
COMPUTATIONAL STATISTICS FOR HUMAN BRAIN

DIFFUSION TENSOR IMAGE ANALYSIS

SAFA ELSHEIKH

A thesis submitted in partial fulfilment of the

requirements of the University of Brighton

for the degree of Doctor of Philosophy

November 2018



COMPUTATIONAL STATISTICS FOR HUMAN BRAIN

DIFFUSION TENSOR IMAGE ANALYSIS

SAFA ELSHEIKH

PhD 2018



Contents

Acknowledgments vi

Declarations vii

Abstract viii

Abbreviations x

Chapter 1 Introduction 1

1.1 Problem Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Contribution to Knowledge . . . . . . . . . . . . . . . . . . . . . . . 8

1.6 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Chapter 2 Background and Related Work 11

2.1 Magnetic Resonance Imaging . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Diffusion Weighted Imaging . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Diffusion Tensor Imaging . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.2 Estimation of Diffusion Tensor . . . . . . . . . . . . . . . . . 17

2.3.3 Eigensystem and Ellipsoid . . . . . . . . . . . . . . . . . . . . 20

ii



2.3.4 Diffusion Anisotropy Measures . . . . . . . . . . . . . . . . . 21

2.3.5 The Views of the Brain . . . . . . . . . . . . . . . . . . . . . 24

2.3.6 DTI Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.7 DTI Applications . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter 3 Cluster Analysis of DTI 32

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Euclidean and Non-Euclidean Methods . . . . . . . . . . . . 35

3.2.2 DTI Processing Using Non-Euclidean Methods . . . . . . . . 42

3.2.3 Segmentation of the CC Using Non-Euclidean Methods . . . 43

3.2.4 Processes on the Covariance Matrices . . . . . . . . . . . . . 44

3.3 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.1 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . 45

3.3.2 Description of K-means . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 Hartigan’s Method . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4 Hartigan’s method with f -mean . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 F -mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.2 Hartigan’s Method with the f -mean . . . . . . . . . . . . . . 56

3.4.3 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5.1 Segmentation using Hierarchical Clustering . . . . . . . . . . 64

3.5.2 Two Dimensional Segmentation Using Hartigan’s Method . . 66

3.5.3 Three Dimensional Segmentation Using Hartigan’s Method . 71

3.6 Discussion and Conclusions . . . . . . . . . . . . . . . . . . . . . . . 75

Chapter 4 Modeling Diffusion Directions of the CC 78

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . 80

4.2.1 Multiple Sclerosis . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.2 DTI measures in MS . . . . . . . . . . . . . . . . . . . . . . . 82

iii



4.3 Von Mises-Fisher Distribution . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Maximum Likelihood Estimators . . . . . . . . . . . . . . . . 85

4.3.2 Mixture of vmf . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4 Modeling Diffusion Directions of the CC . . . . . . . . . . . . . . . . 89

4.4.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.2 Brain Images . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 99

Chapter 5 Fiber Tracking of the CC 102

5.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . 103

5.2 Deterministic White Matter Tractography . . . . . . . . . . . . . . . 106

5.3 Probabilistic Tractography . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 Probability Density Function (pdf) . . . . . . . . . . . . . . . 110

5.3.2 Probabilistic Local Tracking Methods . . . . . . . . . . . . . 111

5.4 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.1 Evaluation of Stopping Criteria . . . . . . . . . . . . . . . . . 113

5.5.2 Deterministic and Probabilistic Tracking . . . . . . . . . . . . 118

5.6 Conclusions and Discussions . . . . . . . . . . . . . . . . . . . . . . . 124

Chapter 6 Conclusions and Future Work 128

6.1 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . 128

6.2 Discussions and Future Work . . . . . . . . . . . . . . . . . . . . . . 131

6.2.1 Evaluation of the Segmentation of the CC . . . . . . . . . . . 131

6.2.2 Classification of Brain Tissue . . . . . . . . . . . . . . . . . . 132

6.2.3 Clustering the Brain Lobes . . . . . . . . . . . . . . . . . . . 132

6.2.4 Diffusion Directions . . . . . . . . . . . . . . . . . . . . . . . 133

iv



Appendix A Appendices 135

A.1 Euclidean and non-Euclidean Distances . . . . . . . . . . . . . . . . 135

A.2 Euclidean and non-Euclidean Means . . . . . . . . . . . . . . . . . . 137

A.3 Particular Cases of the f -mean . . . . . . . . . . . . . . . . . . . . . 138

A.4 Fiber tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

v



Acknowledgments

I would like to express my deep gratitude to my supervisors Dr. Andrew Fish, Dr.

Roma Chakrabarti and Dr. Diwei Zhou for the great support, professional guidance

and the excellent advice provided during the course of my PhD studies. I am very

happy I have such great supervisors. I would like to thank Professor Mara Cercig-

nani, Dr. Samira Bouyagoub and Dr. Nicholas Dowell for their valuable advice and

assistance. My special thanks to Professor Mara Cercignani for providing the brain

data.

Thanks to all of my friends and colleagues in UK and Sudan. I would also

like to acknowledge the continuous support and encouragement provided by all of

my family. I would like to express my very great appreciation to Dr. Diwei Zhou

for the continuous encouragement, the great advice and for providing the required

software and data. Special thanks to Dr. Andrew Fish for his great, fast and de-

tailed feedback and valuable suggestions. His willingness to help and give his time

so generously has been very much appreciated.

The work was partially supported by University of Khartoum, Sudan and

the University of Brighton.

vi



Declarations

I declare that the research contained in this thesis, unless otherwise formally indi-

cated within the text, is the original work of the author. The thesis has not been

previously submitted to this or any other university for a degree, and does not

incorporate any material already submitted for a degree.

vii



Abstract

Diffusion tensor imaging (DTI) is an advanced technique of magnetic resonance

imaging (MRI) which is able to measure the diffusion of the water inside the brain

tissues. Developing statistical methods for accurate grouping and modeling data ob-

jects with complex nature, such as the space of diffusion tensors, is needed to improve

disease diagnosis and surgical planning. In this thesis, new statistical methodologies

for DTI of human brain are developed.

The corpus callosum (CC) is a great fiber bundle in the white matter of the

brain. Accurate segmentation of the CC is an important aspect of clinical medicine

and is used in the diagnosis of various brain disorders. An accurate automated

method for two and three-dimensional segmentation of the CC using DTI is devel-

oped. Hartigan’s K-means, an accurate K-means algorithm, is generalized for use

with f -mean metrics (e.g. Cholesky, root Euclidean and log Euclidean). Then the

generalized algorithm is used to provide a segmentation of the CC. The segmenta-

tion results using different metrics are evaluated to determine which metrics lead to

the most accurate segmentations.

The von Mises-Fisher distribution (vmf) is a probability distribution for mod-

eling directional data on the unit hypersphere. Multiple sclerosis (MS) is a neuro-

inflammatory disease that affects the brain and spinal cord and it is considered

the most common neurological disease that cause disabilities in young adults. We

modeled the diffusion directions of the CC as a mixture of vmf distributions for MS

and healthy subjects. Higher diffusion concentration around the mean directions

and smaller sum of angles between the mean directions are observed on the normal-
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appearing CC of the MS as compared to the healthy subjects. An individual-based

curvature threshold for stopping criteria of fiber tracking in the CC is proposed.

Fiber tracking is an important tool for visualizing white matter pathways

and detecting brain abnormalities. Deterministic fiber tracking is highly affected by

the noise in diffusion weighted imaging (DWI) and abnormalities in the brain which

cause errors in the propagation of the track. The proposed stopping criteria, which

is based on individual’s curvature thresholds, improves fiber tracking by terminat-

ing the fiber to prevent the deviation out of the original pathway. Quantitative

measures (fractional anisotropy (FA), mean diffusivity (MD) and length of fibers)

are compared in the healthy and MS subjects using three fiber tracking techniques

(FACT, Bayesian and Wild Bootstrap). Significant differences in length of fibers in

the healthy and the MS subjects are obtained using the three tracking methods.

Overall, the main contributions of the thesis is the development of new sta-

tistical methods for accurate clustering and modeling of data using DTI taking into

account the complex nature of the data.

ix



Abbreviations

ACM - Anatomical connectivity mapping

ADC - apparent diffusion coefficient

autism- autistic spectrum disorder

BIC - Bayesian information criterion

CC - Corpus Callosum

CLLS - constrained linear least square estimation

CNLS - constrained non-linear least square estimation

CSF - cerebrospinal fluid

DTI - Diffusion Tensor Imaging

DWI - Diffusion Weighted Imaging

EPI - echo planar imaging

EDSS - Expanded Disability Status Scale

FA - Fractional Anisotropy

FACT - Fiber Assignment by Continuous Tracking

HARDI - High Angular Resolution Diffusion Imaging

LLS - linear least square estimation

MRI - Magnetic Resonance Imaging

MD - Mean Diffusivity

MS - Multiple sclerosis

NLS - non-linear least square estimation

odf - orientation distribution function

PCA - Principal Component Analysis

x



pdf - Probability density function

PGA - Principal Geodesic Analysis

RA - Relative Anisotropy

RF - radio frequency

RMSE - root mean square error

ROI - region of interest

SH - spherical harmonic

SNR - signal to noise ratio

TEND - tensor deflection

VR - Volume Ratio

vmf - von Mises-Fisher

WCSS - within cluster sum of squares

xi



Chapter 1

Introduction

The aim of the thesis is to develop computational statistics to accurately cluster

and model complex data using Diffusion Tensor Imaging (DTI) which are useful in

many clinical applications such as presurgical planning, intraoperative and detection

of various brain disorders.

In this chapter, an overview of the thesis’s research problems, motivations

and research questions are provided in Sections 1.1, 1.2 and 1.3. Research Method-

ology and contributions to knowledge are presented in Section 1.4 and 1.5. The

organisation of the thesis and the list of published papers during the research pe-

riod are provided in Sections 1.6 and 1.7.

1.1 Problem Overview

Cluster analysis is important for statistical data analysis. There are a wide range

of clustering applications (e.g. image processing, machine learning, bioinformatics

and information retrieval). Most cluster analysis algorithms are designed for data

with simple structure. Data with complex structure such as the space of positive

semi definite symmetric matrices arise in many applications (e.g. image analysis,

longitudinal data analysis and network data analysis). Clustering the data itself (i.e.

matrices) is expected to be more accurate than clustering the points obtained by per-

forming dimensionality reduction on the data, as no information will be lost from the
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data. For the space of positive semi-definite symmetric matrices, non-Euclidean met-

rics (log Euclidean, Riemannian, Cholesky, Procrustes, root Euclidean and power

Euclidean) are suitable alternatives to the Euclidean metric (Dryden, Koloydenko,

& Zhou, 2009). Clustering methods based on Riemannian metric have been pro-

posed (e.g. Rattray, 2000; Goh & Vidal, 2008c; Goh & Vidal, 2008a). However

the proposed methods either use points or perform a dimensionality reduction to

cluster symmetric positive semi-definite matrices. A kernel K-means for positive

definite covariance matrices using Riemannian, log Euclidean, Cholesky and power

Euclidean metrics has been explored recently (Jayasumana, Hartley, Salzmann, Li,

& Harandi, 2013). However, they did not use the Procrustes metric. An accurate

version of K-means algorithm has been proposed by (Hartigan, 1975). Hartigan’s

method provides results with tighter clusters than the Voronoi diagram (Telgarsky

& Vattani, 2010) and hence the method converges to a solution with smaller within

cluster sum of squares (WCSS) as compared with Lloyd’s method (Lloyd, 1982).

The Lloyd method considers how close an object is to the centroid of the cluster

and each object is assigned to its closest centroid. The result of Hartigan’s method

guarantees that no movement of an object to any cluster will reduce the WCSS.

Using Hartigan’s method to cluster the space of positive semi-definite symmetric

matrices has not been explored in the literature.

The corpus callosum (CC) is a great fiber bundle in the white matter of the

brain. A change in size and shape of the CC can be used as an indicator of a brain

disorder (Duara et al., 1991; Hardan, Minshew, & Keshavan, 2000; Downhill et al.,

2000; Walterfang et al., 2011; Bachman, Lee, Sidtis, & Ardekani, 2014). An accu-

rate segmentation of the CC is needed in clinical applications (e.g. disease prognosis

and surgical planning). The segmentation of the 2D CC using magnetic resonance

imaging (MRI) and DTI has been studied in the literature. However, the 3D seg-

mentation of the CC has been studied by few researchers using MRI (El-Baz et

al., 2011) and DTI (Lenglet, Rousson, & Deriche, 2006; Nazem-Zadeh et al., 2012).

The segmentation of the CC using the Riemannian metric is superior to the seg-
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mentation using Euclidean metric (Lenglet et al., 2006). However, the Riemannian

mean is computationally expensive as it needs a numerical method (e.g. a gradient

descent algorithm) to compute (Pennec, Fillard, & Ayache, 2006). Due to high vol-

ume of brain images, the efficiency is important especially for the 3D segmentation.

The log Euclidean metric yields similar results to the Riemannian metric and the

log Euclidean mean is easier and faster to compute without a numerical method

(Arsigny, Fillard, Pennec, & Ayache, 2006). Prior to the work in this thesis, there

was no automatic 3D segmentation method of the CC using the log Euclidean metric.

The von Mises-Fisher distribution (vmf) is one of the most basic probability

distributions for modeling directional data on the unit hypersphere (Mardia & Jupp,

2009). In Banerjee, Dhillon, Ghosh, and Sra (2005), the use of a finite mixture of

vmf distributions to cluster directional data on the unit sphere has been proposed.

The vmf distribution has been used in the literature to model the orientation distri-

bution function (odf) for each voxel in the brain (e.g. McGraw, Vemuri, Yezierski,

& Mareci, 2006; Bhalerao & Westin, 2007; Kumar, Barmpoutis, Vemuri, Carney,

& Mareci, 2008; Reynolds, Nir, Jahanshad, Prasad, & Thompson, 2014). However,

modeling the diffusion directions for a region (not just a voxel) in the brain (such as

the CC) using directional distributions is beneficial in recognizing the main diffusion

direction and how the diffusion is concentrated on that region. This might help in

detecting brain abnormalities. Such modeling also helps in setting an individual

threshold for the curvature as stopping criteria for fiber tracking in that region (see

next paragraph). Modeling diffusion directions for a region in the brain using di-

rectional distributions, including vmf distribution, has not been investigated in the

literature.

Fiber tracking is important for visualizing the white matter tracts and un-

derstanding the connectivity between regions in the brain. Fiber tracking represents

a useful tool for detecting brain abnormalities, as the white matter tracts are af-

fected by many brain disorders. Many factors such as starting point and stopping
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criteria lead to bias in the results of fiber tracking. Controlling these factors leads to

reduction of the bias in the results (Girard, Whittingstall, Deriche, & Descoteaux,

2014). Common stopping criteria are anisotropy threshold and curvature thresh-

old. Binary masks have been used as stopping criteria, however, they lead to poor

results (Smith, Tournier, Calamante, & Connelly, 2012; Girard et al., 2014). A

fixed threshold for stopping criteria can lead to bias in the results of fiber tracking

Brecheisen, Vilanova, Platel, and ter Haar Romeny (2009). An individual-based

anisotropy threshold for tracing fibers of the CC in MS is used by Brecheisen et al.

(2009). However, individual-based curvature threshold has not been studied in the

literature.

1.2 Motivation

Developing new statistical methods for accurate grouping and modeling data using

DTI is important for accurate segmentation of a region in the brain, analysis of

diffusion data and to improve fiber tracking results which are all useful and needed

for accurate diagnosis of various brain disorders and are also important in clinical

applications. These motivations are detailed as follows:

� Data with complex structure such as the space of positive semi-definite sym-

metric matrices arises in many applications (e.g. image analysis using diffusion

tensor field, longitudinal data analysis). Clustering this data itself is expected

to provide more accurate results, as we make use of all the information in the

data, whereas dimensionality reduction destroy some of the original informa-

tion in the data.

� Change in size or shape of the CC is an indicator of a brain abnormality (e.g.

Hardan et al., 2000; Bachman et al., 2014). Hence an accurate 2D and 3D

segmentation method for the CC is incredibly important to improve diagnosis
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of such diseases and for surgical planning.

� Change in diffusion pattern in the brain is an indicator of a brain disorder

(Filippi, Cercignani, Inglese, Horsfield, & Comi, 2001; S.-K. Song et al., 2005;

Makki, Chugani, Janisse, & Chugani, 2007). Hence analysing diffusion direc-

tions in the brain is useful in detection of such brain abnormalities.

� Fiber tracking is important as a non-invasive technique for visualizing white

matter pathways in the brain which is useful for presurgical planning and intra-

operative (Farquharson et al., 2013) and for detection of many abnormalities

in the brain (P. J. Basser, Pajevic, Pierpaoli, Duda, & Aldroubi, 2000; Pagani,

Filippi, Rocca, & Horsfield, 2005; Dubois, Hertz-Pannier, Dehaene-Lambertz,

Cointepas, & Le Bihan, 2006). However, fiber tracking especially deterministic

tracking is affected by noise and abnormalities in the brain. Modeling diffu-

sion directions provides individual-based information which helps to improve

fiber tracking in the brain by preventing fibers from deviation into incorrect

pathways.

1.3 Research Questions

The main aim of the thesis is to develop new statistical methodologies for accurate

grouping and modeling data using DTI. The main research questions are listed as

follows:

� How can Hartigan’s method be generalized for the use with non-Euclidean

methods to cluster diffusion tensors?

� How to develop a 2D and 3D segmentation method of the CC using the gener-

alized Hartigan’s method? What are the most accurate segmentation results?
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� How to model diffusion directions in a ROI in the human brain (i.e. the CC)

using vmf distribution?

� How can modeling of the CC be used to develop a stopping criteria of fiber

tracking of the CC?

1.4 Research Methodology

This section gives a general description of the methods used in the thesis. The sta-

tistical analysis throughout the thesis is performed using Minitab statistical software

(Minitab 17, Inc., State College, PA) (Minitab, 2010). The methodology is divided

into three steps as follows:

Firstly, Hartigan’s method is generalized for use with f -mean metrics to

cluster diffusion tensors (and covariance matrices generally). The generalized Har-

tigan’s method is applied to segment the CC of a healthy brain. The healthy brain

image was provided by the Academic Radiology Department of Queens Medical

Center. Diffusion tensors are estimated using linear estimation method (P. Basser,

Mattiello, & LeBihan, 1994). The number of clusters for segmentation the CC are

evaluated using the silhouette method and the variance of the CC. A ROI that in-

cludes the CC is selected for each of the 2D and 3D segmentation. Euclidean and

non-Euclidean methods are applied to provide 2D and 3D segmentations of the CC.

The 2D segmentation is performed on the midsagittal plane. The 2D and 3D seg-

mentation results obtained by using the Euclidean and non-Euclidean methods are

evaluated. The Lloyd’s algorithm is used for the initialization of clustering to reduce

the time of clustering. The focus here on Hartigan’s method, however the agglom-

erative hierarchical clustering (single-link) is also applied to segment the 2D CC.

The implementations were performed using MATLAB (version 7.14.0.739 (R2012a),

The MathWorks, Inc., Natick, Massachusetts, United States). The FA and size of

the tensors in the 3D CC of the different methods are compared. In the second

step, the proposed segmentation using the Euclidean method is applied to provide
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a 3D segmentation of a group of healthy and MS subjects to model the diffusion

directions of the CC (the Euclidean method is chosen as it provides the fastest 3D

segmentation but any 3D segmentation method could be used).

Secondly, the diffusion directions of the CC are modeled as a mixture of

vmf distributions for MS and healthy subjects. The data was collected at the Neu-

roimaging Laboratory, Santa Lucia Foundation in Rome (Italy). The study was

approved by Ethics Committee of Santa Lucia Foundation. Written informed con-

sent was obtained from all subjects before entering the study. The data consists

of four healthy (two males, two females) and nine secondary progressive MS (three

males, six females) subjects. Diffusion tensors are fitted linearly. The three dimen-

sional segmentation of the CC is obtained, for the MS and healthy subjects, using

the Euclidean method. The principal eigenvectors of the diffusion tensors are par-

allel to the diffusion directions. Hence, the data used for modeling are the principal

eigenvectors of the diffusion tensors. The number of the mixture components is eval-

uated. The parameters of the model as well as FA and variance of FA are used to

compare between the healthy and the MS subjects. The results are obtained using

R programming language (R Core Team, 2013)-Package Directional. The maximum

angle between the mean directions is proposed as a stopping criteria (individual-

based curvature threshold) for fiber tracking in the CC (third step).

Thirdly, Fiber tracking of the CC is performed using the same data described

in the second step. The Camino toolkit (Cook et al., 2006) is used for obtaining

and analyzing fiber tracking results. For all the subjects, seed points are selected

from the midsagittal slice on the middle of the CC using the software ITK-SNAP

(Yushkevich et al., 2006). For visualization of tracking results, ParaView (Ayachit,

2015) software is used. The proposed stopping criteria is evaluated. Quantitative

measures (i.e. FA, mean diffusivity (MD) and length of fibers) obtained from three

fiber tracking methods: FACT, Bayesian (Friman, Farneback, & Westin, 2006) and

Wild Bootstrap (Whitcher, Tuch, Wisco, Sorensen, & Wang, 2008) are compared
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using the data of the healthy and MS subjects.

1.5 Contribution to Knowledge

In this thesis, we develop new statistical methodologies for accurate clustering and

modeling data using DTI. Accurate clustering of DTI is useful in providing a more

improved segmentation of a ROI in the brain as compared with segmentation using

FA. Modeling data using DTI is useful in detecting abnormalities and to improve

fiber tracking in the brain. The main contribution can be summarized as follows:

� Hartigan’s method is generalized for the use with f -means metrics. It is shown

that Hartigan’s method cannot be generalized to use for metrics that require a

numerical method for the computation of the mean (such as Riemannian and

Procrustes). By adding a conditional statement to the generalized Hartigan’s

algorithm, the Riemannian and Procrustes metrics can be used only if the

WCSS is always decreasing. However, there is no guarantee that the clustering

converges to a local minima using those metrics.

� An automated segmentation method of the CC using Hartigan’s method is

developed. A suitable number of clusters for the segmentation of the CC is

obtained. The segmentation of the CC using Euclidean and non-Euclidean

methods are compared.

� Diffusion directions of the CC are modeled as a mixture of vmf distributions.

It is shown that there are at least three main diffusion directions in the CC.

Parameters of the mixture model are compared in healthy and MS subjects.

� Stopping criteria of fiber tracking of the CC based on curvature threshold is

developed and evaluated.

� For fiber tracking in the CC, it is shown that any of the quantitative mea-

sures (FA, MD and length of fibers) obtained using FACT, Bayesian and Wild

Bootstrap methods are not significantly different.
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1.6 Thesis Organisation

In this chapter, we provided a general introduction to the thesis. The rest of the

thesis’s chapters are organized as follows:

Chapter 2: Background and Related Work

A general background of the thesis is provided in this chapter. This includes an

overview of MRI, Diffusion weighted imaging (DWI) and DTI.

Chapter 3: Cluster Analysis of DTI

In this chapter, an automated method for segmentation of the CC using the gener-

alized Hartigan’s method is developed and the results of segmentation of the CC in

a healthy brain are evaluated. The hierarchical clustering is also applied to provide

a 2D segmentation of the CC.

