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Abstract: Ultra-Wide Bandwidth (UWB) and mm-wave radio systems can resolve specular multipath
components (SMCs) from estimated channel impulse response measurements. A geometric model
can describe the delays, angles-of-arrival, and angles-of-departure of these SMCs, allowing for a
prediction of these channel features. For the modeling of the amplitudes of the SMCs, a data-driven
approach has been proposed recently, using Gaussian Process Regression (GPR) to map and predict
the SMC amplitudes. In this paper, the applicability of the proposed multipath-resolved, GPR-based
channel model is analyzed by studying features of the propagation channel from a set of channel
measurements. The features analyzed include the energy capture of the modeled SMCs, the number
of resolvable SMCs, and the ranging information that could be extracted from the SMCs. The second
contribution of the paper concerns the potential applicability of the channel model for a multipath-
resolved, single-anchor positioning system. The predicted channel knowledge is used to evaluate the
measurement likelihood function at candidate positions throughout the environment. It is shown that
the environmental awareness created by the multipath-resolved, GPR-based channel model yields
higher robustness against position estimation outliers.

Keywords: situational awareness; environmental awareness; location awareness; geometry-based
channel modeling; gaussian process regression; single-anchor positioning; multipath-assisted posi-
tioning; UWB radios; mm-wave radios

1. Introduction

The vision of an Internet-of-Things (IoT) has been discussed extensively, in recent
years, covering end-user applications in a wide range of application domains, including
industrial [1], health-care and assisted living [2], smart cities, and smart mobility [3]. Sim-
ilarly, 5G and beyond-5G wireless networks are currently under development, aiming
for instance at an end-to-end latency in the range of 1 ms, high user densities, and un-
precedented data rates per volume for a heterogeneous set of end-user scenarios [4–6].
Location information is a critical component of many of these applications [7], creating
context-awareness with different service quality requirements [8]. The relevant performance
criteria extend far beyond the required level of accuracy. For assisted and autonomous driv-
ing, for example, location information is of mission-critical importance, making it a prime
example of a high-end location-based application with a need for 100% availability [9–12].
Robustness, security, and privacy issues in IoT applications have recently been discussed
in [13]. High-accuracy location information is seen as a key enabler for location-based
services in the IoT and in 5G networks [12,14].

Much work has been done to address the various issues involved in accurate and
robust position estimation, demonstrating the heterogeneity of scenarios and applica-
tions as discussed before. RSS-based techniques are very suitable for positioning based
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on signals-of-opportunity, because it does not require dedicated time stamping and syn-
chronization. RSS measurements can be used to compute the position from path-loss-
based range estimates [15,16], from ray-tracing based propagation predictions [17,18], from
fingerprinting/machine-learning-based methods [18–20], and from tomography-inspired,
device-free measurements [21]. The main disadvantage of this approach is the low accuracy
and low robustness compared with other measurement principles [22], in particular, when
multipath fading and shadowing are taken into account.

Time-of-flight (ToF) measurements and multilateration are usually the basis for ro-
bust, high-accuracy positioning systems, including global navigation satellite systems
(GNSS) [23]. It is well known that the ToF ranging error variance scales reciprocally with the
squared bandwidth and the signal-to-noise ratio (SNR) [24], which motivates the advantage
of having a high signal bandwidth available. The SNR depends only weakly on the range
(ensured e.g., due to power control mechanisms in the network), however, multipath will
have a severe influence [25–28]. These basic insights have been used to study the positioning
performance of wireless networks [26,29], showing the influence of the geometry (and
number) of the nodes that are being involved in the position computation.

The availability of sufficiently accurate location information is a facilitator for exploit-
ing “location awareness” to enhance the performance of the radio access network [30].
Location-awareness leverages geometric information to optimize algorithms and protocols
of a wireless communication system at different layers of the protocol stack, to satisfy the
needs for higher throughput, lower latency, higher robustness, and other performance
indicators [30]. At higher layers of the stack, location information has been employed
directly for routing algorithms [31,32]. At lower layers, a channel quality metric (CQM) is
often introduced, which maps between a network performance indicator, e.g., the channel
capacity or the signal-to-interference-plus-noise ratio (SINR) and the position, yielding
a so-called “radio environment map” (REM) [33]. The REM is obtained from a database,
which is acquired from measurements conducted beforehand. Crowd-sensing has been
proposed for the data collection, where data covering a wide spatial area is being collected
by a large number of agents navigating through an environment [34]. A regression tool is
needed to handle the large database and perform predictions. Gaussian process regression
(GPR) is of particular interest because it enables the development of inference algorithms
whose complexity does not grow with the number of observations [34,35].

