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Abstract: Received signal strength (RSS) has been one of the most used observables for location
purposes due to its availability at almost every wireless device. However, the volatile nature of RSS
tends to yield to non-reliable location solutions. IEEE 802.11mc enabled the use of the round trip time
(RTT) for positioning, which is expected to be a more consistent observable for location purposes. This
approach has been gaining support from several companies such as Google, which introduced that
feature in the Android O.S. As a result, RTT estimation is now available in several recent off-the-shelf
devices, opening a wide range of new approaches for computing location. However, RTT has been
traditionally addressed to multilateration solutions. Few works exist that assess the feasibility of the
RTT as an accurate feature in positioning methods based on classification algorithms. An attempt is
made in this paper to fill this gap by investigating the performance of several classification models in
terms of accuracy and positioning errors. The performance is assessed using different AP layouts,
distinct AP vendors, and different frequency bands. The accuracy and precision of the RTT-based
position estimation is always better than the one obtained with RSS in all the studied scenarios, and
especially when few APs are available. In addition, all the considered ML algorithms perform pretty
well. As a result, it is not necessary to use more complex solutions (e.g., SVM) when simpler ones
(e.g., nearest neighbor classifiers) achieve similar results both in terms of accuracy and location error.

Keywords: positioning; location; IEEE 802.11mc; RTT; Wi-Fi; positioning error; fingerprinting; RSS;
machine learning; under-coverage; scalability

1. Introduction

In the era of information, location is perceived as a highly valuable piece of information
that can be exploited by location services to drive users to their favorite places. global
navigation satellite systems (GNSSs) have been used for providing independent, accurate
and ubiquitous location services. However, their use is compromised in scenarios where
the user has nonline of sight (NLOS) to the satellites (e.g., indoor environments and urban
canyons). Currently, no location system has been able to provide the same coverage and
accuracy in indoor scenarios as GNSS can outdoors, especially when dual-band devices
are used. Several technologies have been proposed to address this problem, including the
ultrawide band (UWB) [1], radio frequency identification (RFID) [2], Bluetooth low energy
(BLE) beacons [3] or magnetic field sensing [4]. These technologies involve the deployment
of custom hardware for location only purposes, which limits their availability to specific
services that require very accurate positions at any cost.

Large efforts have been made to leverage the large availability of data from regular
communication networks that can be converted into a position. An appealing technology
that can be exploited for location purposes is IEEE 802.11, since it offers a good alternative
in terms of accuracy, precision and cost compared to similar systems [5,6]. Among different
approaches that are used to convert an IEEE 802.11 measurement into a position [7],
fingerprinting seems to be the best candidate as it is a passive solution and does not require
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line of sight (LOS) to the access points (APs). In the past few years, a lot of interest raised
among researchers on the use of the received signal strength (RSS) in fingerprint-based
location estimation algorithms, since RSS measurements can be gathered easily by any
commercial/consumer off-the-shelf (COTS) smartphone without any additional hardware
equipment. However, RSS readings are known to be highly variable due to changes in the
environment or to multipath fading [8].

Recently, the use of IEEE 802.11mc round trip time (RTT), which is also known as a fine
time measurement (FTM), as an observable in fingerprinting solutions has been suggested
[9,10] and is expected to provide more stable measurements compared to using the RSS
[11]. However, so far, the RTT has been typically used as an observable for multilateration
purposes [7].

In the following, the motivation behind this work is illustrated and the main contribu-
tions of this paper are highlighted.

1.1. Motivation

Fingerprinting consists of two stages: (1) the construction of an offline fingerprint
database with a given observable from the APs in sight; (2) the matching of the data
observed from the user’s device with the data stored in the fingerprint database to infer
the most likely position of the device. Despite providing good to excellent performance,
fingerprinting comes with two main issues that should be addressed: (1) the database
construction and maintenance, and (2) the variability in the observations. The database
construction often becomes a costly task in terms of time and resources, as it requires
defining a dense grid of points covering the area where the location system is going to
be deployed, and then conducting a survey to collect a large amount of measurements
at each point, so that the fingerprints can be computed. Moreover, further changes in
the environment require the database to be updated and consequently fingerprints to be
eventually retaken.

Several approaches have been proposed to address these issues. They can be clas-
sified in two groups: database estimation and collaborative data collection. The former
is addressed at skipping the construction of the fingerprint database by estimating the
values that should be observed in a discrete set of virtual reference points (VRPs) and then
interpolate the remaining ones until obtaining the desired precision. This approach is taken
by the authors in [12], who proposed estimating the fingerprints at the VRPs through a
nonzero mean Gaussian process regression trained from a few actual measurements made
at the APs. Similarly, a basic radio map is built in [13] to subsequently expand it by using
the Biharmonic Spline Interpolation (BSI) method. The second group consists of approaches
that dynamically build the fingerprint database from measurements reported by the users
of the location system. Since these measurements come from several sources and persists on
time, the database remains updated anytime as long as there are enough users. For instance,
the authors in [14] propose a system to build crowd-sensed radio maps, where a particle
filter coupling inertial sensors and a multivariate Gaussian fingerprinting is placed on top
to enhance the accuracy of crowd-sourcing indoor positioning. Likewise, the authors in
[15] propose a method to transfer knowledge from the old RSS-based radio maps to a new
one by minimizing the Wasserstein distance. In this way, the data distribution in the new
map can be better matched with the old one, thus improving the positioning performance.

The other issue that fingerprint systems need to address is coping with the variability
in the observations. Historically, the RSS has been the preferred observable used to create
the fingerprint database [16,17] since it can be passively measured by any COTS Wireless
Fidelity (Wi-Fi) device. However, RSS-based fingerprinting is vulnerable to environmental
dynamics [18], thus compromising its scalability and deployment. The authors in [19]
observed that, the more the APs in the testbed space, the higher the efficiency of fingerprint-
based algorithms. However, because collecting RSS measurements is time and effort
consuming, the localization cost increases with the number of APs [20]. This is especially
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problematic as the environment changes over time. As a result, it is necessary to periodically
update the database, which requires extra time, effort, and cost.

Most recent solutions suggest to use the channel state information (CSI) as input to
fingerprinting solutions [21–23], as it provides richer and more reliable data that pave the
way for better data matching at the location stage. However, obtaining the CSI needs to be
supported by hardware, which generally does not apply to COTS devices [24] and hence
limits a global adoption of CSI.

Ranging can also be estimated by measuring the time-of-flight (TOF) of a signal, i.e.,
the time a frame takes from a device to an AP, or the RTT, i.e., the time it takes from
the device to an AP and back. However, very precise time measurements are required
in order to obtain accurate ranging estimations. As a communication network, the IEEE
802.11 technology did not provide a way to compute such measurements from the very
beginning, since they were not necessary for the network operation. This feature has been
made available since IEEE released the IEEE 802.11mc standard in 2016 [25], as it allows
accurate RTT measurements.

