81 uniformly sampled points between x= R/2. A particular instance of this 

recreated scene is shown in Figure 109. Given the tag and base stations positions, the true 1D 

range is calculated for each tag position relative to each base station. Also, the true angle of 

incidence is known and calculated for each tag position-base station pair. Synthetic range values 

are thus calculated as 

ijjij

BS

j

T

i

TBS

ij nbPPd
 

(81) 

where 1  i  M, 1  j  N and Pj
BS

 represents the position of the j
th

 base station, Φij is the phase 

center error between the i
th

 tag position and j
th

 base station. A Gauss-distributed random bias 

term bj ( =0, σ=2.5 mm) is added to the range to account for potential electrical length 

differences, and the slight uncertainty in measuring the base station position phase center along 

the boresight direction. The nominal value for the standard deviation was chosen to be an order  
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Figure 109: Instance of the 100 base station experiment 

 

of magnitude higher than the uncertainty of 3D localization.  Finally, a random noise figure of nij 

( =0, σ=1.24 mm) is added to each range to account for uncertainty in 1D range measurements. 

This nominal value was chosen based on the actual 1D measurement RMS error of the system 

[76]. In this simulation, the standard TDOA algorithm is applied to the synthetic ranges 

generated in (81), and the error of the calculated position vs. the true position as a function of the 

xi position of Pi
T
 is shown in Figure 110.  

According to Figure 110 and Figure 111, redundancy in the number of base stations is not 

sufficient to remove phase center error. This can also be understood by considering that the 

geometry at both extremes of the tag path represent cases where many of the base stations will 

simultaneously have significant phase center error that creates a positive length bias that the 

TDOA algorithm cannot remove. 

7.3.5.3 Calibration Algorithm 

Considering the same geometry as described in the previous simulation, it is desirable to 

calibrate the system to accurately determine the orientation of the base stations only through 
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Figure 110: 3D Positioning Error vs. Tag x Position for 100 base station experiment illustrating the difference between Φ 

included (dashed) and not included (solid) in equation (4) 

 

 
Figure 111: Base station specific results of errors shown in Figure 110, note that base stations oriented along the tag track 

experience the least amount of error due to phase center variation  
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measured data. Assuming that the base stations are again oriented roughly toward the center of 

the work area and that the base stations positions are known, the proposed algorithm will 

estimate both the orientation and boresight bias (bj) according to the error model given in 

equation (90). Also, to perform this calibration there must be N>4 base stations, as one base 

station must be left out. This leaves a minimum of 4 base stations to provide unambiguous 

hyperbolic 3D positioning. 

 

Algorithm 7: Phase Center TDOA Calibration 

1. Using the raw 1D ranging values, use the TDOA algorithm on N-1 base stations (leaving one 

base station out of the calculations). Iterate so that each base station is left out in turn. This is 

performed at all tag positions. The result is MN position estimates T
ijP̂ , for the i

th
 position 

corresponding to the j
th

 base station that was removed. All of the base stations are given an initial 

orientation estimate BS
jÔ , which is a random unit vector, representing the boresight direction. 

2. Each position estimate T
ijP̂  is used to calculate the angle ij  between the tag position-base 

station and the current orientation estimate BS
jÔ . 

3a. The true 1D ranging values ijR̂  are estimated based on the calculated ij  

jijijij bERR ˆ)(ˆ
 

(82) 

where Rij is the measured range and jb̂  is the current estimate of the boresight bias (initially set 

to zero). 

3b. Alternatively, the error due to the phase center 
TBS
ij

ˆ is estimated without consideration of the 

current orientation  
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and subsequently, 
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noting that this step can be performed independently of step 3a (diagrammatically shown in 

Figure 112).  

4. The estimated ranging values ijR̂  are then used in the standard TDOA algorithm to re-

estimate position values 
T

iP
~

using all N base stations in the calculation.  

5. The collection of position estimates 
T

iP
~

 is then used to update the boresight bias estimate 

M
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)ˆ~
(

1ˆˆ  (85) 

which can be considered as an update to the existing bias estimate using the mean ranging error 

across all measured positions. 

6. Next the orientation estimate BS
jÔ  is updated according to: 

jkK
N

k

ikij

1

ˆargmin

 

(86) 

 

(87) 

thus, the final step in this iterative algorithm is to assign the base station orientations according 

to the points along the point track where the N-1 base station positions yield the lowest amount 
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of angular error. Under the assumption that the base stations are oriented roughly towards the 

center of the work area, this condition yields algorithm convergence. 

7.    The algorithm converges when the relative RMS error between position estimates falls 

below a threshold. 

 

7.3.5.4 Calibration Simulations 

Several simulations under realistic system configurations were used to verify the accuracy and 

convergence characteristics of Algorithm 7, for calibrating the base station orientations and 

electrical length differences. These trials were enacted under a varied number of base stations 

randomly distributed on a sphere. Several fixed parameters set in this study were: the minimum 

resolvable distance (0.1 mm), the noise in 1D measurement (1.24 mm), and the number of trials  

 

 
Figure 112: Visual depiction of Step 3b of Algorithm 7 
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for each configuration (20 trials). The 1D ranging noise was taken from observed 1D ranging 

noise in [76]. 

7.3.6 Results 

The algorithm was monitored and averaged across the 20 trials to give a relative indicator of 

success. Two such trials are shown in Figure 113. In the first case which represented only 6 base 

stations, there was not a sufficient level of redundancy for the algorithm to converge to sub-mm 

range calibrated error. This is due in part to occasional dilutions of geometric precision which 

causes instability in the algorithm to ascertain correct ranging values. While on average the N=6 

case did not converge to sub-mm levels of accuracy, most of the runs did converge with the 

mean being negatively influenced by a few cases of non-convergence. 