In [36,37], situational awareness has been defined, a concept where the location in-
formation of radio nodes is collected together with information about the propagation
environment. The environment model is comprised of specular multipath components
(SMCs), their angle-of-arrivals (AOAs), angle-of-departures (AODs), the corresponding
delays as well as points of reflections. This information can be deduced from channel
measurements by means of a Simultaneous Localization And Mapping (SLAM) algo-
rithm [38,39], where SMCs are modeled by virtual anchors (VAs), i.e., mirror images of
the anchor w.r.t. different reflecting surfaces. Using these VA positions together with a
data association algorithm, multipath-assisted, single-anchor localization and tracking
algorithms can be formulated. Such algorithms exploit the VA-based environment model,
achieving centimeter accuracy when UWB signals are used [14,38,40,41]. Crowd-sourcing
of such map information has been studied in [42]. Situational awareness is of specific
interest for the beam-prediction in mmWave radio systems [37].

In this paper, we combine the VA-based geometric environment model and a GPR
model. The former is used to predict delay, AOA, and AOD of SMCs, while the latter is
used to predict the amplitudes of SMCs, as described in [43]. Extending over our previous
paper [43], the following main contributions are made:

• We formulate a REM that predicts the SMC amplitudes, the SINR of SMCs, and the
position error bound (PEB) at any position throughout the whole floor plan.

• We analyze a database of UWB radio channel measurements to show to what extent
the REM represents the multipath components in this set of measured channel impulse
response (CIR) data. To this end, we study the number of resolvable SMCs and the
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energy capture (EC) of these SMCs, which is the fraction of energy carried by the
SMCs in relation to the total energy of the CIR.

• We show the usefulness of the REM in improving the robustness of a multipath-based
single-anchor localization algorithm.

The structure of the paper is as follows. The UWB indoor signal model and geometry-
based channel model are described in Section 2. The parameters represented by the REM,
the SMC amplitudes, the SINRs, and the PEB, are also formulated. The experimental data,
as well as data pre-processing steps, are described in Section 3. Section 4 discusses the
Gaussian process model (GPM) based channel predictions for the above REM. Section 5
shows how the REM is exploited for a multipath-based single-anchor localization algorithm.
Section 6 shows the localization results. Section 7 concludes the paper.

2. System and Environment Model
2.1. System Model

We consider an indoor wireless communication environment with a fixed physical
anchor (PA) at position a1, as illustrated in Figure 1, and a mobile agent at position p.
The agent is moved along a segmented trajectory. Some VAs ak up to order two are also
shown, i.e., mirror images of the PA at the corresponding flat surfaces. The VAs establish a
geometric model of SMCs originating from these surfaces. The VA-model can be used as a
deterministic description of the delay, AOA, and AOD of these SMCs, given the position of
the agent.
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Figure 1. Floor plan of the evaluation scenario. Bold black lines denote walls, thick gray lines
represent glass windows, other lines illustrate other materials. One blue cross represents the PA;
orange circles denote VAs which were considered in the experimental evaluation. An agent moves
along a trajectory segmented into seven parts indicated with distinct colors.

Figure 1. Floor plan of the evaluation scenario. Bold black lines denote walls, thick gray lines
represent glass windows, other lines illustrate other materials. One blue cross represents the PA;
orange circles denote VAs which were considered in the experimental evaluation. An agent moves
along a trajectory segmented into seven parts indicated with distinct colors.

We describe the radio channel from the PA located at position a1 and the agent node
located at position p via a geometry-based stochastic channel model by:

h(τ; p) =
K

∑
k=1

αk(p)δ(τ − τk(p)) + ν(τ; p) (1)
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The first term on the RHS of (1) is the sum of K SMCs with amplitude αk and delay
τk described as functions of the mobile agent position p. The delay τk(p) corresponds to
the distance between the agent and the PA (for k = 1) or VA (for k = 2, . . . , K). That is
τk(p) = ‖p− ak‖/c, where ak is the position of the respective PA or VA, and c is the speed
of light. In Figure 2, the path lengths dk(p) = ‖p− ak‖ w.r.t various VAs at positions ak
are plotted on top of the measured CIRs. The second term denotes the diffuse multipath
(DM) ν(τ; p), modelled as a zero-mean Gaussian random process. We assume uncorrelated
scattering along the delay axis, hence the autocorrelation function of ν(τ; p) is given by:

Kν(τ, u; p) = E{ν(τ; p)ν∗(u; p)} = Sν(τ; p)δ(τ − u), (2)

where Sν(τ; p) is the power delay profile (PDP) of the DM at agent position p. The DM
process is assumed to be quasi-stationary in the spatial domain, i.e., Sν(τ; p) does not
change in the vicinity of p [44].
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Figure 2. Measured CIRs over the trajectory at a bandwidth of 2 GHz. The blue dash lines indicate
expected paths of the SMCs corresponding to VAs up to order two, estimated using the SLAM
algorithm from [38,45] and refined as described in [46]. The locations of VAs are shown in Figure 1.