For a few years, only some devices from specific manufacturers included such enhance-
ments, but positioning capabilities were mostly left aside, though. Finally, in 2018, Google
announced the support of positioning through FTM in Android devices from version 9
(Pie), and network manufacturers (e.g., Intel, Aruba) started supporting the technology in
their devices. The list of available devices supporting the IEEE 802.11mc feature is growing
and growing [26]. This new scenario, with native support for accurate time measurements
in Wi-Fi networks, have boosted the development of location solutions based on multi-
lateration with FTM measurements. For this approach to work, the positions where the
APs are settled must be known. This information is normally not provided by the APs
in private networks. The authors in [27] propose a double-iteration approach to mitigate
this issue, where the APs positions are computed in a first stage by using a GNSS solution.
Then, in a second stage, these positions feed a hybrid GNSS/FTM-based Wi-Fi position
system to compute the user’s position, at the cost of inheriting the errors that come with
APs positions. Moreover, RTT measurements are very sensitive to NLOS conditions [28],
which can lead to aberrant errors in the computed position [29,30].

Using traditional RSS observables in fingerprinting systems has some clear advantages
over RTT. Firstly, RSS data are available in almost every COTS wireless device, whereas RTT
availability requires network devices to support the IEEE 802.11mc technology. Secondly,
RTT estimations require some location traffic (i.e., FTM frames) to be injected in the network,
which reduces the throughput available for regular data services. The larger the amount
of RTT estimates, the lower the bandwidth left for general data purposes. On the other
hand, RTT observables are expected to be less sensitive to the scenario than RSS-based ones.
Thus, the RTT tends to be more stable than the RSS. Moreover, slight environment changes
that could severely impact the RSS are often less noticeable in terms of the RTT.

Accordingly, RTT and RSS observations present several features that look comple-
mentary, as shown in Table 1. Thus, coupling several observables could overcome those
issues, as recently suggested. The authors in [9] propose an RTT-RSS fingerprinting model
where positions are estimated based on the similarity between real-time sensed RTT and
RSS measurements against the fingerprint map data previously collected during the offline
phase. According to the authors in [9], this similarity approach allows the location system
to overcome the typical indoor environment localization challenges, such as multipath
interference and NLOS-related transmission problems. In [10], the authors propose an
indoor fingerprinting system based on deep neural networks. This system leverages both
the RTT and RSS with a model that addresses the multipath, NLOS, signal attenuation,
and interference challenges of the indoor environments. Despite coupling the RTT and the
RSS measurements provides good results, the authors in [10] state that the benefits from
RSS observations are scarce. However, there are no data on how the frequency band or
the use of simpler (and cheaper) machine learning algorithms could impact an RTT-based
fingerprinting system.
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Table 1. Properties of RTT and RSS as observables for fingerprint-based positioning.

Parameter RTT RSS

System scalability Medium High
Observable availability Low High
Observable stability High Low
Environment sensitiveness Medium High
Database estimation complexity Medium High
Device calibration Medium High

Fixing the user’s position in a fingerprinting system is understood as a classification
problem. Once the measurements of the neighboring APs have been collected, they are
compared with the fingerprints in the database to find the best matching entry (i.e., the most
likely position where the station (STA) is expected to be). Several classification algorithms
that are available in the literature can be used for positioning [31]. In the case of RSS
fingerprinting solutions, it is well known that the nearest neighbor (NN) provides the best
trade-off between positioning error, complexity, and power consumption [32]. However,
it is not clear whether the same applies to other observables, such as the RTT [7]. In this
context, this paper investigates employing the RTT, instead of the RSS, as an observable to
construct the fingerprint database for positioning purposes. The higher stability of the RTT
is expected to provide more accurate and precise positions compared to the use of the RSS.

The aim of this paper is to fill the gap that still exists in the literature. In [33], which
was published in June 2022, the authors surveyed 119 papers on machine learning (ML)
algorithms applied to indoor positioning. In 114 of the 119 papers published between 2016
and 2021, the metric used for positioning was the RSS. In fact, the survey [33] does not
mention any work that uses the FTM by assessing the performance of several state of the
art (SoA) ML classifiers when applied to an RTT-based fingerprinting solution. The results
shown in this paper are also compared with SoA RSS-based fingerprinting approaches.
Moreover, since the FTM-procedure needs the Wi-Fi STA and the AP to explicitly exchange
special messages in order to obtain the timestamps for the distance estimation, the more
the APs to be pinged, the higher the overhead and, thus, the lower the available bandwidth
for other users’ data exchange. In order to address this scalability issue that affects any
positioning approach based on FTM observables, the impact on the performance of the
positioning algorithm when using a smaller number of APs is also assessed, both in the case
of the RTT-based and of the SoA RSS-based fingerprint approaches. Notice that the same
solutions introduced above might also be applied here to alleviate the database construction.
However, this paper is aimed at assessing the impact of using the RTT in fingerprinting
positioning systems. Therefore, efforts on overcoming other fingerprinting issues, such as
reducing the cost of database construction, are postponed to further stages, as long as RTT
data reveal being valuable enough to be used in fingerprinting positioning systems.

1.2. Contributions

In this paper, an RTT-based fingerprint radio map is presented, which was obtained
through a measurement campaign in May 2021. The radio map stores the ranges from
IEEE 802.11mc compatible APs located in the auditorium of our university. To the best
of the authors’ knowledge, this paper is the first in the literature at studying whether the
IEEE 802.11mc FTM can contribute as an observable to fingerprint-based positioning [7,33],
rather than providing a complete location system definition. The raw performance of six of
the most popular supervised learning techniques [34] when applied to FTM observables is
assessed and compared to what RSS-based fingerprinting solutions would achieve under
the same conditions. The quality of the match is quantified according to a distance model,
which works as a loss function: the larger the value, the worse the position estimation. The
use of the FTM as an observable is thus validated, either to be coupled to already proposed
RSS-based systems or as the main observable for further fingerprint solutions.