Chapter 4: Modeling Diffusion Directions of the CC

The CC is segmented using the method proposed in Chapter 3, then the diffusion

directions of the CC are modeled as a mixture of vmf distributions for multiple

sclerosis (MS) and healthy subjects. Stopping criteria for fiber tracking in the CC

is proposed.

Chapter 5: Fiber Tracking of the CC

In this chapter, the proposed stopping criteria for fiber tracking of the CC (Chapter

4) is evaluated. The results of three fiber tracking algorithms (FACT, Bayesian and

Wild Bootstrap) are compared quantitatively. Fiber tracking of the MS and the

healthy subjects are compared.

Chapter 6: Conclusions and Future Work

This chapter summarizes the results and the main findings. It also provides some

discussions and directions for future work.

1.7 Publications

During PhD studies, two papers are published:

� Elsheikh, S., Fish, A., Chakrabarti, R., Zhou, D., Cercignani, M. (2017, July).
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Modeling Diffusion Directions of Corpus Callosum. In Annual Conference on

Medical Image Understanding and Analysis (pp. 518-526). Springer, Cham.

This paper summarizes some of the work in Chapter 4.

� Elsheikh, S., Fish, A., Chakrabarti, R., Zhou, D. (2016). Cluster analysis

of Diffusion Tensor fields with application to the segmentation of the Corpus

Callosum. Procedia Computer Science, 90, 15-21. This paper summarize some

of the work in Chapter 3.
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Chapter 2

Background and Related Work

This chapter aims to provide a background of the Diffusion Tensor Imaging (DTI).

Magnetic Resonance Imaging (MRI) and Diffusion Weighted Imaging (DWI) are

reviewed first. Then basic concepts and estimation methods for diffusion tensors

are provided. The eigensystem and ellipsoid representation of diffusion tensor are

reviewed. Diffusion anisotropy measures are discussed. In addition, the possible

views of the brain are explored. The processes on DTI and the possible applications

of DTI are provided.

In this chapter, an introduction to MRI and DWI are provided in Sections 2.1

and 2.2. Then, the background of DTI is provided in Section 2.3.

2.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) scanning is medical imaging that uses a strong

magnetic field and radio frequency waves to produce detailed images of the body

structure. MRI scans can be used to diagnose many conditions (e.g. brain tumours,

injuries, prostate problems and bone pathology). Figure 2.1 shows a closed MRI

scanner. Unlike X-rays, an MRI scan does not use any ionizing radiation. To perform

a study, the patient lies on a flat motorized bed that move inside the scanner either

head or feet first depending on which part of the body needs to be scanned. A

radiographer controls the scanner using a computer and communicates with the
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Figure 2.1: Closed MRI scanner

Figure 2.2: Water molecule consists of two hydrogen atoms and one oxygen atom.

patient through an intercom and a television monitor throughout the scan. Staying

still during the scan is very important to avoid blurring the image.

How does an MRI scan work? Water is distributed almost everywhere in our

bodies. In fact, our bodies are 50%−75% water. Each water molecule consists of two

hydrogen atoms and one oxygen atom (Figure 2.2). The hydrogen atom with single

proton (protium,1H), which is abundant in water and also in fat, is very sensitive to

a magnetic field (Berger, 2002). Figure 2.3 shows 1H which consists of an electron

and proton. The proton spins with the magnetic field direction. Normally, in the

absence of an external magnetic field, the protons (nucleus) are randomly oriented.

When the body is in an MRI scanner, a strong magnetic field (B0) will be applied

into the body. The spin of the nuclei around B0 is called precession. The rate of pre-

cession define the precessional or Larmor frequency which is directly proportional

to the B0 strength (Callaghan, 1991). There is a higher rate of precession for a

stronger magnetic field. Slighty more than the half nucleus will be aligned parallel

to B0 direction (named as low energy nucleus), whereas the rest of the nucleus will

be aligned anti-parallel (parallel with opposite direction) to B0 direction (named as

12



Figure 2.3: Hydrogen atom (protium, 1H) consists of an electron and proton

Figure 2.4: Proton spins parallel and anti-parallel to magnetic field direction.

high energy nucleus) (see Figure 2.4). This fact according to Boltzmann statistics

that shows N−/N+ = e−E/kT (M. A. Brown & Semelka, 2011; Hornak, 2015) where

N− is the number of the low energy state protons,

N+ is the number of protons in the high energy state,

E is the energy difference between the two states,

k is Boltzmann’s constant and

T is the temperature.

Then, short bursts of radio frequency (RF) are sent from RF coil in the scanner into

the body. The excited low energy nucleus will absorb the radio frequency energy

and they align anti-parallel to the magnetic direction (i.e. changing their states

from low energy to high energy). When the radio frequency stops, the nucleus that

has recently changed their energy state, to high state, will emit the RF and return

to low energy state. The interaction between the protons and the RF coil is called

resonance. The relaxation process is when excited nuclei return to a low energy

state. There are two independent relaxation processes: Spin-lattice and Spin-spin

relaxation time (Callaghan, 1991; teaching.shu.ac.uk, 2015). Spin-lattice relaxation
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(T1 time) is related to losing the energy to the surrounding sample (lattice). Spin-

spin relaxation (T2 time): interaction between the excited nuclei (in high energy

state) and the neighbour nuclei in low energy leads to an exchange of the energy

between them. In order to scan a specific region in the body, the region will be

divided into slices. The RF will be sent with specific ’resonant’ frequencies to each

slice. The main magnetic field will be edited by gradient coils. There is a gradient

coil in each of the three directions x, y and z to specify the slice orientation. The

slice position and thickness will be determined depending on the gradient ampli-

tude and RF (M. A. Brown & Semelka, 2011). One end of the coil has a stronger

magnet and other end has a weaker magnet than the strength of B0. This varia-

tion is important to localize the scan into specific slices (howequipmentworks.com,

2012). After each slice is scanned, the receiver coil records the signal emitted by

the nucleus and then the scan will continue to the next slice until all the region is

scanned. The measured signal will be transformed to two different images: T1 and

T2 weighted images. Tissues have different T1 and T2 times. For example fluids

have longer T1 time (slow for returning to relaxation) so it appears dark in T1 image

whereas fat has shorter T1 time and hence high signal (quicker for returning to relax-

ation) so it appears brighter (Morgan & Jones, 2015a). In T2 weighted image, fluids

have bright colour and fat is intermediate bright coloured (Morgan & Jones, 2015b).

2.2 Diffusion Weighted Imaging

To define the diffusion weighted image we need to define first a voxel and Brownian

motion. A voxel is an element in three-dimensional space picture. The voxel word is

combination of “volume” and “pixel”. A pixel is an element in a two dimensional

picture. Brownian motion is random movement of suspended particles in a fluid.

It is named after Robert Brown 1827 who noticed this phenomena through the

microscope (Ford, 1992). Albert Einstein (1905) published the article “On the

Motion of Small Particles Suspended in a Stationary Liquid, as Required by the
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Molecular Kinetic Theory of Heat” describing the Brownian motion model (Einstein,

1956). Einstein in 1956 explored the diffusion density f at time t in position x which

follows the equation:
∂f

∂t
= D

∂2f

∂2x
, (2.1)

where D is the diffusion coefficient. The solution of Equation 2.1 provides the

probability density function of molecular motion. Suppose there are n particles

which start moving from the origin to position x at initial time t = 0, then the

probability density function of the n water molecules displacement is:

f(x, t) =
n√

4πDt
exp(

−x2

4Dt
). (2.2)

In DWI, the rate of water diffusion in each tissue voxel is measured. DWI uses the

idea of Brownian motion to measure the mobility of the water molecule. Stejskal

and Tanner (1965) introduce the magnetic field gradients by measuring the diffusion

along specific directions called diffusion gradient direction. They reduced the MRI

signal in regions with high diffusion. Le Bihan et al. (1986) introduce the param-

eter b value that works accurately in measuring the diffusion gradient along with

magnetic gradient fields. Mansfield (1977) proposed the EPI technique that enables

reducing imaging time. Mansfield shared the 2003 Nobel prize in medicine for his

pioneering work towards MRI development.

2.3 Diffusion Tensor Imaging

In this section, a background of diffusion tensors is provided. This includes basic

concepts, estimation methods and representation of diffusion tensor as an ellipsoid.

In Addition, anisotropy measures and the brain views are explored. The processes

and the applications of DTI are also discussed.
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2.3.1 Basic Concepts

Diffusion Tensor Imaging DTI is an advanced MRI technique that measures the

Brownian displacements of water molecules in each voxel in the brain and provides

a unique information about biological tissues in the brain (P. Basser, Mattiello, &

Le Bihan, 1994; P. Basser & Jones, 2002). The tri-variate Gaussian distribution of a

three-dimensional random vector r with mean µ and covariance ΣΣΣ can be obtained

by:

f(r) =
1√

(2π)3 |ΣΣΣ|
exp(−1

2
(r−µµµ)TΣΣΣ−1(r−µµµ)). (2.3)

The probability of a water molecule moved from origin to be in position x = (x, y, z)

at time t is obtained as follows (D. Alexander, 2005; P. Basser, Mattiello, & Le Bihan,

1994; Einstein, 1956):

f(x, t) =
1√

(4πt)3 |D|
exp(− 1

4t
xTD−1x).

=
1√

(2π × 2t)3 |D|
exp(−1

2
xT (2tD)−1x),

which is a tri-variate Gaussian distribution (Equation 2.3) with mean µµµ = 0 and co-

variance ΣΣΣ = 2tD, where D is the diffusion tensor. The diffusion of water molecules

is a three dimensional process which can not be described by a scalar but needs a

3 × 3, symmetric, positive semi-definite, real matrix (Le Bihan et al., 2001). That

is,

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 ,
where x, y and z represent the diffusion directions. The diffusion tensor can be

estimated from the MR signal that can be acquired by setting up the scanner to n

gradient directions. Let Si be the MR signal in the ith diffusion gradient direction.
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Then Si≥ 0 can be obtained as follows (P. Basser, Mattiello, & Le Bihan, 1994):

Si = S0 exp(−bgTi Dgi), for i ∈ {1, . . . , n} , (2.4)

where D is the diffusion tensor, gi =
[
gix giy giz

]T
is the diffusion gradient in

the ith direction, b is a known scanner gradient parameter which characterizes the

gradient attenuation (sec/mm2) and S0 is the Magnetic Resonance signal without

the diffusion weighting (i.e. b = 0).

2.3.2 Estimation of Diffusion Tensor

Least square estimation is one of the methods that can be used to estimate the

diffusion tensor. It is based on minimizing the sum of square residuals. The residual

is the difference between the observed value (the actual value) and the fitted value

(the value provided by the model). The sum of square residuals, f(βββ), is obtained

as a function of the parameter βββ. The objective is finding βββ that minimizes f(βββ) as

follow:

β̂ββ = arg min
βββ

(f(βββ)). (2.5)

Here, βββ can be found by equating the slope of f(βββ) to zero. Note: argmin refers

to βββ that minimizes f(βββ). Koay, Carew, Alexander, Basser, and Meyerand (2006)

studied linear and non-linear least square estimation of diffusion tensors. They

also explored constrained linear and non-linear least square methods by applying

the Cholesky decomposition to preserve the positive definiteness condition on the

estimated tensors.

Linear least square estimation (LLS)

In LLS, f(βββ) should be written as linear function of βββ. Rewrite the model in

Equation 2.4 when S0 6= 0 as:

ln (Si/S0) = −bgTi Dgi, for i = 1, . . . , n. (2.6)
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As in Koay et al. (2006), Equation 2.6 can be written as:

y = Xβββ, (2.7)

where

y = [ln (S1/S0), . . . , ln (Sn/S0)]T ,

X = −b


g2

1x g2
1y g2

1z 2g1xg1y 2g1yg1z 2g1xg1z

...
...

...
...

...
...

g2
nx g2

ny g2
nz 2gnxgny 2gnygnz 2gnxgnz

 (2.8)

and

βββ =
[
Dxx Dyy Dzz Dxy Dyz Dxz

]T
(2.9)

is the vector representation of D, which is the parameter we aim to estimate. The

sum of square residuals for LLS estimation can be formulated as:

fLLS(βββ) =
1

2
‖y−Xβββ‖2 (2.10)

The estimator βββ that minimizes Equation 2.10 can be obtained by: β̂ββ = [XTX]
−1

XTy.

Non-linear least square estimation (NLS)

For NLS estimation, Equation 2.4 can be written as follows (Koay et al., 2006):

Si = S0 exp(Xβββ), i = 1, . . . , n (2.11)

and the least square function of the parameter βββ is

fNLS(βββ) =
1

2
‖Si − S0 exp(Xβββ)‖2 =

1

2

n∑
i=1

Si − S0 exp(

6∑
j=1

Xijβj)

2

. (2.12)

Equation 2.12 is a non-linear equation of the parameter βββ and hence there is no

explicit solution for βββ, whose computation needs a minimization algorithm (e.g.
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GaussNewton algorithm).

Constrained linear (CLLS) and non-linear (CNLS) estimation

For both methods, LLS and NLS, Koay et al. (2006) suggested using Cholesky

decomposition to preserve the positive definiteness condition on estimated diffusion

tensors. We have D = LTL where L is upper triangular matrix as follows:

L =


L1 L4 L6

0 L2 L5

0 0 L3

where L1, L2 and L3 6= 0. Then

D =


L1 0 0

L4 L2 0

L6 L5 L3



L1 L4 L6

0 L2 L5

0 0 L3



=


L2

1 L1L4 L1l6

L1l4 L2
2 + L2

4 L4L6 + L2L5

L1L6 L4L6 + L2L5 L2
3 + L2

5 + L2
6

 .

The vector representation of D can be written as:

βββ =
[
L2

1 L2
2 + L2

4 L2
3 + L2

5 + L2
6 L1L4 L4L6 + L2L5 L1L6

]T
(2.13)

The sum of square residuals for CLLS and CNLS are:

fCLLS(βββ) =
1

2
‖y−Xβββ‖2 . (2.14)

fCNLS(βββ) =
1

2
‖Si − S0 exp(Xβββ)‖2 . (2.15)

Minimizing equations 2.14 and 2.15 can be performed using any uncon-

strained, optimization algorithm (Koay et al., 2006).

19



(a) (b)

(c)

Figure 2.5: Isotropic diffusion (a) represented by spherical ellipsoid, whereas oblate
(b) and cigar (c) shapes develop from anisotropic diffusion. The semi axis x, y and z
represent the eigenvectors’ direction, and the lengths of x, y and z are proportional
to the square root of the eigenvalues of the tensor.

2.3.3 Eigensystem and Ellipsoid

A diffusion tensor can be expressed using its eigenvalues λi ≥ 0 which represent the

water diffusivities and eigenvectors vi, i ∈ {1, 2, 3}, which are parallel to the main

diffusion directions. The spectral decomposition of D is given by representing D in

terms of its eigenvalues and eigenvectors as follows:

D = VΛΛΛVᵀ.

where

V =
[
v1 v2 v3

]
(2.16)

and

ΛΛΛ =


λ1 0 0

0 λ2 0

0 0 λ3

 . (2.17)

Here, λi, for i ∈ {1, 2, 3}, are greater than 0 in the case of a positive definite

tensor, or at least one of the λi equals 0 in the case of a tensor with deficient

rank. If λ1 ≥ λ2 ≥ λ3 then v1 corresponding to λ1 is the principal eigenvector
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of D. A diffusion tensor can be represented as an ellipsoid whose axes are the

eigenvectors and radii are proportional to the square root of the eigenvalues of the

tensor (P. Basser, Mattiello, & Le Bihan, 1994). The shape of the ellipsoid reflects

how anisotropic (i.e. directionally dependent) the diffusion is. A spherical ellipsoid,

as in Figure 2.5(a), means that the diffusion is isotropic or random in all directions.

In this case all of the eigenvalues should be approximately the same value, whereas

an extreme anisotropy diffusion could be represented by oblate or cigar ellipsoid. An

oblate shape (see Figure 2.5(b)) shows that two eigenvalues are approximately equal

and much larger than the third eigenvalue. A cigar shape (Figure 2.5(c)) results

from having the principal eigenvalue much larger than the other two eigenvalues.

2.3.4 Diffusion Anisotropy Measures

To describe how much the water diffusion is anisotropic (or directional), several

measures (indices) are proposed (Le Bihan et al., 2001). The most common used

measures are Fractional Anisotropy, Relative Anisotropy and Volume Ratio. To

define these measures, we need first to define the Mean Diffusivity (MD). MD mea-

sures the mean water diffusivity in each voxel in the brain and it does not provide

any information about the diffusion direction. An example of MD map is shown in

Figure 2.6a. The value of MD is equal to the mean of eigenvalues of the diffusion

tensor:

MD =
λ1 + λ2 + λ3

3
.

Fractional Anisotropy (FA)

The FA measure (proposed by P. J. Basser and Pierpaoli (1996)) reflects the vari-

ability of water directions in each voxel in the brain. See Figure 2.6b for an example

of FA map. Mainly, FA measures the deviation from isotropic diffusion using the

standard deviation of the eigenvalues of D. The FA values lie in [0, 1], with FA= 0

for isotropic diffusion and FA= 1 for highly directional diffusion. In an FA map

the dark regions provide low FA values whereas the bright regions provide high FA
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(a) Mean Diffusivity (MD) map (b) Fractional Anisotropy (FA) map

(c) Relative Anisotropy (RA) map (d) 1−Volume Ratio(VR) map

Figure 2.6: The sagittal brain view of Mean Diffusivity and anisotropy indices: FA,
RA and 1-VR.
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values. The FA value can be obtained as follows (P. J. Basser & Pierpaoli, 1996):

FA =

√
3[(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2]

2(λ2
1 + λ2

2 + λ2
3)

,

which is equivalent to the formula:

FA =

√
(λ1 − λ2)2 + (λ2 − λ3)2 + (λ3 − λ1)2

2(λ2
1 + λ2

2 + λ2
3)

.

In the white matter of the brain, the diffusion is anisotropic due to the

aligned fibre structures that restrict water diffusion in all directions (Mori, Wakana,

Nagae-Poetscher, & Van Zijl, 2005). The diffusion tensor can be represented by an

ellipsoid. A spherical ellipsoid means that the water diffuses equally in all directions

and hence there is a high variability in water directions, which means low FA. An

ellipsoid with a cigar shape means that the diffusion is directional and there is a less

variability, which means high FA. For example, the FA for the spherical ellipsoid

in Figure 2.5(a) is 0 whereas FA for the oblate ellipsoid (Figure 2.5(b)) and for the

cigar ellipsoid (Figure 2.5(c)) are 0.6348 and 0.8911 respectively.

Relative Anisotropy (RA)

Another measure of anisotropy is the relative anisotropy (RA). An example of

RA map is shown in Figure 2.6c. This measure is the ratio of the magnitude of

anisotropic diffusion (measured by the standard deviation of eigenvalues) to mag-

nitude of isotropic diffusion (measured by the mean of eigenvalues) (P. J. Basser &

Pierpaoli, 1996). The RA value can be obtained by:

RA =

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

√
3MD

.

Volume Ratio (VR)

The volume ratio (VR) can be defined as the ratio of the volume of the ellipsoid,

whose semi axes are λ1, λ2 and λ3, to the volume of the sphere whose radius is MD
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(Pierpaoli & Basser, 1996). The volume of the ellipsoid is (4π/3)λ1λ2λ3 and the

volume of the sphere is (4π/3)MD3 and hence VR can be obtained by:

VR =
λ1λ2λ3

MD3 .

As the volume of ellipsoid increase, VR increases. We have VR ∈ [0, 1], and is equal

to 1 for spherical ellipsoid (isotrpoic diffusion) and 0 for high anisotropic diffusion.

Then, 1−VR is equivalent to FA (see Figure 2.6d for an example of 1−VR map).

2.3.5 The Views of the Brain

There are only three possible views of the brain: axial, sagittal and coronal. The

axial view of the brain is an image of the brain taken along x and y axis (Figure 2.7a).

The sagittal view of the brain is an image of the brain taken along y and z axis.

If the sagittal image is taken from the middle of the brain, then the brain image is

called midsagittal image (Figure 2.7b). The coronal view of the brain is an image

of the brain taken along x and z axis (Figure 2.7c).

(a) The FA map of the mid-
sagittal image of the brain

(b) The FA map of the axial
view of the brain

(c) The FA map of the coronal
view of the brain

Figure 2.7: The FA map of midsagittal, axial and coronal images of the brain
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2.3.6 DTI Processing

There are many important processing methods to manipulate diffusion tensor data.

For example: interpolation, smoothing and segmentation which will be explained

with one example each, as follows.

Interpolation

Interpolation is estimating the values between two or more known values. Extrapo-

lation involves estimating values outside (extending) the range of the known points.

There are different types of interpolation: linear, polynomial, spline interpolation.

Data resolution in DTI is sometimes weak, leading to missing values, which makes

interpolation of diffusion tensors an essential process. Interpolation is also impor-

tant for fiber tracking as there is a need for complete paths of tensors. One type of

interpolation of DTI is geodesic interpolation which will be discussed next.

Geodesic interpolation

This method uses the weighted mean to interpolate a path between two diffusion

tensors, named as a “geodesic path”. The weighted mean can be obtained using

the Fréchet mean (Dryden et al., 2009). Suppose we need to interpolate a tensor ΣΣΣ

using n diffusion tensors Di, i = 1, . . . , n. Each Di has weight wi. The interpolated

tensor Σ̂ΣΣ can be obtained as follows:

Σ̂ΣΣ = arg inf
ΣΣΣ

n∑
i=1

wid
2(Di,ΣΣΣ), (2.18)

where d(Di,ΣΣΣ) is the distance between Di and ΣΣΣ (could be an Euclidean or a

non-Euclidean distance). The weight wi should satisfy wi ≥ 0 and
∑n

i=1wi = 1.

Generally there might be different choices of the weight function depending upon on

the application or prior information. One choice of weight function could be using

the inverse Euclidean distance as in (Dryden et al., 2009; Zhou, Dryden, Koloydenko,
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Figure 2.8: Interpolating the tensor ΣΣΣ using four diffusion tensors D1, D2, D3 and
D4. Using geodesic interpolation, the tensor D1 will have the highest weight in
determining Σ̂ΣΣ value as it is the closest to ΣΣΣ.

& Bai, 2013). Zhou et al. (2013) suggested two different weight functions:

wi =
di∑n
j=1 dj

, i ∈ {1, . . . , n} , and (2.19)

wi =
exp(−Ad2

i ) +B∑n
j=1[exp(−Ad2

j ) +B]
, i ∈ {1, . . . , n} , (2.20)

where di is the Euclidean distance from the position of the interpolated tensor to

the position of the tensor Di, and A,B > 0 can be adapted depending on the

application. That makes the exponential weight function in Equation 2.20 more

flexible. For example, suppose we interpolate the tensor ΣΣΣ in Figure 2.8 using the

four diffusion tensors on the square corners D1, . . . ,D4. We take di, i ∈ {1, . . . , 4}

to be the Euclidean distance from Di to ΣΣΣ. As D1 is the closest to ΣΣΣ, D1 will have

the highest weight and hence most of Σ̂ΣΣ properties are derived from D1. Then D2

and D3 have the same weight which is less than the weight of D1. A smaller weight

will be assigned to D4 and hence Σ̂ΣΣ will reflect fewer characteristics of D4.