A base band signal s(t) is transmitted at carrier frequency fc. The complex envelope
of the received signal then read:

r(t; p) =
K

∑
k=1

αk(p)s(t− τk(p)) + (s ∗ ν)(t; p) + w(t) (3)

The third term of (3) is the measurement noise w(t) modelled as additive white
Gaussian noise (AWGN) with double-sided power spectral density N0/2. To use (3) for
estimating parameters of SMCs, it is useful to minimize autocorrelation side lobes of s(t).
A root-raised-cosine (RRC) pulse is thus considered for the transmitted signal with pulse
duration Ts. The energy of s(t) is normalized to one, i.e.,

∫
|s(t)|2dt = 1.
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2.2. Position Error Bound

The channel model in (1) has been used in [27,38,47,48] to analyze multipath-assisted
indoor positioning systems and to develop algorithms for it. In [27,48], the PEB has
been derived for the signal model. It quantifies how the delay information of each SMC
contributes useful information that can be exploited by a positioning algorithm. In this
paper, the PEB is modeled as a spatial field for the current application environment,
providing a measure for the achievable positioning accuracy in the given scenario. To
develop this “environment model”, first, the PEB is explained in detail.

The PEB for the multipath-assisted positioning problem is the Cramer-Rao lower
bound on the position error, the square-root of the trace of the upper left 2-by-2 submatrix
of the inverse Fisher information matrix (FIM) Jθ [48]

P{p} =
√

tr
{[

J−1
θ

]
2×2

}
=

√
tr
{

J−1
p

}
(4)

where θ =
[
pTRαTIαT

]T
is a parameter vector containing the unknown location of the

mobile agent, and the real and imaginary parts of the SMC complex amplitudes. Jp is the
equivalent FIM (EFIM) [26]. According to [48], we have

Jp =
8π2β2

c2

K

∑
k=1

SINRk(p)Jr(φk). (5)

in which β2 =
∫

f 2|S( f )|2d f is the effective bandwidth (S( f ) is the Fourier transform of
s(t)) and c is the speed of light. The summation shows that the information from individual
SMCs is added up. Each SMC contributes information proportional to the SINRk and
the ranging direction matrix Jr(φk) [26]. It is obvious that the more SMC information is
available, the lower the PEB. The SINRk(p) is defined as

SINRk(p) =
|αk(p)|2

N0 + TpSν(τk; p)
(6)

with Tp being the effective pulse duration [43]. It quantifies the interference of the DM,
expressed by the PDP Sν(τk; p), onto the k-the SMC with energy |αk(p)|2. The ranging
direction matrix describes the geometry of the setup. The delay information of the k-th
SMC is directed towards the k-th VA, expressed by

Jr(φk) =

[
cos2(φk) cos φk sin φk

cos φk sin φk sin2(φk)

]
(7)

where φk is the angle from the corresponding VA to the mobile agent at position p.
From (6) it can be seen that the range information contributed by the k-th SMC is

quantified by SINRk(p). Knowledge of SINRk(p), therefore, allows to properly select and
weigh the SMCs to be used by positioning algorithms. The idea of this paper is to model
the SINRk(p) of the SMCs as a spatial field in order to obtain a map of the expected PEB
for the current application environment. Such an “environment map” will provide the side
information needed to make a positioning algorithm more robust.

2.3. Radio Environment Map Using Gaussian Process Regression

According to [34], a spatial field is the distribution of a physical quantity such as
RF interference, pollution, temperature, humidity, light intensity, etc., which, if known,
will foster the development of a new context-aware application and algorithms. In the
context of radio systems, these spatial distributions are referred to as radio environment
maps (REMs).
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In this paper, we are interested in investigating the characteristics of individual SMCs,
i.e., the direct link and the ones that resulted from reflections on flat surfaces. Spatial fields
are obtained from mapping the agent positions with these SMC characteristics. In the UWB
communication system, thanks to its very high time resolution, these SMCs can be resolved
and predicted as studied in [43].

The SMC characteristics that are modeled in this paper are the SMC amplitudes and
variances, thus the SINRs and the PEB can be predicted using (5) and (6). In Section 5, this
information will be exploited to enhance the robustness of a multipath-assisted positioning
algorithm. The SMC amplitudes and variances can also be used to predict the channel
capacity and bit-error rate. The individual SMC metrics can then be useful for efficient beam
selection and beam finding in mmWave wireless systems, exploiting prior information on
potentially useful SMCs.

To construct the REM for the PEB, we need a spatial field model for the SMC ampli-
tudes and the interference power of DM, c.f. (6). A Gaussian Process model (GPM) is used
to learn such an amplitude model from observed data, as described in [43]. In a training
phase, the SMC amplitudes α̂k(p) are estimated from the CIR. Given the known positions
of the VAs and the agent, the expected delays τk(p) = 1

c ‖ak − p‖ are deduced, yielding

α̂k(p) = 〈s(t− τk(p)), r(t; p)〉. (8)

Next, the distance dependence is removed from the SMC amplitudes, yielding the
normalized amplitude data γk(p) = α̂k(p)‖ak−p‖ exp

(
j2π

fc
c ‖ak − p‖

)
, which is assumed

to depend on the direction angle φk(p) = ∠(ak − p), only, describing the antenna pattern
and the reflectivity of the reflecting surface [43]. This direction dependence is modeled by
means of GPR. Several dataset are obtained, i.e., Dk = {φk(p), γk(p)}p∈P , where P is the
set of measured positions. Please note that whenever there are overlapping SMCs detected
within a CIR, the corresponding amplitudes are neglected/discarded.