The main contributions of this paper are as follows:
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1. The accuracy and stability of the FTM observables in the fingerprint database are
discussed;

2. The accuracy of different classification algorithms is assessed when positioning a
STA using the FTM procedure defined in the IEEE 802.11mc standard. The accuracy
is always higher than 99%, whatever the AP vendor working in any of the 5 GHz
channels assessed in this study;

3. The performance of the FTM-based positioning approach is compared with the RSS-
based one, both in terms of accuracy and precision of the position estimations, showing
that the former outperforms the latter for all the AP brands working in the 5 GHz
channels. In the worst case, the mean absolute error of the RSS-based positioning can
be up to 10x higher than the RTT-based one;

4. The impact of using measurements from a smaller number of APs is studied in the
5 GHz band, both for RTT and RSS observations. While decreasing the number of
APs is known to have a negative impact on the RSS- fingerprint-based positioning
[19], to the best of the authors’ knowledge, there is no study analyzing its impact on
RTT-based fingerprinting. However, since RTT estimations require specific frames
being exchanged in the shared medium, the available throughput may be constrained
when multiple users are trying to locate themselves; thus, assessing the performance
when a lower number of APs are involved in the measurements is of key importance.

This paper is organized as follows: First, the methodology used to gather the RTT
measurements and the scenario where the radio map was constructed are described in
Section 2. Section 3 presents the resulting dataset and compares some statistics, especially
focusing on the higher deviations in the RSS measurements compared to those in the RTT; in
addition, a brief discussion of the ranging error observed in the collected data are provided,
which indicates poor accuracy for applying multilateration methods with RTT observations.
Instead, a fingerprinting approach is taken in this paper, which enables the conversion of
the RTT measurements reported by the STA into positions, by matching them with the RTT
fingerprints in the database (i.e., traditional ML models in [24]). The performance of this
positioning model is assessed in Section 4, where several SoA classification algorithms are
compared, while considering different layouts and frequency bands. In order to assess
the accuracy of the classifiers with both RTT- and RSS-based fingerprinting, testing is
performed at the locations where the measurements were gathered, which is in line with
other recent works [34]. Validation at other locations is out of the scope of this paper, as
it would require also defining and evaluating a post filtering stage, which is necessary
in order to be able to position the user in any point inside the grid (e.g., centroid-based
approach [35], particle filter [36], regression ML models [37], etc.). The final remarks in
Section 5 conclude the paper, while Section 6 highlights some open issues that are worth
further investigation in the near future.

2. Measurement Campaign
2.1. Methodology

Every fingerprinting solution needs constructing the fingerprint database as a first
step. Therefore, a grid of reference points (RPs), where the STA takes measurements, must
be defined. Since this study focuses on FTM-based fingerprints in the first place, at each
RP, the STA has to run the IEEE 802.11mc procedure with every AP in sight; the estimated
distance to each AP is then stored in a database. Therefore, both the STA and the APs
need to be IEEE 802.11mc compatible devices. Figure 1 shows the FTM procedure, through
which four timestamps are recorded: t2 and t3 for the STA (i.e., the initiating station on
the left in Figure 1), and t1 and t4 for the AP (i.e., the responding station on the right in
Figure 1). Another frame (e.g., the last FTM frame sent at t5 in Figure 1) needs to be sent
to the STA with the two latter timestamps. Thus, the STA can use the four timestamps to
easily compute the RTT, as

RTT = [(t4 − t1)− (t3 − t2)]. (1)
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Since RTT estimations generally contain errors (e.g., due to bandwidth limitations,
multipath propagation, oscillator drift and jitter [38]), a burst of B RTT samples per estima-
tion are usually requested instead of just one. In addition, a calibration function is very
often included, which is used to correct the expected measurement errors according to the
magnitude of the observation. This is the case for the Android O.S. versions 9 to 11, which
returns the average estimated distance over seven RTT samples (i.e., eight FTM messages
as shown in Figure 1), which is the typical burst size in the Android API; more recently,
the Android 12 release allows the user to set the size of the burst, but the default burst
size remains set to 8 FTMs per estimation. In order to compare the RTT-based ranging
performance with the RSS-based one of the SoA, the RSS received from every AP at sight
and at every RP is also stored in the database.

Figure 1. IEEE 802.11mc procedure for the RTT estimation. A typical burst for the Android API
comprises seven RTT measurements.

2.2. Experimental Scenarios

The RTT measurements were collected inside the auditorium at the UPC School of
Telecommunications and Aerospace Engineering in Castelldefels (EETAC). The scenario
is a rectangular area of 19.2 × 8 m, with a few narrow windows and a large number of
individual chairs, as shown in Figure 2. A grid of 5 × 5 RPs has been drawn in this area,
with a width of 4.8 m on the x-axis and 2 m on the y-axis. This room is selected to provide
a challenging scenario in terms of positioning, as it represents an area with a high density
of Wi-Fi networks, where other outdoor solutions (e.g., GNSS) hardly work. In this first
analysis, LOS conditions are favored (e.g., no people are allowed in the room during the
measurement campaign); in a future analysis, noticeable NLOS conditions will eventually
be introduced.

Eight IEEE 802.11mc compatible APs have been set up inside the auditorium. As we
could not settle them on the ceiling, they are placed on the available furniture in the room
(e.g., on the tables next to the chairs, on the sills, etc., at a height of 1.5 m). The APs were not
connected to the internet, just to the power supply. Two AP models are used: the Google AP
“Google WiFi” [39], which was one of the few APs that officially supported the technology
[26] at the time of the measurement campaign, and the Linksys Velop AC6600 [40], a model
that, despite not announcing the FTM capability, is able to run the IEEE 802.11mc procedure.
The main configuration parameters for each AP are summarized in Table 2. Both APs work
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in the ISM bands of 2.4 GHz and 5 GHz (U-NII-1), while the Linksys AP also supports a
third band, i.e., U-NII-2C. The U-NII-1 band is utilized for Wi-Fi working indoors (power
limited to 200 mW), while the scope of the U-NII-2C band is Wi-Fi networks featuring an
augmented transmission power (up to 1000 mW), dynamic frequency selection (DFS) and
transmission power control (TPC) features. Nevertheless, the Google APs can only address
the FTM frames exchanged in the 5 GHz band, while the Linksys AP is able to handle the
FTM frames exchanged in all the frequency bands (see Table 2). A new model of the Google
AP has been recently released that is capable of handling FTM frames in the 2.4 GHz band.
However, it was not available at the time of the measurement campaign and, moreover,
according to Google’s specifications, it does not officially support the FTM procedure in the
2.4 GHz band. A recent work [41] also suggests that the behavior of the RSS and the RTT
observables are rather similar at the 2.4 GHz band, which might explain Google’s decision
of leaving 2.4 GHz FTMs out of its devices.

Figure 2. Detailed interior view of the auditorium at EETAC.

Table 2. AP configuration parameters.