From Figure 113 and Figure 114 it is clear that the N=10 base station case represented enough 

system redundancy to drastically reduce noisy 1D ranging errors (1.24 mm) with the limit being 

the (0.1 mm RMS or 0.7 mm max error) minimum resolvable distance being preserved.   

 
Figure 113: Comparison of N=6 base stations and N=10 base stations on the calibration algorithm convergence of RMS 

error. Note algorithm instability for N=6 case. Sub-mm calibrated accuracy is possible with N=10 base stations 
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Figure 114: Comparison of N=6 base stations and N=10 base stations on the calibration algorithm convergence of 

maximum error. Note algorithm instability for N=6 case. Sub-mm calibrated accuracy is possible with N=10 base stations 

 

7.3.7 Discussion 

The system calibration procedure described in this paper is necessary to push the limits of UWB 

positioning beyond the current levels of commercial accuracy. The algorithm was tested in 

simulated LOS conditions where measurement error is well-known to be minimal. Further work 

would involve testing the algorithm in situations of non-line-of-sight (NLOS) conditions, as well 

as situations where the base station orientations cannot be assumed to be oriented toward the 

center of the work area. While much work in UWB positioning has been performed in driving 

raw 1D TOA accuracy, with many associated algorithms being developed in the literature, the 

author‘s wish is to motivate a careful look at antenna phase center effects on overall system 

accuracy. The algorithm presented here describes a calibration procedure that can be translated 

into TDOA based positioning systems where AOA effects result in system degradation of 

accuracy. In such systems, the orientation of the base station relative to the mobile tag can be 

inferred as well as biases resulting in fixed electrical length differences. Such differences could 
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arise if different lengths of cable are used to connect the base stations, or if the base stations 

retransmit pulse arrival times.  The prime feature of the proposed algorithm is that arbitrarily 

captured points can be used to calibrate the system, which indicates that this algorithm may be 

able to be implemented as a continuous online process or to be purely performed offline. The 

drawback to this technique would be the relatively large degree of redundancy that must be 

present in the system. 
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8. SYSTEM CHARACTERISTICS AND ERROR ANALYSIS 

 

When considering the vast number of parameters, settings, and techniques inherent to the UWB 

system, experimental testing can assist in determining optimal system configuration under 

certain operating conditions. The goal of the experimental testing is to highlight the tradeoffs that 

exist in building a real-time positioning system and offer guidance on various configurations 

where acceptable performance might be found supposing different system requirements. For 

example, one large system tradeoff is the accuracy of positioned point versus the frequency at 

which points may be acquired. If the accuracy requirements of the end-user are minimal, then 

point acquisition frequency can be increased. Another tradeoff is accuracy versus whether the 

system must be tethered to the control station (i.e. wired or wireless). Another tradeoff is that of 

system accuracy versus the number of base stations that share a coherent LO. In all of these tests, 

the primary motivating goal is RMS error when compared to a reference optical system 

(Optotrak) which has an error of roughly 0.1 mm RMS in-plane and 0.3 mm RMS out-of-plane 

errors. While the Optotrak errors can be considered to be uncorrelated with the UWB errors, the 

additive effect of the Optotrak system has been deemed negligible, and therefore is not 

subtracted from the calculated system accuracy of the UWB system.  

All of the tests shown in this section have roughly similar PDOP values for the coordinate axes 

namely: 2.3, 0.9, and 0.6, for the coordinate specific PDOPx, PDOPy, and PDOPz, respectively. 

This represents an overall PDOP value of 1.95. Since the base station configuration remains the 

same, the error values shown below can be directly compared, although, if more base stations 

were acquired, these PDOP values would be able to be decreased in practice. Since the overall 
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PDOP value describes the error variance the following equation can be used to adjust the error 

values presented in the next section 

 (88) 

where   is the resultant 3D RMS error after adjustment,  is the original 3D RMS error, 

 is the resultant scalar PDOP value resulting from a different base station configuration, 

and  is the original configuration with a nominal value of 1.95. In an eight base station 

configuration, for example, the PDOP value was found to be below 0.95 for all positions within a 

1 m cube. In this example, the error values would be reduced by more than a factor of two. 

8.1. System testing 

One interesting test of the system was that of testing the scale factor α, which corresponds 

inversely to the analog sample spacing. When the typical value of α=10,000 is used, the 

corresponding sample spacing is 10 ps, and 1 ms is required to acquire one set of pulses from the 

system.  A second test was performed when α=40,000, corresponding to an analog sample 

spacing of 2.5 ps. At this scale factor, the system requires 4 ms to acquire a set of pulses to 

produce a single 3D position measurement. As shown below in Figure 115, the RMS error can be 

decreased by almost 1.5 mm when using a scale factor of 40,000.  

Another experimental set up examined the positioning error difference between a wired and a 

wireless setup. These error values are depicted in Figure 116, indicating the robustness and high-

precision that is achievable in a wired system. The value of 0.73 mm in the wired case is 

comparable to the system presented by Meier et al. with a stated static accuracy of 0.1 mm [45], 
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Figure 115: Comparison of different scale factors: 10000 (red) and 40000 (blue) on 3D RMS error, in a non-coherent, 

MIQR=17, 5x point averaging, using TDOA algorithm 

 

 

Figure 116: Comparison of wireless and wired PRF (10MHz) clocks: wireless (red) and wired (blue) on 3D RMS error, 

static, MIQR=41, 5x point averaging, using TDOA algorithm 
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although their result degrades to 2.0 mm in dynamic tracking. In the wireless case, 5.59 mm of 

RMS error appears to the lowest error found in the published literature. 