In this paper, the dataset Dabs
k = {φk(p), |γk(p)|}p∈P is used, which deals with only

the SMC amplitude’s abscissa. According to [43], the hyper-parameters of the GPM are

θabs
k =

[
aabs

k , σabs
k , σabs

ν,k , βabs
k

]T
, in which aabs

k is the coherence angle, σabs
k is the standard

deviation of the correlation kernel, σabs
ν,k is the standard deviation accounting for the DM,

and βabs
k is the mean of the abscissa of the k-th SMC amplitude.

From these data sets and hyper-parameters θabs
k of the GPM, one can estimate the

mean E[ψ(φk(p∗))|Dk, θabs
k ] and variance V[ψ(φk(p∗))|Dk, θabs

k ] of the normalized SMC
amplitudes at any agent position of interest p∗ [43], and hence the SINRk(p∗) and the PEB
P(p∗), which are the REMs investigated in this paper. Specifically, we get

SINRk(p
∗) ≈ E2[ψ(φk(p∗))|Dk, θabs

k ]

2V[ψ(φk(p∗))|Dk, θabs
k ]

, (9)

c.f. Appendix B in [43]. Note that the predicted SINRk(p∗) is independent of the anchor-
agent distance ‖ak − p∗‖.

Section 4 shows how the spatial fields are learnt. Sections 5 and 6 show how this
information is utilized for the single-anchor multipath-based localization algorithm.

3. Experiment
3.1. Experiment Setup

An experiment was conducted in a laboratory room at the Graz University of Tech-
nology, as illustrated in Figure 1. The room consists of two plasterboard walls and two
reinforced concrete walls (shown as black outer lines), three glass windows at the north
wall (shown as thick gray lines), one whiteboard, and one wooden door at the south wall.
In the following sections, we label these walls by east plasterboard (EPB), south wall (SW),
west wall (WW), and north glass window (NGW), respectively.
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A measurement data set was acquired with an Ilmsens Ultra-Wideband M-sequence
channel sounder [49], c.f. Figure 3a, which provides a transmitted signal with 6.95 GHz
carrier frequency to acquire a frequency band between approximately 3.5 and 10.5 GHz.
The measurement principle is correlative channel sounding [50], in which a binary-code
sequence with suitable correlation properties are transmitted and correlation with the
known-code sequence is performed at the receiver to obtain the CIR.

(a) (b)
Figure 3. Equipments used for the experiment: (a) Ilmsens UWB M-sequence sounder and Ilmsens
power supply, (b) coin antenna.

Dipole coin antennas, shown in Figure 3b, have been used for the measurements.
According to [51], the coin antenna has a very wide bandwidth ranging from 3 to 9 GHz
and a nearly isotropic radiation pattern in the horizontal plane. As shown in Figure 1, a
receive antenna was placed at a fixed position a1, whereas a transmit antenna (at position
p) was moved along a trajectory segmented into 7 parts for easier interpretation. Both
antennas were mounted on tripods at the same height, therefore only the co-polarized,
azimuth radiation pattern of the antenna has an impact on the data. The raw measurements
at the receiver port were filtered with an RRC pulse with center frequency 6.95 GHz, roll-off
factor 0.5, and bandwidth 1/Tp = 2 GHz to obtain the received signals corresponding to
the model in (3).

3.2. Experiment Pre-Processing

For the experiment, the exact positions of the mobile agent and the VAs were unknown.
Thus, in a pre-processing step, we used the SLAM algorithm [38,45] and CIRs from the
measurement to estimate the trajectory positions {p} and the locations of the VAs {ak} and
PAs [43].

Different VAs can be distinguished from different traces of the path lengths, as illus-
trated in Figure 2.

Compared with [43], more VA positions are explored in this paper. The estimated
trajectory and VAs are plotted in Figure 1. VAs 2, 3, 4, and 6 represent single reflections on
the EPB, WW, SW, and NGW respectively. VAs 7, 8, 10, 11, 12, 13, 16, 17, and 19 represent
double reflections on EPB then WW, EPB then SW, EPB then NGW, WW then EPB, WW
then SW, SW then NGW, SW then WW, NGW then SW, and NGW then WW respectively.

Given the estimated positions of VAs {ak}, and the receiver positions {p}, the expected
delays τk(p) are computed. Next, the SMC amplitudes α̂k(p) are estimated from the CIR
using (8). Finally, the distance dependence will be removed from the SMC amplitudes,
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yielding the normalized amplitude data ψ(φk(p)), where φk(p) = ∠(ak−p) is the direction
angle. Several dataset Dk = {φk(p), ψ(φk(p))} are then obtained.

On the basis of these data sets, the GPM is learned, using the built-in Matlab function

fitrgp (Matlab version R2018a), yielding the hyper-parameters θabs
k =

[
aabs

k , σabs
k , σabs

ν,k , βabs
k

]T
.