Parameter Google AP Linksys Velop

Bands supporting IEEE 802.11mc 5 GHz 2.4 and 5 GHz
2.4 GHz channel bandwidth 20 MHz 20 MHz
2.4 GHz channel number 11 11
5 GHz channel bandwidth 80 MHz 80 MHz

5 GHz channel number 42 (U-NII-1) 42 (U-NII-1)
106 (U-NII-2C)

Four Google APs are placed at the corners of the rectangular area, and the remaining
four Linksys APs in a diamond configuration, as shown in Figure 3. The coordinates
of every RP are shown in red. Such a symmetric layout is often used as a reference
for positioning solutions since it minimizes the geometric dilution of precision (GDOP),
alleviating the noise of the positioning model in multilateration solutions, maximizing the
entropy of the measured RTT/range fingerprints and aiding in the classification task of
fingerprinting solutions.
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Figure 3. Scenario with four Google and four Linksys APs, and 25 reference points (blue stars).

A Google Pixel 3a phone running Android 10 (Q) is used for data gathering and
performance assessment. The application presented in [42] is employed, which uses the
reflection capabilities of Java to force collecting data from APs that do not advertise the
FTM capability, but support it. Wi-Fi scan throttling is disabled on the device to minimize
the time required to gather all the data. The STA is mounted on a tripod with a height of
1 m from the ground, thus emulating the normal placement of a mobile device when held
by a user.

The procedure followed by the application in order to collect the data are illustrated
in Figure 4. Whenever a data collection campaign is started, the application begins by
scanning the radio medium in order to discover the APs at sight. Then, the APs that is not
compatible with the IEEE 802.11mc technology are removed from the list, and a sample is
collected for every AP that remain in the list. All the collected samples are considered to
belong to the same epoch and they are stored in the database accordingly. This procedure
is finally repeated until the data for all the requested epochs are collected.

Figure 4. Procedure followed to collect the RTT samples at one reference point in the grid.

Collecting fingerprinting data are known to be a time demanding task. In this study,
approximately 32 h were required to gather all the data (i.e., 100 samples from 8 APs at
25 RPs). There are some approaches that could be taken in order to alleviate the cost of
building the fingerprinting database, such as the one proposed in [12], but this is out of the
scope of this paper.

3. Fingerprint Database Assessment
3.1. FTM Observations

At every RP in the grid, 50 RTT samples are gathered with a 5-s delay between
samples in order to reduce the time correlation between consecutive fingerprints. This
procedure is repeated twice, placing the STA in the two orientations in which it usually
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works: portrait and landscape. This allows the study of signal reception capabilities under
different working conditions and the assessment of their impact on range estimation.
Table 3 summarizes the sampling parameters of the measurement stage.

Table 3. Sampling parameters.

Parameter Value

Device Google Pixel 3a
O.S. version Android 10.0 (Q)
Orientation Portrait and landscape
Samples per orientation 50
Time between consecutive samples 5 s
STA height from the floor 1 m
Wi-Fi AP height from the floor 1.5 m

From this measurement campaign, approximately 20,000 RTT samples are stored in the
database. Each sample is the distance reported by the same Android API after averaging
the burst of seven RTT samples that the STA has collected from one AP. Although this
averaging is expected to reduce the estimation error, still large deviations in the computed
distances may be observed if the scenario involves a certain degree of multipath, as can
happen here due to the chairs, desks, and ledges. An example of the resulting dataset is
depicted in Figure 5, where the selected “technology” is “WiFi RTT” (i.e., RSS observations
are filtered out) and the feature named “value” represents the average distance in meters
reported by Android. “x”, “y”, and “z” represent the coordinates where the measurement
was taken. The brand and model of the STA used for the measurements are given in the
feature with the same name, while the APs are identified through the “MAC” parameter
(i.e., Google APs are the ones with MAC address starting with 58:cb:52, while the others
are Linksys APs). In addition, the orientation (0 or 1) of the STA during the measurement
is represented by “angle”. The field “extraData” summarizes the frequency used and
other channel characteristics. The whole dataset used in this study is available at [43] for
further use.

Figure 5. Example of a subset of the features in the dataset made up of “WiFi RTT” measurements.
The feature named “value” represents the average distance measured at given positions in the
selected scenario.

The ranges at each AP may be refined to remove potential outliers, which generally
distort the performance of the fingerprinting position estimation. In this work, a 95%
Gaussian window is applied to the data, thus removing 5% of the most unlikely data.
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Before exploring how RTT observables can enhance the performance of current posi-
tioning systems based on fingerprinting (see Section 4), the quality of the RTT observables
such systems would work with is studied. Table 4 shows the mean and standard deviation
of the ranging error of all the gathered samples. As shown, observations in the 5 GHz
bands underestimated actual distances by 1.9 m in average, which is in line with the results
obtained in other studies [6]. Even though the accuracy of the ranging error is quite low,
which means biased samples, the standard deviation is fairly good. From the point of
view of an observable, this is essential, since bias can be removed introducing calibration
stages, while facing standard deviation is much challenging. The best performing AP has a
standard deviation of approximately 85 cm, and the worst AP has a standard deviation
of approximately 134 cm. Although the average ranging error of the measurements taken
in the 5 GHz band is similar (i.e., Google-Indoor, Linksys-Indoor, Linksys-DFS), indoor
channels proved to provide more stable RTT measurements than those collected in the
DFS band. Furthermore, the Linksys APs seems to provide more refined ranges if com-
pared with those coming from Google APs. This is interesting, since Google APs officially
supports the IEEE 802.11mc technology, whereas Linksys APs do not.

Table 4. Mean and standard deviation of the ranging error in the assessed scenarios.

AP Band Mean STD

Google-Indoor 5 GHz (U-NII-1) −2.004 m 0.881 m
Linksys-2.4 2.4 GHz 14.332 m 1.149 m
Linksys-Indoor 5 GHz (U-NII-1) −1.690 m 0.848 m
Linksys-DFS 5 GHz (U-NII-2C) −1.799 m 1.335 m

As already observed in other studies [30,42], the distances observed in the 2.4 GHz
band are always far less accurate than those observed at 5 GHz, regardless of the AP vendor
and channel. In addition, the author in [44] suggests that the accuracy of the observations
depends roughly inversely on the bandwidth of the signal. These inaccurate estimations
at 2.4 GHz discourage their use in multilateration positioning algorithms [41,42], at least
when working with a 20 MHz bandwidth as in this study. Moreover, a multilateration
approach would require removing the bias observed in the measurements, which depends
on both the equipment used (i.e., both the user terminal and the AP) and the frequency
channel [44]. In this paper, a different approach is explored (i.e., fingerprinting) for which
the uniqueness of the measurements at each RP is more important than their accuracy.
Therefore, fingerprinting can cope with biased estimations without requiring a preliminary
calibration, whereas this latter is mandatory when multilateration algorithms are run.
Accordingly, the 2.4 GHz band is further considered in this study.