One of the key factors in decreasing the error to this level was the connection of the 4 base 

stations to the same 8GHz LO on the control station. Note that this is a realistic case as the base 

stations are already wired to transmit the pulse positions to the control station. Prior to this 

experiment, the clock stability of independent LOs, one per base station, was not thought to 

affect system performance. As Figure 117 clearly shows, drastic error improvement is found 

with both 2 coherent base stations and also markedly with 4 coherent base stations. 

When the raw 3D point data similar to the data from Figure 117, in the non-coherence case,  is 

passed through varied types of Kalman filters, the RMS error values decrease as visualized in 

Figure 118. While a conventional Kalman filter reduces the error from 65.75 mm to 54.79 mm, 

the developed techniques of D matrix protection and Mahalanobis protection further reduce the  

 

Figure 117: Raw data captured using wired PRF clocks and varying levels of LO (8GHz) coherence on each of the 4 base 

stations 
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Figure 118: 3D RMS error values resulting from application of various 3D Kalman filtering techniques with non-coherent 

base stations LOs, compare with Figure 117 

 

error to 44.03 mm and 19.15 mm, respectively. This last technique, Mahalanobis represents more 

than a three-fold reduction in error against the raw data. 

Since coherent base station LOs offer a convincingly lower degree of error, the next experiment 

(Figure 119) was enacted to test median and MIQR index filtering for a fixed window size of 17. 

This experiment exhibits the same trend as Table 28 and Table 29 also with the less distinct 

advantage of MIQR filtering over Median filtering. Considering that the MIQR filter and the 

Median filter are algorithmically O(1), constant-time algorithms with respect to the window size, 

larger window sizes would be able to be used without incurring additional computational 

overhead. In general, the time constant of the Median filter is lower than that of the MIQR filter. 

Considering metal interference, an experiment was developed to measure the system 

performance in the presence of non-occluding metal interferers (two metal bars) placed near the 

transmitter. As is shown in Figure 120, metal interferers placed close (1 cm) to the transmitter 



 

    

 178  

 

Figure 119: 3D RMS error values resulting from index filtered data captured using wireless PRF clocks, coherent base 

stations, and the TDOA algorithm 

 

 

Figure 120: 3D RMS error values resulting data captured dynamically in the presence of metal interferers using wireless 

PRF clocks, coherent base stations, MIQR=17, ave=5, and the TDOA algorithm 
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cause large spikes in error values primarily due to multipath interaction. When the metal 

interferer was removed to a distance of approximately 8 cm away from the transmitter, the error 

bounds in terms of RMS and maximum error decreased. 

For many applications, the goal with any positioning system is to achieve a low rate of error 

while the tracked device is in free-form motion (i.e. not a prescribed path). One criticism of the 

work of Meier et al. stems from their reporting of error values originating from the fact that the 

testing was performed on a calibrated track, which can provide constant velocity motion. Using a 

first-order Kalman filter in this case can obscure true system performance under varied dynamic 

conditions. In another experiment, shown in Figure 121, the tag was held by an observer and 

waved in several circular patterns with different orientations. The final error for this experiment 

was 6.95 mm RMS, which demonstrates system tolerance to dynamic environments. 

 

Figure 121: Free-form tag motion, comparing the 3D tracked points of the Optotrak (red) and UWB systems representing 

6.95 mm RMS error, IQR=17, no averaging, wireless, non-coherent 
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Following this result, a more complete set of experiments were undertaken to study system  

hysteresis, linearity, sensitivity, and repeatability errors [146]. One of these experiments seen in 

Figure 122 in three orthogonal views is the optical and UWB tags traversing down a track with a 

second DOF (the tag can translate laterally slightly down the track). 

From the side, the hysteresis error is visualized the most succinctly as in Figure 123 in two trials. 

Here the hysteresis error between 3.3-4.7% is determined by the maximum 3D error between 

positive travel and negative travel normalized by the track length.  

Considering linearity, Figure 124 shows a robotic traversal of three linear tracks, with a 3 second 

pause at 20 distinct points. These three linear tracks were adjusted and a least-squares fit line was 

passed through the Optotrak points and the UWB points, and the maximum error between these 

two lines was recorded as less than 6 mm over the track length of 650 mm. Thus, the linearity 

error is calculated as less than one percent. 

Using the same data previously acquired, only the static points (velocity less than 15 mm/s) were 

considered (Figure 125). The point positions were measured twice in this configuration, and it 

was determined that the static repeatability error was 7.00 mm. Again, the linearity is quite low 

when considering only the static points as the robot moves in slightly curved paths. Thus, the 

linearity measurement is slightly higher than if only static points are included. 