From these and the data, prediction of the SMC amplitudes is performed using the function
predict. Other spatial field indicators, such as SINR, PEB are then deduced, c.f. (4) and (6).
The resulting REM will be discussed in Section 4, and exploited in Sections 5 and 6.

4. Analysis of the GPR-Based Channel Model

In this section, various REM parameters, i.e., SINR, PEB, etc will be analyzed, using
the measurement data. We first analyze the energy “captured” by the SMCs in relation to
the total energy of the observed CIRs, denoted as energy capture (EC) [52] and the number
of visible SMCs along the trajectory. Secondly, the GPM of the SMC amplitudes and the
resulting REMs for SMC amplitudes, SINR-values, and the PEB are illustrated.

4.1. Energy Capture

We analyze the EC of the SMCs, which is defined as the energy ratio between one
individual or a few SMCs over the total energy of the CIR [52]. Figure 4 plots the EC of
individual SMCs, while Figure 5 shows the combined ECs of different sets of SMCs. The
LOS component captures between 20% to 80% of the total received signal power; the closer
the agent to the anchor, the higher the EC. Individual first-order SMCs capture up to 20%
of the total received power, while the accumulated EC of all first-order SMCs is between
5% to 35%. For second-order SMCs, the ECs are between 0.1% to 5%, except for VA 8 and
10 where the maximum EC is 25% and 20% respectively. Their accumulated EC is mostly
between 2% to 20%.
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(b)
Figure 4. EC of individual SMC: (a) VA 1 to VA 6, (b) VA 7 to VA 19.

Figure 5 also plots the number of visible VAs at each trajectory point. For first-order
and especially second-order SMCs, the accumulated EC correlates with the number of
visible VAs, as shown in Figure 5a,b. It could be because for second-order VAs, the energy
are relatively the same, as shown in Figure 4b. For first-order VAs, the energies for different
VAs are quite different.

Figure 5c plots the EC of the LOS signal versus the total number of visible VAs. It is
shown that the closer the PA to the anchor, the higher the EC and the fewer the number of
visible VAs, which are both understandable.

Figure 5d illustrates the EC of all SMCs versus the number of visible VAs. It is seen
that, for our data set, between 50% and 90% of the received power can be modeled by
means of SMCs. Correspondingly, between 50% and 90% of the received power can be
predicted accurately by means of a GPR amplitude model. A beam selection and beam
searching algorithm can select strong first and second-order SMCs as candidate beams, in
case the LOS gets blocked (e.g., by the user itself).
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Figure 5. EC of certain SMCs vs. number of VAs visible: (a) first-order VAs only, (b) second-order
VAs only, (c) LOS (PA) only, (d) all VAs and LOS (PA). The brown solid line shows the number of VAs
that are visible from the corresponding trajectory point. The dashed brown line shows the number of
visible VAs that are within the set of (a) first-order VAs or (b) second-order VAs.

4.2. SMC Amplitudes and SINR

Figure 6 shows the GPR for various normalized SMC amplitudes |α̂k(p)dk(p)| as a
function of the direction angle φk(p) of the propagation path. The estimated amplitudes
from the data set are shown along the mean and the ±2σ interval, as well as the predicted
SINRk(φk(p∗)) given by (9). It is evident that there is a correlation between the SMC
amplitudes and the direction angle, as described in Section 2.3, which is exploited by the
GPR. The normalization does not allow for a direct comparison of the SMC amplitudes.
But the comparison of the SINR-values indicates how much ranging information each of
the SMCs can yield, c.f. (5).

It is shown that the SINR for reflections on the EPB is high, around 40, see Figure 6b
which is much higher than the SINR for other SMCs, see Figure 6c–n, except the LOS link.
Please note that on the east side of the room, there are fewer obstacles which makes the
SMCs more reliable than others.

For the reflections on the WW, c.f. Figure 6c, the SINR is very low, indicating low
ranging information, except at a direction approximately perpendicular to the wall, where
the SINR increases steadily. The result is reasonable since, near the west wall, there are
quite a few obstacles, e.g., computers, measurement equipment, etc., that could produce
scattering effects.

For the SMC that corresponds to VA 4, shown in Figure 6d, the reflection on the
whiteboard (visible at angles <−1.5 rad) has very high SINR, much higher than reflections
on the other materials, e.g., the wooden door and the plasterboard wall. From VA 6, c.f.
Figure 6e, it is shown that reflections on the NGW with metal-coated glass windows yield
very significant ranging information, reaching up to an SINR of around 20.
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As shown in Figure 6f,g,i,k, for VA 7, 8, 11 and 13, the SINR is not as good as the
first-order SMCs, but better than the other second-order SMCs shown in Figure 6h,j,l,m,n.
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Figure 6. Cont.
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Figure 6. GPR on SMC amplitudes corresponding to: (a) LOS link, (b) reflection on EPB, (c) reflection on
WW, (d) reflection on the south part of the room containing various materials, e.g., white board, wall,
metal door, (e) reflection on the north part of the room, containing glass windows and walls, (f) double
reflection on EPB then WW, (g) double reflection on EPB then SW, (h) double reflection on EPB then NGW,
(i) double reflection on WW then EPB, (j) double reflection on WW then SW, (k) double reflection on
SW then NGW, (k) double reflection on SW then WW, (l) double reflection on SW then WW, (m) double
reflection on NGW then SW, and (n) double reflection on NGW then WW. The regressed amplitude is
|αk(p)dk(p)|. SINR computed from GPR is plotted in purple with axis on the right-hand side.

