46 research outputs found

    Integration of Machine Learning and Mechanistic Models Accurately Predicts Variation in Cell Density of Glioblastoma Using Multiparametric MRI

    Get PDF
    Glioblastoma (GBM) is a heterogeneous and lethal brain cancer. These tumors are followed using magnetic resonance imaging (MRI), which is unable to precisely identify tumor cell invasion, impairing effective surgery and radiation planning. We present a novel hybrid model, based on multiparametric intensities, which combines machine learning (ML) with a mechanistic model of tumor growth to provide spatially resolved tumor cell density predictions. The ML component is an imaging data-driven graph-based semi-supervised learning model and we use the Proliferation-Invasion (PI) mechanistic tumor growth model. We thus refer to the hybrid model as the ML-PI model. The hybrid model was trained using 82 image-localized biopsies from 18 primary GBM patients with pre-operative MRI using a leave-one-patient-out cross validation framework. A Relief algorithm was developed to quantify relative contributions from the data sources. The ML-PI model statistically significantly outperformed (p \u3c 0.001) both individual models, ML and PI, achieving a mean absolute predicted error (MAPE) of 0.106 ± 0.125 versus 0.199 ± 0.186 (ML) and 0.227 ± 0.215 (PI), respectively. Associated Pearson correlation coefficients for ML-PI, ML, and PI were 0.838, 0.518, and 0.437, respectively. The Relief algorithm showed the PI model had the greatest contribution to the result, emphasizing the importance of the hybrid model in achieving the high accuracy

    Novel Semi-Supervised Learning Models to Balance Data Inclusivity and Usability in Healthcare Applications

    Get PDF
    abstract: Semi-supervised learning (SSL) is sub-field of statistical machine learning that is useful for problems that involve having only a few labeled instances with predictor (X) and target (Y) information, and abundance of unlabeled instances that only have predictor (X) information. SSL harnesses the target information available in the limited labeled data, as well as the information in the abundant unlabeled data to build strong predictive models. However, not all the included information is useful. For example, some features may correspond to noise and including them will hurt the predictive model performance. Additionally, some instances may not be as relevant to model building and their inclusion will increase training time and potentially hurt the model performance. The objective of this research is to develop novel SSL models to balance data inclusivity and usability. My dissertation research focuses on applications of SSL in healthcare, driven by problems in brain cancer radiomics, migraine imaging, and Parkinson’s Disease telemonitoring. The first topic introduces an integration of machine learning (ML) and a mechanistic model (PI) to develop an SSL model applied to predicting cell density of glioblastoma brain cancer using multi-parametric medical images. The proposed ML-PI hybrid model integrates imaging information from unbiopsied regions of the brain as well as underlying biological knowledge from the mechanistic model to predict spatial tumor density in the brain. The second topic develops a multi-modality imaging-based diagnostic decision support system (MMI-DDS). MMI-DDS consists of modality-wise principal components analysis to incorporate imaging features at different aggregation levels (e.g., voxel-wise, connectivity-based, etc.), a constrained particle swarm optimization (cPSO) feature selection algorithm, and a clinical utility engine that utilizes inverse operators on chosen principal components for white-box classification models. The final topic develops a new SSL regression model with integrated feature and instance selection called s2SSL (with “s2” referring to selection in two different ways: feature and instance). s2SSL integrates cPSO feature selection and graph-based instance selection to simultaneously choose the optimal features and instances and build accurate models for continuous prediction. s2SSL was applied to smartphone-based telemonitoring of Parkinson’s Disease patients.Dissertation/ThesisDoctoral Dissertation Industrial Engineering 201

    UNCERTAINTY MITIGATION IN IMAGE-BASED MACHINE LEARNING MODELS FOR PRECISION MEDICINE

    Get PDF
    Machine learning (ML) algorithms have been developed to build predictive models in medicine and healthcare. In most cases, the performance of ML models/algorithms is measured by predictive accuracy or accuracy-related measures only. In medicine, the model results are intended to guide physicians to make critical decisions regarding patient care. This means that quantifying and mitigating the uncertainty of the output is also very important as it will allow decision makers to know how much they can rely on the model output. My dissertation focuses on studying model uncertainty of image-based ML in the context of precision medicine of brain cancer. Specifically, I focus on developing ML models to predict intra-tumor heterogeneity of genomic and molecular markers based on multi-contrast magnetic resonance imaging (MRI) data for glioblastoma (GBM) – the most aggressive type of brain cancer. Intra-tumor heterogeneity has been found to be a leading cause of treatment failure of GBM. Devising a non-invasive approach to map out the molecular/genomic distribution using MRI helps develop treatment with high precision. My dissertation research addresses the model uncertainties due to high-dimensional and noisy features, sparsity of labeled data, and utility of domain knowledge. In the first study, we developed a Semi-supervised Gaussian Process with Uncertainty-minimizing Feature-selection (SGP-UF), which can incorporate selected unlabeled samples (i.e. unbiopsied regions of a tumor) in the model training, and integrate feature selection with a new criterion of seeking features that minimize the prediction uncertainty. In the second study, we developed a Knowledge-infused Global-Local data fusion (KGL) framework, which optimally fuses three sources of data/information including biopsy samples (labeled data, local/sparse), images (unlabeled data, global), and knowledge-driven mechanistic models. In the third study, we developed a Weakly Supervised Ordinal Support Vector Machine (WSO-SVM), which aims to leverage a combination of data sources including biopsy/labeled samples and unlabeled samples from the tumor and image data from the normal brain, as well as their intrinsic ordinal relationship. We demonstrate that these novel methods significantly reduce prediction uncertainty while at the same time achieving higher accuracy in precision medicine, which can inform personalized targeted treatment decisions that potentially improve clinical outcome.Ph.D