Figure 6 provides more details on the RTT observations by depicting the estimated
distance as a function of the real distance, for each AP brand and frequency channel. The
bigger the marker, the higher the standard deviation of the error between the estimated
and the real distance. The blue line represents the ideal situation where the estimated and
real distances are the same. The 2-m error is also highlighted in yellow for reference. In
most of the cases at 5 GHz, the estimated distance is no more than 2 m away from the real
distance. The 90th percentile of the overall absolute error is also displayed in Figure 6 as a
discontinuous gray line, and it is smaller in the U-NII-1 channel (5 GHz indoor) compared
to U-NII-2C (5 GHz DFS), showing higher variability in the latter. In addition, there is
no lineal dependency of the error with the distance: the magnitude of the error is similar
whatever the distance. At some distances, the standard deviation is higher since there may
be hard obstacles in the LOS between the RP and some APs (e.g., at almost 15 m from the
Google); in addition, the effects of such obstacles may depend on the frequency channel
(e.g., higher standard deviation (STD) at almost 10 m from the Linksys in the U-NII-1, and
at 6 and 15 m for the Linksys in the U-NII-2).
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Figure 6. Estimated distance versus actual distance (in meters). The bigger the marker, the higher the
standard deviation of the error. The 90th percentile is displayed with the dash-gray line, while the
2-m error in yellow.

The probability density function (PDF) of the absolute value of the ranging error is
depicted in Figure 7. The ranging error follows a right-skewed multimodal distribution
made of several Gaussian-like components, as already found in previous studies, both in
LOS [42] and NLOS [30] conditions. Moreover, if the main component of the error is wider,
the modes are higher; conversely, the lower the standard deviation, the more likely the
error looks like a unimodal distribution, as it is for the ranging error in the U-NII-1 band
(i.e., Google and Linksys-Indoor).
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Figure 7. PDF of the ranging error.
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3.2. Measurements

In order to compare the behavior of the RTT-based fingerprint with the SoA RSS-based
one, the RSS at each RP and from every AP was also collected and stored in the database.
A portion of the whole dataset, with both FTM-based and RSS-based measurements, is
depicted in Figure 8, where the feature named “value” represents the average distance in
meters reported by Android in the case of “WiFi RTT”, or the RSS in dBm in the case of “WiFi
RSSI”. One single RP (“x”, “y” and “z”), one single AP (“MAC”) and one single orientation
(“angle”) are selected in order to show the variability of the reported measurements due
to e.g., multipath. In order to better characterize the behavior of the estimations even in a
static environment (i.e., nobody was admitted in the room while taking measurements),
several samples (e.g., 50 per orientation in this study) were gathered. The statistics for the
RTT-based estimations are reported in Section 3.1.

Figure 8. Variability of the observations at one single RP to a single AP, both in the case of “WiFi RTT”
and “WiFi RSS” measurements. The feature named “value” represents, in the former, the average
distance in meters and, in the latter case, the RSS in dBm.

The stability of the RSS observations is provided in Table 5, where the average, mini-
mum, and maximum STD of the RSS observations are displayed. The Linksys-DFS APs
register the highest average STD, while the Google APs the lowest one. The smallest
minimum STD is observed in the 2.4 GHz band with a decrease of more than 76%, while
the highest maximum STD is reported by the Google APs with an increase of more than
135%. The Linksys-DFS is the one with the smallest deviations from the average STD,
despite the latter being the highest among all the APs. Even though we cannot directly
compare the RTT and RSS observations, since the former provides a raw estimation of
the ranging performance while a ranging model must be applied to the latter in order
to infer the resulting distance estimations, yet, as depicted in Table 6, the minimum and
maximum deviations over the average STD in the case of the RTT observations are smaller
if compared to the case of the RSS ones. The Linksys-Indoor APs have the lowest average
STD and the smallest deviations over the average (−29% and +40%), while the Google APs
report the highest deviations over the average.
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Table 5. Stability of the RSS observations (minimum, maximum, and average standard deviation) for
each AP vendor and frequency channel.

AP Band Avg. STD Min. STD Max. STD

Google-Indoor 5 GHz (U-NII-1) 5.889 dB 1.662 dB
(−71.77%)

13.864 dB
(+135.42%)

Linksys-2.4 2.4 GHz 6.023 dB 1.421 dB
(−76.40%)

11.804 dB
(+95.98%)

Linksys-Indoor 5 GHz (U-NII-1) 6.352 dB 2.826 dB
(−55.51%)

12.273 dB
(+93.21%)

Linksys-DFS 5 GHz
(U-NII-2C) 6.535 dB 3.190 dB

(−51.18%)
11.822 dB
(+80.90%)

Table 6. Stability of the RTT observations (minimum, maximum, and average standard deviation) for
each AP vendor and frequency channel.

AP Band Avg. STD Min. STD Max. STD

Google-Indoor 5 GHz (U-NII-1) 5.216 m 0.745 m
(−85.71%)

8.249 m
(+58.14%)

Linksys-2.4 2.4 GHz 5.375 m 3.713 m
(−30.92%)

7.751 m
(+40.22%)

Linksys-Indoor 5 GHz (U-NII-1) 4.849 m 3.426 m
(−29.34%)

6.804 m
(+40.31%)

Linksys-DFS 5 GHz
(U-NII-2C) 5.355 m 2.908 m

(−45.69%)
7.395 m
(+38.09%)

4. Performance of the FTM-Based Positioning Model

The aim of the positioning model is to convert fingerprints reported by STAs into
positions. When a STA asks for its position, the FTM procedure is started, and the Android
API returns the average distances calculated with each AP in sight, yielding a fingerprint
vector of ranges. Then, a ML classification algorithm is run, so the fingerprint (or com-
bination of fingerprints) in the database that best matches the input fingerprint vector
is reported. Finally, a position is computed from the locations associated with the set of
reported fingerprints. A distance model, which works as a loss function, is used to quantify
the quality of the match: the larger the value is, the worse the position estimation. This
procedure is summarized in Figure 9.

Figure 9. Flowchart of the FTM-based positioning model.

The core of the positioning model is the classification algorithm that is used to compute
the position. Fixing the user’s position in fingerprinting systems can be understood as a
classification problem, where RPs are the classes, and the ranges or RSS to each AP are the
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features. Several classification algorithms can be used for positioning. Although the NN
is considered as one of the best solutions for RSS-based fingerprinting [32], it is not clear
whether this statement also applies to fingerprinting solutions that use the RTT. Hence, a
wide set of classifiers that are typically used in other fingerprint-based positioning works
[34] have been considered in this study, including Weighted K-nearest neighbor (K = 3)
(WKNN-3), NN, random forest (RF), extra tree (ET), AdaBoost (AB), and support-vector
machine (SVM).