Implementing GPR on measurement data allows us to predict the SINR as well as the
amplitude of the SMCs for each point p∗ in an environment at which an SMC is visible.
Figure 7 shows this prediction result in terms of the SINRk(p∗), while Figure 8 shows the
predicted mean amplitude E[ψ(φk(p∗))|Dk, θabs

k ]/‖ak −p∗‖. It is evident that the LOS path
has very high SINR compared to other SMCs, thus it yields very high range information.
However, in the case that the LOS is not available, choosing a good NLOS SMC is necessary.
Two parameters could be used to choose between SMCs, the SINR and the SMC amplitude.
The SINR is an appropriate measure to describe the ranging information provided by some
SMC, which is an important metric for (multipath-assisted) positioning algorithms (see
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Section 5), while the amplitude translates to communication-performance metrics like
channel capacity [53] and bit error rate.
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Figure 7. Predicted SINR for the whole floor plan for various links: (a) LOS, (b) reflection on EPB,
(c) reflection on WW, (d) reflection on on south part of the room, (e) reflection on the north part of
the room, (f) double reflection on EPB then WW, (g) double reflection on WW then SW, (h) double
reflection on EPB then NGW, (i) double reflection on WW then EPB, (j) double reflection on WW then
SW, (k) double reflection on SW then GW, (l) double reflection on SW then WW, (m) double reflection
on NGW then SW, (n) double reflection on NGW then WW. SINR is obtained by applying GPR on
the CIRs obtained from measurement at 595 points along the trajectory, as shown in Figure 1. The
same dB scale is used in all sub figures.

From Figure 8, it is seen that the LOS amplitude is dependent on the distance as well
as the antenna radiating pattern, while for other SMCs, the amplitudes are also affected by
the reflection coefficients of the plane surfaces.
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Figure 8. Predicted SMC amplitude αk(p) for the whole floor plan for various SMCs: (a) LOS,
(b) reflection on EPB, (c) reflection on WW, (d) reflection on on south part of the room, (e) reflection
on the north part of the room, (f) double reflection on EPB then WW, (g) double reflection on WW
then EPB, (h) double reflection on the SW then NGW. GPR was applied the set of measurement along
the trajectory. The same dB scale is used in all sub-figures.
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4.3. Position Error Bound

Figure 9 shows the predicted PEB throughout the floor plan, computed from (5),
when using information from various SMCs. The information provided by each SMC is
quantified by SINRk(p∗). The sub-figures on the left-hand side include the LOS component
from the PA, while the LOS is neglected in all sub-figures on the right. In the top row, all
VAs are considered, while first-order VAs only are considered in the middle, and at the
bottom, only VA 2, VA 4, VA 6, VA 7, and VA 8 are used, which contribute most to the PEB.
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Figure 9. GPR-predicted PEB considering information from SMCs corresponding to: (a) all VAs and
the PA, (b) all 1st and 2nd-order VAs, (c) 1st-order VAs and the PA, (d) all 1st-order VAs, (e) selected
VAs and the LOS, (f) selected VAs.

It is observed that the second-order VAs play an important role in any localization
algorithm, despite their low powers. With information from them, the PEB improves
significantly even without the LOS component. With only first-order VAs, the PEB is worse.
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5. Exploiting the GPR Model for (Multipath-Assisted) Positioning

To formulate a signal model for position estimation, Equation (3) can be rewritten as

r = S(p)α + w ∼ CN (S(p)α, C) (10)

where r = [. . . , r(nTs), . . .] ∈ CN is a sampled version of the received signal, S(p) =

[. . . , s(τk(p)), . . .] is the parameterized signal matrix with s(τ) = [. . . , s(nTs − τ), . . .]T ∈
CN , denoting the SMCs with delays τk(p) that are determined by p, α = [. . . , αk, . . .]T ∈ CK

are the SMC amplitudes, and w is a noise vector with covariance C = E
{

wwH}. The noise
vector w may account for AWGN only or for the DM as well. A maximum likelihood
(ML) estimation p̂ = arg maxp∗ L(r|p∗) considers α as nuisance parameters and finds the
position by maximizing the concentrated log-likelihood function (LLHF)

L(r|p∗) = max
α
L(r|p∗, α). (11)

The LLHF evaluated at candidate position p∗ follows from (10),

L(r|p∗, α) = − log det(C)− (r− S(p)α)HC−1(r− S(p)α). (12)