Smoothing Diffusion tensors

Smoothing the DTI is the process of removing the noise from the DTI. In fact, DTI

provides low signal to noise ratio in some applications (e.g. high b value) which
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leads to noisy images (D. Jones & Basser, 2004). In those cases smoothing DTI is

an essential process. Different methods of smoothing have been explored. Some of

the previous methods smooth the diffusion weighted data whereas the others argue

that smoothing the tensor field is the correct choice. Tabelow, Polzehl, Spokoiny,

and Voss (2008) stated that smoothing the raw diffusion weighted image is supe-

rior to smoothing diffusion tensors. They justified that with two reasons. Firstly,

smoothing the DWI provides less probability of estimating tensor with values outside

the tensor space. Secondly, smoothing the DWI will reduce the bias in estimating

the tensors which happens in case of high noise DWI. Smoothing using a weighted

Fréchet (Karcher) mean (Equation 2.18), with any choice of Euclidean and non Eu-

clidean means, is an example of smoothing a tensor field. One type of smoothing

method is kernel smoothing, which can be used in either DWI smoothing or DTI

smoothing. The kernel is a function which depends on the distance between two

points and the bandwidth. The bandwidth is a parameter that controls the size of

neighbourhood tensors that are used for smoothing. The kernel of the points x and

xi, with i = 1, 2, . . . , n, can be defined as:

f(x,xi) = Kh(‖xi − x‖), for i = 1, . . . , n, (2.21)

where

Kh(.) = (1/h)K(.), h > 0. (2.22)

The parameter h is called the kernel bandwidth and K(.) is a non negative and

integrable function that is either constant or inversely proportional to the Euclidean

distance between xi and x. An example of using kernel smoothing to smooth DTI

follows.
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Diffusion tensor smoothing through weighted Karcher means

This method has been explored by Carmichael, Chen, Paul, and Peng (2013).

Like interpolation, the smoothing of diffusion tensors can be performed by using

a weighted Fréchet (Karcher) mean. The weighted mean of the tensor neighbours

can be used to estimate the new tensor. Carmichael et al. (2013) applied the smooth-

ing using a weighted Karcher mean (Equation 2.18). They studied and compared

the Euclidean, log Euclidean and Riemannian smoothing using a weighted Karcher

mean. They used an anisotropic kernel to define the weight. Using an anisotropic

kernel in smoothing DTI or DWI has been studied by many authors (e.g. Tabelow

et al., 2008; Chung, Lee, & Alexander, 2005; J. Lee, Chung, Oakes, & Alexan-

der, 2005). The following explanation has been paraphrased from Carmichael et al.

(2013). The anisotropic kernel captures all the anisotropy information contained

in the current diffusion tensor. Suppose the current estimate of the diffusion ten-

sor is D̂ at position s and suppose si, i ∈ {1, . . . , n} is the position of the tensor

neighbours. The weight can be obtained by:

wi(s) := Kh(

√
tr(D̂)(si − s)T D̂

−1
(si − s)), for i = 1, 2, . . . , n,

where Kh(.) is defined in Equation 2.22. Using this method, Carmichael et al.

(2013) performed two simulation studies and a brain image study. Both simulation

studies and brain image suggested that all the methods (Euclidean, log Euclidean

and Riemannian) smooth the isotropic regions, such as cerebrospinal fluid, simi-

larly. Whereas, the log Euclidean and Riemannian methods effectively smooth high

anisotropy regions such as the corpus callosum and fiber tracts in occipital lobe.

The cerebrospinal fluid, Corpus Callosum (CC) and occipital lobe are shown in Fig-

ure 2.9. However, in the case where there is a variability in tensors structure due to

DWI noise, Euclidean smoothing performs better than log Euclidean and Rieman-

nian, as the latter produce an erroneous tensor structure. The method suggested the

smoothing of diffusion tensors to be spatially adaptive to the geometric structures

of the tensors and noise levels.
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Figure 2.9: Corpus callosum, occipital lope and cerebrospinal fluid

Segmentation of the CC

The CC is a great fiber bundle in the white matter of the brain. It connects the two

hemispheres of the brain. Segmentation of the CC has very important clinical appli-

cations (e.g. surgical planning and disease diagnosis). Regarding disease diagnosis,

the anatomical behavior of the CC in autism patients have been analyzed and it was

shown that the CC size is smaller in patients with autism compared with healthy

controls (Hardan et al., 2000; A. L. Alexander et al., 2007; El-Baz et al., 2011). In

addition, the CC is smaller with high diffusivity for the temporal and frontal lobe

of epilepsy patients (O’Dwyer et al., 2010). The microstructural anatomy of the

CC is changed in early Huntington’s disease (Rosas et al., 2010). Moreover, there

is a significant reduction in FA in some subdivisions of the CC in cases of Multiple

Sclerosis (Hasan, Gupta, Santos, Wolinsky, & Narayana, 2005), stroke (Gupta et al.,

2006) and schizophrenia (Kubicki et al., 2008). Several works have been proposed

towards the segmentation of the CC. Some research is concerned with segmenting

the CC from the whole brain while others continue to segment the CC itself into

subdivisions. Segmentation of the CC can be performed using MRI or DTI.

2.3.7 DTI Applications

Diffusion Tensor Imaging provides many important applications. It is important for

following brain studies. For example for new born babies the anisotropy increases

with age and hence decreasing anisotropy is an indicator of brain injury (S. P. Miller
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Figure 2.10: FA map (left) and color coded map (right) in a patient with chronic
cerebral ischemia. There is a reduction in FA value in the lesion area (arrow).
Taken from Dong et al. (2004). In the color coded map, blue represents superior-
inferior fiber directions, green represents the anterior-posterior fiber directions and
red represents the left-right fiber directions. Permission to reproduce this figure has
been granted by John Wiley and Sons.

et al., 2002). In fact, DTI is more powerful in detecting some brain diseases at earlier

stage than MRI (e.g. brain ischemia). Brain ischemia happens when the blood flow

to the brain is insufficient which motivates the water flow from the extracellular

compartment, that leads to swollen cells (Dong et al., 2004). The decrease in FA

value in the lesion area is shown in Figure 2.10. In addition, DTI helps to detect

brain ischemia in the early stages which is very important for effective therapy.

Moreover, DTI is able to distinguish between acute and chronic ischemia which

helps to improve the clinical care (Dong et al., 2004).

Regarding white matter diseases, DTI is able to detect and understand the

pathophysiology of many white matter diseases such as multiple sclerosis. Wer-

ring, Clark, Barker, Thompson, and Miller (1999) demonstrate effectiveness of DTI

in detecting multiple sclerosis showing that conventional MRI is not powerful to

specify pathologic properties of the disease. The lesions in multiple sclerosis can

be clearly seen in FA and MD map. In fact, DWI has already demonstrated its

ability to detect many white matter diseases. For example, DWI helps to diagnosis

the leukoencephalopathy syndrome (Ay et al., 1998). Separation of isotropy and

anisotropy indices in DTI provides DTI with more powerful properties than DWI
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Figure 2.11: Fiber connectivity in the Callosum fibers that located around the brain
ventricles. Taken from Le Bihan et al. (2001). Permission to reproduce this figure
has been granted by John Wiley and Sons.

(Le Bihan et al., 2001).

How different parts of brain are connected can be described by brain connec-

tivity (or fiber connectivity) which is one of the important applications of DTI. Brain

connectivity helps to understand the anatomical structure of the brain. The main

principal eigenvector represents the fiber orientation within a voxel unless fibers

crossing or merging in a voxel (Dong et al., 2004). Figure 2.11 shows an example of

fiber connectivity in the brain.
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Chapter 3

Cluster Analysis of DTI

Segmentation of the Corpus Callosum (CC) plays an important role in disease di-

agnosis and surgical planning. We propose an automated method for segmentation

of the CC using Hartigan’s method and Diffusion Tensor Imaging. First, Harti-

gan’s method is generalized to use with f -mean metrics (e.g. log Euclidean, root

Euclidean and Cholesky) for clustering covariance matrices. This generalization is

then applied to cluster diffusion tensor images of a healthy brain to segment the

CC.

An introduction to this chapter is provided in Section 3.1. Then general

background of the Euclidean and non-Euclidean methods as well as the processes

using covariances matrices are presented in Section 3.2. Technical background of

hierarchical clustering, K-means clustering and Hartigan’s method is provided in

Section 3.3. In Section 3.4, a generalized Hartigan’s method that works for the

f -mean metrics is proposed to provide an accurate clustering of diffusion tensors.

Hierarchical clustering is used for a 2D segmentation of the CC and Hartigan’s

method is applied to cluster DTI to provide a 2D and 3D segmentation of the CC

in Section 3.5. The hierarchical segmentation yields holes on the 2D CC and hence

Hartigan’s method is preferred. Using Hartigan’s method, the log Euclidean and

Riemannian methods provide the most accurate 2D segmentation when compared

with manual segmentation. For 3D segmentation, the only methods that segments

all of the splenium (posterior end) as part of the CC are the log Euclidean and Rie-
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mannian methods. Hence, the log Euclidean and Riemannian methods outperform

the other methods (i.e. Euclidean, Cholesky, root Euclidean and Procrustes) in the

segmentation of the CC. We summarize and discuss the results in Section 3.6.

3.1 Introduction

The Corpus Callosum (CC) is the largest fiber bundle in the white matter of the

brain. The CC has been demonstrated to be affected by many diseases: e.g. autism

(Hardan et al., 2000; A. L. Alexander et al., 2007; El-Baz et al., 2011), multiple

sclerosis (Hasan et al., 2005), stroke (Gupta et al., 2006), epilepsy (O’Dwyer et

al., 2010), Huntington’s disease (Rosas et al., 2010) and schizophrenia (Kubicki et

al., 2008). Specifically, the size and shape of the CC are affected by many brain

disorders (e.g. see Duara et al., 1991; Hardan et al., 2000; Downhill et al., 2000;

Walterfang et al., 2011; Bachman et al., 2014). Hence, segmentation of the CC is

beneficial in the diagnosis of such diseases.

Magnetic Resonance Imaging (MRI) has been used widely for the segmenta-

tion of the CC (e.g. Lundervold, Duta, Taxt, & Jain, 1999; Jacob, Blu, & Unser,

2004; Sandhu, Georgiou, & Tannenbaum, 2008; El-Baz et al., 2011; Li, Mandal, &

Ahmed, 2013). Diffusion Tensor Imaging (DTI) is an advanced MRI technique that

measures the Brownian displacements of water molecules in each voxel in the brain

and provides unique information about biological tissues in the brain (P. Basser,

Mattiello, & Le Bihan, 1994; P. Basser & Jones, 2002). Segmentation of the CC

has also been performed using DTI (e.g. S.-P. Lee, Cheng, Chen, & Tseng, 2008;

Lenglet et al., 2006; Goh & Vidal, 2008b; Nazem-Zadeh et al., 2012). In S.-P. Lee

et al. (2008), an automatic 2D segmentation approach of the CC using color coded

map of DTI was proposed. The method proposed by Lenglet et al. (2006) was

based on surface evolution which seeks the optimal partition through a Bayesian

formulation. The method proposed by Goh and Vidal (2008b) used dimensionality

reduction of diffusion tensors first and then performed traditional K-means clus-
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tering. In Nazem-Zadeh et al. (2012), a three dimensional segmentation of the CC

using DTI was proposed. They used the diffusivity pattern of the CC as prior in-

formation. A similarity measure, based on a speed function, has been proposed to

segment the CC and its subdivisions.

A clustering of a finite data set is a partition of the data set into disjoint,

nonempty subsets called clusters. Most clustering algorithms group the observations

according to a similarity measure (i.e distance metric). Generally, there are three

types of clustering: hierarchical clustering, partitioning and overlapping clusters

(Seber, 2009). The K-means algorithm is an example of partitioning clustering and

fuzzy c-means is an example of overlapping clustering. The only difference is that in

Fuzzy c-means any object can belongs to more than one cluster. For every cluster,

any object has a membership degree in the range [0, 1] where 0 means this object

is definitely not a member of this cluster, 1 means that the object is definitely a

member of this cluster only and a value in between 0 and 1 means the object belongs

to this cluster and at least one other cluster (Tan, Steinbach, Kumar, et al., 2006).

That’s because for any object the sum of the membership degree over all clusters is

1. There are a wide range of clustering applications (e.g. image processing, machine

learning, bioinformatics and information retrieval). A K-means algorithm (Lloyd,

1982) is an unsupervised learning algorithm which aims to partition a data set into

K clusters. Although, there are many K-means algorithms, all of them aim to mini-

mize the within cluster sum of squares (WCSS). Hartigan’s method (Hartigan, 1975)

is a K-means algorithm which always provides smaller or equal WCSS as compared

with the traditional Lloyd algorithm (Lloyd, 1982), and hence it is more accurate

(Telgarsky & Vattani, 2010).

Non-Euclidean metrics (log Euclidean, Riemannian, Cholesky, Procrustes

size-and-shape and root Euclidean) are alternatives to the Euclidean metric for the

space of covariance matrices (Dryden et al., 2009). Non-Euclidean metrics are used

for tensor processing such as regularization, interpolation and smoothing of tensor
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fields (Pennec et al., 2006; Arsigny, Fillard, Pennec, & Ayache, 2007; Carmichael et

al., 2013; Zhou, Dryden, Koloydenko, Audenaert, & Bai, 2016).

3.2 Background

3.2.1 Euclidean and Non-Euclidean Methods

A covariance matrix A is a square symmetric matrix whose element in the i, j

position is the covariance between ith and jth elements of a random vector v. Let v =

(x1, . . . , xn) and E(xi) is Expectation of xi for i ∈ {1 . . . n}. As in A.V. Prokhorov

(2011), the ijth element in An (i.e. cov(xi, xj)) is obtained as follows:

cov(xi, xj) = E[(xi − E(xi))(xj − E(xj))].

The elements in the main diagonal of a covariance matrix are variances as

cov(xi, xi) = E[(xi − E(xi))
2] = var(xi).

Every covariance matrix is positive semi-definite (i.e the quadratic form uTAu ≥ 0

for all u ∈ Rn). The space of covariance matrices is not an Euclidean space and

so non-Euclidean measures might be more suitable for calculating the distance be-

tween two covariance matrices or the mean of a set of covariance matrices. There

are different types of non-Euclidean distances and means which have been summa-

rized in Dryden et al. (2009). The main structure follows Dryden et al. (2009) and

paraphrased also from Arsigny et al. (2007), Pennec (2006) and Pennec et al. (2006).

A brief summary of some Euclidean and non-Euclidean methods (i.e. distances and

means) is provided in the following subsections.

Euclidean methods

Suppose that ‖A‖ =
√
trace(AᵀA). Then the Euclidean distance between covari-

ance matrices A1 and A2 can be obtained by:
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dE(A1,A2) = ‖A1 −A2‖ .

The Euclidean mean estimator can be obtained by using both maximum like-

lihood and least square methods. The estimated mean is:

Σ̂ΣΣE =
1

n

n∑
i=1

Ai.

Arsigny et al. (2007) stated that the Euclidean mean is a swelling that is due to

the polynomial interpolation of its determinant rather than monotonic interpolation.

Non-Euclidean methods

To estimate the mean of covariance matrices, the Fréchet or the Karcher mean

which are based on minimization of the variance is used (Dryden et al., 2009). The

Fréchet mean (Fréchet, 1948) is based on minimizing the variance globally whereas

the Karcher mean (Karcher, 1977) is based on minimizing the variance locally. The

Fréchet mean is unique for spaces that are sufficiently peaked (i.e. they have non-

positive sectional curvature) and hence Fréchet mean is unique for Euclidean and

non-Euclidean spaces (see Dryden et al. (2009) for more details). The Fréchet mean

ΣΣΣ, that minimizes the squared distances, can be obtained by:

ΣΣΣ = arg inf
Σ

(
1

2

∫
d(A,ΣΣΣ)2f(A)dA

)
.

Note: arg inf
Σ

(Z(ΣΣΣ)) means ΣΣΣ that gives the greatest lower bound of Z(ΣΣΣ). For

sample A1, . . . ,An of covariance matrices, the Fréchet mean can be estimated by Σ̂ΣΣ

that satisfies:

Σ̂ΣΣ = arg inf
Σ

n∑
i=1

d(Ai,Σ)2. (3.1)

The non-Euclidean methods are: Riemannian, log Euclidean, Cholesky, root

Euclidean and Procrustes. The description of these methods is as follows. In the

following, log without base refers to loge.
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Riemannian method

Pennec et al. (2006) generalizes the mean, expectation and the variance mea-

surements on a vector space onto a Riemannian manifold. In a connected Rieman-

nian manifold, the distance between two points can be measured as the length of

the shortest curve (geodesic) joining these points. In a Riemannian manifold (Pen-

nec et al., 2006), the log function can be used to represent subtraction, i.e. the

vector −→pq at the point p is equal to logp(q), whereas subtraction in a vector space

is −→pq = q− p. The exponential map in a Riemannian manifold represents addition

i.e. q = expp(−→pq) (which means p
−→pq = q), whereas addition in a vector space is

q = p + −→pq. The Riemannian distance between two positive-definite covariance

matrices A1 and A2 can be obtained by

dR(A1,A2) =
∥∥∥log(A

−1/2
1 A2A

−1/2
1 )

∥∥∥ , (3.2)

where A
−1/2
1 and log(.) can be found using Equation 3.8 and 3.10 respectively. The

mean estimator using the Fréchet mean (Equation 3.1) and the Riemannian metric

(Equation 3.2) can be obtained by:

Σ̂ΣΣR = arg inf
Σ

n∑
i=1

(
∥∥∥log (Ai

−1/2ΣΣΣAi
−1/2)

∥∥∥2
).

Log Euclidean method

Using the logarithm of a matrix to define the distance between two matrices and

the mean of a group of positive definite symmetric matrices has been explored by

Pennec et al. (2006) and Arsigny et al. (2007). Arsigny et al. (2007) explained why

using the Euclidean mean is not suitable for a positive definite space (i.e. especially

for DTI). That is because, using the Euclidean mean the diffusion is interpreted by

dispersion. This leads to a large determinant of the mean for large diffusion which
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is not correct for DTI. The log Euclidean distance between two covariance matrices

A1 and A2 is given by:

dL(A1,A2) = ‖log(A1)− log(A2)‖ . (3.3)

The estimator of the log Euclidean mean can be obtained by minimizing the sum of

square log Euclidean distances between the covariance matrices. Using the Fréchet

mean (Equation 3.1) and the log-Euclidean distance (Equation 3.3), the estimated

mean is:

Σ̂ΣΣL = exp

(
1

n

n∑
i=1

log Ai

)
,

where the exponential and the logarithm, exp(.) and log(.), can be obtained

by using Equation 3.9 and 3.10 respectively.

Cholesky decomposition method

Cholesky factorization theorem: If A is a symmetric positive definite

matrix then, there exists a unique factorization A = LLT where L is a lower trian-

gular matrix with positive diagonal elements. That is:

A = LLᵀ =


a11 0 · · · 0

a21 a22 · · · 0
...

...
. . . 0

ap1 ap2 · · · app




a11 a21 · · · ap1

0 a22 · · · ap2

0
...

. . .
...

0 0 · · · app

 ,

where ajj , for j = 1 . . . p are positive numbers. This Cholesky factorization can be

extended to positive semi-definite matrices but the factorization is no longer unique.

One application of Cholesky decompositions is modeling longitudinal data, the same

type of information on the same variables at long periods of time (Dryden et al.,

2009). Cholesky decomposition can be used as a way of re-parametrization of the
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covariance matrix (Wang, Vemuri, Chen, & Mareci, 2004). The Cholesky distance

between two covariance matrices A1 and A2 is given by:

dC(A1,A2) = ‖L1 − L2‖ , (3.4)

where Ai = LiL
ᵀ
i , i = 1, 2 and Li = chol(Ai) is the Cholesky decomposition of

Ai. The mean of the covariance matrices can be estimated using the sample Fréchet

mean (Equation 3.1) and the Cholesky distance (Equation 3.4) as:

Σ̂ΣΣC =

(
1

n

n∑
i=1

Li

)(
1

n

n∑
i=1

Li

)ᵀ

.

The use of Cholesky decomposition guarantees the positive definiteness characteris-

tic of the estimated mean. The Cholesky mean provides an easy and quick compu-

tation of the mean estimator.

Root Euclidean method

Another method of re-parametrization of a covariance matrix is using the

square root matrix, which has been explored by Dryden et al. (2009). The root

Euclidean distance between two covariance matrices A1 and A2 is given by:

dH(A1,A2) =
∥∥∥A1/2

1 −A
1/2
2

∥∥∥ . (3.5)

The estimator of Fréchet mean (Equation 3.1) using the root Euclidean dis-

tance (Equation 3.5) mean can be obtained by:

Σ̂ΣΣH =

(
1

n

n∑
i=1

A
1/2
i

)(
1

n

n∑
i=1

A
1/2
i

)ᵀ

Procrustes size-and-shape method

The Procrustes method, named after a Greek bandit who forced people to fit in his
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bed by chopping off their legs or stretching them, is used for analyzing sets of shapes.

The Procrustean distance can be defined as ”the shortest distance between sets of

landmarks across all possible superimpositions” (N. M. Brown, 1994). Possible su-

perimpositions mean translation, scaling and rotation. There are two Procrustes

distances: full and partial (size-and-shape) Procrustes. In full Procrustes, trans-

lation, scaling, and rotation are performed to match objects together, whereas no

scaling is performed for partial Procrustes distance. Here we are interested in Pro-

crustes size-and-shape distance between two covariance matrices A1 and A2 which

can be computed as follows:

dS(A1,A2) = inf
R∈O(n)

‖L1 − L2R‖ , (3.6)

where inf
R
f(R) means the greatest lower bound of f(R), with respect to R. To

match L1 to L2 the Procrustes solution is

R̂ = arg inf
R∈O(n)

‖L1 − L2R‖ = UVᵀ,

where U,V ∈ O(n), the orthogonal group in dimension n, and Lᵀ
1L2 = VΛΛΛUᵀ is

the singular decomposition with diagonal matrix Lambda of positive singular entries

(Dryden et al., 2009). The sample Fréchet mean (Equation 3.1) using Procrustes

size-and-shape distance (Equation 3.6) is:

Σ̂ΣΣP = L̂pL̂
ᵀ
p,

where

L̂p = arg inf
Σ

n∑
i=1

( inf
Ri∈O(n)

‖LiRi −ΣΣΣ‖2).
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method invariant1 invariant2 deficient analytic

metric metric rank mean solution

Euclidean yes no can be used exists
Riemannian yes yes can’t be used does not exists

Log Euclidean yes yes can’t be used exists
Cholesky no no can be used exists

Root Euclidean yes no can be used exists
Procrustes yes no can be used does not exists

Table 3.1: Comparison of the Euclidean and non-Euclidean methods

Comparison of the methods

In Table 3.1, invariant1 metric refers to the distance between A1 and A2 and

whether it is invariant (unchanged), when rotation and reflection transformations

are applied simultaneously to A1 and A2. Invariant2 metric refers to the dis-

tance between A1 and A2 and whether it is invariant, under simultaneous scal-

ing of A1 and A2. Moreover, Riemannian distance is affine-invariant, that means:

dR(A1,A2) = dR(BA1B
ᵀ,BA2B

ᵀ) where A1,A2 and B are n× n matrices and B

is a full rank matrix. The log Euclidean and Riemannian means are not suitable

for rank deficient covariance matrices as the logarithm of 0 is an undefined value.