    Deep learning in medical imaging and radiation therapy

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/1/mp13264_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/146980/2/mp13264.pd

    Semantic Segmentation of Ambiguous Images

    Get PDF
    Medizinische Bilder können schwer zu interpretieren sein. Nicht nur weil das Erkennen von Strukturen und möglichen Veränderungen Erfahrung und jahrelanges Training bedarf, sondern auch weil die dargestellten Messungen oft im Kern mehrdeutig sind. Fundamental ist dies eine Konsequenz dessen, dass medizinische Bild-Modalitäten, wie bespielsweise MRT oder CT, nur indirekte Messungen der zu Grunde liegenden molekularen Identitäten bereithalten. Die semantische Bedeutung eines Bildes kann deshalb im Allgemeinen nur gegeben einem größeren Bild-Kontext erfasst werden, welcher es oft allerdings nur unzureichend erlaubt eine eindeutige Interpretation in Form einer einzelnen Hypothese vorzunehmen. Ähnliche Szenarien existieren in natürlichen Bildern, in welchen die Kontextinformation, die es braucht um Mehrdeutigkeiten aufzulösen, limitiert sein kann, beispielsweise aufgrund von Verdeckungen oder Rauschen in der Aufnahme. Zusätzlich können überlappende oder vage Klassen-Definitionen zu schlecht gestellten oder diversen Lösungsräumen führen. Die Präsenz solcher Mehrdeutigkeiten kann auch das Training und die Leistung von maschinellen Lernverfahren beeinträchtigen. Darüber hinaus sind aktuelle Modelle ueberwiegend unfähig komplex strukturierte und diverse Vorhersagen bereitzustellen und stattdessen dazu gezwungen sich auf sub-optimale, einzelne Lösungen oder ununterscheidbare Mixturen zu beschränken. Dies kann besonders problematisch sein wenn Klassifikationsverfahren zu pixel-weisen Vorhersagen wie in der semantischen Segmentierung skaliert werden. Die semantische Segmentierung befasst sich damit jedem Pixel in einem Bild eine Klassen-Kategorie zuzuweisen. Diese Art des detailierten Bild-Verständnisses spielt auch eine wichtige Rolle in der Diagnose und der Behandlung von Krankheiten wie Krebs: Tumore werden häufig in MRT oder CT Bildern entdeckt und deren präzise Lokalisierung und Segmentierung ist von grosser Bedeutung in deren Bewertung, der Vorbereitung möglicher Biopsien oder der Planung von Fokal-Therapien. Diese klinischen Bildverarbeitungen, aber auch die optische Wahrnehmung unserer Umgebung im Rahmen von täglichen Aufgaben wie dem Autofahren, werden momentan von Menschen durchgeführt. Als Teil des zunehmenden Einbindens von maschinellen Lernverfahren in unsere Entscheidungsfindungsprozesse, ist es wichtig diese Aufgaben adequat zu modellieren. Dies schliesst Unsicherheitsabschätzungen der Modellvorhersagen mit ein, mitunter solche Unsicherheiten die den Bild-Mehrdeutigkeiten zugeschrieben werden können. Die vorliegende Thesis schlägt mehrere Art und Weisen vor mit denen mit einer mehrdeutigen Bild-Evidenz umgegangen werden kann. Zunächst untersuchen wir den momentanen klinischen Standard der im Falle von Prostata Läsionen darin besteht, die MRT-sichtbaren Läsionen subjektiv auf ihre Aggressivität hin zu bewerten, was mit einer hohen Variabilität zwischen Bewertern einhergeht. Unseren Studien zufolge können bereits einfache machinelle Lernverfahren und sogar simple quantitative MRT-basierte Parameter besser abschneiden als ein individueller, subjektiver Experte, was ein vielversprechendes Potential der Quantifizerung des Prozesses nahelegt. Desweiteren stellen wir die derzeit erfolgreichste Segmentierungsarchitektur auf einem stark mehrdeutigen Datensatz zur Probe der während klinischer Routine erhoben und annotiert wurde. Unsere Experimente zeigen, dass die standard Segmentierungsverlustfuntion in Szenarien mit starkem Annotationsrauschen sub-optimal sein kann. Als eine Alternative erproben wir die Möglichkeit ein Modell der Verlustunktion zu lernen mit dem Ziel die Koexistenz von plausiblen Lösungen während des Trainings zuzulassen. Wir beobachten gesteigerte Performanz unter Verwendung dieser Trainingsmethode für ansonsten unveränderte neuronale Netzarchitekturen und finden weiter gesteigerte relative Verbesserungen im Limit weniger Daten. Mangel an Daten und Annotationen, hohe Maße an Bild- und Annotationsrauschen sowie mehrdeutige Bild-Evidenz finden sich besonders häufig in Datensätzen medizinischer Bilder wieder. Dieser Teil der Thesis exponiert daher einige der Schwächen die standard Techniken des maschinellen Lernens im Lichte dieser Besonderheiten aufweisen können. Derzeitige Segmentierungsmodelle, wie die zuvor Herangezogenen, sind dahingehend eingeschränkt, dass sie nur eine einzige Vorhersage abgeben können. Dies kontrastiert die Beobachtung dass eine Gruppe von Annotierern, gegeben mehrdeutiger Bilddaten, typischer Weise eine Menge an diverser aber plausibler Annotationen produziert. Um die vorgenannte Modell-Einschränkung zu beheben und die angemessen probabilistische Behandlung der Aufgabe zu ermöglichen, entwickeln wir zwei Modelle, die eine Verteilung über plausible Annotationen vorhersagen statt nur einer einzigen, deterministischen Annotation. Das erste der beiden Modelle kombiniert ein `encoder-decoder\u27 Modell mit dem Verfahren der `variational inference\u27 und verwendet einen globalen `latent vector\u27, der den Raum der möglichen Annotationen für ein gegebenes Bild kodiert. Wir zeigen, dass dieses Modell deutlich besser als die Referenzmethoden abschneidet und gut kalibrierte Unsicherheiten aufweist. Das zweite Modell verbessert diesen Ansatz indem es eine flexiblere und hierarchische Formulierung verwendet, die es erlaubt die Variabilität der Segmentierungen auf verschiedenden Skalen zu erfassen. Dies erhöht die Granularität der Segmentierungsdetails die das Modell produzieren kann und erlaubt es unabhängig variierende Bildregionen und Skalen zu modellieren. Beide dieser neuartigen generativen Segmentierungs-Modelle ermöglichen es, falls angebracht, diverse und kohärente Bild Segmentierungen zu erstellen, was im Kontrast zu früheren Arbeiten steht, welche entweder deterministisch sind, die Modellunsicherheiten auf der Pixelebene modellieren oder darunter leiden eine unangemessen geringe Diversität abzubilden. Im Ergebnis befasst sich die vorliegende Thesis mit der Anwendung von maschinellem Lernen für die Interpretation medizinischer Bilder: Wir zeigen die Möglichkeit auf den klinischen Standard mit Hilfe einer quantitativen Verwendung von Bildparametern, die momentan nur subjektiv in Diagnosen einfliessen, zu verbessern, wir zeigen den möglichen Nutzen eines neuen Trainingsverfahrens um die scheinbare Verletzlichkeit der standard Segmentierungsverlustfunktion gegenüber starkem Annotationsrauschen abzumildern und wir schlagen zwei neue probabilistische Segmentierungsmodelle vor, die die Verteilung über angemessene Annotationen akkurat erlernen können. Diese Beiträge können als Schritte hin zu einer quantitativeren, verstärkt Prinzipien-gestützten und unsicherheitsbewussten Analyse von medizinischen Bildern gesehen werden -ein wichtiges Ziel mit Blick auf die fortschreitende Integration von lernbasierten Systemen in klinischen Arbeitsabläufen