The maximization in (11) is solved by a weighted least square solution for ‖r− S(p)α‖2

which yields α̂ =
(
SH(p)C−1S(p)

)−1SH(p)C−1r. This ML positioning algorithm is our
reference algorithm, denoted as “SALMA-light” and described in [54,55] if AWGN is
assumed, i.e., C = σ2

n I.
The GPM model provides prior knowledge about the absolute value of α but not

on its phase. We thus expand the amplitude vector as α = Φx, where diagonal matrix
Φ = diag(φ) and [φ]k = exp(j∠αk) = exp(jζk). From the GPM, we know that x|p ∼
N
(

µ(p), 1
2 Λ(p)

)
with [µ(p)]k =

E{ψ(φk(p))|Dk ,θabs
k }

‖ak−p‖ , and the diagonal matrix has elements

[Λ(p)]k,k = 2
V{ψ(φk(p))|Dk ,θabs

k }
‖ak−p‖2 . The signal model then becomes

r = S(p)Φµ(p) + S(p)x̃ + w (13)

with x̃|p ∼ CN (0, Λ(p)) is introduced to account for the variance of the SMC amplitudes
and the uncertainty of the phases in Φ.

The concentrated LLHF is now obtained by maximizing the LLHF for signal model
(13) by maximizing for the nuisance parameter vector φ and σ2

n (maximizing the AWGN
model for C), given candidate position p∗,

F (p∗) = max
σn ,φ
L
(

r|σ2
n , φ, p∗

)
(14)

with

L(r|σn, φ, p∗) = − log det
(
C̃
)
− (r− S(p)M(p)φ)HC̃−1(r− S(p)M(p)φ) (15)

where M(p) = diag(µ(p)) and

C̃ = σ2
n I + S(p)Λ(p)S(p)H (16)

for the noise covariance.
First, we will find the phase φ, and noise variance σ2

n that maximize (15), i.e.,

φ̂ = arg max
φ
L(r|σn, φ, p∗) (17)

σ̂n = arg max
σn
L
(

r|σ2
n , φ̂, p∗

)
(18)
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Let’s denote the phase of the k-th SMC amplitude as ζk. To solve for the phase,
we have:

(r− S(p)M(p)φ)HC̃−1(r− S(p)M(p)φ) =(
r− ∑

k′ 6=k
s(τk)Λkejζk − s(τk)µkejζk

)H

C̃−1

(
r− ∑

k′ 6=k
s(τk)µkejζk − s(τk)µkejζk

)

=
(

rk − s(τk)µkejζk
)H

C̃−1
(

rk − s(τk)µkejζk
)
= f (ζk)

(19)

Vector rk is the residual of the CIR measurement after subtracting all SMCs except the
k-th.

In order to find ζk, let’s denote ejζk = xk + jyk. Thus:

x̂k, ŷk = arg min
xk ,yk

f (xk, yk) s.t. g(xk, yk) = x2
k + y2

k − 1 = 0 (20)

Using Lagrange multiplier, we have

x̂k, ŷk, λ̂k = arg min
xk ,yk ,λk

f (xk, yk) + λkg(xk, yk) (21)

and obtain

∂L
∂xk

= −2µks(τk)
HC̃−1 Re{rk}+ 2xkµ2

ks(τk)
HC̃−1s(τk) + 2xkλk (22)

∂L
∂yk

= −2µks(τk)
HC̃−1 Im{rk}+ 2ykµ2

ks(τk)
HC̃−1s(τk) + 2ykλk (23)

∂L
∂λk

= x2
k + y2

k − 1 (24)

Equating Equations (22)–(24) to 0, we have:

λk = |sH(τk)C̃
−1µkrk| − µ2

ks(τk)
HC̃−1s(τk) (25)

and

xk =
s(τk)

HC̃−1µk Re{rk}
µ2

ks(τk)HC̃−1s(τk) + λk
(26)

Similarly for yk. Or, in short we have

ζk = ∠s(τk)
HC̃−1µkrk (27)

and if the k-th SMC does not overlap with any other SMC, we have equivalently

ζ̂k = ∠s(τk)C̃
−1r (28)

which is a weighted projection of the measurement on the k-th SMC template s(τk). The
weighting (by C̃−1) takes into account the variance of the SMC from the GPR model, which
is essential for reducing secondary maxima in the LHF. Unfortunately, the weighting has
a negative influence on the reliability of this phase estimation step. We thus replace for
this estimator the covariance by an identity matrix, obtaining the approximate (but more
robust) phase estimator

ζ̂k ≈ ∠s(τk)r. (29)

From (15), we can write:

L(r|σn, φ, p∗) = − log det C̃− trace
{

C̃−1 ˆ̃C
}

(30)
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where ˆ̃C = (r− S(p)M(p)φ)(r− S(p)M(p)φ)H is a realization of C̃. According to [56],
we have:

σ̂n
2 =

1
N − K

trace
{

Π⊥S(τ)
ˆ̃C
}

(31)

in which
Π⊥S(τ) = IN − S(τ)