All the mean estimators except the Riemannian and Procrustes mean are easy and

quick to compute and there is no need to use numerical methods in their calculation.

There is no explicit solution for the Riemannian and Procrustes mean estimators.

For the Riemannian mean, the Gauss-Newton gradient descent algorithm has been

proposed by Pennec (1991) and Pennec (2006) to estimate the mean value of the

covariance matrices. For the Procrustes mean, the General Procrustes Algorithm

is needed (Gower (1975); Dryden and Mardia (1998), page 90). The Euclidean, log

Euclidean, Cholesky and root Euclidean means are straightforward to compute and

do not require numerical methods. Generally, the Procrustes metric provides sim-

ilar result to the root Euclidean metric. The maximum disagreement is
√

2 which

happens when tensors are deficient with rank 1 (Zhou et al., 2016). In fact, the

Procrustes metric outperforms the root Euclidean in some cases of rank deficiency

(Pigoli, Aston, Dryden, & Secchi, 2014) (e.g. extrapolating in an infinite space). See
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Dryden et al. (2009) and Zhou et al. (2016) for more details about non-Euclidean

metrics. Note that we refer briefly to Procrustes size-and-shape as Procrustes.

3.2.2 DTI Processing Using Non-Euclidean Methods

Euclidean and non Euclidean means can be used for interpolation of the diffusion

tensors. The interpolated tensors should have monotonic determinants, FA and MD

(Yang et al., 2012). Non monotonicity in the determinants provides tensors with

different sizes and non monotonicity in FA provides tensors with different shapes.

Arsigny et al. (2007) stated that linear interpolation of determinants using the Eu-

clidean mean is non monotonic which leads to big-sized tensors in the interpolated

path (see Figure 3.1). Both the log Euclidean and Riemannian means are more

effective in tensor interpolation than the Euclidean mean as the geometric inter-

polation of determinants is monotonic (Figure 3.1). The Cholesky mean (Wang

et al., 2004) can be used for interpolation of the diffusion tensor, but it is unreli-

able in cases where the variability is small in particular for the diagonal elements

of diffusion tensor (Dryden et al., 2009). Yang et al. (2012) argued that the ori-

entation of the interpolated tensors using Euclidean, Cholesky and log Euclidean

means are not considered and hence tensors with decreased FA and MD values are

produced. Decreases in FA values might misguide the interpretation as decreases in

FA values in white matter is an indicator of abnormalities (white matter disease)

or crossing fibers (Yang et al., 2012). Two methods of interpolation based on Euler

angles and the quaternion were developed in Yang et al. (2012) and their results

with Euclidean, Cholesky, log Euclidean and Riemannian metrics were compared.

The method demonstrated that the interpolated tensors are positive definite and

provide monotonic determinant, FA and MD. The log Euclidean and Riemannian

means are reported to be superior in smoothing a tensor field in the regions with

high Fractional anisotropy (FA) in the brain compared with the Euclidean mean

(Carmichael et al., 2013).
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Figure 3.1: Geodesic interpolation path between two tensors. On the left side:
Euclidean (top), Riemannian (middle) and log Euclidean (bottom) interpolation.
On the right side: the corresponding determinants, which represent the monotonic
interpolation of the determinants in the log Euclidean and Riemannian cases, and
the non-monotonic interpolation of the determinants in the Euclidean mean (Arsigny
et al. (2006)). Permission to reproduce this figure has been granted by John Wiley
and Sons.

3.2.3 Segmentation of the CC Using Non-Euclidean Methods

The Riemannian metric has been used by both Lenglet et al. (2006) for CC segmen-

tation. The Riemannian metric has been found to be more accurate for segmenta-

tion of the CC, especially on the splenium region, as compared with the Euclidean

metric (Lenglet et al., 2006). Goh and Vidal (2008b) suggested an algorithm for

segmentation of fiber bundles called a locally linear algorithm for diffusion tensor

clustering (LLDTC). The algorithm first reduces the dimensionality of diffusion ten-

sors to points, then clusters the points using a K-means algorithm and Riemannian

metric. Recently Jayasumana et al. (2013) explored a kernel K-means for positive

definite covariance matrices using Riemannian, log Euclidean, Cholesky and power

Euclidean distances. Then they applied their method for Pedestrian Detection, Vi-

sual Object Categorization, Texture Recognition and segmentation of the CC. In

fact the segmentation that has actually been provided in Jayasumana et al. (2013)

is not a segmentation of the CC but a segmentation of the Lateral Ventricular (a
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brain gray matter that is located under the CC).

The proposed segmentation method in this chapter might seem similar to

the algorithm proposed by Goh and Vidal (2008b) in the way they both use DTI,

K-means algorithm and Riemannian distance to segment the CC but they are com-

pletely different. The Goh and Vidal (2008b) method uses dimensionality reduction

of diffusion tensors first and then traditional K-means clustering. In contrast, the

proposed method clusters the diffusion tensors themselves without dimensionality

reduction and hence all the information in the original data is used.

3.2.4 Processes on the Covariance Matrices

Consider some of the processes on the covariance matrix A. The spectral decom-

position of A is given by A = VΛΛΛVᵀ where V is an orthogonal matrix, V ∈ O(p),

and Λ is a diagonal matrix of the eigenvalues as follows:

A =
[
v1 . . . vp

]

λ1 0 · · · 0

0 λ2 · · · 0
...

...
. . .

...

0 0 · · · λp


[
v1 . . . vp

]ᵀ
, (3.7)

where λi, for i ∈ {1, . . . , p}, are greater than 0 in the case of a positive definite

covariance matrix, or at least one of the λi equals 0 in the case of a covariance

matrix with deficient rank. Then A to the power k ∈ R is obtained by:

Ak = VΛΛΛkVᵀ. (3.8)

The exponential of A can be obtained by:

exp(A) =
∞∑
t=0

At

t!
=

∞∑
t=0

VΛΛΛtVᵀ

t!
= V(

∞∑
t=0

ΛΛΛt

t!
)Vᵀ = V exp(ΛΛΛ)Vᵀ. (3.9)
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To compute the logarithm of A, A should be a positive-definite covariance matrix

(logarithm of 0 is an undefined value). The logarithm of A is given by:

log(A) = V log(ΛΛΛ)Vᵀ, (3.10)

where the entries of Λ are strictly positive eigenvalues (λi > 0, ∀i).

3.3 Cluster Analysis

In this section, a brief background to hierarchical clustering is provided, followed by

description of K-means clustering and Hartigan’s method.

3.3.1 Hierarchical Clustering

Hierarchical clustering is desirable in many applications for the structure that it pro-

vides e.g. in biological systems, medicine, psychology and network systems (John-

son, 1967; Ravasz, Somera, Mongru, Oltvai, & Barabási, 2002; Bandyopadhyay &

Coyle, 2003). Unlike the K-means, hierarchical clustering does not depend on the

cluster size. Moreover, hierarchical clustering is flexible as any distance metric can

be used. There are two types of hierarchical clustering which can be explained as

follow (Hastie et al., 2009):

� Agglomerative (bottom-up): Each object starts in its own cluster. As one

moves up the hierarchy, the closest pair of clusters are merged at each level.

� Divisive (top-down): All objects start in one cluster. As one moves down the

hierarchy, splits are performed recursively.

Given a set of n objects, ai for i ∈ {1, . . . , n}, to be clustered, the basic

process of agglomerative hierarchical clustering is shown below:

1. First assign each object to its own cluster, so there are n clusters, each con-

taining one object.
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2. Calculate the distances between all the clusters and obtain the square form

i.e. n× n distance matrix Q as follows:

Q =



a1 a2 · · · an

a1 0 d(a1, a2) · · · d(a1, an)

a2 d(a1, a2) 0 · · · d(a2, an)
...

...
...

. . .
...

an d(a1, an) d(a2, an) · · · 0

, (3.11)

where d(ai, aj) is the distance between ai and aj , for i, j ∈ {1, . . . , n}. Look

for the closest pair of objects and merge them into a single cluster, so there is

now one less cluster (n− 1 clusters).

3. Compute distances between the new cluster and each of the old clusters. There

are several ways to do this (e.g. single-link, complete-link and average-link).

To calculate the distance between one cluster S1 and another cluster S2, the

methods (Seber, 2009) are:

� Single-link clustering (nearest neighbour): The distance between one

cluster S1 and another cluster S2 is the shortest distance from any mem-

ber of S1 to any member of S2:

dS1S2 = min {drl},

where r ∈ S1 and l ∈ S2.

� Complete-link clustering (furthest neighbour): The distance between

S1 and S2 is the maximum distance from any member of S1 to any

member of S2:

dS1S2 = max {drl}

� Average-link clustering: The distance between S1 and S2 is the av-

erage distance from any member of one cluster to any member of the
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other cluster.

dS1S2 = P (xS1 , xS2),

where P is a proximity measure (e.g. square Euclidean, correlation),

xS1 = (1/n)
∑
i∈S1

xi is the centroid of S1 and similarly xS2 is the centroid

of S2.

4. Repeat steps 2 and 3 until all objects are clustered into one cluster of size n.

5. Create Clusters:

After the hierarchical tree (also called dendrogram) has been created, it is

required to determine where to cut the dendrogram into clusters. Using the

cluster function in Matlab (Uk.mathworks.com, 2015a), there are two options

to create the clusters:

� Inconsistency coefficient: the height of a link will be compared with the

average height of the links below it, to obtain the inconsistency coefficient.

By determining a specific value for tree inconsistency, the inconsistency

coefficient can be used to divide the data into distinct, well-separated

clusters.

� Specify the number of clusters that are required.

Suppose we need to cluster the objects: a, b, c, d and e using the single link

method. In Figure 3.2, the agglomerative hierarchical clustering starts with five

clusters and the closest pair of clusters will be merged at each level. At the final

level there is one cluster for all the five objects. On the other hand, the divisive

hierarchical clustering starts with one cluster for all the five objects and then clusters

will be split recursively at each level. At the final level there are five clusters for the

five objects. The height of a link in the dendrogram represents the distance between

the objects. Suppose the distances between the five objects in Figure 3.2 as follow:
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Figure 3.2: An example of the dendrogram for the hierarchical clustering (single
link) using Equation 3.12.

Q =



a b c d e

a 0 4 9 11 12

b 4 0 5 7 8

c 9 5 0 2 3

d 11 7 2 0 1

e 12 8 3 1 0


(3.12)

The minimum distance is between d and e, and hence d and e will be grouped in

one cluster. Then we need to calculate the distances between the new cluster (d, e)

and other clusters as follows:

Q =



a b c (d, e)

a 0 4 9 11

b 4 0 5 7

c 9 5 0 2

(d, e) 11 7 2 0

 (3.13)

For example, the distance between the cluster (d, e) and c using the single link

method is min {distance(d, c), distance(e, c)}. As the resultant minimum distance
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Figure 3.3: Cutting the dendrogram to obtain the clusters. The blue line cuts the
dendrogram to obtain two clusters and the red line cuts the dendrogram to create
three clusters.

is between c and (d, e), they will be merged to obtain (c, d, e):

Q =


a b (c, d, e)

a 0 4 9

b 4 0 5

(c, d, e) 9 5 0

 (3.14)

Similarly, a and b will be merged into one cluster as follows:

Q =


(a, b) (c, d, e)

(a, b) 0 5

(c, d, e) 5 0

 (3.15)

Finally, the last two cluster will be merged together into one cluster which groups

all the objects. To create the clusters we need to cut the dendrogram specific

point (depending on an inconsistency coefficient or a given number of clusters). In

Figure 3.3, the blue line cuts the dendrogram to obtain two clusters, (a, b) and

(c, d, e), whereas cutting the dendrogram using the red line creates three clusters

a, b and (c, d, e).

Hierarchical clustering has many advantages. One of the advantages is there

is no need to specify the cluster size as input for the algorithm to work. In addition,
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there is no need for the observations as the distances between the observations only

are needed, and hence any distance metric can be used. However, the interpretation

of the hierarchy is not easy to understand (Augen, 2004). Moreover, the Hierarchical

clustering is less efficient (i.e. quadratic complexity) than the K-means clustering

(linear complexity) (Tan et al., 2006).

Hierarchical clustering using non-Euclidean methods

The agglomerative hierarchical clustering (single link) can be used to cluster the

covariance matrices using the non-Euclidean distances. Suppose we need to cluster

n covariance matrices to different groups. We need the n × n distance matrix

(Equation 3.11) using non-Euclidean distances (i.e. log Euclidean, Riemannian,

Cholesky, root Euclidean and Procrustes). First assign each covariance matrix to

its own cluster, so that there are n clusters each containing one covariance matrix.

Look for the closest pair of covariance matrices and merge them into a single cluster,

so that there are n − 1 clusters. In the single link method, the distances between

the new cluster and the other clusters are computed as the shortest non-Euclidean

distance from any covariance matrix in the new cluster to any member of the other

cluster. We repeat calculating the distances and merging the closest pair until all

the covariance matrices are a member of one cluster. Then we create clusters by

cutting the dendrogram at specific point to obtain the required number of clusters.

3.3.2 Description of K-means

The most widely used and studied cluster analysis is the K-means clustering. In

K-means clustering (MacQueen, 1967), we are given a set of n data points in d-

dimensional space Rd, and the problem is to determine a set of K ≤ n points,

centroids, so as to minimize the sum of the squared Euclidean distance from each

data point to its nearest centroid (i.e. to minimize WCSS). The general procedure

is to search for a K-partition, C = {C1, . . . , CK}, with locally optimal WCSS by

moving points from one cluster to another. Given an integer k and a set xi, for

i ∈ {1 . . . n}, the main objective is:
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arg min
C

K∑
k=1

∑
xi∈Ck

‖xi − µk‖2, (3.16)

where µk is the Euclidean (arithmetic) mean of cluster Ck. The default

distance metric is the Euclidean distance. Other distance metrics can be used in

the K-means algorithm (e.g sum of absolute differences). The general procedure of

K-means algorithm is described below.

K-means algorithm

Step 1: First select K random points as starting points acting as the centroids.

Step 2: Assign each point to its closest centroid.

Step 3: Recompute the centroid of each cluster.

Step 4: Repeat Step 2 and 3 until all the points are nearest the centroid of the

cluster to which they belong.

The K-means algorithm is simple and very efficient (linear complexity) but

has some weaknesses. One of the weaknesses is that the K-means algorithm needs

the number of clusters K to be specified. Moreover, the K-means algorithm mini-

mizes WCSS and hence converges to a local minima. Thus, different initializations

can lead to a different final clustering. This problem can be reduced by running

the K-means algorithm with different initial partitions and selecting the partition

with the smallest WCSS (Equation 3.16). In addition, K-means is not suitable

for discovering clusters that has a non-globular (non-spherical) shapes (Tan et al.,

2006). For example, Figure 3.4 shows two non-globular shapes where the K-means

algorithm is not able to separate them into two different clusters (see Figure 3.5).

3.3.3 Hartigan’s Method

Hartigan’s method (Hartigan, 1975, p. 85-86) is a K-means algorithm to cluster a

set of objects using Euclidean distance. In this section, we study Hartigan’s method

to cluster a set of matrices.
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Figure 3.4: Two non-globular shapes

Figure 3.5: Two K-means clusters of the two non-globular shapes. The K-means
algorithm fails to detect the two shapes and separate them into different clusters.
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Basic notations

Suppose we need to cluster the set of matrices A = {A1, . . . ,AM} into K clusters.

Suppose the initial partitioning C = {C1, . . . , CK} where Ck, for k ∈ {1, . . . ,K}, is

the set of the indices of the matrices which clustered into cluster k. For example,

suppose the set A = {A1, . . . , A6} is clustered into K = 2 clusters with {A1, A4, A5}

forming one cluster and {A2, A3, A6} forming the other cluster. Then C = {C1, C2},

with C1 = {1, 4, 5} and C2 = {2, 3, 6}. Suppose m(p), p ∈ {1, . . . ,K}, is the number

of matrices inside cluster p and ĀCp is the centroid of cluster p. We refer to the

within cluster sum of squares as WCSS, whereas WCSSp refers to the sum of

squares within cluster p.

Description of Hartigan’s method

Hartigan’s method aims to minimize WCSS by moving objects to another cluster

if doing so will reduce WCSS. The Euclidean distance between Ai and ĀCk
is

defined as:

D(Ai, ĀCk
) =

∥∥Ai − ĀCk

∥∥ ,
where ‖.‖ is the Frobenius norm. Then WCSS is defined as:

WCSS =
K∑
k=1

∑
i∈Ck

D(Ai, ĀCk
)2. (3.17)

Assume Cp and Cj ∈ C and i ∈ Cp which means the matrix Ai is clustered

into cluster p. Suppose Ai is moved from cluster p into cluster j where j ∈ {1, . . . ,K}

and j 6= p. Then WCSS before the movement (WCSSpre) is calculated as follows:

WCSSpre = WCSS1 + . . .+WCSSp + . . .+WCSSj + . . .+WCSSK .

After the movement, WCSS can be calculated as follows:

WCSS = WCSS1 + . . .+WCSSnp + . . .+WCSSnj + . . .+WCSSK , (3.18)
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where WCSSnp and WCSSnj are the new values of WCSSp and WCSSj after the

movement. As in Spath (1985), WCSSnp and WCSSnj can be calculated as

WCSSnp = WCSSp −
m(p)

m(p)− 1
D(Ai, ĀCp)2 (3.19)

and

WCSSnj = WCSSj +
m(j)

m(j) + 1
D(Ai, ĀCj )

2. (3.20)

Substituting Equation 3.19 and 3.20 into Equation 3.18 gives

WCSS = WCSS1 + . . .+WCSSp −
m(p)

m(p)− 1
D(Ai, ĀCp)2 + . . .

+WCSSj +
m(j)

m(j) + 1
D(Ai, ĀCj )

2 + . . .+WCSSK .

Therefore

WCSS = WCSSpre −
m(p)

m(p)− 1
D(Ai, ĀCp)2 +

m(j)

m(j) + 1
D(Ai, ĀCj )

2.

= WCSSpre +Gj ,

(3.21)

where

Gj =
m(j)

m(j) + 1
D(Ai, ĀCj )

2 − m(p)

m(p)− 1
D(Ai, ĀCp)2. (3.22)

There are two possibilities:

� Gj is positive or zero, for every j 6= p. That is:

∀j ∈ {1, . . . ,K} such that j 6= p,we have Gj ≥ 0. (3.23)

This indicates that the movement of Ai is unsuccessful (i.e. Gj > 0) or

unnecessary (i.e. Gj = 0) as there is no reduction in WCSS, i.e. WCSS ≥

WCSSpre, or
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� Gj is negative, for some j. That is:

∃j ∈ {1, . . . ,K} such that Gj < 0. (3.24)

That indicates the movement of Ai is successful. In this case the movement

will be to cluster j with the smallest Gj to achieve the largest reduction in

WCSS, i.e. we want min
j 6=p

Gj .

3.4 Hartigan’s method with f-mean

In this section we show how Hartigan’s method can be applied using f -mean metrics

to cluster a set of covariance matrices. First the f -mean is defined, followed by

Hartigan’s method using the f -mean.

3.4.1 F -mean

The f -mean is a generalization of the arithmetic, harmonic and geometric means.

It is also known as the Kolmogorov (Kolmogorov & Castelnuovo, 1930) or quasi-

arithmetic mean. The f -mean is originally defined on the set of real numbers as

a function f : Rn −→ R (Tikhomirov, 2012). Here we define the f -mean to map

between sets of covariance matrices. Suppose f : I ⊂ M −→ M, where M denotes

the class of covariance matrices, be a continuous and injective function. Then the

f -mean for the covariance matrices A1,A2, . . . ,An is defined as:

Ā = f−1(
1

n

n∑
i=1

f(Ai)). (3.25)

The f -mean generalizes some common means such as the Euclidean, root Euclidean

and power Euclidean mean, where I = M, and the log Euclidean and Cholesky mean

where I = M+ represents the class of positive-definite covariance matrices.
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3.4.2 Hartigan’s Method with the f-mean

Suppose we need to cluster a set of covariance matrices A using Hartigan’s method

with f -mean metrics. Using the notation in Section 3.3.3, the WCSS can be ob-

tained by using Equation 3.17 where D(Ai, ĀCk
) is defined as:

D(Ai, ĀCk
) =

∥∥f(Ai)− f(ĀCk
)
∥∥ . (3.26)

From Equation 3.25, f(ĀCk
) can be calculated as follows:

f(ĀCk
) =

1

m(k)

∑
i∈Ck

f(Ai),

and hence ∑
i∈Ck

f(Ai) = m(k)f(ĀCk
). (3.27)

Suppose Ai is moved from cluster p to cluster j. Let ĀCnp be the new

centroid of cluster p after the movement. Let Cnp = Cp \ {i} and Cnj = Cj ∪ {i}.

The new centroid of cluster p can be calculated in terms of the old centroid as

follows:

f(ĀCnp) =
1

m(p)− 1

∑
l∈Cnp

f(Al). (3.28)

It is clear that

∑
l∈Cnp

f(Al) =
∑
t∈Cp

f(At)− f(Ai)

= m(p)f(ĀCp)− f(Ai).

(3.29)

Then substituting Equation 3.29 into Equation 3.28 yields:

f(ĀCnp) =
1

m(p)− 1

[
m(p)f(ĀCp)− f(Ai)

]
. (3.30)
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Similarly, for cluster j,

f(ĀCnj ) =
1

m(j) + 1

∑
l∈Cnj

f(Al)

=
1

m(j) + 1

[
m(j)f(ĀCj ) + f(Ai)

]
.

(3.31)

The new centroids of clusters p and j can be obtained by taking the inverse function

of f(ĀCnp) and f(ĀCnj ) in Equations 3.30 and 3.31 respectively. In Theorem 1, we

show that Equations 3.19 and 3.20 and hence Gj in Equation 3.22 are applied for

f -mean metrics (defined in Equation 3.26) as follows:

Theorem 1. In Hartigan’s method, suppose the covariance matrix Ai is moved

from cluster p to cluster j. Suppose the distance between two covariance matri-

ces A1 and A2 is ‖f(A1)− f(A2)‖, where ‖.‖ is the Frobenius norm and ĀCj =

f−1( 1
m(j)

∑
t∈Cj

f(At)) is the f -mean of the covariance matrices in cluster j, then the

function Gj for Hartigan’s method is:

Gj =
m(j)

m(j) + 1

∥∥f(Ai)− f(ĀCj )
∥∥2 − m(p)

m(p)− 1

∥∥f(Ai)− f(ĀCp)
∥∥2
. (3.32)

Proof. For arbitrary l ∈ Cnj :

f(Al)− f(ĀCnj ) =
[
f(Al)− f(ĀCj )

]
+
[
f(ĀCj )− f(ĀCnj )

]
. (3.33)

Using Equation 3.31 yields:

f(ĀCj )− f(ĀCnj ) =f(ĀCj )−
1

m(j) + 1

[
m(j)f(ĀCj ) + f(Ai)

]
=

1

m(j) + 1

[
f(ĀCj )− f(Ai)

]
.