Finally, the highest performance configurations for both static and dynamic accuracy are 

displayed to indicate the settings for the best found system performance. The best configuration 

found for dynamic tracking was: MIQR=41, ave=5, and dynamic calibration. The best 

configuration found for static accuracy was MIQR=17, ave=5, α=40,000, and dynamic 

calibration.  
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Figure 122: Three orthographic views a) Top b) Front c) Side view of dynamic track experiment. All dimensions are in 

mm, where UWB data (blue) is plotted alongside Optotrak data (red). Optotrak data in the top view exhibits translation 

in cross-track direction due to a loose sliding bracket 

 

 

Figure 123: Hysteresis testing showing positive (blue) and negative (red) motion down a track on two occasions. Note local 

nonlinearities which appear to be correlated in each direction. Hysteresis error is 4.7% and 3.3% of full-scale, 

respectively 
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Figure 124: 3D large range linearity testing with dynamic robot motion. Optotrak data (red) is notably smoother, 

however, the UWB (blue) system exhibits only a slight linearity error (~1%) 
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Figure 125: Robot repeatability experiment, where each of 20 points was visited twice. UWB data (blue) and Optotrak 

points are plotted for direct comparison; RMS 3D error is 7.00 mm 
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Figure 126: Best results found: 3.26 mm for static positioning and 5.14 mm for dynamic positioning 

 

8.2. Error Budget 

8.2.4 Accuracy 

To fully understand system accuracy, one must understand all of the factors that can degrade the 

final positioning accuracy. Table 30 gives an outline of system error contributions. The errors are 

listed as observed error if the error was observed through experiment or directly measured. The 

theoretical worst case calculation results from  

8.2.4.1 Sampling Error 

The errors originating from sampling effects are two-fold. First, analog sampling performed by 

the sampling mixer compresses the high-bandwidth down-converted signal into a low bandwidth 

that can be sampled adequately by the ADC. In a basic sense, the sampling mixer exerts a larger 

effect on the sampling resolution. However, since inter-sample analog signals can approximate  
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Table 30: Breakdown of system errors with observed and theoretical magnitudes 

Error Type Observed 3D RMS Error Theoretical Worst Case 

Sampling Error   

- ADC (50 MS/s) - 0.3 mm 

- Sampling Mixer (100 GS/s) 1.49 mm vs. 400 Gs/s 1.5 mm 

- Sampling Mixer (400 GS/s) - 0.375 mm 

Pulse Width (300 ps) - 0.001 mm 

Base station   

- Position 1-2 mm 
5 mm 

(manual measurement) 

- Orientation 3-5 mm 10 mm @ ±45⁰  

PRF non-coherence 4.7 mm vs. wired 1-2 mm (jitter measurement) 

- 10k scale factor - 1.1 cm / m 

- 40k scale factor - 4.0 cm / m 

- 100k scale factor - 11 cm / m 

LO B.S. non-coherence 180 mm - 

AWGN   

- 30 SNR - 0.550 mm 

- 15 SNR - 4.30 mm 

- 3 SNR - 28.7 mm 

Multipath 5-10 mm 7.65 mm 

Dynamic Motion 0.08 / (mm/s) mm 0.0004 / (mm/s)  mm 

 

the original signal, the over-sampling on the part of the ADC (nominally at 5 times 

oversampling), can partially retrieve this information. 

8.2.4.2 Pulse Width 

The width of the Gaussian pulse can affect the positioning accuracy, primarily due to errors in 

accurately performing the leading edge detection step. The slope of the rising edge, known as the 

slew rate, dictates the probability that the next sample will be greater than the previous sample 

under known noise conditions. The calculated positioning point is determined by the accuracy of 

assigning the correct sample location as the pulse time-of-arrival. For example, when the noise 

conditions yield a SNR of 30dB combined with the pulse, which has a leading edge slew rate of 

1.3x10
10

 V/ps, the error probability of the peak detection algorithm being off by one sample is 



 

    

 186  

0.32%, while the two sample probability is negligible. This phenomenon results in an expected 

error of significantly less than one sample.   

8.2.4.3 Error due to Base Station Positioning and Base Station Orientation 

The accuracy of positioning is highly dependent on the accuracy of the known locations of the 

base stations. Additionally, if the base station orientations are unknown significant errors can 

arise, which has been shown to be as high as 10 mm, if the broadside Transmitter-Receiver angle 

exceeds 45
o
. If the base stations positions are known to the millimeter range, a calibration 

algorithm has been devised to calibrate base station positions and orientations. This algorithm 

has been treated in depth and has been found to eliminate these errors to levels less than the 

absolute magnitude of the sampling error. 

8.2.4.4 Error originating from pulse repetition rate non-coherence 

For this type of error the theoretical value differed from the observed value by a factor of two. 

Since this type of error is related to a scale difference, the actual error value must be related to 

the physical location of the tag relative to the base stations. The incongruity between the 

theoretical and observed results must be examined in terms of percentage scale range errors 

rather than 3D RMS errors to be consistent. 

8.2.4.5 Error originating from local oscillator non-coherence 

Again, the theoretical examination of this topic in Chapter 3 suggested that LO non-coherence 

should only cause a DC bias to the incoming down-sampled signals. In the case when only a 

signal channel is used for each base station, this error is increased with the effect of the carrier 

offset. Any LO shift (nominal or dynamic) toward a sub-harmonic value of the carrier LO will 
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create larger frequency leakages in the down-converted, and thus the sub-sampled signals. This 

carrier leakage can cause non-linear effects in 1D position values in static positioning and more 

troublesome, non-linearities in dynamic tracking scenarios. 

8.2.4.6 Overall Error 

8.2.5 Dynamic Error  

Maximum dynamic error can be defined as the maximum difference in position between a 

tag/probe and the values displayed on the screen. Under the design consideration of 24 Hz update 

rate per tag (with roughly 85 tags, thus 2.04 kHz system wide), the upper bound on dynamic 

error is dictated by the maximum speed the tags are typically moved. If accuracy is desired while 

moving the tags at 0.5 m/s, for example, the dynamic error will be 0.21 mm. If higher accuracy is 

desired, slower speeds must be used when acquiring points.  If fewer than 100 tags are active, a 

higher rate of accuracy is also possible, due to the higher sampling frequency of individual tags. 