In the following sections, the performance of the FTM fingerprint-based positioning
is compared with SoA RSS-based one; the latter is always depicted with dashed lines in
the following figures. We start with a scenario with optimal coverage, i.e., with four APs
of the same vendor and where the best performance is expected (Section 4.1). Moreover,
since FTM estimations consume bandwidth to regular data transfer in the shared WiFi
spectrum, we also aim at assessing the impact of using less than 4 APs on the performance
of the positioning model (Section 4.2). Furthermore, the scarce amount of devices currently
supporting the IEEE 802.11mc technology makes the study of the RTT contribution to
fingerprinting solutions especially interesting in the case of scenarios with a reduced
amount of available APs.

It should be noted that the results shown in the following sections are tested on the
same RPs where the RTT/RSS measurements are taken and where the dataset is constructed;
20% of the whole dataset has been reserved for testing purposes. The point of making
the test space discrete is to assess the performance of classification algorithms under well
known conditions. Further filtering on resulting positions (e.g., basic centroid [35] and
particle filter [36], etc.) can improve the figures presented in this work when measurements
are taken anywhere in the location area. However, the goal of this work is not providing
a complete location system definition, but focusing on assessing the contribution of FTM
observables to fingerprinting solutions. Thus, the raw performance of the classification
when applied to FTM observables is assessed and compared to what RSS-based fingerprint-
ing solutions would achieve under the same conditions. The accuracy of the classifiers
and how much the classification mismatch impacts the positioning error is then evaluated
under both approaches, i.e., RTT and RSS-based fingerprinting solutions, so that the use of
the RTT as an observable can be validated, either coupling to already proposed RSS-based
systems [9,45] or being used as the main observable for further fingerprint solutions.

Therefore, the application and further assessment of these upper-layer algorithms has
been postponed for future work.

4.1. Optimum Coverage

Figure 10a shows the accuracy achieved by each classifier when estimating the position
for each AP vendor and frequency channel. The accuracy measures the goodness of the
match, that is, how probable it is that the estimated position (most probable RP) matches
the real position. All the algorithms achieve very good performance, with an accuracy
that is higher than 95% for all the APs and channels. However, except for the Linksys
in the 2.4 GHz band (in green in the picture), the FTM-based positioning (in solid lines)
always outperforms the RSS-based, achieving an accuracy that is always higher than 99%.
As shown in Figure 7, the range errors of the estimations taken at 2.4 GHz are noticeably
noisier than those at 5 GHz, since the 2.4 GHz band allocates much more transmissions from
multiple technologies that compete for narrow band channels. Therefore, the advantages
of precise time measurements for fingerprinting over observations of the RSS taken in this
band disappear. Indeed, several user devices and APs often restrict the FTM procedure to
the 5 GHz band only (e.g., Google APs). The Google APs (in black in Figure 10a) always
achieve the highest accuracy (i.e., 100%) regardless of the ML algorithm. Considering the
Linksys APs, better accuracy is always achieved when using the Linksys-DFS AP (in blue)
compared with the Linksys-Indoor AP (in red), even though differences between them can
be considered negligible. Despite the poor performance in terms of ranging accuracy (see



Sensors 2023, 23, 267 15 of 26

Table 4), the classification accuracy, when the Linksys APs in the 2.4 GHz band (in green) is
used, is still higher than 95%.

(a) Accuracy

(b) Mean absolute error

(c) Standard deviation

Figure 10. Accuracy, mean absolute error and standard deviation for different ML algorithms, APs
vendor and channel. FTM-based in solid lines, RSS-based in dashed lines.

Accuracy by itself does not provide enough information to guess how wrong the
misclassification is. Therefore, the mean average error (MAE) and the STD of the posi-
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tioning error have been used in this study to illustrate the impact of misclassifications
on the positioning error. The MAE provides a mean value that helps to determine how
well the classification is performing on average and allows an easy comparison among
the performance of different classifiers. On the other hand, the STD provides valuable
information on the variability of the positioning error depending on the RP.

Focusing on the MAE, a similar behavior as the one shown in terms of accuracy is
observed. The error in the positioning is evaluated as the Euclidean distance between the
RP estimated by the classification algorithm and the RP corresponding to the validation
fingerprint. Thus, when the classification algorithm provides the correct match (i.e., the
two RPs are the same), the error is 0. When the match is not correct, the minimum error
that is observed will be 2 m, which is the lowest distance between RPs in the grid according
to our scenario in Figure 3. Figure 10b shows the MAE between the estimated and the
real distances of the FTM-based positioning (solid lines) and of the RSS-based positioning
(dashed line). Again, all the algorithms always achieve a MAE of less than 25 cm, and even
less than 15 cm if the measurements taken at 2.4 GHz are excluded. Except for the latter,
the MAE of the FTM-based positioning always outperforms the one obtained with RSS
measurements. Similarly, the STD of the positioning error (Figure 10c) is always lower than
0.25 m for all the FTM-based positioning in the 5 GHz bands. Conversely, when the RSS
observables are used, the STD of the positioning error raises up to 0.83 m, which means that
the RSS is prone to higher positioning errors when mismatching, if compared to FTM-based
solutions. On the overall, ET seems to provide the best results in terms of precision for all
the APs and frequency bands.

This work presents the results obtained using fingerprints from two orientations. It
has been observed that the use of fingerprints from different orientations impacts the
performance of the classifiers, since the classification space grows and so does the chance
for a misclassification. When fingerprints in only one orientation are used, the performance
observed is maintained for different frequency bands and different devices, no matter
which orientation is considered. As an example, more than 99.9% of accuracy is achieved
in the 5 GHz Indoor channels when only one orientation is used, independently of the
observable used (i.e., RTT or RSS) and the applied classifier; this result is slightly better
than the one shown in Figure 10a when two orientations are considered. However, it is
important to take into account that, in real deployments, the user may keep the device in
any orientation, thus making important to observe how the proposed solution copes with
this situation.

