833 research outputs found

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    Exploiting the power of multiplicity: a holistic survey of network-layer multipath

    Get PDF
    The Internet is inherently a multipath network: For an underlying network with only a single path, connecting various nodes would have been debilitatingly fragile. Unfortunately, traditional Internet technologies have been designed around the restrictive assumption of a single working path between a source and a destination. The lack of native multipath support constrains network performance even as the underlying network is richly connected and has redundant multiple paths. Computer networks can exploit the power of multiplicity, through which a diverse collection of paths is resource pooled as a single resource, to unlock the inherent redundancy of the Internet. This opens up a new vista of opportunities, promising increased throughput (through concurrent usage of multiple paths) and increased reliability and fault tolerance (through the use of multiple paths in backup/redundant arrangements). There are many emerging trends in networking that signify that the Internet's future will be multipath, including the use of multipath technology in data center computing; the ready availability of multiple heterogeneous radio interfaces in wireless (such as Wi-Fi and cellular) in wireless devices; ubiquity of mobile devices that are multihomed with heterogeneous access networks; and the development and standardization of multipath transport protocols such as multipath TCP. The aim of this paper is to provide a comprehensive survey of the literature on network-layer multipath solutions. We will present a detailed investigation of two important design issues, namely, the control plane problem of how to compute and select the routes and the data plane problem of how to split the flow on the computed paths. The main contribution of this paper is a systematic articulation of the main design issues in network-layer multipath routing along with a broad-ranging survey of the vast literature on network-layer multipathing. We also highlight open issues and identify directions for future work

    Multipath inter-domain policy routing

    Get PDF
    Dissertação submetida para a obtenção do grau de Doutor em Engenharia Electrotécnica e de ComputadoresRouting can be abstracted to be a path nding problem in a graph that models the network. The problem can be modelled using an algebraic approach that describes the way routes are calculated and ranked. The shortest path problem is the most common form and consists in nding the path with the smallest cost. The inter-domain scenario introduces some new challenges to the routing problem: the routing is performed between independently con gured and managed networks; the ranking of the paths is not based on measurable metrics but on policies; and the forwarding is destination based hop-by-hop. In this thesis we departed from the Border gateway Protocol (BGP) identifying its main problems and elaborating on some ideal characteristics for a routing protocol suited for the inter-domain reality. The main areas and contributions of this work are the following: The current state of the art in algebraic modeling of routing problems is used to provide a list of possible alternative conditions for the correct operation of such protocols. For each condition the consequences in terms of optimality and network restrictions are presented. A routing architecture for the inter-domain scenario is presented. It is proven that it achieves a multipath routing solution in nite time without causing forwarding loops. We discuss its advantages and weaknesses. A tra c-engineering scheme is designed to take advantage of the proposed architecture. It works using only local information and cooperation of remote ASes to minimize congestion in the network with minimal signalling. Finally a general model of a routing protocol based on hierarchical policies is used to study how e cient is the protocol operation when the correctness conditions are met. This results in some conclusions on how the policies should be chosen and applied in order to achieve speci c goals.Portuguese Science and Technology Foundation -(FCT/MCTES)grant SFRH/BD/44476/2008; CTS multi-annual funding project PEst OE/EEI/UI0066/2011; MPSat project PTDC/EEA TEL/099074/2008; OPPORTUNISTICCR project PTDC/EEA-TEL/115981/2009; Fentocells project PTDC/EEA TEL/120666/201

    Structured Peer-to-Peer Overlay Deployment on MANET: A Survey

    Get PDF
    There are many common characteristics between Peer-to-Peer (P2P) overlay networks and Mobile Ad-hoc Networks (MANET). Self-organization, decentralization, dynamicity and changing topology are the most shared features. Furthermore, when used together, the two approaches complement each other. P2P overlays provide data storage/retrieval functionality, and their routing information can complement that of MANET. MANET provides wireless connectivity between clients without depending on any pre-existing infrastructure. The aim of this paper is to survey current P2P over MANET systems. Specifically, this paper focuses on and investigates structured P2P over MANET. Overall, more than thirty distinct approaches have been classified into groups and introduced in tables providing a structured overview of the area. The survey addresses the identified approaches in terms of P2P systems, MANET underlay systems and the performance of the reviewed systems

    Network coding for transport protocols

    Get PDF
    With the proliferation of smart devices that require Internet connectivity anytime, anywhere, and the recent technological advances that make it possible, current networked systems will have to provide a various range of services, such as content distribution, in a wide range of settings, including wireless environments. Wireless links may experience temporary losses, however, TCP, the de facto protocol for robust unicast communications, reacts by reducing the congestion window drastically and injecting less traffic in the network. Consequently the wireless links are underutilized and the overall performance of the TCP protocol in wireless environments is poor. As content delivery (i.e. multicasting) services, such as BBC iPlayer, become popular, the network needs to support the reliable transport of the data at high rates, and with specific delay constraints. A typical approach to deliver content in a scalable way is to rely on peer-to-peer technology (used by BitTorrent, Spotify and PPLive), where users share their resources, including bandwidth, storage space, and processing power. Still, these systems suffer from the lack of incentives for resource sharing and cooperation, and this problem is exacerbated in the presence of heterogenous users, where a tit-for-tat scheme is difficult to implement. Due to the issues highlighted above, current network architectures need to be changed in order to accommodate the users¿ demands for reliable and quality communications. In other words, the emergent need for advanced modes of information transport requires revisiting and improving network components at various levels of the network stack. The innovative paradigm of network coding has been shown as a promising technique to change the design of networked systems, by providing a shift from how data flows traditionally move through the network. This shift implies that data flows are no longer kept separate, according to the ¿store-and-forward¿ model, but they are also processed and mixed in the network. By appropriately combining data by means of network coding, it is expected to obtain significant benefits in several areas of network design and architecture. In this thesis, we set out to show the benefits of including network coding into three communication paradigms, namely point-topoint communications (e.g. unicast), point-to-multipoint communications (e.g. multicast), and multipoint-to-multipoint communications (e.g. peer-to-peer networks). For the first direction, we propose a network coding-based multipath scheme and show that TCP unicast sessions are feasible in highly volatile wireless environments. For point-to-multipoint communications, we give an algorithm to optimally achieve all the rate pairs from the rate region in the case of degraded multicast over the combination network. We also propose a system for live streaming that ensures reliability and quality of service to heterogenous users, even if data transmissions occur over lossy wireless links. Finally, for multipoint-to-multipoint communications, we design a system to provide incentives for live streaming in a peer-to-peer setting, where users have subscribed to different levels of quality. Our work shows that network coding enables a reliable transport of data, even in highly volatile environments, or in delay sensitive scenarios such as live streaming, and facilitates the implementation of an efficient incentive system, even in the presence of heterogenous users. Thus, network coding can solve the challenges faced by next generation networks in order to support advanced information transport.Postprint (published version
    corecore