(3.34)

Substitute Equation 3.34 into Equation 3.33 as follows:

f(Al)− f(ĀCnj ) =
[
f(Al)− f(ĀCj )

]
+

1

m(j) + 1

[
f(ĀCj )− f(Ai)

]
. (3.35)
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Equation 3.35 implies

[
f(Al)− f(ĀCnj )

] [
f(Al)− f(ĀCnj )

]ᵀ
=[

f(Al)− f(ĀCj )
] [
f(Al)− f(ĀCj )

]ᵀ
+

2

m(j) + 1

[
f(Al)− f(ĀCj )

] [
f(ĀCj )− f(Ai)

]ᵀ
+

1

(m(j) + 1)2

[
f(ĀCj )− f(Ai)

] [
f(ĀCj )− f(Ai)

]ᵀ
.

(3.36)

To obtain WCSSnj , we need to sum over l ∈ Cnj for both sides of Equation 3.36,

which is equivalent to taking the sum over t ∈ Cj plus l = i as follows:

∑
l∈Cnj

[
f(Al)− f(ĀCnj )

] [
f(Al)− f(ĀCnj )

]ᵀ
=

∑
t∈Cj

[
(f(At)− f(ĀCj ))(f(At)− f(ĀCj ))

ᵀ]
+
[
f(Ai)− f(ĀCj )

] [
f(Ai)− f(ĀCj )

]ᵀ︸ ︷︷ ︸
a1

+
2

m(j) + 1

∑
t∈Cj

[
(f(At)− f(ĀCj ))(f(ĀCj )− f(Ai))

ᵀ]
︸ ︷︷ ︸

b

+
2

m(j) + 1

[
f(Ai)− f(ĀCj )

] [
f(ĀCj )− f(Ai)

]ᵀ
︸ ︷︷ ︸

a2

+
m(j) + 1

(m(j) + 1)2

[
f(ĀCj )− f(Ai)

] [
f(ĀCj )− f(Ai)

]ᵀ
︸ ︷︷ ︸

a3

.

(3.37)

Adding terms together yields

a1 + a2 + a3 =

(1− 2

m(j) + 1
+

1

m(j) + 1
)
[
f(Ai)− f(ĀCj )

] [
f(Ai)− f(ĀCj )

]ᵀ
=

m(j)

m(j) + 1

[
f(Ai)− f(ĀCj )

] [
f(Ai)− f(ĀCj )

]ᵀ (3.38)
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and

b =
2

m(j) + 1

[
f(ĀCj )− f(Ai)

]ᵀ ∑
t∈Cj

[
f(At)− f(ĀCj )

]
=

2

m(j) + 1

[
f(ĀCj )− f(Ai)

]ᵀ ∑
t∈Cj

[f(At)]

−m(j)f(ĀCj )


=

2

m(j) + 1

[
f(ĀCj )− f(Ai)

]ᵀ [
m(j)f(ĀCj )−m(j)f(ĀCj )

]
= 0.

(3.39)

Then substitute Equation 3.38 and 3.39 in 3.37 as follows:

∑
l∈Cnj

[
f(Al)− f(ĀCnj )

] [
f(Al)− f(ĀCnj )

]ᵀ
=
∑
t∈Cj

[
(f(At)− f(ĀCj ))(f(At)− f(ĀCj ))

ᵀ]+ a1 + a2 + a3

=
∑
t∈Cj

[
(f(At)− f(ĀCj ))(f(At)− f(ĀCj ))

ᵀ]
+

m(j)

m(j) + 1

[
f(Ai)− f(ĀCj )

] [
f(Ai)− f(ĀCj )

]ᵀ
.

(3.40)

Then, we take the trace of Equation 3.40 as follows:

∑
l∈Cnj

∥∥f(Al)− f(ĀCnj )
∥∥2

=
∑
t∈Cj

∥∥f(At)− f(ĀCj )
∥∥2

+
m(j)

m(j) + 1

∥∥f(Ai)− f(ĀCj )
∥∥2
.

Therefore

WCSSnj = WCSSj +
m(j)

m(j) + 1

∥∥f(Ai)− f(ĀCj )
∥∥2
. (3.41)

In addition, the WCSS of cluster p, after the movement, is

WCSSnp = WCSSp −
m(p)

m(p)− 1

∥∥f(Ai)− f(ĀCp)
∥∥2
. (3.42)
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Then the change amount in WCSS, where j 6= p, is

Gj =
m(j)

m(j) + 1

∥∥f(Ai)− f(ĀCj )
∥∥2 − m(p)

m(p)− 1

∥∥f(Ai)− f(ĀCp)
∥∥2
. (3.43)

In our applications in Section 3.5, particularly for the 3D segmentation, the

region of interest (ROI) is a very large volume of voxels from the middle of the

brain, and hence efficiency is important. Hartigan’s method runs very slowly for

large data sets as it depends on moving objects one at a time. To improve efficiency,

the centroids resulting from Lloyd’s algorithm can be used as an initialization to

Hartigan’s method. For the methods that don’t have an analytical solution for the

computation of the mean, i.e. the mean cannot be computed using Equation 3.25,

Hartigan’s method is not applicable. However, the algorithm can be edited just

to check if an existing partitioning result can be improved further (by finding a

partitioning with a smaller WCSS) but not to start partitioning from the beginning.

Hence the initialization can be performed using Lloyd’s algorithm but not using a

random partitioning. Furthermore, adjusting WCSS and the centroid values, after

a movement, cannot be performed using the old values of WCSS and centroid

before the movement. The generalized algorithm is shown below. For the f -mean,

the following applies:

� The initialization in Line 1 could also performed using random initialization,

and the centroids of the clusters are calculated using Equation 3.25.

� Updating the centroids in Line 9 are performed by taking the inverse function

in Equations 3.30 and 3.31.

� Equation 3.21 with the metric defined in Equation 3.26 is used to adjust WCSS

in Line 10.

� Lines 12-17 are not needed.
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Algorithm 1: Generalized Hartigan’s method.

1 Initialization: use Lloyd’s algorithm to partition A into K groups as

the initialization, C = {C1, . . . , CK}. Then compute the centroids of

the clusters and WCSS (Equation 3.17).

2 while move = true do

3 move = false;

4 for i ∈ {1, . . . ,M} do

5 Let i ∈ Cp, where p ∈ {1, . . . ,K}.

6 if Gj < 0 for some j ∈ {1, . . . ,K} and j 6= p then

7 Let i ∈ Cj , where j = arg min
j 6=p

Gj .

8 Let move = true.

9 Update the centroids of cluster p and j, ĀCnp and ĀCnj .

10 Let WCSSpre = WCSS, then adjust the new WCSS.

11 end

12 if WCSS < WCSSpre then

13 let move = true.

14 else

15 Undo the movement and restore the previous values of the

centroids of cluster p and j.

16 Let WCSS = WCSSpre .

17 end

18 end

19 end

20 Output: C = {C1, . . . , CK}.

For the methods that have a mean other than the f -mean, such as Procrustes

and Riemannian, the following alterations of the algorithm are required:

� In Line 1 and 9, the centroids are calculated using the appropriate mean (e.g.

see Appendix A.2 for the Procrustes and Riemannian means).
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� Line 8 is not needed.

� In Line 10, the WCSS is adjusted using Equation 3.17 with the appropriate

metric (e.g. see Appendix A.1 for the Procrustes and Riemannian distances).

3.4.3 Special Cases

Here we study Hartigan’s method with some special cases of the f -mean i.e. log

Euclidean, root Euclidean, Cholesky and Euclidean method. We show how the

centroids can be adjusted, after a movement, in an easy and quick way using the

old values before the movement.

When f(A) = log (A), this is the case of the log Euclidean method. The log

Euclidean distance between two covariance matrices A1 and A2 is

‖log (A1)− log (A2)‖ .

The centroid of cluster p using the log Euclidean method can be obtained by

substituting f(A) = log (A) into Equation 3.25 as follows:

ĀCp = f−1(
1

m(p)

∑
t∈Cp

log (At)) = exp (
1

m(p)

∑
t∈Cp

log (At)).

Then

f(ĀCp) = log (ĀCp) = log

exp (
1

m(p)

∑
t∈Cp

log (At))

 =
1

m(p)

∑
t∈Cp

log (At).

Hence, using Equations 3.30 and 3.31, the new centroids when Ai is moved

from cluster p to cluster j are respectively:

ĀCnp = exp

(
1

m(p)− 1

[
m(p) log (ĀCp)− log (Ai)

])
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and

ĀCnj = exp

(
1

m(j) + 1

[
n log (ĀCj ) + log (Ai)

])
.

In addition, WCSS can be adjusted after the movement using Equation 3.21 where

Gj =
m(j)

m(j) + 1

∥∥log (Ai)− log (ĀCj )
∥∥2 − m(p)

m(p)− 1

∥∥log (Ai)− log (ĀCp)
∥∥2
.

Similarly we can adjust the centroids and calculate Gj for root Euclidean,

Cholesky and Euclidean using f(A) = A1/2, f(A) = chol(A) and f(A) = A

respectively (see Appendix A.3).

3.5 Applications

A set of MR images of a healthy brain is provided by the Academic Radiology De-

partment of Queens Medical Center provided. The MR images were acquired using

a 3T Phillips Achieva scanner with a receive-only eight elements head coil. The

diffusion tensor MR images were acquired using a spin echo, EPI, sequence with

diffusion weighting gradients applied with a weighting factor of b= 1000 s/mm2.

A number of 45 interleaved contiguous transaxial slices were acquired throughout

the subject’s head in a matrix of 112 × 112 (interpolated to 224 × 224) with an

acquisition voxel size of 2 × 2 × 2.5 mm. The following specifications were used in

the experiments but their knowledge is not required for this work. Using a parallel

imaging SENSE factor of 2 and half Fourier factor of 0.75 resulted in an echo time

(TE) of 56 ms and repetition time (TR) of 9700 ms. For each slice, the acquisition

was repeated to acquire diffusion weighted images in 31 non-collinear directions, as

well as one acquisition with no diffusion weighting (b= 0). The acquisition was

repeated twice and the data averaged to improve the signal to noise ratio. To mini-

mize the clustering time of the whole brain image, we select a ROI that includes the

CC. Hartigan’s method is used for the 2D and 3D segmentation of the CC. Lloyd’s

algorithm is used for the initialization to reduce the time of clustering.
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Figure 3.6: The Fractional Anisotropy (FA) map of the midsagittal plane of the
brain. The region of interest (ROI) is highlighted by the yellow rectangle.

In the following subsections, we used hierarchical clustering and generalized

Hartigan’s method to segment the CC of the healthy brain. Generally, holes are

not expected in the healthy CC and hence we prioritized the criteria ’no holes’, to

compare between the segmentations using the hierarchical clustering and Hartigan’s

method.

3.5.1 Segmentation using Hierarchical Clustering

Agglomerative hierarchical clustering (single-link) is used to segment the CC region

in the brain using Euclidean and non-Euclidean methods. To reduce the clustering

time of a whole slice, we choose a region of interest (ROI) from the midsagittal

slice of the brain (Figure 3.6). Suppose the number of the tensors in ROI is n.

First we calculate the square form (n × n) of the non-Euclidean distances between

the tensors. Then, we used the square form as input to Matlab linkage function

(Uk.mathworks.com, 2015b), which has been used to create the hierarchical tree.

Then the Matlab cluster function (Uk.mathworks.com, 2015a) is used to cluster the

tree. The results of the first appearance of the CC shape are in Figure 3.7. When we

increase the clusters size, we obtain a disjoint shape of the CC. Note that although

the tensors in the fornix have high FA values like the tensors in the CC, hierarchical

clustering differentiates well between them so the fornix is not included as part of

the CC.
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Figure 3.7: Hierarchical clustering using Euclidean and non-Euclidean methods to
segment the CC in the brain using the midsagittal brain image.

Evaluation of the segmentation

The CC shape is connected and holes on it is not expected in healthy subjects. Holes

on the CC might indicate presence of lesions which is an indicator of abnormality

(see Ho, Moonis, Ginat, and Eisenberg (2013)). The hierarchical (single-link) seg-

mentation provides holes in the CC of healthy subjects. The method that provides

the largest number of holes is not preferred as holes are not expected. To evaluate

the segmentation, the number of holes inside the segmented shape of the CC (i.e.

number of pixels that should be part of the CC shape but have been grouped into

a different cluster), mean and standard deviation of the number of holes has been

calculated in Table 3.2. The data used are five healthy subjects (the data from the

healthy subject described in this chapter and the four healthy subjects described in

Chapter 4). From Table 3.2, it can be seen that the Cholesky method yields the

largest average number of holes in the CC whereas the Riemannian method pro-

duces the smallest average number of holes in the CC. Therefore the Riemannian

method using the hierarchical clustering (single-link) outperforms the other meth-

ods for segmentation of the CC. Using the Euclidean method, the CC is segmented

for three subjects and the CC is not visible for two subjects.
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Method
No of holes

mean std
subject1 H1 H2 H3 H4

Euclidean 5 16 NA 29 NA 16.67 12.01

Log Euclidean 25 4 23 15 30 19.40 10.16

Riemannian 25 2 14 15 27 16.60 10.01

Cholesky 18 9 17 19 37 20.00 10.30

Root Euclidean 18 13 27 14 26 19.60 6.58

Procrustes 18 12 17 23 28 19.60 6.11

Table 3.2: The number of holes, mean number of holes and standard deviation of
number of holes in the CC using hierarchical clustering (single link) for the healthy
brain image described in this Chapter (subject1) and the four healthy subjects
described in Chapter 4 (H1, H2, H3 and H4). Using the Euclidean method, the
segmentation of the CC works only for three subjects (subject1, H1 and H3) and
fails for two subjects (H2 and H4). The segmentation using the Riemannian method
have the smallest average number of holes and hence it is preferred, while the seg-
mentation using the Cholesky method has the largest average number of holes and
hence it is not preferred.

3.5.2 Two Dimensional Segmentation Using Hartigan’s Method

For 2D segmentation, the region of interest (ROI) from the midsagittal slice of

the brain (shown in Figure 3.6) is used. Hartigan’s method is used to cluster the

tensors in the ROI into 5 clusters. How the cluster size is chosen is discussed

below. The segmentation results with FA as the background are shown in Figure 3.8.

The diffusion tensors for the 5 clusters are represented by diffusion ellipsoids in 5

colors: red (for the diffusion tensors in the CC), green, yellow, blue and black. Like

the hierarchical clustering, Hartigan’s method differentiates between the fornix and

the CC. To confirm the clustering results, the variance of the CC using the same

distance with different means is used. Using each of the Euclidean or non-Euclidean

methods, the variance of the CC should be the smallest using the same distance

and the same mean of the method (e.g. the smallest variance of the CC using

the Euclidean distance and different means should be obtained using the Euclidean

mean). Suppose that Ccc is the CC partition, let m(cc) be the number of the tensors
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(a) Euclidean method (b) Cholesky method

(c) Log Euclidean method (d) Riemannian method

(e) Root Euclidean method (f) Procrustes method

Figure 3.8: Segmentation of the CC from the midsagittal plane, superimposed over
the FA map. The tensors in the CC are colored in red. All the methods distinguish
between the CC and the fornix.
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Segmentation Euclidean Log Euclidean Riemannian Cholesky Root Euclidean Procrustes

method mean mean mean mean mean mean

Euclidean 2.4759e-07 2.6222e-07 2.6818e-07 2.5269e-07 2.5071e-07 2.5090e-07

Log Euclidean 0.9542 0.9012 0.9039 0.9070 0.9165 0.9123

Riemannian 1.0050 0.9616 0.9587 0.9677 0.9721 0.9704

Cholesky .8803e-05 9.7007e-05 9.8081e-05 9.5853e-05 9.6275e-05 9.6047e-05

Root Euclidean 3.4259e-04 3.4433e-04 3.4662e-04 3.3904e-04 3.3748e-04 3.3772e-04

Procrustes 8.1587e-05 8.1527e-05 8.2411e-05 8.0192e-05 8.0063e-05 8.0003e-05

Table 3.3: The variance of the CC using Euclidean and non-Euclidean methods with
different means.

in the CC, then the variance of the CC is calculated as follows:

var(CC) =
1

m(cc)− 1

∑
i∈Ccc

D(Ai, ĀCcc)
2, (3.44)

where D(., .) and ĀCcc is the, Euclidean or non-Euclidean, distance and mean of the

tensors in the CC respectively. The variance of the segmented CC using Euclidean

and non-Euclidean methods with different means (Equation 3.44) has been calcu-

lated in Table 3.3. The result confirmed that each method achieves the minimum

variance with its mean as the main diagonal containing the minimum values (in

blue).

How to choose the number of clusters

In a K-means algorithm, the cluster size is needed as an input to the algorithm.

To choose the appropriate cluster size, silhouette method (Rousseeuw, 1987) is

used. The K with the largest overall mean of the silhouette values, mean(sil),

is the appropriate cluster size. Suppose we have a set of covariance matrices

A = {A1, . . . ,AM} clustered into K clusters. The silhouette value of Ai, where

i ∈ Cp and p ∈ {1, . . . ,K}, is a measure of how similar Ai is to the covariance

matrices in cluster p, when compared to the covariance matrices in cluster j, where

j ∈ {1, . . . ,K} and j 6= p. The silhouette value of Ai is calculated as follows:

sil(Ai) =
b(Ai)− a(Ai)

max {a(Ai), b(Ai)}
.
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where a(Ai) is the mean distance between the covariance matrix Ai and other

covariance matrices in cluster p. Let d̄j represent the mean distance between Ai

and the covariance matrices in cluster j. Then b(Ai) = min
j 6=p

d̄j . The mean of

the silhouette values is mean(sil) =
∑M

i=1 sil(Ai)/M . The ROI is clustered into

2 to 8 clusters (as a small suitable number of clusters is more preferable than a

large number of clusters to reduce clustering time) using Hartigan’s method. The

CC is not visible at 2 and 3 clusters, and hence the appropriate cluster size for

segmentation of the CC needs to be 4 or more. Then mean(sil) is calculated for

4, . . . , 8 clusters using Euclidean and non-Euclidean methods (see Table 3.4). For all

non-Euclidean methods, the largest value of mean(sil) is obtained at 5 clusters (see

Table. 3.4), and hence for the segmentation of the CC the most appropriate cluster

size is 5. For the Euclidean method, the mean(sil) for 4 clusters is slightly larger

than 5 clusters. However, to be able to compare the segmentation results using the

different methods, we choose 5 clusters for the Euclidean method too.

K Eucl. Cholesky log Eucl. Riemannian Root Eucl. Procrustes

4 0.574 0.520 0.628 0.630 0.559 0.565

5 0.566 0.567 0.668 0.668 0.603 0.613

6 0.524 0.472 0.543 0.542 0.537 0.546

7 0.538 0.500 0.575 0.573 0.557 0.564

8 0.512 0.443 0.479 0.477 0.498 0.512

Table 3.4: The mean(sil) is calculated for 4 to 8 clusters. We start with 4 since the
CC is distinguishable from 4 clusters upwards. The highest average of silhouette
values is at 5 clusters for non-Euclidean methods.

An alternative way to determine the appropriate cluster size is using the

variance of the CC. We suppose that the tensors in the CC are homogeneous and

hence we seek a small variance of the CC, with a small K to save clustering time.

High variance of the CC indicates that the tensors in the CC are not homogenous,

which could happen if some of the tensors that close to the boundary of the CC

are included in the segmentation. Since with 2 and 3 clusters the CC is not clearly

distinguishable, the variance of the CC region (using Equation 3.44) at cluster size

K ∈ {4, . . . , 8} is presented in Table 3.5. In fact, the size of the CC decreases with
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increasing number of clusters. However, the variances of the CC are similar from

cluster size 5 upwards, whilst there is a larger reduction in variance values from

cluster size 4 to 5. For this reason, we suggest that 5 is the most appropriate choice

for segmentation of the CC.

Method 4 5 6 7 8

Euclidean 2.847e-07 2.476e-07 2.408e-07 2.272e-07 2.259e-07

Log Eucl. 3.109 0.901 0.895 0.896 0.897

Riemannian 3.185 0.959 0.953 0.956 0.955

Cholesky 2.570e-04 9.585e-05 9.099e-05 9.097e-05 9.068e-05

Root Eucl. 9.630e-04 3.375e-04 3.245e-04 3.245e-04 3.223e-04

Procrustes 2.165e-04 5.713e-05 5.308e-05 5.193e-05 5.121e-05

Table 3.5: The variance of the CC using 5 clusters is significantly smaller than
the variance of the CC using 4 clusters. However the variances are similar from 5
clusters upwards.

Evaluation of the segmentation

To evaluate the segmentation results obtained by the different methods, a manual

segmentation is performed by an expert (see Figure 3.9) and the accuracy and

specificity (Xu, Mandal, Long, Cheng, & Basu, 2012) are calculated (Figure 3.10)

as follows:

accuracy =
TP + TN

TP + TN + FP + FN
, (3.45)

specificity =
TN

TN + FP
, (3.46)

where TP refers to true positive (the number of tensors in the CC that are segmented

correctly), TN refers to true negative (the number of tensors in the background

that are segmented correctly), FP refers to false positive (the number of tensors in

the CC that are incorrectly segmented as part of the background) and FN refers

to false negative (the number of tensors in the background that are incorrectly

segmented as part of the CC). The log Euclidean and Riemannian methods provide

the highest accuracy and specificity of the segmentation and hence they outperform
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Figure 3.9: The manual segmentation of the ROI. The tensors in the CC are colored
red while other tensors are colored black.

other methods for the segmentation of the CC. The Euclidean method is the least

accurate method for the segmentation.

To evaluate the size and shape of the tensors in the CC, we used the standard

error of the mean (SEMean). The size and shape of a tensor A can be measured using

the determinant of A, |A|, and FA(A) respectively. The most accurate method for

estimating the size and shape of the tensors in the CC is the method that provides

the least SEMean. Suppose sd is the standard deviation, then SEMean = sd/
√
n,

where n is the number of the tensors in the CC. The results are shown in Figure 3.11.

It is clear that the Euclidean method produces the highest values of SEMean of FA

and |A| which means the highest variation of shape and size of the tensors in the

CC. High variation of size and shape of the tensors in the CC are not expected in

the healthy brain. The log Euclidean and Riemannian methods provide the smallest

variation of FA and |A| and hence they are preferable for the segmentation of the

CC.

3.5.3 Three Dimensional Segmentation Using Hartigan’s Method

A ROI is selected from the middle of the brain to perform the 3D segmentation of

the CC. Similar to the 2D segmentation, at 2 and 3 cluster sizes the CC is not yet
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Figure 3.10: The accuracy and specificity of the segmentation using the Euclidean,
log Euclidean, Riemannian, Cholesky, root Euclidean and Procrustes methods. Log
Euclidean and Riemannian provide the highest accuracy and specificity.
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(a) SEMean of FA (b) SEMean of determinant

Figure 3.11: The SEMean of FA and determinant (det) for the CC region. The least
SEMean values are obtained by the log Euclidean and Riemannian methods.

separated as a cluster from other regions in the ROI. This is the case for all the

methods. The CC is clearly distinguishable as one cluster at 4 and 5 clusters but

there is some noise around the CC (i.e. disjoint components that clustered with the

CC as one cluster but they are not part of the CC). In fact there is more noise around

the CC at cluster size 4 than 5. The CC is no longer represented by one cluster

when the cluster size is increased to 6 or more. Therefore, the appropriate cluster

size for segmentation of the CC is 5. The segmentation results after removing the

noise around the CC, superimposed over FA background of an axial slice, is shown

in Figure 3.12. The log Euclidean and Riemannian are the only methods that yield

a full splenium’s shape (see the yellow arrows in Figures 3.12c and 3.12d).