    The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS)

    Get PDF
    In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences. Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low-and high-grade glioma patients-manually annotated by up to four raters-and to 65 comparable scans generated using tumor image simulation software. Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%-85%), illustrating the difficulty of this task. We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously. Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements. The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource

    Automatic Autism Spectrum Disorder Detection Using Artificial Intelligence Methods with MRI Neuroimaging: A Review

    Full text link
    Autism spectrum disorder (ASD) is a brain condition characterized by diverse signs and symptoms that appear in early childhood. ASD is also associated with communication deficits and repetitive behavior in affected individuals. Various ASD detection methods have been developed, including neuroimaging modalities and psychological tests. Among these methods, magnetic resonance imaging (MRI) imaging modalities are of paramount importance to physicians. Clinicians rely on MRI modalities to diagnose ASD accurately. The MRI modalities are non-invasive methods that include functional (fMRI) and structural (sMRI) neuroimaging methods. However, the process of diagnosing ASD with fMRI and sMRI for specialists is often laborious and time-consuming; therefore, several computer-aided design systems (CADS) based on artificial intelligence (AI) have been developed to assist the specialist physicians. Conventional machine learning (ML) and deep learning (DL) are the most popular schemes of AI used for diagnosing ASD. This study aims to review the automated detection of ASD using AI. We review several CADS that have been developed using ML techniques for the automated diagnosis of ASD using MRI modalities. There has been very limited work on the use of DL techniques to develop automated diagnostic models for ASD. A summary of the studies developed using DL is provided in the appendix. Then, the challenges encountered during the automated diagnosis of ASD using MRI and AI techniques are described in detail. Additionally, a graphical comparison of studies using ML and DL to diagnose ASD automatically is discussed. We conclude by suggesting future approaches to detecting ASDs using AI techniques and MRI neuroimaging
    corecore