(
S(τ)HS(τ)

)−1
S(τ)H . (32)

Thus σ̂n can be computed. The localization problem reduces to

p̂ = arg max
p∗
L
(
r|σ̂n, φ̂, p∗

)
. (33)

6. Result

To implement the GPR-based positioning algorithm, the data described in Section 3
is divided into two groups. The first group is used for GP training, in which both the
agent positions and the corresponding CIRs are known. The GPM hyper-parameters are
estimated. The second group contains the remaining data, where only the CIRs are used.
The corresponding agent positions are unknown and will be estimated by exploiting the
REM, i.e., the SMC amplitudes and SINRs predicted using the GPM hyper-parameters.
Errors are computed and their CDFs are plotted in Figure 10. SALMA-light [54,55], the
reference single-anchor localization method described in Section 5, is used for comparison.
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Figure 10. CDF of the localization error using (a) training segments 1, 2, 3, 7, (b) training segments 4,
5, 6. The blue solid line plots the error CDF obtained when SALMA-light is used. The orange solid
line plots the error CDF obtained when optimizing the LLHF with prior knowledge from GPR. The
phase ζk is approximated by using the phase from CIR. Overlap checking is performed first before
implementing the algorithms.

It is shown that, with situational awareness through the REM information, the pro-
posed algorithm outperforms SALMA-light in terms of the outlier robustness, while the
accuracy remains comparable.

To explain this performance improvement, Figure 11 compares the LLHF for the two
algorithms. The LLHF has been evaluated at candidate positions lying on a radius that
corresponds to the estimated line-of-sight distance [55]. It is shown that the REM-assisted
algorithm reduces the number of local maxima in the LLHF and emphasizes the correct
maximum, yielding the performance improvement over SALMA-light.

Figure 12 shows the error CDF for a modified experiment, where a visibility test and
overlap checking are conducted to reduce the number of SMCs that are used for position
estimation to the most useful ones. This is done for both, SALMA-light and the proposed
algorithm. It is shown that again the proposed algorithm outperforms SALMA-light in
reducing outliers. The difference in results between Figures 10 and 12 is because, after
visibility test and overlap checking, the number of VAs used is reduced, leading to reduced
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robustness for SALMA light while the use of the REM avoids such loss of robustness. Note
that also the accuracy is improved in this variant.
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Figure 11. LLHF values obtained using (a) SALMA-light, (b) LHF+GPR with exact sigma. LLHF
values at evaluation points are plotted with color code. The red circle denotes the estimation result,
while the filled black circle denotes the true position.

These results suggest that the proposed algorithm might perform better in obstructed-
LOS or in the presence of humans or obstacles, even though the algorithm has not been
tailored to specifically address this problem. The recent publications [57,58] describe
algorithms that are designed to be robust to blocked LOS (in the former) and blocked SMCs
(in the latter), in particular when the blocking is due to the influence of the human body on
the visibility of SMCs. The belief propagation SLAM algorithm from [38] provides visibility
information of SMCs in addition to the amplitude and delay information. This visibility
information can be used to pre-select the data points for the construction of the GPR-based
REM such that path blocking does not influence the quality of the REM. It is expected that
the “environment part” of the propagation channel, which is expressed by the GPR-based
REM, and the “device part” can be separated very well, once a consistent REM has been
learned from a large number of independent measurements obtained from different user
equipment. The rigorous formulation of such methods is left for future work, however.
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Figure 12. CDF of the localization error using (a) training segments 1, 2, 3, 7, (b) training segments
4, 5, 6. The blue solid line plots the error CDF obtained when SALMA-light is used. The orange
solid line plots the error CDF obtained when optimizing the LLHF with prior knowledge from GPR.
The phase ζk is approximated by using the phase from CIR. Visibility test is carried out, followed by
overlap checking, before implementing the algorithms.

7. Conclusions

In this paper, radio environment maps (REMs) have been formulated, taking into
account amplitude information of specular multipath components (SMCs) that are learned
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by means of Gaussian process regression (GPR). The regression method allows predicting
the mean and variance of the SMC amplitudes. From these parameters, the position-
error-bound (PEB) has been computed as a performance metric for positioning algo-
rithms that exploit range information contained in the SMCs, so-called multipath-based
localization schemes.

The amplitude information can also be used to formulate REMs of communication
performance metrics, e.g., the channel capacity or the bit-error rate, in order to realize
more efficient and robust, location-aware protocols for medium access control. Using a
set of training measurements from the environment, the REMs can be computed for any
point within the environment. The paper evaluates to what extent the REM represents
the multipath components in the analyzed data. It has been found that 50% to 90% of the
received power can be attributed to the resolvable SMCs contained in our model, which
corresponds to the fraction of power that can be predicted by the REM.

The REM is applied in this paper to improve the robustness of a single-anchor
multipath-based localization method which sometimes suffers from outliers resulting
in large errors. Using the REM as a channel prior knowledge helps to avoid these outliers.
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