8.2.6 Bandwidth of system 

Considering the difference between narrowband and UWB positioning systems, bandwidth is a 

critical parameter. Narrowband systems are traditionally limited by 1/10 of wavelength as the 

physical limit of 1D positioning accuracy. When greater amounts of the spectrum are utilized for 

positioning, position accuracy can be increased linearly with bandwidth. Given a certain carrier 

frequency (or central frequency) of transmission, the bandwidth cannot be increased without 

limitation, however, because the bandwidth can be a maximum of twice the carrier frequency (in 

this case the used spectrum would go from DC-2Fc). The system has a carrier frequency of 8 

GHz, and a -10dB bandwidth of 6 GHz. Also, the bandwidth is directly (Table 31) related to the 
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maximum slew rate of the system and thus forms the underlying physical phenomenon by which 

algorithms such as the Max-Ratio algorithm are highly dependent. 

8.3. System Time Budget 

When examining system performance on a large system level scale, one important parameter is 

the number of tags that can be supported by the system and the frequency at which points can be 

taken for each tag. For this analysis, two approaches may be taken. The first is a top-down view 

of the system. In this analysis, the starting point is the user requirement for a refresh rate of 24Hz 

to visualize points on a screen. For a system with only one tag, the scaling factor is directly 

related to the frequency at which 3D points may be acquired. For a scaling factor of α = 10,000, 

1 ms is required for a single point acquisition, thus this is a physical limit of 41 tags at 24 Hz. If 

the scaling factor increases the point acquisition time linearly, then the number of tags the system 

can support decreases inversely. Another limiting factor is the rate at which data can be read off 

of the FPGA by the serial cable. At this rate, a maximum of 85 tags can be positioned at 24 Hz. 

Alternatively, a higher speed data link could be employed (i.e. USB) to avoid this constraint. The 

system software running the TDOA algorithm can also process the incoming time indices and 

refresh the screen faster than this rate, thus, not posing a constraint at this time.  

 

Table 31: Maximum slew rate compared to system -10 dB band width 

Slew rate 

(V/ps) 

Bandwidth 

(GHz) 

6.67x10
8 

0.398 

1.33 x10
9
 0.795 

2.22 x10
9
 1.33 

6.67 x10
9
 3.98 

1.33 x10
9
 7.95 

3.33 x10
9
 19.9 
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Using a bottom-up approach, the system must employ a communication scheme to turn tags on 

and off in quick succession. To position one tag,  the following actions must occur: turn off the 

previous positioned tag, turn on the current tag, and finally allow the microwave system to 

sample the pulse train. The tag turn off and turn on times of the tag are estimated to be 2.5 µs and 

2.5 µs, respectively. At this rate the 1 ms sample acquisition time will dominate the time to 

collect the sample (Table 32). Taking a conservative approach, it is possible to assume that the 

analog signal will not be fully set up within 1 ms cycle, thus, if two complete cycles are required 

only about 20 tags may be supported at 24 Hz. 

Table 32: System characteristics which determine tag positioning throughput and latency 

Effect  Throughput  Latency  

Tag Turn 

on/off  
200 kHz  5.0 µs  

Pulse 

Repetition Rate  
1 – 2 kHz  0.5-1.0 ms  

Max-Ratio  ~100 kHz   5.44 µs  

Serial Cable  2.04 kHz  490 µs  

TDOA  1.33 kHz  375.5 µs  

 

 

 

 

  



 

    

 190  

9. DISCUSSION AND FUTURE WORK 

 

Demonstrated in this dissertation was a host of surgical tools for applications in pre-planning, 

intra-operative, and post-operative phases of primarily orthopedic surgeries. The component of 

this body of research was the development, testing, and theoretical discussion of aspects of a 

novel UWB microwave positioning technology posited as a subsystem in the overall scope of 

this research. This positioning technology is, at the time of this writing, the highest performing 

wireless UWB positioning system that exists in the known literature or as a commercial system. 

This system exceeds the accuracy of commercially available systems by more than an order of 

magnitude (~5.5 mm accuracy vs. 10-15 cm) (Table 33) and nearly matches the accuracy of the 

highest performing system when in the wired configuration (0.73 mm this system vs. 0.1 mm of 

Meier et al.).  While this result furthers the state-of-the-art, more work is needed to see use of 

this positioning technology for its intended application as the backbone of a surgical navigation 

system. A rich set of solutions exists for extending and improving the accuracy, performance, 

and robustness of the system.   