4.2. Limited Coverage

In the previous section, the performance of the different ML algorithms fed with RSS
or RTT observables has been shown when all the APs of a given vendor and frequency
channel (i.e., four Google APs, four Linksys APs at 5 GHz Indoor, etc.) are considered. In
the following, we aim at assessing the performance when considering a lower number
of APs of a given vendor and frequency band. The number of measurements that are
needed in order to gather a pretty accurate estimation of the position is fundamental for
two main reasons: firstly, in the case of the FTM-based positioning, the FTM-procedure
needs the STA and the AP to explicitly exchange special messages in order to obtain the
timestamps and, then, the distance estimation. The more the APs to be pinged, the higher
the overhead and, thus, the lower the available bandwidth for other users’ data exchange.
This scalability issue is one of the main drawbacks of the FTM-based solution proposed
in the IEEE 802.11mc and the reason behind our proposal of the FTM- fingerprint-based
approach in this paper. Secondly, the availability of APs that support the IEEE 802.11mc
procedure is relatively scarce. Therefore, it is not likely to find scenarios with a large
number of RTT-able APs in sight, as shown by a recent wardriving campaign conducted in
the city of Barcelona in the framework of the BANSHEE project [46] in search for FTM-able
devices [47].
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Thus, several scenarios have been generated by disabling some of the APs initially
deployed. The switching off sequence followed in this study to set up those scenarios is
reported in Table 7. Scenario “3 APs”, when the Google APs are considered, refers to the
RTT (RTT-3 APs) or the RSS (RSS-3 APs) measurements gathered from Google 2, Google 3,
and Google 4; similarly, scenario “2 APs” refers to the measurements from Google 2 and
Google 3, and scenario “1 AP” uses the measurements from Google 3 only. In the case of
the Linksys APs, scenario “3 APs” refers to Linksys 1, Linksys 2 and Linksys 3, scenario “2
APs” to Linksys 1 and Linksys 2, and scenario “1 AP” to Linksys 2.

Table 7. Sequence followed for switching-off the APs.

Number of APs Disabled APs

3 Google 1, Linksys 4
2 Google 1, Google 4, Linksys 3, Linksys 4
1 Google 1, Google 2, Google 4,Linksys 1, Linksys 3, Linksys 4

Figure 11 shows the accuracy for the different scenarios (e.g., 3 APs in black, 2 APs in
blue, 1 AP in red) and when different ML algorithms are run. The results for the Google
APs are displayed in Figure 11a, in Figure 11b for the Linksys at 5 GHz Indoor, and in
Figure 11c for the Linksys at 5 GHz DFS. The behavior is very similar for the three cases: the
best performance is always achieved when employing the RTT measurements (continuous
lines), with an accuracy that is always more than 99.2% with 3 APs (in black), and it stays
between 95.4% and 97.6% with 2 APs (in blue), for all the ML algorithms considered in this
study. This latter result is particularly important, as any multilateration approach would
need at least the measurements from three APs to obtain the position, while we are proving
here that, with a fingerprinting approach, more than 95% of accuracy is still obtained even
with 2 APs. When considering 1 AP only (in red), the accuracy drops below 79% and shows
more variability depending on the ML algorithm and the channel: the SVM achieves the
lowest accuracy for all the APs (70.8% for the Google, 67.3% for the Linksys Indoor, and
48.4% for the Linksys DFS). In addition, in general, the Linksys DFS always shows the
lowest accuracy, whatever the classifier, compared to the other channels, thus the impact of
considering scenarios with less APs is higher in this channel.

(a) Google APs

Figure 11. Cont.
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(b) Linksys APs operating in the 5 GHz Indoor frequency band

(c) Linksys APs operating in the 5 GHz DFS frequency band

Figure 11. Accuracy for different ML algorithms and number of APs of the same vendor and channel.
FTM-based in solid lines, RSS-based in dashed lines.

On the other hand, the accuracy obtained with the RSS-based measurements is always
smaller than the one achieved with the RTT. The best performance is obtained with the
Linksys Indoor for all the scenarios, with values between 96.2% and 98.4% with 3 APs
(in black and dashed line), between 80.0% and 86.1% with 2 APs (in blue and dashed
line), and between 34.7% and 40.8% with 1 AP (in red and dashed line). The results show
that the difference in the accuracy between RTT-based and RSS-based solutions grows
as the amount of APs drops. Thus, RTT observables may effectively assist classical RSS
fingerprinting solutions in scenarios where just few APs are in sight.

Figure 12 shows the MAE of the position for the different scenarios and when different
ML algorithms are run. In the scenarios with more than 1 AP, using the RTT as an
observable yield to positioning errors of a few centimeters (between 2 and 6), whatever the
AP brand and frequency band. In the case of a single AP in sight, Linksys APs working
in the indoor 5 GHz band are the best performing ones, with an MAE of less than 87 cm.
Google APs provide an average positioning error close to 1.5 m, which almost doubles
what is achieved by Linksys in the indoor channel. However, Linksys APs using the DFS
band involve average positioning errors noticeably larger than the others, reaching figures
very close to the 2 m. Therefore, mismatching in this scenario with only one Linksys AP in
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the DFS channel involves larger errors than in those using indoor channels. Linksys APs
provide better results in RSS classification than Google’s. In the case of the RSS, the DFS
band eases the classification and yield to better performance in terms of positioning error.
Anyway, the RSS reveals itself as a poorer observable in terms of classification, leading
to larger MAE figures than those achieved with the RTT. As in the case of the accuracy,
the lower the number the APs in sight, the higher the positioning error and the larger the
difference between the performance achieved by RTT and RSS solutions.

(a) Google APs

(b) Linksys APs operating in the 5 GHz Indoor frequency band

Figure 12. Cont.
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(c) Linksys APs operating in the 5 GHz DFS frequency band

Figure 12. MAE for different ML algorithms and number of APs of the same vendor and channel.
FTM-based in solid lines, RSS-based in dashed lines.

Globally, the best performing classifiers are the RF, ET, and AB. NN-based algorithms
seem to work fine when the amount of observables is high, but they faint when there are
only one (or two in the case of RSS) APs in coverage.

The standard deviation of the position error is displayed in Figure 13. When RTT
observables are used, Google APs provide the lowest STD of the position error in scenarios
with at least two APs in sight (in blue), with values below 33 cm; on the other hand, the
positions computed using Linksys APs tend to be noisier. In this latter case, Linksys APs
perform similarly whatever the band used. In the scenario with only one AP in coverage (in
red), results are inverted and Linksys APs perform better than Google’s, especially when
indoor channels are used: STD of 1.7 m (Linksys indoor) and 2.3 m (Google). Positions
coming from RSS observables are clearly noisier than those computed from RTT/range
estimations, whatever the number of APs in sight. Indeed, most of the time the STD of
positions computed fromthe RSS doubles the values achieved with the FTM estimations.
In terms of classification algorithms, WKNN-3 reveals itself as the most performing one in
scenarios with low coverage (i.e., 2 or less APs in sight), while in scenarios with better coverage,
ET and AB provide more stable positioning errors if compared with the remaining algorithms.

(a) Google APs
Figure 13. Cont.
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(b) Linksys APs operating in the 5 GHz Indoor frequency band

(c) Linksys APs operating in the 5 GHz DFS frequency band

Figure 13. Standard deviation of the positioning error for different ML algorithms and number of
APs of the same vendor and channel. FTM-based in solid lines, RSS-based in dashed lines.