Descriptive statistics of the three dimensional segmentation

To compare the FA and the size of the tensors in the 3D CC obtained using the

different methods, we draw box plots of the FA (Figure 3.13) and size of tensors in

the CC (in Figure 3.14). The log Euclidean and Riemannian methods produce the

smallest variation of FA and size of the tensors. In addition, they yield the highest

average of FA and the smallest average of size of the tensors. This indicates that

the segmentation using the log Euclidean and Riemannian methods yield a CC with
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(a) Euclidean (b) Cholesky

(c) Log Euclidean (d) Riemannian

(e) Root Euclidean (f) Procrustes

Figure 3.12: The three dimensional segmentation of the CC after removing the small
objects around the CC. The log Euclidean and Riemannian methods produce a full
shape of the splenium of the CC (the yellow arrows).
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highly directional and small-sized tensors. The average of the FA and the size values

using the Euclidean, Cholesky, root Euclidean and Procrustes methods are similar.

The Euclidean method yield the highest variation of size of the tensors with the

largest number of outliers in FA and size (i.e. tensors with small FA and with large

size), shown by the stars down the lower whisker (in Figure 3.13) and up the upper

whisker (in Figure 3.14).

Figure 3.13: The box plot of the FA values of the tensors in the CC. The log Eu-
clidean and Riemannian methods yield the highest average and the smallest variation
of FA of the tensors.

3.6 Discussion and Conclusions

We generalized Hartigan’s method to work with the f -mean, so that we could use

it to cluster diffusion tensor fields. For 2D and 3D segmentation of the CC, the

log Euclidean and Riemannian methods provide more accurate segmentation than

the other methods (Euclidean, Cholesky, root Euclidean and Procrustes). The log
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Figure 3.14: The box plot of size (×109) of the tensors in the CC. The log Euclidean
and Riemannian methods yield the smallest average and the smallest variation of
size of the tensors.
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Euclidean and Riemannian methods provide less variations in size and shape of the

tensors in the CC. As the computation of the log Euclidean mean is much faster

than the Riemannian mean (Arsigny et al., 2007), the log Euclidean method is

more efficient. Generally, the computation of the Euclidean distance is faster than

the computation of the non-Euclidean distances. In addition, the Riemannian and

Procrustes means are computationally expensive compared with the other means

(Euclidean, Cholesky, root Euclidean and log Euclidean), as they need iterative nu-

merical methods for the computations (Zhou et al., 2016).

Using hierarchical clustering (single link), the segmentation of the CC using

the Riemannian method provide the smallest average number of holes in the CC and

hence it is preferred over the other methods. Generally, hierarchical segmentation

(single link) using Euclidean and non-Euclidean methods produce holes on the CC

whereas no holes are produced when using Hartigan’s method. Therefore Hartigan’s

method outperforms the hierarchical segmentation (single link).
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Chapter 4

Modeling Diffusion Directions

of the CC

Diffusion Tensor Imaging (DTI) has been used to study the characteristics of Mul-

tiple sclerosis (MS) in the brain. The von Mises-Fisher distribution (vmf) is a

probability distribution for modeling directional data on the unit hypersphere. In

this chapter, the diffusion directions of the normal appearing Corpus Callosum (CC)

are modeled as a mixture of vmf distributions for MS and healthy subjects. This al-

lows us to determine the distinct mean diffusion directions in the normal-appearing

CC. Also it helps to cluster the CC depending on the diffusion directionality. Using

Bayesian information criterion (BIC), we find that there are at least three distinct

mean directions in the three dimensional CC. Higher diffusion concentration around

the mean directions and smaller sum of angles between the mean directions are ob-

served on the normal-appearing CC of the MS subjects as compared to the healthy

subjects. The maximum angle between the three mean directions is proposed as a

curvature threshold to provide stopping criteria for fiber tracking in the CC.

This chapter is introduced in Section 4.1. Then background and related work

of DTI in MS and vmf distribution are reviewed in Sections 4.2 and 4.3. Diffusion

directions in the CC are modeled and the results are presented in Sections 4.4 and

4.5. A brief summary and discussion are provided in Section 4.6.
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4.1 Introduction

Multiple Sclerosis (MS) is an immune-mediated neurological disease. The Corpus

Callosum (CC) is the largest bundle of commissural fibers in the brain, and damage

to it has been associated with increased risk of developing disability in MS. Micro-

scopic damage due to MS is known to occur also outside of macroscopic lesions, and

DTI was found to be sensitive to such abnormalities (Werring et al., 1999; Bammer

et al., 2000; Guo, MacFall, & Provenzale, 2002; Rovaris et al., 2002; Ciccarelli et al.,

2003; Oh, Henry, Genain, Nelson, & Pelletier, 2004; Ge et al., 2004; Hesseltine et

al., 2006). Werring et al. (1999) showed that FA in normal appearing white matter

in MS subjects are lower as compared with healthy controls. In the MS subjects,

they demonstrated that the FA values in different types of lesions (either enhancing

or non-enhancing) are lower (p − value < 0.001) than the FA values in normal ap-

pearing white matter. The average FA values (plus standard deviation) on lesions

are less than 0.53 (Werring et al., 1999).

The von Mises-Fisher distribution (vmf) is one of the most basic probabil-

ity distributions for modeling directional data on the unit hypersphere (Mardia &

Jupp, 2009). The use of a finite mixture of vmf distributions to cluster directional

data on the unit sphere has been proposed by Banerjee et al. (2005). They used

an Expectation-Maximization (EM) algorithm to estimate the parameters of the

mixture model. For the diffusion imaging, the vmf distribution has been used in

the literature mainly to model the orientation distribution function (odf). For ex-

ample, McGraw et al. (2006) model the odf of High Angular Resolution Diffusion

Imaging (HARDI) as a mixture of vmf distributions. They also use this model for

segmentation using synthetic and real HARDI data. In Bhalerao and Westin (2007),

they proposed a 5D hyper spherical model for HARDI data using a mixture of vmf

distributions. A method for reconstructing Diffusion Weighted signal using a con-

tinuous mixture of vmf distributions has been introduced in Kumar et al. (2008).

They validate the method using synthetic and real brain data. A probabilistic fiber

tracking algorithm using a particle filtering technique and vmf sampling has been
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proposed in Zhang, Hancock, Goodlett, and Gerig (2009). In Painter and Hillen

(2013), they build a model of glioma growth using Diffusion Tensor Imaging (DTI)

and a bimodal vmf distribution. The vmf distribution, spherical harmonic (SH)

expansion and Fractional anisotropy (FA) have been used in Reynolds et al. (2014)

for the classification of Alzheimer’s disease. Comparing the results, they found that

vmf and SH outperform the FA in the classification.

4.2 Background and Related Work

In this section, the main types of MS are discussed. Then related work of DTI

measures to distinguish between healthy and MS subjects is studied.

4.2.1 Multiple Sclerosis

Mainly there are four types of MS: relapsing-remitting, primary progressive, sec-

ondary progressive and progressive-relapsing (see Figure 4.1). The most common

type is relapsing-remitting MS (Figure 4.1a) which is characterized by recurring in-

flammatory events, associated with demyelinating lesions within the white matter

of the brain and spinal cord. The majority of patients after a variable period of

relapsing-remitting course develop the so-called secondary-progressive form of MS,

characterised by a chronic accumulation of disability, with less and less acute events

(Figure 4.1b). People with primary progressive MS (Figure 4.1c) are characterised

by a continuous worsening their condition. The primary progressive MS is not very

common as around 10%−15% of people with MS are diagnosed with it (D. H. Miller

& Leary, 2007). Progressive-relapsing is a rare type of MS, where the disability is

progressing with relapses happening from time to time (Figure 4.1d). The main dif-

ference between relapsing-remitting and progressive-relapsing is that in the former

there is no worsening in the disability between relapses. Apart from the main four

types of MS, Bengin MS is the type of MS when the disability is low for at least 15

years of disease duration (Amato et al., 2006; Ceccarelli et al., 2008).
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(a) Relapsing-remitting (b) Secondary progressive

(c) Primary progressive (d) Progressive-relapsing

Figure 4.1: The disability level varies with the time for each type of MS. No dis-
ability at the early stages of relapsing-remitting MS, but there is a slight and very
gradual increase in disability level between replaces with the time. The disability
level increases faster with the time in progressive-relapsing, primary progressive and
secondary progressive MS.
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4.2.2 DTI measures in MS

Generally the Fractional Anisotropy (FA) of the brain white matter (including the

CC) has been reported to be decreased and the Mean Diffusivity (MD) to be in-

creased for MS subjects (Werring et al., 1999; Tievsky, Ptak, & Farkas, 1999; Filippi

et al., 2001; Coombs et al., 2004; Ge et al., 2004). Scheel et al. (2014) studied the

relationship between the thickness of Retinal nerve fibre layer (RNFL) and FA val-

ues in the brain white matter for group of healthy and MS subjects. They found a

positive correlation between the thickness of RNFL and FA values in the MS sub-

jects whereas no such relationship exists in the healthy controls.

Rather than FA and MD, other measures such as axial diffusivity, radial dif-

fusivity and relative anisotropy have been reported to indicate abnormalities due

to MS. The axial diffusivity refers to the value of the principal eigenvalue of dif-

fusion tensor, Radial diffusivity is the average of the second and third eigenvalues

of diffusion tensor and Relative anisotropy is the standard deviation of eigenvalues

divided by the mean of eigenvalues. For more details see Chapter 2. S.-K. Song et

al. (2005) studied the affect of demyelination on radial diffusivity in mouse brains.

They demonstrated that the radial diffusivity increases with demyelination and de-

creases with remyelination. Budde et al. (2008) studied the correlation between

the axial diffusivity, radial diffusivity and relative anisotropy and the neurological

disability in a mouse model of MS. Axial diffusivity was correlated negatively with

the neurological disability while radial diffusivity and relative anisotropy did not

show any association with the disability. Koenig et al. (2015) stated that both the

axial diffusivity and radial diffusivity for MS subjects are significantly different as

compared with healthy controls.

Abnormalities due to MS have also been suggested in the gray matter of the

brain. For example, Tovar-Moll et al., 2009 studied the normal-appearing thalamus

(a brain gray matter located just above the brain stem) and found that FA and MD

are significantly higher in MS subjects as compared with healthy volunteers. Abnor-
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malities in cortical gray matter was greater in Secondary Progressive MS subjects

as compared with Relapsing-remitting MS subjects (Yaldizli et al., 2016).

4.3 Von Mises-Fisher Distribution

The vmf is a probability distribution on the (d−1) dimensional sphere in Rd (Mardia

& Jupp, 2009). The vmf density function of the unit vector x, given the mean

direction µ and the concentration around the mean k, is given by:

f(x|µ, k) = cd(k)ekµ
T x, (4.1)

where ‖µ‖ = 1, k > 0 and d ≥ 2. The normalizing constant cd(k) is given

by:

cd(k) =
kd/2−1

(2π)d/2Id/2−1(k)
, (4.2)

where Iv(.) is the modified Bessel function of the first kind at order v (Abramowitz

& Stegun, 1964). If d = 3 the normalization constant can be written as

c3(k) =
k

4π sinh(k)
. (4.3)

Intuitively, the concentration is the opposite of the variation and spread,

as high concentration around the mean direction means small variation. This is

illustrated in Figure 4.2 which shows three mean directions (in orange, green and

blue). The data set in blue has the highest concentration.

The von Mises distribution is a special case of the vmf distribution, with

d = 2, and is used to model circular data. The density function of the angle θ given

the mean angle µ and the concentration around the mean k is:

f(θ|µ, k) =
ekcos(θ−µ)

2πI0(k)
(4.4)
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Figure 4.2: Three mean directions (in orange, green and blue). The data set in blue
color has the highest concentration around the mean direction followed by the data
set in green. The data set in orange has the smallest concentration around the mean
direction.

where I0(k) is the modified Bessel function of order 0. This distribution

with parameter µ and 1/k is the circular analogue to the normal distribution with

parameters µ and σ2.

The antipodal symmetric property implies that the probability of each vector

in a sphere equals to the probability of the negative vector as follows:

p(x) = p(−x). (4.5)

The vmf distribution does not provide the antipodal symmetric property.

Examples of antipodal symmetric distributions are Bingham (Bingham, 1974) and

Watson (Watson, 1965) distributions. The diffusion in each tensor satisfies the

antipodal symmetry property as the orientation of the diffusion is arbitrary (i.e.

diffusion to left is equivalent to the diffusion to right, diffusion to superior is equiv-

alent to the diffusion to inferior, diffusion to anterior is equivalent to the diffusion

to posterior). Hence, Bingham and Watson distributions are suitable for modeling

diffusion using orientation distribution function (odf), where each voxel in the brain

is modeled as sphere. To be able to use the vmf distribution for modeling the odf,
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an adaptation to the distribution is required. For example, to reconstruct Diffusion

Weighted signal, Kumar et al. (2008) proposed the paired vmf distributionM. The

paired vmf distribution satisfies the antipodal symmetric property, by averaging

p(x) and p(−x) as follows:

M(±x;µ, k) =
cd(k)ekµ

T x + cd(k)e−kµ
T x

2
= cd(k)cosh(kµTx). (4.6)

The antipodal symmetric property is only needed if the modeling is for each

tensor. As we modeling all the tensors in the CC (and not each tensor), the antipo-

dal symmetry is not relevant. Therefore, the vmf is the appropriate option for the

modeling.

4.3.1 Maximum Likelihood Estimators

Estimating the parameters of vmf distribution can be performed using the maxi-

mum likelihood method which is based on maximizing the log-likelihood function

(Myung, 2003). The parameter estimations are provided in Banerjee et al. (2005)

and explained as follows.

The likelihood function of the parameters is obtained as follows:

P (X|µ, k) =
n∏
i=1

f(xi|µ, k), (4.7)

where X = {x1, . . . ,xn} is an independent sample from the vmf distribution. Ob-

taining log of the likelihood function yields

ln(P (X|µ, k)) =

n∑
i=1

ln(f(xi|µ, k)) = nln(cd(k)) + kµT
n∑
i=1

xi. (4.8)

As there is a constraint that ‖µ‖ = 1, which implies that µ′µ = 1, the

Lagrange multiplier λ (Rockafellar, 1993; Banerjee et al., 2005) can be used as

follows:
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ln(P (X|µ, k)) = nln(cd(k)) + kµT
n∑
i=1

xi + λ(1− µ′µ). (4.9)

To find the parameters, we need to differentiate Equation 4.9 with respect

to µ, k and λ, then equate the equations to zero (Myung, 2003). We obtain the

following equations:

k̂

n∑
i=1

xi = 2λ̂µ̂, (4.10)

− nd(cd(k̂))/dk

cd(k̂)
= µ̂′

n∑
i=1

xi (4.11)

and

µ̂′µ̂ = 1. (4.12)

Here, Equation 4.10 implies that

µ̂ =
k̂
∑n

i=1 xi

2λ̂
. (4.13)

Substituting Equation 4.13 in Equation 4.12 yields

λ̂ =
k̂

2

∥∥∥∥∥
n∑
i=1

xi

∥∥∥∥∥ . (4.14)

Then substituting Equation 4.14 in Equation 4.13 gives the estimator of the

mean direction µ̂ as follows:

µ̂ =

∑n
i=1 xi

‖
∑n

i=1 xi‖
. (4.15)

To obtain the estimator of the concentration k̂, we substitute the value of µ̂

(Equation 4.15) in Equation 4.11 as follows:

− d(cd(k̂))/dk

cd(k̂)
=

(
∑n

i=1 xi)
′(
∑n

i=1 xi)

n ‖
∑n

i=1 xi‖
(4.16)

Using the definition of cd(k) in Equation 4.2, it is easy to show that (Banerjee
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et al., 2005)

− d(cd(k̂))/dk

cd(k̂)
=

Id/2(k̂)

Id/2−1(k̂)
. (4.17)

Let A(k) =
Id/2(k)

Id/2−1(k) , then Equation 4.16 implies

A(k̂) =
‖
∑n

i=1 xi‖
n

. (4.18)

The estimator k̂ can be obtained by solving Equation 4.18 numerically. Many ap-

proximations and solutions of k̂ have been proposed (Dhillon & Sra, 2003; Banerjee

et al., 2005; Tanabe, Fukumizu, Oba, Takenouchi, & Ishii, 2007; H. Song, Liu, &

Wang, 2012; Sra, 2012; Hornik & Grün, 2014b).

4.3.2 Mixture of vmf

Estimating the parameters of the mixture distribution of vmf, using the Expectation-

Maximization (EM) algorithm, was studied by Dhillon and Sra (2003) and Banerjee

et al. (2005). The EM algorithm (Dempster, Laird, & Rubin, 1977) use the complete-

data log-likelihood (the log-likelihood on all the variables: known and unknown) to

estimate the maximum likelihood estimates of the parameters. The density of a

finite mixture H of vmf distributions (Banerjee et al., 2005) is given by

f(x|Θ) =
H∑
h=1

whfh(x|θh), (4.19)

where Θ denotes the sequence of w1, w2, . . . , wH , θ1, θ2, . . . , θH are the parameters

of the mixture density and fh(x|θh) is the density of the vmf distribution with

parameter θh denotes the sequence of µh, kh. Suppose we need to model the data

set X = {x1, . . . ,xn} as a mixture of vmf distribution. The data set X is the known

(also called observed) variables. Suppose the corresponding set of unknown (also

called hidden or latent) variables is Z = {z1, . . . , zn} which represents the clustering

result of X into H groups. That is zi ∈ {1, . . . ,H} for i ∈ {1, . . . , n}, where zi = h if

xi is sampled from fh(x|θh) (Banerjee et al., 2005). The complete-data log-likelihood
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function is given by

ln(P (X,Z|Θ)) =
n∑
i=1

ln(wzifzi(xi|θzi)). (4.20)

The EM algorithm iterates between two steps: Expectation and Maximiza-

tion steps. In the expectation step, the expected complete-data log-likelihood is cal-

culated using the conditional probability p(h|xi,Θ). That is because the complete-

data log-likelihood is unknown as Z is unknown. Then the expected complete-data

log-likelihood is maximized in the Maximization step. As in Dhillon and Sra (2003)

and (Banerjee et al., 2005), maximizing the expectation in Equation 4.20 with the

constraints µ′hµh = 1 and kh ≥ 0 yields

wh =

∑n
i=1 p(h|xi,Θ)

n
(4.21)

µ̂h =

∑n
i=1 xip(h|xi,Θ)

‖
∑n

i=1 xip(h|xi,Θ)‖
(4.22)

A(k̂h) =
‖
∑n

i=1 xip(h|xi,Θ)‖∑n
i=1 p(h|xi,Θ)

, (4.23)

where A(kh) =
Id/2(kh)

Id/2−1(kh) . The equations 4.21, 4.22 and 4.23 are used in the Max-

imization step to estimate the parameters’ values iteratively. The EM algorithm

uses soft-assignment where each point is assigned a probability of being a member

in each mixture component. When the soft-assignment algorithm converges, any

point is assigned to exactly one cluster (i.e one mixture component). An alternative

version is hard-assignment where the probability of each point is either 1 for mem-

ber in the mixture component or 0 otherwise. This has been performed by adding

a hardening step between the Expectation and maximization steps (Banerjee et al.,

2005). Banerjee et al. (2005) demonstrated that soft-assignment algorithm outper-

forms hard-assignment algorithm. For more details see Dhillon and Sra (2003) and

(Banerjee et al., 2005).

Initializing the EM algorithm can be performed in various ways e.g. ran-

domly or using a k-mean algorithm such as spherical K-means (Dhillon & Modha,
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2001). Generally, two stopping criteria for the EM algorithm can be implemented.

The EM algorithm can stop if the number of iterations has exceeded the maximum

number of iterations or if the algorithm converges. The algorithm converges if the

relative change in the log-likelihood or the parameter value is less than a threshold

(Hornik & Grün, 2014a). The relative change in log-likelihood refers to the absolute

change in the log-likelihood value divided by the log-likelihood value in the previous

iteration.

The Bayesian information criterion (BIC), also known as Schwarz criterion,

is used for model selection to choose the most suitable model (Schwarz et al., 1978).

Minimizing BIC corresponds to maximizing the log likelihood function and hence

the model with the smallest BIC is the preferred model. The BIC is defined as:

BIC = g log(n)− 2 log(L̂), (4.24)

where g is the number of the parameters to be estimated, n is the sample size and L̂

is the maximized likelihood function of the model. To confirm the results from BIC,

Akaike information criterion (AIC) is used. Similarly to BIC, the AIC is used for

model selection (Akaike, 1973) and the model with the smallest AIC is the preferred

model. The AIC is defined as:

AIC = 2g − 2 log(L̂). (4.25)

4.4 Modeling Diffusion Directions of the CC

In this section, we modeled the principal eigenvectors of the diffusion tensors in the

CC, of a group of healthy and MS subjects, as a mixture of vmf distributions to

study the means and the concentrations of water diffusion in the CC. In this sec-

tion, simulation study is provided first to evaluate the modeling then the imaging

protocol of the brain images is presented and the methodology is explained.
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4.4.1 Simulation Study

To evaluate the performance of the modeling, we used a simulation study of 1000

replication and a sample size n = 746. First fixed values for the parameters µ, k

and w are given as follows:

µ1 = (−0.9658, 0.2155, 0.1440, 0.9513),

µ2 = (0.9513,−0.2235, 0.2123),

µ3 = (−0.9385,−0.1180, 0.3244),

k = (15.9620, 11.0281, 14.5388),

w = (0.3579, 0.2426, 0.3995).

Second, a sample with the above parameters is generated from vmf distribution

(Wood, 1994). Third, the parameters of the generated sample are estimated using

the algorithm proposed in Banerjee et al. (2005). Fourth, to evaluate the estimation

of k and w the relative errors are calculated (e.g. RE(k) = |k − k̂|/|k|) and to

evaluate the estimation of µ, µT µ̂ is used (‖µ‖ = 1 and hence µT µ̂ should be close

to 1). Last, the steps from second to fourth are replicated 999 times. The results

of evaluation are shown in Table 4.1. The average values of RE(k) and RE(w) are

small and the average value of µT µ̂ is very close to 1. Therefore, we conclude the

good performance of the algorithm proposed by Banerjee et al. (2005).

h avg RE(k) max RE(k) avg RE(w) max RE(w) avg µT µ̂ min µT µ̂

1 0.0702 0.275 0.0719 0.206 0.999 0.933

2 0.0665 0.332 0.0629 0.232 0.999 0.922

3 0.0618 0.318 0.0533 0.226 0.999 0.996

Table 4.1: The average and maximum relative error (RE) of the parameters k and
w over 1000 replications indicate the good estimation of the parameters k and w.
The values of µT µ̂ are close to 1 which indicate good estimation of µ.
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4.4.2 Brain Images

The data was collected at the Neuroimaging Laboratory, Santa Lucia Foundation in

Rome (Italy). The study was approved by Ethics Committee of Santa Lucia Foun-

dation. Written informed consent was obtained from all subjects before entering

the study. Diffusion-weighted imaging was obtained using a head-only 3.0 T scan-

ner (Siemens Magnetom Allegra, Siemens Medical Solutions, Erlangen, Germany),

using a twice-refocused spin echo echo-planar imaging (SE EPI) sequence (TR =

7000 ms, TE = 85 ms, maximum b factor = 1000 s/mm2, isotropic resolution 2.3

mm3; matrix = 96×96; 60 slices), accomplished by collecting 7 images with no

diffusion weighting (b = 0) and 61 images with diffusion gradients, applied in 61

non-collinear directions (scan time: 11 min).