 

Table 33: Comparison of demonstrated system with commercially available and research-grade systems in existence 

Positioning System  Type of System  Reported Accuracy  

Ubisense
TM

  Wireless  15 cm  

Sapphire Dart
TM

  Wireless  10 cm  

Demonstrated System Wireless  5.5 mm  

 Zetik et al.  Wired  1.5 cm (2D)  

Low et al.  Wired  1.0 cm (1D)  

Demonstrated System Wired  0.73 mm (3D)  

Meier et al.  Wired 0.1-2.0 mm  
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9.1. System Overview 

The detailed descriptions and analysis provided in this dissertation serve to highlight some of the 

challenges of working in the UWB and high frequency RF domains. Before discussing the 

internals of the UWB positioning system, the early work in Chapter 2 examined and compared 

two existing technologies used in surgical navigation systems. These systems were tested in a 

cadaveric hip surgery and in a number of other static and dynamic environments. By framing the 

discussion in terms of real surgical tasks and goals, discontinuities arose between the 

performances of the two systems. Next, in Chapter 3 a broad description of our UWB system as 

it was published was presented. This work introduced the effects of channel modeling, 

unintentional time scaling, sub-sampling, multipath interference, peak detection, and 3D 

positioning. Additional work provided a look at the channel modeling work that served as the 

framework for the peak and leading edge algorithm development in Chapter 4. By studying the 

effects of multipath interference on a large and static object an in-depth understanding was 

formed on how this type of interference corrupts the transmitted signal. With this knowledge, 

several peak and leading edge detectors were studied in Chapter 5, which led to the novel 

discovery of the Max-Ratio algorithm. Also, the GP technique was demonstrated to simplify and 

produce new peak detection programs. Although, in the end the GP-produced peak detection 

results were not superior to the Max-Ratio algorithm, the method provides an efficient way to 

test new programs should system RF signals change substantially. Next, in Chapter 6, robust 

positioning methods were examined in the context of differing base station geometries with 

reducing the final system error as the ultimate goal. Several filtering techniques were studied 

including Kalman filtering of the 3D positions, as well as non-linear filtering of the indices using 
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the MIQR filter. To ensure that the system is viable in different environments, three types of 

system calibration were discussed in Chapter 7. These calibration methods highlight some of the 

system-level challenges including the unintentional time scaling and the base station phase center 

error. Chapter 8 points out the system characteristics under a number of parameter and 

environmental settings. The experimental results in this section demonstrate the final system 

performance of 3.2 mm static accuracy and 5.1 mm dynamic error.  

9.2. Future System Improvements 

The future improvements to the system fall into many different categories: performance related, 

aesthetically related, or commercialization related. Performance related improvements are 

directed primarily at reducing or mitigating error effects from physical phenomenon, or by 

improving the robustness of the system with respect to the integration of components of the 

system itself. Aesthetically driven improvements will yield improvements in system usability, 

compactness, and ergonomic system appearance. While commercialization related improvements 

share significant overlap with the previous two categories, some of the motivation in the 

commercial domain is fabrication cost and quality function deployment. The following ideas are 

summarized in Table 34. 

9.3. Future Work 

In tackling the fundamental problems of the system, the tradeoffs that exist between sample 

acquisition time and accuracy amounts to a Paretto-type multi-objective optimization problem. In 

multi-objective optimization many new and interesting techniques are currently receiving large 

amounts of attention in the current computational intelligence literature. The characteristics of  
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Table 34: Categorized system improvements, with expectations on improvement metrics 

Category of 

System 

Improvement 

Type of Improvement Description of expected results 

Performance IQ Dual Channel per base station 
Doubles fabrication cost per base station, 

could add 20-30% error improvement 

Performance 
Coherent FPGA clocks, or 

mixed-signal ASIC design 

Improves noise tolerance, clocking sampling 

jitter reduction improves performance by 2-

5% 

Performance Additional base stations 

Improves PDOP values, improves system 

robustness in dynamic blockage 

environments 

Performance 
Probe design: antenna null zone 

elimination 

Optimized antenna orientations will reduce 

potential for system malfunction in 

orientation 

Performance 
System supports multiple tags in 

TDMA communications 

System probe computed error can be 

decreased with redundant number of tags per 

probe 

Aesthetic Probe design 
Early adopters will enjoy and promote 

products which suit their needs uniquely 

Aesthetic / 

Commercialization 

Tag and base station 

miniaturization 

Significantly increases the positioning 

potential in constrained spaces, reduces 

bulky components 

Commercialization 
Tag-level communications using 

UWB channel 

Less regulatory hurdles as all system 

functions can be handled at one frequency 

band 

Commercialization 
Telemetry: using tag 

communications 

Tag understands and communicates co-

located sensor data 

Commercialization 

Board-level fabrications of base 

station and control station 

hardware 

Reduces system fabrication costs 

Commercialization Hermetic sealing 
Prevent liquids or unsanitary substances 

from contaminating electronics on the tag 
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the base station calibration algorithm will continue to be an area where more dedicated research 

will be focused. Certain aspects of the hardware design improvements, while intriguing, will be 

out of the scope of this future work, although hardware devices that modify the shape or 

characteristics of the transmitted pulse must be carefully examined. Additional work related to 

improving the signal-to-noise characteristics of the digital signal processing is also of interest. 

Advances in FPGA performance would be a key leveraging point for more computationally 

intensive algorithms. While this investigation focused on the use of active tags another important 

vein of research is that of passive tags. In this scenario, tags could be positioned using round-trip 

time-of-flight information instead of strictly time-of-flight which is used in this system. 
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APPENDIX A – FISHER DISCRIMINANT PCA ANALYSIS ALGORITHM 

 

To analyze how shape varies between male and female populations of femora, a novel method 

for automatic feature generation and ranking was developed [5]. This method utilizes the power 

of PCA both as a means of variable reduction and as a global shape descriptor. This method is 

designed to find points of high discrimination between male and female femora when normalized 

against the first Principal Component, which is considered primarily scale. The method relies on 

weighting the eigenvectors using the Fisher Discriminant Ratio (FDR) defined in (8). The 

following algorithm shows how the FDR is applied to the PCA coordinates in a summed vector 

fashion. Algorithm 3 describes the steps necessary to perform this analysis: 

 

Algorithm A-1: Fisher Discriminant Ratio for PCA comparison 

1. PCA is performed over all models (both male and female femora). The PCA coordinates 

are recorded for each class in the matrices Z
M

 and Z
F
, where rows represent observations 

and columns are the principal component variables in decreasing order of significance. 