5. Conclusions

Fingerprint-based positioning in Wi-Fi has been historically relying on RSS observa-
tions. However, since FTM frames were introduced by IEEE 802.11mc, precise timestamps
are also a potential source of information for fingerprinting solutions. This work is one
of the firsts in the literature that studies the benefits of using RTT/range observations
instead of the classical RSS approach in fingerprint-based positioning systems. Several ML
classification algorithms, typically used for RSS- fingerprint-based positioning, are assessed
in this paper with observations based on IEEE 802.11mc FTM. The classification space has
been reduced to a discrete amount of RPs, as fingerprinting solutions tend to follow this
approach for computational sake.

Results show that in over-determined scenarios (i.e., with a large amount of APs),
the performance of fingerprinting is similar whatever the source of information (i.e., RTT
or RSS), although the former performs slightly better. Nevertheless, in scenarios with a
reduced amount of APs, the use of the RTT noticeably improves both the accuracy of the
ML algorithms used for classification and the positioning error of the returned locations,
if compared with the performance of regular RSS-based fingerprinting solutions. This
finding is very important also in light of providing a solution to the well-known scalability
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problem faced by the FTM procedure: while the multilateration approach cannot work with
measurements from less than three APs, the FTM-fingerprint-based approach proposed
here can cope with these under-coverage scenarios, achieving more than 95% of accuracy
and a precision of less than 6 cm even with only two APs in the assessed scenarios.

The best performing algorithms, both in terms of accuracy and positioning errors, are
the ET and AB and, to a lesser extent, the NN-based algorithms, especially the WKNN-3.
These two latter algorithms provide acceptable estimations for the Google APs, while with
the Linksys APs the performance degrades, especially in terms of the MAE. However, their
simplicity and lower computational requirements, compared with ET or AB, encourage
their use in well-covered scenarios.

The ET and AB prove to be the best choice in under-covered scenarios, with an
accuracy of at least 73% and 77% when Google and Linksys APs are used, respectively.
The maximum absolute mean error is about 90 cm when RTT observables are used with
a single Linksys AP working in the 5 GHz indoor band. Results in the U-NII-2C band
show higher positioning errors on average, which often doubles that reported in the indoor
band. Hence, the use of measurements taken in the DFS channel is discouraged in pure
RTT fingerprinting systems; instead, they can be used to complement the already deployed
RSS-based ones.

Considering the coarse-grained grid used in this work, for which an error in the
classification represents a minimum error of 2 m, the observed average errors provided
by the ET, AB, and NN-based algorithms, when using less than four APs, are still small.
Furthermore, the results demonstrate that a classification mismatch involves estimated
positions closer to the actual ones, which means smaller than 1-σ errors, and hence more
accurate positioning solutions once calibrated.

In addition, considering that the higher the number of APs needed for accurate
positioning the lower the available throughput for normal IEEE 802.11 operation, we can
conclude that the use of ET and AB with a subset of the APs in sight paves the way for
scalable fingerprinting solutions when the RTTs are used as an observable.

Accordingly, RTT-assisted fingerprinting solutions raise a valuable solution for achiev-
ing a sub-meter accuracy level, even in harsh scenarios with only two APs in sight, which
fits the requirements of most of the current indoor location based services (e.g., navigation,
tracking, intelligent storage systems, etc.) and opens a promising research path in the
near future.

6. Future Work

Results have demonstrated that the RTT is a valuable observable and that it can be
used in fingerprinting systems to improve the performance of traditional RSS-based ones.
However, the RTT is not clearly better than the RSS in all scenarios, as both come with some
advantages and drawbacks (see Table 1).

In addition to the accuracy and positioning errors, for which the choice of the observ-
able can be of key importance, fingerprinting systems still have several open issues that
the research community is currently addressing. One of them is the cost of calibration, i.e.,
the offline stage during which the fingerprinting database is built. Some proposals have
been presented to alleviate this time-demanding task, most of them consisting of reducing
the fingerprinting survey to just few RPs and then interpolating the remaining data [12].
This interpolation is quite hard to achieve when the RSS is used, since radio models are
quite complex and deeply bound with the environment where the fingerprinting is going
to be deployed. However, the ideally linear dependence of the RTT with the distance is
expected to simplify interpolation and represents a great opportunity for a quick and easily
maintainable fingerprinting database generation.

Accordingly, there is not a unique observable to be used for fingerprinting systems
whatever the conditions. Instead, coupling both observables and trying to obtain the best
of each, as proposed in [48], opens a new research path to be explored in the near future.
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The impact of the NLOS and of the environment changes in the fingerprinting database
are open issues that require further research. Although RTT fingerprinting systems are
expected to be less sensitive to NLOS, assessing the capabilities of simple algorithms to
properly classify fingerprints under complex reception conditions is mandatory for a proper
evaluation of the location solution. The same applies to environment changes, which have
been considered a great challenge so far for traditional RSS fingerprinting systems; their
impact requires further study also for RTT-based solutions. We aim at studying the impact
of both issues in the near future in order to demonstrate the capabilities of the RTT to
complement or replace the RSS in the fingerprint-based positioning solutions of the future.
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Abbreviations
The following abbreviations are used in this manuscript:

2d 2D Two dimension
3d 3D Three dimension
ab AB AdaBoost
ack ACK Acknowledgement
aoa AOA Angle of arrival
ap AP Access point
ble BLE Bluetooth low energy
csi CSI Channel state information
cots COTS Commercial/consumer off-the-shelf
dfs DFS Dynamic frequency selection
dnn DNN Deep neural network
et ET Extra tree
ftm FTM Fine time measurement
gdop GDOP Geometric dilution of precision
gnss GNSS Global navigation satellite system
hgb HGB Histogram-based gradient boosting classification tree
ism ISM Industrial, scientific and medical
los LOS Line of sight
mae MAE Mean average error
ml ML Machine learning
nn NN Nearest neighbor
nlos NLOS Non-line of sight
pdf PDF Probability density function
rf RF Random forest
rfid RFID Radio frequency identification
rmse RMSE Root mean square error
rp RP Reference point
rss RSS Received signal strength
rtt RTT Round trip time
soa SoA State of the art
sgd SGD Stochastic gradient descent
sta STA Station
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std STD Standard deviation
ss SS Service set
svm SVM Support-vector machine
tof TOF Time-of-flight
tpc TPC Transmission power control
uwb UWB Ultrawide band
vrp VRP Virtual reference point
wifi Wi-Fi Wireless Fidelity
wknn WKNN-3 Weighted K-nearest neighbor (K = 3)
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