The data consists of four (two males and two females) healthy subjects (the

mean age ± standard deviation is 62.80 ± 9.50) and nine (three males and six

females) secondary progressive MS subjects (the mean age ± standard deviation is

43.60± 10.07).

4.4.3 Methodology

The three dimensional CC is segmented using the Euclidean method (Chapter 3) as

it is the fastest method for segmentation. The principal eigenvectors of the diffusion

tensors in the CC represent the main diffusion directions in the CC. Hence, the unit

vector x represents the principal eigenvector, µ is the mean diffusion direction and

k is the concentration of the diffusion directions around µ. As the diffusion tensor

is a 3× 3 matrix, the principal eigenvector x of the tensor is a 3× 1 vector so d = 3.

Substituting Equation 4.1 and 4.3 into Equation 4.19 gives:

f(x|Θ) =
1

4π

H∑
h=1

[
whkh

sinh(kh)
ekhµ

T
h x

]
. (4.26)

Fitting the mixture of vmf distributions using the EM algorithm (soft as-

signment) is performed using R (Hornik & Grün, 2014a). The initialization of EM
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algorithm is based on a simple K-means. The algorithm stops if the relative change

in the log-likelihood value is less than the threshold 2−26 = 1.490116e−8. The con-

centration parameter is calculated using the method proposed by Hornik and Grün

(2014b). For implementation of the EM algorithm using R language see Hornik and

Grün (2014a). The BIC values are used to evaluate the appropriate number of the

mixture distributions.

The concentrations around the mean directions are compared between the

healthy and the MS subjects. To compare the diffusion directions between the MS

and healthy subjects, we calculate the angles between each two of the three mean

directions (i.e. the angle between µ̂1 and µ̂2, µ̂2 and µ̂3 and µ̂3 and µ̂1). For

example, let φ be the angle between two mean directions µ̂1 and µ̂2. As ‖µ̂i‖ = 1,

for i ∈ {1, 2, 3}, then φ can be calculated as

φ = arccos (µ̂1 · µ̂2) (4.27)

As the diffusion is a symmetric process (we cannot distinguish between left

to right diffusion and right to left which means the angle 0 is equivalent to the angle

π), the angle between µ̂1 and µ̂2 is calculated as the minimum of φ and (π−φ) and

thus we get angles between 0 and π/2 for all the subjects. The mean FA values and

variance of FA values of the CC are also compared between the healthy and the MS

subjects.

4.5 Results

The BIC values showed that a mixture of vmf distributions for the CC direction is

preferred over a single vmf distribution for both healthy and MS patients (see Fig-

ure 4.3 and 4.4). From the figures, it is clear that the BIC values for three mixture

distributions are lower than one and two mixture distributions in all cases for both

the MS and healthy subjects. Thus, at least three mixtures of vmf distributions are

preferred, to model the diffusion in the whole CC. The BIC values for four and five
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Figure 4.3: Each line represents a subject. For the four healthy subjects, Bayesian
information criterion (BIC) for three mixture distributions are lower than one and
two mixture distributions.

Figure 4.4: Each line represents a subject. For the nine MS subjects, BIC for three
mixture distributions are lower than one and two mixture distributions.
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Subjects method 1 2 3 4 5

H1
BIC 3157.136 1860.041 1458.603 1416.096 1520.12
AIC 3143.292 1827.738 1407.841 1348.645 1421.164

H2
BIC 4542.21 2006.344 1838.4 1910.053 1766.039
AIC 4527.547 1972.131 1785.518 1836.74 1673.176

H3
BIC 5802.384 3032.325 2685.808 2959.942 2587.011
AIC 5786.967 2996.353 2629.28 2882.859 2489.372

H4
BIC 6178.882 2819.302 2656.869 2759.882 2584.706
AIC 6163.346 2783.053 2599.905 2703.698 2489.67

Table 4.2: The BIC and AIC values for single and two to five mixture distributions
for the healthy subjects. The BIC and AIC values are similar and both of them
indicate that three mixture distributions are preferred over two or single distribution
for all the healthy subjects. Neither BIC nor AIC are consistent (i.e. monotonic)
after three.

Subjects method 1 2 3 4 5

MS1
BIC 3435.56 1292.075 1124.901 1131.547 1105.329
AIC 3421.744 1259.8378 1074.2423 1081.5975 997.4169

MS2
BIC 3389.826 1659.518 1227.865 1149.057 1262.315
AIC 3375.7461 1626.6648 1176.2389 1077.6881 1161.3409

MS3
BIC 3694.482 1343.147 1122.947 1178.456 1139.668
AIC 3680.4428 1310.3901 1071.4716 1108.2624 1047.6798

MS4
BIC 3778.312 1340.747 1270.568 1389.037 1244.611
AIC 3764.304 1308.061 1218.657 1318.994 1153.751

MS5
BIC 4830.463 2093.654 1853.73 1984.798 1886.546
AIC 4815.654 2059.099 1799.43 1902.609 1792.193

MS6
BIC 4443.874 1791.948 1559.561 1671.535 1510.937
AIC 4429.356 1758.071 1506.327 1561.708 1416.418

MS7
BIC 5106.718 2111.368 1861.17 1939.74 1835.256
AIC 5091.731 2076.397 1806.216 1864.803 1744.872

MS8
BIC 3807.893 1437.16 1336.604 1399.068 1290.539
AIC 3793.847 1404.385 1285.101 1355.087 1202.024

MS9
BIC 3699.169 1825.547 1624.997 1617.83 1567.906
AIC 3685.141 1792.817 1573.563 1547.693 1477.07

Table 4.3: The BIC and AIC values for single and two to five mixture distributions
for the MS subjects. The AIC values are similar to BIC values and both of them
indicate that three mixture distributions are preferred over two or single distribution
for all the MS subjects. Neither BIC nor AIC are consistent after three.
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mixture distributions are either bigger or slightly smaller than BIC values for three

mixture distributions. Hence, to be able to compare the models for all the subjects

with the same number of mixture components, we choose to model the data using

three mixtures of vmf distributions (i.e. H = 3 in Equation 4.26). Additionally, the

AIC values are calculated (Tables 4.2 and 4.3) for the healthy and the MS subjects

to confirm the BIC results. The AIC values are similar to the BIC values and hence

this confirms the above result (i.e. that three mixture distributions are more appro-

priate to model and hence to compare the data). The mixture distributions of the

CC for one healthy subject and one MS subject are shown in Figure 4.5.

Using Mann-Whitney test, we find that the sum of the angles between each

two of the three mean directions are significantly higher for the healthy subjects than

the MS subjects (p-value = 0.007). This result is shown in Figure 4.6a. Then we

compare the concentration values between the MS and the healthy subjects (Figure

4.6b). The diffusion concentrations around the mean directions of the MS subjects

are significantly higher than the diffusion concentrations of the healthy subjects

(p-value = 0.001) using Mann-Whitney test. For the results of all the subjects see

Tables 4.4 and 4.5. The tables show the mean directions, concentration, probability

of the mixture components and the angles (ordered as: the angle between µ̂1 and

µ̂2, µ̂2 and µ̂3, and µ̂3 and µ̂1).

Using Mann-Whitney test, the difference in average of FA values in the CC

between the healthy and the MS subjects is not significant (p-value= 0.604), see

Figure 4.7a. However, using Mann-Whitney test, there is a significant difference in

the variance of FA (p-value= 0.000) in the CC between the MS and the healthy

subjects (Figure 4.7b).
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(a) The mixture directions for a MS
subject.

(b) The mixture directions for a healthy
subject.

(c) The mean directions for the three
mixture distributions in (a). The sum
of angles between each two of the mean
directions is 77.99.

(d) The mean vectors for the three mix-
ture distributions in (b). The sum of
angles between each two of the mean
directions is 83.97.

(e) The 3D view of the mixture direc-
tions in (a). The concentration values
for the regions (blue, green, red) are
(23.36, 13.48, 20).

(f) The 3D view of the mixture direc-
tions in (b). The concentration values
for the regions (blue, green, red) are
(18.21, 12.02, 14.29).

Figure 4.5: The CC is clustered into three regions (blue, green and red) using the
mixture of vmf distributions for a MS subject and a healthy subject. The sum of
angles between each of the three mean directions are smaller for the MS subject.
For both the MS subject and healthy subject, the diffusion directions on the blue
and red regions are more concentrated than on the green region. The diffusion
concentrations around the mean directions for MS subject are higher than for the
healthy subject.
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(a) Sum of the angles between each two of the three mean directions for
the MS subjects are significantly smaller than for the healthy subjects.

(b) Diffusion concentrations around the mean directions for the MS sub-
jects are significantly higher than for the healthy subjects.

Figure 4.6: Box plots of sums of angles between the three mean directions and
concentrations around the mean directions for the MS and the healthy subjects.
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(a) Box plots of averages of FA. Insufficient evidence to suggest a difference
in average of FA between the healthy and the MS subjects.

(b) Box plots of variances of FA. Sufficient evidence to suggest a difference
in variance of FA between the healthy and the MS subjects.

Figure 4.7: Box plots of averages and variances of FA of the CC for the MS and the
healthy subjects.
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Subjects µ̂ k̂ Prob Angle

H1 (n=746)
(-0.9658,0.2155,0.1440) 15.9620 0.3579 20.5443
(0.9513,-0.2235,0.2123) 11.0281 0.2426 37.0965
(-0.9385,-0.1180,0.3244) 14.5388 0.3995 21.9127

H2 (n=980)
(-0.9192,-0.3119,0.2403) 18.2062 0.3388 40.2720
(0.9434,-0.0879,0.3197) 12.0247 0.3510 27.0855
(-0.9907,-0.0579,0.1229) 14.2946 0.3102 16.6079

H3 (n=1260)
(-0.8906,-0.3706,0.2637) 14.7608 0.3619 32.6918
(0.9406,0.2039,0.2716) 10.7144 0.3198 26.3603

(-0.9908,-0.0038,0.1351) 14.4916 0.3183 23.1540

H4 (n=1311)
(-0.9853,0.1708,0.0034) 14.9478 0.3204 24.5238
(0.9033,-0.1239,0.4107) 12.9591 0.3699 41.6507
(-0.9599,-0.1045,0.2603) 14.7601 0.3097 21.7523

Table 4.4: The estimated values of the parameters of the vmf mixture model for the
four healthy subjects i.e. mean directions (µ̂1, µ̂2 and µ̂3), diffusion concentrations
k̂ around the mean directions and probabilities of the mixture components. The
angles (last column) between the mean directions are ordered as the angle between
µ̂1 and µ̂2, µ̂2 and µ̂3 then µ̂3 and µ̂1.

4.6 Conclusion and Discussion

We have used a mixture of vmf distributions to model the diffusion in the three

dimensional CC. There are at least three different mean diffusion directions in the

CC. For the MS subjects, the CC used in the modeling is the normal-appearing

CC and the lesions are not included. That is because the directional information

in the lesions is destroyed and hence including the lesions in the modeling might

yield bias in the modeling results. Future work can address how the results might

be affected if the regions with MS lesions in the CC are included in the analysis.

On the normal-appearing CC of MS subjects the sum of angles between the mean

diffusion directions are smaller with higher concentration around the mean directions

compared with the healthy subjects. We hypothesize that this may be due to the

atrophy in the CC of the MS subjects. The difference in the average of FA between

the MS and the healthy subjects is not significant. This is due to the differences in

the age between the MS and the healthy subjects, because the FA decreases with the

age and hence both the MS and the healthy subjects have decreased FA. However,

the variance of FA is significantly different between the healthy and the MS subjects
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Subjects µ̂ k̂ Prob Angle

MS1 (n=739)
(-0.9998,-0.0171,0.0068) 15.9772 0.3207 15.9419
(-0.9574,-0.1574,0.2422) 21.7699 0.3478 34.0371
(0.9476,-0.0075,0.3193) 15.6433 0.3315 19.0653

MS2 (n=807)
(0.9623,-0.0404,0.2690) 15.6029 0.2404 22.8668
(-0.9906,0.0518,0.1263) 15.2530 0.3457 14.3463
(-0.9544,-0.1616,0.2510) 18.4241 0.4139 32.3928

MS3 (n=796)
(-0.9718,0.2144,0.0979) 21.8643 0.3505 23.1866
(0.9350,-0.1868,0.3014) 17.9300 0.3229 29.0671
(-0.9872,-0.1409,0.0752) 18.6192 0.3266 20.5299

MS4 (n=788)
(-0.9928,0.0431,0.1122) 16.9769 0.3604 8.2273
(-0.9939,-0.0913,0.0618) 14.1895 0.2652 25.4873
(0.9360,-0.0681,0.3455) 16.6264 0.3744 26.7036

MS5 (n=1029)
(-0.9664,-0.2466,0.0721) 18.9351 0.3460 17.9462
(-0.9886,0.0572,0.1391) 14.9425 0.3129 26.3777
(0.9502,0.0027,0.3116) 12.6465 0.3411 26.2978

MS6 (n=934)
(0.9495,-0.1283,0.2864) 13.4815 0.3597 34.4170
(-0.9524,-0.2584,0.1614) 23.3600 0.3437 25.6290
(-0.9867, 0.1611,0.0215) 20.0011 0.2966 17.9439

MS7 (n=1092)
(-0.9799, 0.1799,0.0866) 14.6246 0.3049 24.5931
(0.9252,-0.1766,0.3358) 15.1033 0.3407 33.2576
(-0.9774,-0.1819,0.1073) 20.4379 0.3544 20.8737

MS8 (n=798)
(-0.9354,0.1384,0.3255) 18.9917 0.2932 23.8760

(-0.9985,-0.0160,-0.0531) 19.9218 0.3308 19.3526
(0.9280,-0.1162,0.3541) 16.2867 0.3759 39.7512

MS9 (n=793)
(0.9577,0.0040,0.2877) 12.1347 0.3304 26.3245
(-0.9788,0.1487,0.1409) 15.4375 0.3329 22.7304
(-0.9520,-0.2417,0.1879) 14.5875 0.3367 30.8356

Table 4.5: The estimated values of the parameters of the vmf mixture model for the
nine MS subjects (the first three columns). The angles (last column) between the
mean directions are ordered as the angle between µ̂1 and µ̂2, µ̂2 and µ̂3 then µ̂3

and µ̂1.
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(the MS subjects have higher variance of FA). The test used is Mann-Whitney test.

The result in this chapter used the Euclidean method for segmenting the CC

as it is faster than the segmentation methods using non-Euclidean methods (see

Chapter 3). Using the segmentation results obtained by non-Euclidean methods

can be explored in future work. Using the vmf to obtain similar results as Witelson

subdivisions of the CC Witelson (1989) is also of interest.

Modeling diffusion directions of the CC using vmf distribution has additional

benefits in that it can be used to automate a value for stopping criteria utilizing

the max angle between the mean directions. This will be investigated in the next

chapter.
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Chapter 5

Fiber Tracking of the CC

Fiber tracking is a non-invasive technique to trace neural fiber pathways in the

brain’s white matter. Fiber tracking provides useful information about the brain

anatomy and the connectivity in the brain which are useful in detecting various

brain disorders. The noise in diffusion weighted imaging (DWI) and lesions in the

brain affect deterministic fiber tracking by causing fibers to deviate and continue

propagation out of the original pathways. In this chapter, we propose and evaluate

an individual-based curvature threshold which is based on the largest angle between

the mean directions obtained from modeling diffusion directions in the CC using

von Mises-Fisher (vmf) distribution. Using the proposed curvature threshold, the

fiber is terminated to prevent the deviation out of the correct pathway. Three com-

mon fiber tracking techniques (Fiber Assignment by Continuous Tracking (FACT),

Bayesian and Wild Bootstrap) are used for constructing fiber tracts in healthy and

MS subjects. The measures: fractional anisotropy (FA), mean diffusivity (MD) and

length of fibers are used to compare fiber tracking quantitatively between the healthy

and the MS subjects. Significant differences of length of fibers are obtained using

the three fiber tracking techniques. In addition, there are insufficient evidences to

suggest that any of the three measures obtained by using the three tracking meth-

ods is different. In this chapter, fiber tracking is introduced and deterministic and

probabilistic tracking are discussed in Sections 5.1, 5.2 and 5.3. Stopping criteria

is proposed and applications of fiber tracking are provided in Sections 5.4 and 5.5.

The conclusion and discussion of the chapter are presented in Section 5.6.
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5.1 Introduction and Related Work

Fiber tracking is able to detect many abnormalities in the brain. Mainly there are

two types of fiber tracking algorithms, deterministic and probabilistic fiber tracking.

Deterministic fiber tracking does not provide any information about the uncertainty

of the tracked fibers due to errors in estimating directions. Probabilistic fiber track-

ing is more robust as the likelihoods of the fiber’s pathways are considered by using a

probability density function (pdf) to estimate the uncertainty of the fiber directions.

However, one of the issues is that probabilistic fiber tracking that use the Monte

Carlo method is affected by the distance from the starting point of tracking (seed

point). The probability of fiber connectivity with the seed point is decreased as the

distance increases (see Morris, Embleton, and Parker (2008)). Another issue is the

large number of iterations needed in probabilistic fiber tracking to calculate the pdf.

With high volumes of brain images, probabilistic fiber tracking for the whole brain

images is very time consuming.

Stopping criteria of fiber tracking are needed to stop the propagation of fibers

out of the white matter or out of a ROI in the brain, and to restrict the curvature

of the fibers. The most common stopping criteria are anisotropy and curvature

threshold. To restrict the anisotropy, a threshold value of any anisotropy measure

can be used such as FA or relative anisotropy (RA). The curvature of fibers in most

brain regions is low except some regions such as the Meyers loop portion of the optic

pathway and the subcortical U-fibers, where a high curvature threshold such as 90

degrees is required (D. K. Jones, 2010). High curvature might allow a fiber to prop-

agate back to a pre-visited track or might provide sharp pathways. The curvature is

measured over a specified interval (called radius of curvature or curvature interval)

and the fiber is terminated if the curvature exceeds the threshold over a specified

curvature interval. P. J. Basser et al. (2000) suggest the curvature interval to be

less than the length of two voxels, e.g. if the voxel resolution is 2.5× 2.5× 2.5, then

the suggested value for curvature interval is less than 5mm. The default value of

curvature interval in Camino toolkit is 5mm.
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Many researchers used a fixed curvature threshold for tracing fibers in a ROI

or in the whole white matter of the brain. Examples of fixed curvature thresholds

used are 80° (Behrens et al., 2003; Campbell, Siddiqi, Rymar, Sadikot, & Pike,

2005), 45° (Heemskerk, Sinha, Wilson, Ding, & Damon, 2010), 40° (Jiang, Van Zijl,

Kim, Pearlson, & Mori, 2006), 35° (Marcella Laganà et al., 2012), 27° (Christidi,

Karavasilis, Samiotis, Bisdas, & Papanikolaou, 2016). The curvature threshold used

by default in Camino toolkit (Cook et al., 2006) and FMRIB software library (FSL)

are 90° and 100° respectively. Using a fixed threshold for stopping criteria can lead

to an overestimate or underestimate of tracking results Brecheisen et al. (2009).

Marcella Laganà et al. (2012) proved that using an individual-based anisotropy

threshold for tracing fibers of the CC in MS subjects is more reliable than using

an atlas-based method. Noise in DWI data causes inaccurate estimation of diffu-

sion tensors which can cause changes in the direction of principal eigenvectors. In

addition, the direction of principal eigenvectors on lesions can be mistaken as the

directional information is lost in these regions. These changes might lead fibers to

deviate suddenly from the original pathways. Hence, a curvature threshold based

on an individual’s information is expected to provide a more accurate fiber tracking

than a fixed curvature threshold, especially for deterministic tracking (as probabilis-

tic tracking is less affected by noise).

Deterministic fiber tracking (e.g. Ozturk et al., 2010; Shu et al., 2011) and

probabilistic fiber tracking (e.g. Pine, Jones, Lowe, Sakaie, & Phillips, 2009; Preziosa

et al., 2011; Li, Jewells, et al., 2013; Lyksborg et al., 2014) have been used in MS and

even combined (e.g. Klein et al., 2010; Hu et al., 2011). Shu et al. (2011) used Fiber

Assignment by Continuous Tracking (FACT) algorithm to track fibers in group of

MS subjects and the results are compared with healthy controls. They used graph

theoretical methods to study the structural networks of the white matter in MS. Ef-

ficiency of the networks was found to be significantly reduced in MS subjects. Pine

et al. (2009) showed that probabilistic fiber tracking is able to propagate through the

lesions when using spherical deconvolution method for estimating fiber orientation.

104



Anatomical connectivity mapping (ACM) is a quantitative measure of the anatom-

ical connectivity measured in each voxel in the brain (Embleton, Morris, Haroon,

Ralph, & Parker, 2007). It combines information from probabilistic fiber tracking

and anisotropy indices. Lyksborg et al. (2014) investigated the ACM and FA in

Secondary Progressive and Relapsing-Remitting MS subjects. They demonstrated

that ACM is more effective in distinguishing between Secondary Progressive MS and

Relapsing-Remitting MS. This was due to reduction of ACM values in motor-related

white matter in Secondary Progressive MS as compared to Relapsing-Remitting MS,

while the decrease of FA values was not consistent. In addition, the correlation be-

tween ACM and the Expanded Disability Status Scale (EDSS) was stronger than

the correlation between the FA and EDSS. Hu et al. (2011) found that both prob-

abilistic and deterministic tracking produce less fibers in MS subjects. In addition,

EDSS was correlated negatively with the fiber’s density (as the disability increased,

the density of the fibers decreased) for both probabilistic and deterministic tracking.

Much research has been conducted to explore fiber tracking of the CC in

MS. Hasan et al. (2005) used FACT algorithm to study the FA of normal-appearing

CC in relapsing-remitting MS. The FA was calculated through a seven segment

of the CC (rostrum, genu, rostral midbody, anterior midbody, posterior midbody,

isthmus and splenium). They found that while FA is significantly reduced in the

anterior and posterior mid body subdivisions, the reduction of FA in the splenium

was not significant. Fiber tracking can be interrupted by the lesions on the CC.