2. By computing the means of the columns of Z
M

 and Z
F
, the group mean vectors are found 

M
 and 

F
 of length p. Similarly the standard deviations vectors are computed to be 

M
 

and 
F
 of length p.  

3. For each of the elements in 
M

, the sign of the mean is computed according to: 

pjsigns M

jj 1)(  (89) 

where sj can be -1, 0, or +1 and describes the directionality of the jth eigenvector relative 

to the class means. 
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4. Next the Fisher Discriminant Ratio is calculated per: 

pjd
F
j

M
j

F
j

M
j

j 1
)()(

)(

22

2

 (90) 

where dj represents the power of the j
th

 principal component to discriminant between the 

classes of male and female. 

5. Subsequently, the weightings are applied to the eigenvectors: 

p

j

jjj UdsF
1  

(91) 

where F is a column vector of length 3N and sj ensures that the summation of the 

discrimination factor dj across the p leftmost columns of U consistently point to the same 

class.  Since the eigenvectors contained in U are orthogonal in 
3N

, but in general do not 

consistently point towards the same class, it is better to sum the weighted eigenvectors so 

that consistent differences between the classes are retained. 

6. Finally, the column vector F is reinterpreted as a 3D deviation vector for each of the N 

model points by reorganizing the vector as an Nx3 matrix. The magnitudes of the 

deviation vectors provide an intuitive mapping of highly discriminating between the 

classes.  

 

It is worth noting that this procedure highlights areas on models that would be highly 

discriminating without the use of any other information. That is, if a forensic scientist or 

anthropologist can accurately locate landmarks identified by this algorithm, the points 

themselves should provide adequate discrimination without the use of any other landmarks. In 

the interest of this study, it was desired to examine femoral shape differences independent of the 
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well-known size differences between male and female femora. Since the first principal 

component represents most of the variance of femora and is usually considered a scale 

parameter, an alternative of equations (89)-(91) was formed, where the index j was defined only 

between 2 and p. This assisted in the location of discriminating areas on the surface of the femur 

if scale was not considered. Since the top ten PCs contribute to over 99% of the cumulative 

variance, in these studies p was set to ten.  
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APPENDIX B – GENETIC PROGRAMMING VERILOG MODULE 

GENERATION 

 

///////////////////////////////////////////////////////////////////////////// 

module BaseStationModule2( 

clk,  

reset, 

pushA, 

S0,S1,S2,S3,S4, 

Thresh,  

PEAKA); 

//system-wide characteristics 

parameter width=10; 

parameter clk_width=32; 

parameter hold_length=25000; //exactly half of one period 

parameter noise_hold=10000; //period to sample noise 

parameter max_hold_length =75000; //period to keep the same threshold 

input clk; 

input reset; 

input pushA; 

input [width-1:0] S0; 

input [width-1:0] S1; 

input [width-1:0] S2; 

input [width-1:0] S3; 

input [width-1:0] S4; 

input [7:0] Thresh; 

output PEAKA;    //this is the final output of the peak detection 

 

//wires to describe propagation of intermediate variables up the expression  

//tree 

wire [width-1:0] S5; 

wire [width-1:0] S6; 

wire [width-1:0] S7; 

wire [width-1:0] S8; 

wire [width-1:0] S9; 

wire [width-1:0] S10; 

wire [width-1:0] S11; 

wire [width-1:0] S12; 

wire [width-1:0] S13; 

wire [width-1:0] S14; 

wire [width-1:0] S15; 

wire [width-1:0] S16; 

wire [width-1:0] S17; 

wire [width-1:0] S18; 

wire [width-1:0] S19; 

wire [width-1:0] S20; 

wire [width-1:0] S21; 
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wire [width-1:0] S22; 

wire clk,reset,clk_slow; 

wire reset_outA,reset_outB; 

wire valid_outA; 

wire PEAKA; 

wire RST; 

wire [width-1:0] tA; 

assign tA = { Thresh,2'b11}; 

wire readyA; 

reg startA; 

reg stateA; 

parameter up = 1'b1, 

          down = 1'b0; 

 

//initial block always gets called first, at FPGA power up. 

initial begin 

  startA <= 0; 

  stateA <= 0; 

 

end 

 

//this block runs continuously  

always @(posedge clk) begin 

 

 //synchronous reset 

 if(reset) begin 

    startA <= 0; 

       stateA <= 0; 

 end 

   

//simple two-state structure, to reset GP code after each 

// detected peak. When startA goes high, followed by low, all 

// GP sub-modules get reset. 

  case(stateA) 

  up: begin   

        if(PEAKA == 0) begin 

      startA <= 1; 

    stateA <= down; 

    end 

      end 

  down: begin 

      startA <= 0; 

     if(PEAKA == 1) stateA <= up; 

        end 

    endcase 

end 

 

/////////////////////////// GP MODULES /////////////////////////////////// 

// general module syntax: 

// ModuleType #(parameter) InstanceName(clk,reset,input0,input1,output); 

////////////////////////////////////////////////////////////////////////// 
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first #(width)   Module0(clk,startA,S0,S5); 

sq #(width)   Module1(clk,startA,S1,S6); 

maxwindow #(width) Module2(clk,startA,S1,S3,S7); 

sq #(width)   Module3(clk,startA,S0,S8); 

mult2 #(width)   Module4(clk,startA,S3,S3,S9); 

sub2 #(width)   Module5(clk,startA,S5,S0,S10); 

sq #(width)   Module6(clk,startA,S6,S11); 

sq #(width)   Module7(clk,startA,S7,S12); 

sub2 #(width)   Module8(clk,startA,S8,S4,S13); 

dot2 #(width)    Module9(clk,startA,S10,S11,S14); 

sq #(width)    Module10(clk,startA,S12,S15); 

intOr2 #(width)   Module11(clk,startA,S13,S9,S16); 

ema #(width)   Module12(clk,startA,S14,S2,S17); 

sub2 #(width)   Module13(clk,startA,S15,S3,S18); 

sq #(width)   Module14(clk,startA,S16,S19); 

delay #(width)   Module15(clk,startA,S17,S18,S20); 

mult2 #(width)   Module16(clk,startA,S1,S19,S21); 

mult2 #(width)   Module17(clk,startA,S20,S21,S22); 

 

assign valid_outA = (S8>tA); 

HoldFor #(hold_length) holdA(valid_outA, clk, reset, PEAKA); 

//////////////////// End of GP MODULES /////////////////////////////////// 

endmodule 
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APPENDIX C – C++ CODE FOR GENETIC PROGRAM 

SIMPLIFICATION 

 

vector<Tree*> Tree::compactify(){ 

 

 vector<TreeNode*> uniqueList; 

 vector<Tree*> subTrees; 

 vector<string> symbolNames; 

 

 Tree* newTree = this->clone(); 

 

 int height = newTree->getHeight(); 

 int numNodes = newTree->getTotalSubNodes(); 

 

 /* 

  * First iterate over all heights, let’s start with the smallest nodes 

  * of height = 1. After finding each unique node, we'll store them for use 

  * in a new set of trees with symbolics for each unqiue tree we've found  

  * thusfar. 

  */ 

 for(int h=1;h<=height;++h){ 

  for(int kk=0;kk<numNodes;++kk){ 

   TreeNode* tn=newTree->getTreeNodeIndex(kk); 

   if(newTree->getHeight(tn) == h){ 

    //start with the hypothesis that this node is unique 

    bool isUnique=true; 

    /* iterate over all of previously found nodes,  

 * see if this one is unique 

 */ 

    for(int j=0;j<uniqueList.size();++j){ 

     if( uniqueList[j]->isEquivalent(tn) ){ 

      isUnique = false; 

     } 

    } 

 

/* if this node is unique, then let’s give it a name and 

 *   push it onto the unique list 

 */ 

    if(isUnique){ 

 

 

     Tree* t = new Tree(); 

     t->replaceTreeNodeAt(tn->clone(),0); 

     subTrees.push_back(t); 

 

     //create a symbol name add it to a corresponding list 

     int numEle = uniqueList.size(); 

     ostringstream oss; 

     oss << "S" << numEle; 

     symbolNames.push_back(oss.str()); 

 

     //add this node to the unique list 
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     uniqueList.push_back(tn); 

    } 

   } 

  } 

 } 

  

 for(int k=0; k< subTrees.size(); ++k){ 

  simplify(subTrees[k]->getHead(), symbolNames, uniqueList); 

 } 

 

 delete newTree; 

 

 return subTrees; 

} 

 

 

void Tree::simplify(TreeNode* node, vector<string> symbolNames, vector<TreeNode*> 

uniqueList){ 

 int numChildren = node->getNumChildren(); 

 

 //only want to perform this action if this node actually has children 

 // the case S1 = Q needs no simplification. 

 if(numChildren > 0){ 

  for(int i=0;i<numChildren;++i){ 

   TreeNode* tn=node->getChild(i); 

   bool isUnique = true; 

   for(int j=0;j<uniqueList.size();++j){ 

    if(uniqueList[j]->isEquivalent(tn)){ 

TerminalFunction* tf = new TerminalFunction ( 

symbolNames[j], NULL); 

     TreeNode* tn2 = new TreeNode(tf); 

     TreeNode* oldChild = node->replaceChild(tn2,i); 

     delete oldChild;  

     isUnique = false; 

    } 

   } 

   if(isUnique){ 

    simplify(tn,symbolNames,uniqueList); 

   } 

  } 

 } 

} 



 

    

 224  

VITA 

 

Brandon Cole Merkl was born in Wheat Ridge, CO, on September 10, 

1980. Brandon received the B.S. degree in electrical engineering and the 

B.S. degree in computer science from the Colorado School of Mines, 

Golden, CO, in 2004. Since 2005, he has worked as a researcher for the 

Center for Musculoskeletal Research at the University of Tennessee, Knoxville, TN. He is a 

founding member of Sapientia Technologies, Inc. He has published work in the fields of image 

processing, forensic anthropology, biomedical engineering, and clinical orthopedics. His 

research interests consist of such disparate topics as signal processing, high performance 

computing, machine learning, anatomical modeling/analysis, fuzzy-neural systems, multivariate 

statistics, computer vision, information theory, and nonlinear optimization. Brandon is currently 

a member of the IEEE Computer Society, IEEE Computational Intelligence Society, and IEEE 

Vehicular Technology Society. 

 

 

 


	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2008

	The Future of the Operating Room: Surgical Preplanning and Navigation using High Accuracy Ultra-Wideband Positioning and Advanced Bone Measurement
	Brandon C. Merkl
	Recommended Citation


	signature_page
	MerklBrandon.pdf