This interruption is dependent on the size of the lesions in the CC (Lagana et al.,

2009). Mesaros et al. (2009) studied the CC damage and its relationship to cognitive

impairment in Bengin MS using probabilistic fiber tracking. Kern, Sarcona, Montag,

Giesser, and Sicotte (2011) used a probabilistic fiber tracking method to study

the motor tracks in relapsing-remitting MS. They found a relationship between

increased radial diffusivity in callosal motor fibers (the midbody of the CC) and

hand weakness. Wahl et al. (2011) used the tensor deflection algorithm (Lazar

et al., 2003) for tracking motor callosal fibers. They demonstrated the significant
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reduction of the FA values in early stages of relapsing-remitting MS (i.e. before the

development of a macroscopic lesion). In the CC, cerebellum and right hippocampus,

ACM was correlated with Paced-Auditory-Serial-Addition-Test (PASAT) scores in

Relapsing-remitting MS (Bozzali et al., 2013).

5.2 Deterministic White Matter Tractography

The deterministic tractography algorithms use diffusion tensor information to de-

termine the fiber’s orientation. There are two main techniques: streamlines, which

assumes that the principal eigenvector of the diffusion tensor is parallel to the local

fiber tract direction, and tensor deflection which use the entire diffusion tensor to

construct the fiber pathways. Streamlines technique for fiber tracking was proposed

by P. J. Basser (1998). Suppose the fiber pathway is represented by the space curve

r(s), where s is the arc length. The main assumption is that the principal eigenvec-

tor v1(r(s)) of the diffusion tensor at a voxel is equal to the local tangent vector of

r(s) as follows:
d

ds
r(s) = v1(r(s)) (5.1)

The integration of Equation 5.1 is not analytical and a numerical method

(e.g. Euler or Runge-Kutta) is needed to approximate r(s) (P. J. Basser et al.,

2000). Although the Euler method is easy to implement, it is not accurate for sec-

ond order derivatives or higher. In addition, the Euler method uses a fixed step size

along the direction of the principal eigenvector in each voxel. The step size need to

be significantly small to provide an accurate tracking. For example, P. J. Basser et

al. (2000) indicate that any step size smaller than 0.05× l, where l is the voxel di-

mension is sufficient. The Runge-Kutta method provides more accurate results than

the Euler method, as it enables using a higher order correction scheme (P. J. Basser,

1998). In addition, the step size can be adaptive using the Runge-Kutta method

(P. J. Basser et al., 2000). An interpolation method (e.g. linear interpolation or

nearest-neighbour interpolation) is needed by both Euler and Runge-Kutta to pro-

vide continuous fiber pathways.
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Another streamlines algorithm is FACT, which is proposed by Mori, Crain,

Chacko, and Van Zijl (1999). The FACT method creates fiber tracts by following

the direction of the principal eigenvectors continuously (i.e. at the boundary of a

voxel the track should follow the principal eigenvector of the neighbour voxel). They

showed that following the direction of the principal eigenvectors in a discrete way

leads to the diversion of the fibers from the true fiber pathway. No interpolation is

needed using the FACT algorithm as the step size is extended to the boundary of

the voxel.

Comparing the FACT with the Runge-Kuta and the Euler algorithms, the

Runge-Kuta and the Euler algorithms provide more smoother fiber tracking than

the FACT algorithm (see Figure 5.1).

Figure 5.1: Fiber tracking using Runge-Kutta, Euler and FACT algorithm. Inter-
polation is needed for both Euler and Runge-Kutta methods. Small step size leads
to smooth tracking (taken from (D. K. Jones, 2010)). Permission to reproduce this
figure has been granted by Oxford University Press (Books).

The tensor deflection (TEND) is a deterministic tracking algorithm (Lazar

et al., 2003). It uses the entire diffusion tensor to determine fiber direction. The
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fiber track direction vout passing through a voxel is estimated using the diffusion

tensor D in the voxel as follows:

vout = Dvin, (5.2)

where vin is the incoming vector i.e. the fiber direction from the previous

step. The fiber directions at seed points are considered to be the same direction

as the principal eigenvectors of the tensors at the seed points. The deflection of

fiber direction towards the direction of the principal eigenvector depends on the

degree of the anisotropy of the tensor (Lazar et al., 2003). The more anisotropy

the tensor exhibits, the more deflected the fiber direction is towards the direction of

the principal eigenvector. Lazar et al. (2003) showed that when the previous fiber

direction is parallel or perpendicular to the principal eigenvector, the fiber direction

is the same as the direction of the principal eigenvector (see Figure 5.2).

Another algorithm for tracking fibers is tensorline algorithm (Lazar et al.,

2003; Weinstein, Kindlmann, & Lundberg, 1999) which is a general case of TEND.

Suppose f and g ∈ [0, 1] are user-defined weights, the direction of fiber track is

vout = fv1 + (1− f)((1− g)vin + gDvin), (5.3)

where v1 is the principal eigenvector. Equation 5.2 is a special case of Equation 5.3

when f = 0 and g = 1.

5.3 Probabilistic Tractography

Probabilistic tracking use a pdf to estimate the uncertainty of the fiber orientations

due to systematic and random errors. There are two approaches for generating the

pdf: parametric and nonparametric. Parametric approaches make assumptions on

the possible noise on the model. Mainly there are two different parametric tech-

niques for fiber tracking: data-based and model-based. In data based techniques,

the probabilities are calculated from the DWI data using Bayesian approaches and
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Figure 5.2: Tensor deflection algorithm for fiber tracking is shown in (a) where
the dashed red line represents the principal eigenvector. The deflection of the fiber
direction towards the principal eigenvector is related to the anisotropy of the tensor
as shown in (b). In some cases, (c), the fiber direction is exactly same as the principal
eigenvector (taken from Lazar et al. (2003)). Permission to reproduce this figure
has been granted by John Wiley and Sons.
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the posterior distribution is used as the pdf. In model-based techniques, a pdf (e.g.

Gaussian, Watson, Bingham densities) is used to generate the probabilities. Non-

parametric approaches (i.e. using bootstrap methods) make no assumptions on the

underlying noise in the model.

5.3.1 Probability Density Function (pdf)

Behrens et al. (2003) proposed a Bayesian estimation method to quantify the un-

certainty of the parameters on diffusion model. Samples are drawn from the joint

posterior distribution using Markov chain Monte Carlo (MCMC). This method has

then been applied to estimate the connectivity between two points in the human

brain. Friman et al. (2006) proposed an alternative Bayesian method with simple

and fast calculation for the posterior distribution by setting Dirac priors for nuisance

parameters (parameters which are not of direct interest).

The bootstrap technique is a nonparametric method which does not make

any assumption regarding the noise. The use of a bootstrap method (Efron, 1992)

for fiber tracking is proposed by many authors (e.g. Lazar & Alexander, 2005;

D. K. Jones & Pierpaoli, 2005; D. K. Jones, Travis, Eden, Pierpaoli, & Basser, 2005).

They used a deterministic white matter tractography (e.g. second order RungeKutta

streamlines) with bootstrap sampling. Multiple measurements are needed in each

diffusion direction for bootstrap analysis. Whitcher et al. (2008) proposed using the

Wild Bootstrap (Flachaire, 2005; Liu et al., 1988) for fiber tracking where one mea-

surements is needed per diffusion direction. They showed that using this method

provides the same level of accuracy as provided by the regular bootstrap methods.

The pdf can be a Gaussian distribution or a directional distribution function

(e.g. Watson, Bingham). Parker and Alexander (2003) used Gaussian distribution,

with 0 mean and signal to noise ratio (SNR) similar to the SNR of the real data,

for noise simulation.
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Fiber tracking can be local where the pdf is defined using voxel information

and the neighbouring information is ignored. Global tracking uses the information

from the voxel’s neighbours to track fibers (e.g. Kreher, Mader, & Kiselev, 2008;

Jbabdi, Woolrich, Andersson, & Behrens, 2007).

5.3.2 Probabilistic Local Tracking Methods

Once a pdf for characterizing the uncertainty of fiber pathways is determined at each

voxel, the possible track pathways can be identified using a streamline approach with

Monte Carlo simulations (Parker, Haroon, & Wheeler-Kingshott, 2003). A random

sample is drawn from the pdf, at each voxel, and repeated many times to construct

the possible tracks pathways. The probability that a fiber passes through a voxel

at position r can be defined approximately as the number of times that a fiber

passes through this voxel M(r, N) divided by the total number of the Monte Carlo

iterations N (Parker et al., 2003) as follows:

P (r) =
M(r, N)

N
(5.4)

Other alternative methods of Monte Carlo streamlines for fiber tracking are random

walks using virtual particles (e.g. Koch, Norris, and Hund-Georgiadis (2002)) and

front propagation methods (e.g. Parker, Wheeler-Kingshott, and Barker (2002)).

See D. K. Jones (2010) for more details.

5.4 Stopping Criteria

Generally the termination criteria of fiber tracking method are based upon curvature

and anisotropy thresholds. A binary brain mask can also be used to stop tracing

fibers as an alternative to anisotropy threshold. In addition, the tracking might

stop if the length of the fiber exceeds a specific value (e.g. for Camino toolkit the

tracking stops if the fiber length exceed 1000mm).

A sudden change of the propagation pathways of a fiber could be related

to the noise in DWI data, which causes directional change in the true direction of
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principal eigenvectors (P. J. Basser et al., 2000) and also could be related to the

destruction of the directional information due to lesions (in MS subjects). In Chap-

ter 4, the diffusion of the CC is modeled using a mixture of vmf distributions. This

modeling of the diffusion directions in the CC provides three different clusters of

diffusion directions, and hence the diffusion directions in each cluster are similar

(i.e. small angles between the principal eigenvectors inside each cluster). However,

the diffusion directions in between the clusters are significantly different. Hence,

the angles between the mean directions can provide useful information about the

curvature of diffusion direction in the CC. We used the three angles between the

mean directions to propose the measure sc for the curvature threshold as stopping

criteria for tracing fibers in the CC as follows:

sc = max (θ1, θ2, θ3), (5.5)

where θ1, θ2 and θ3 are the angles between the three mean directions. This measure

is evaluated using a group of healthy and MS subjects (see Section 5.5).

5.5 Application

The data used for fiber tracking in this study are nine secondary progressive MS

and four healthy subjects (which is the same data used in Chapter 4). For details

about the data and the imaging protocol, see Section 4.4.2. Diffusion tensors are

fitted linearly (P. Basser, Mattiello, & LeBihan, 1994). The tracking is performed

using Camino toolkit (Cook et al., 2006). Data is then analyzed using Matlab and

Minitab. For all the subjects, the seed points are chosen from the sagittal plane on

the middle of the CC with 38 voxels.
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Subject sc

H1 37.1

H2 40.3

H3 32.7

H4 41.7

MS1 34.0

MS2 32.4

MS3 29.1

MS4 26.7

MS5 26.4

MS6 34.4

MS7 33.3

MS8 39.8

MS9 30.8

Table 5.1: The curvature threshold sc for four healthy and nine MS subjects.

5.5.1 Evaluation of Stopping Criteria

To evaluate the proposed stopping criteria (Equation 5.5), we perform fiber tracking

of the CC using FACT tracking method. To enable the evaluation of sc without

interaction of other stopping criteria, the only stopping criteria used is the curvature

threshold (the same results are also obtained when adding an anisotropy threshold

i.e. FA= 0.2). The values of sc for all the subjects are shown in Table 5.1. Then we

perform fiber tracking using a fixed curvature threshold 45°, as the values of sc are

all less than 45°. Comparing the results of fiber tracking using sc and 45°, we find

that both curvature thresholds provide fibers of the CC without sharp deviation

from the original pathways in the four healthy subjects (e.g. see Figures 5.3a and

5.4a), with more propagation of some fibers out of the CC boundary when using

45° in three of the healthy subjects (e.g. Figures 5.3b and 5.4b). For the rest of the

healthy subjects see Appendix A.4.

For MS subjects, we find that using sc does not allow fibers to deviate sharply

from the original pathway which results in termination of the fiber where there is

abnormality (e.g. see Figures 5.5a and 5.6a). The deviation can be seen by sudden

change of the fiber directions e.g. change of the color from red to green in the middle

of the CC (e.g. see the black stars in Figures 5.5b and 5.6b). For the rest of the MS
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subjects see Appendix A.4.

(a) Fiber tracking of the CC using the curvature threshold sc = 37.1°.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure 5.3: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the healthy subject H1. One fiber continues propagation out of the CC
(indicated with the black arrows).

The voxel resolution for the brain images is 2.3 mm3 (see Chapter 4), and

hence the suggested curvature interval is less than 2×2.3 = 4.6 mm (P. J. Basser et

al., 2000). The curvature interval used for all fiber tracking results is 1 mm for both

curvature thresholds sc and 45°. That is because, for both curvature thresholds,

a higher curvature interval, e.g. 2 mm, causes deviation of some fibers out of the

original tracts. For example, fiber tracking of the CC of MS1 and MS6 using the

curvature threshold sc and 45° (and the two curvature intervals 1 mm and 2 mm)
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(a) Fiber tracking of the CC using the curvature threshold sc = 32.7°.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure 5.4: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the healthy subject H3. Using 45° results in continued propagation of some
fibers out of the CC (indicated with the black arrows).
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(a) Fiber tracking of the CC using the curvature threshold sc = 34°.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure 5.5: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the MS subject MS1. Using 45° results in deviation of some fibers from the
original pathways (indicated by the black stars and zoomed in to the shape on the
right).
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(a) Fiber tracking of the CC using the curvature threshold sc = 34.4°.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure 5.6: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the MS subject MS6. Using 45° results in deviation of some fibers from the
original pathways (indicated by the black stars and zoomed in to the shape on the
right).

117



are shown in Figures 5.7, 5.8, 5.9 and 5.10.

(a) Fiber tracking of the CC using the curvature interval 1 mm.

(b) Fiber tracking of the CC using the curvature interval 2 mm.

Figure 5.7: Comparing fiber tracking of the CC using two curvature intervals and
the same curvature threshold sc in the MS subject MS1. Using curvature interval 2
mm results in deviation of some fibers from the original pathways (indicated by the
black stars) and premature termination of one fiber (indicated by the black arrow).

The proposed curvature threshold is used as stopping criteria for the appli-

cation of fiber tracking of the CC in the next section.

5.5.2 Deterministic and Probabilistic Tracking

In this section, we compare deterministic and probabilistic fiber tracking quantita-

tively using three of the common used fiber tracking methods: Bayesian (Friman et

al., 2006) and Wild Bootstrap (Whitcher et al., 2008) (probabilistic tracking meth-
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(a) Fiber tracking of the CC using the curvature interval 1 mm.

(b) Fiber tracking of the CC using the curvature interval 2 mm.

Figure 5.8: Comparing fiber tracking of the CC using two curvature intervals and
the same curvature threshold 45° in the MS subject MS1. Using curvature interval
2 mm results in deviation of some fibers from the original pathways (indicated by
the black stars).
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(a) Fiber tracking of the CC using the curvature interval 1 mm.

(b) Fiber tracking of the CC using the curvature interval 2 mm.

Figure 5.9: Comparing fiber tracking of the CC using two curvature intervals and
the same curvature threshold sc in the MS subject MS6. Using curvature interval 2
mm results in deviation of a fiber from the original pathway (indicated by the black
stars).
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(a) Fiber tracking of the CC using the curvature interval 1 mm.

(b) Fiber tracking of the CC using the curvature interval 2 mm.

Figure 5.10: Comparing fiber tracking of the CC using two curvature intervals and
the same curvature threshold 45° in the MS subject MS6. Using curvature interval
2 mm results in deviation of a fiber from the original pathway (indicated by the
black stars).
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ods) and FACT (deterministic tracking method). For Bayesian method, the prior

information used are that S0 (the Magnetic Resonance signal without the diffusion

weighting) and variance are non-negative, as there is no detailed prior information

available. The results of tracking might change depending on the prior informa-

tion used. Fiber tracking of the healthy and the MS subjects are also compared.

Probabilistic fiber tracking methods are performed using Monte Carlo simulations

with 1000 iterations. The Fractional anisotropy (FA) threshold is chosen as 0.13

which is smaller than the minimum value of FA in the CC for both MS and healthy

subjects. The results of fiber tracking for one MS and one healthy subject are shown

in Figure 5.11. It is clear that the fibers are longer for the healthy than the MS

subject (see the yellow arrows).

Results

To evaluate the results of fiber tracking of the CC quantitatively for the healthy and

MS subjects using deterministic and probabilistic tracking, the average of length,

FA and MD of each streamline in the CC are calculated. For testing the differ-

ence between the tracking methods, we used Anova to test the data that satisfies

Anova conditions (normality of residuals and equal variances) otherwise Kruskal-

Wallis test is used for testing non-parametric data. The results of the test show

insufficient evidence to suggest that the FA, MD and length of the fibers obtained

by the three tracking methods are different for both healthy (Table 5.2) and MS

(Table 5.3) subjects at α = 0.05. Generally, probabilistic tracking methods provide

longer fibers than FACT, for most of the subjects (see the last column in Tables 5.2

and 5.3).

To test the difference between the healthy and MS subjects, we calculate

the average of each of the measures (FA, MD and length) of each subject and used

Mann-Whitney test (Table 5.4) as the sample size is small (4 values for healthy and

9 values for MS). The test yields sufficient evidences to suggest that length of the
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(a) Bayesian tracking of MS subject (b) Bayesian tracking of healthy subject

(c) Wild Bootstrap tracking of MS subject (d) Wild Bootstrap tracking of healthy subject

(e) FACT tracking of MS subject (f) FACT tracking of healthy subject

Figure 5.11: Fiber tracking of the CC in MS subject (right column) and healthy
subject (left column) using Bayesian, Wild Bootstrap and FACT tracking methods.
Lesions are much clearer in FACT figure (indicated with yellow arrows).
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fibers in the CC of healthy and MS subjects are significantly different (at α = 0.05)

using the three tracking methods. In addition, the test indicates insufficient evi-

dences to suggest that FA and MD are different in the healthy and the MS subjects

at α = 0.05. The healthy subjects are old (mean age± sd= 62.80 ± 9.50) and the

MS subjects are relatively young (mean age± sd= 43.60± 10.07). FA and MD are

both affected by age and MS and hence the differences between the healthy and the

MS subjects are not significant.

Subjects Tracking avg FA avg MD×109 avg length

H1

Bayesian 0.6479 0.7567 61.35
Bootstrap 0.6367 0.7568 65.29

FACT 0.6324 0.7489 66.00
p-value 0.983 0.948 0.867

H2

Bayesian 0.4897 0.8443 57.29
Bootstrap 0.4916 0.8425 55.15

FACT 0.5001 0.8302 53.00
p-value 0.386 0.864 0.135

H3

Bayesian 0.5970 0.9439 50.22
Bootstrap 0.5862 0.9011 52.44

FACT 0.5828 0.8878 49.50
p-value 0.868 0.825 0.628

H4

Bayesian 0.6277 0.7844 66.43
Bootstrap 0.6260 0.7871 65.85

FACT 0.6271 0.7570 62.00
p-value 0.898 0.412 0.307

Table 5.2: Average of FA, MD (mm2/sec) and length (mm) of the fibers in the CC
in four healthy subjects. The p-values indicate that there are insufficient evidences
to suggest differences between the three tracking methods in length, FA and MD
along the CC fibers. The test used is Anova (when normality of residuals and equal
variances conditions are satisfied) otherwise Kruskal-Wallis test is used.

5.6 Conclusions and Discussions

We proposed a measure of curvature threshold sc, as stopping criteria for fiber track-

ing of the CC based on the angles between the mean directions in the CC. For the

healthy subjects, using sc reduces the number of the fibers that propagate out of
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Subjects Tracking avg FA avg MD×109 avg length

MS1

Bayesian 0.51495 0.8694 48.25
Bootstrap 0.51702 0.8658 49.70

FACT 0.51961 0.8640 46.50
p-value 0.946 0.854 0.864

MS2

Bayesian 0.6604 0.8142 54.63
Bootstrap 0.6559 0.8106 54.64

FACT 0.6411 0.8181 50.00
p-value 0.850 0.973 0.900

MS3

Bayesian 0.6253 0.8486 45.46
Bootstrap 0.6199 0.8522 47.86

FACT 0.6264 0.8361 44.00
p-value 0.902 0.936 0.379

MS4

Bayesian 0.5603 0.9505 52.77
Bootstrap 0.5692 0.9484 53.39

FACT 0.5554 0.9401 56.50
p-value 0.736 0.852 0.331

MS5

Bayesian 0.6482 0.8578 48.80
Bootstrap 0.6515 0.8580 47.82

FACT 0.6526 0.8471 45.50
p-value 0.963 0.993 0.259

MS6

Bayesian 0.6632 0.8246 47.33
Bootstrap 0.6612 0.8304 48.49

FACT 0.6766 0.8350 46.00
p-value 0.794 1.000 0.276

MS7

Bayesian 0.5989 0.9279 51.89
Bootstrap 0.6090 0.9317 52.07

FACT 0.5990 0.9096 50.50
p-value 0.944 0.971 0.439

MS8

Bayesian 0.6210 0.8010 50.04
Bootstrap 0.6232 0.8034 51.19

FACT 0.6248 0.8042 45.00
p-value 0.960 0.830 0.490

MS9

Bayesian 0.6159 0.8779 46.48
Bootstrap 0.6196 0.8841 48.26

FACT 0.6095 0.8795 45.50
p-value 0.989 0.971 0.953

Table 5.3: Average of FA, MD (mm2/sec) and length (mm) of the fibers in the CC
in nine MS subjects. All the p-values indicate that there are insufficient evidences
to suggest differences between the three tracking methods in length, FA and MD
along the CC fibers. The test used is Anova (when normality of residuals and equal
variances conditions are satisfied) otherwise Kruskal-Wallis test is used.
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Tracking Subjects avg FA avg MD ×109 avg length

Bayesian

Healthy 0.6123 0.8144 59.32
MS 0.6210 0.8578 48.80
CI (-0.1313,0.0674) (-0.1212,0.0861) (1.42,17.63)

P-value 0.4875 0.3159 0.0253

Bootstrap

Healthy 0.6061 0.8148 60.22
MS 0.6232 0.8580 49.70
CI (-0.1316,0.0568) (-0.1273,0.0431) (1.25,17.43)

P-value 0.5892 0.2472 0.0168

FACT

Healthy 0.6049 0.7936 57.50
MS 0.6248 0.8471 46.00
CI (-0.1247,0.0688) (-0.1306,0.0407) (2.50,19.99)

P-value 0.5892 0.1897 0.0372

Table 5.4: Average of FA, MD (mm2/sec) and length (mm) of the fibers in the CC
in the healthy and the MS subjects. The p-values and the confidence intervals (CI)
for the differences indicate that the length of the CC fibers for the MS subjects are
significantly different from the length of the CC fibers for the healthy subjects. The
test used is Mann-Whitney test.

the boundary of the CC. For the MS subjects, using sc stop fibers from deviation

into incorrect pathways. Hence, for MS and healthy subjects, the individual-based

curvature threshold outperform the fixed curvature threshold (i.e. 45°) for fiber

tracking in the CC. We showed that, for both curvature thresholds, fiber tracking

using curvature interval as 1 mm outperforms fiber tracking using 2 mm. The eval-

uation of the curvature threshold is performed using FACT algorithm. Although the

probabilistic tracking is expected to be more robust generally than the deterministic

tracking and less affected by noise, more investigation will be considered in future

work to evaluate the proposed curvture threshold using probabilistic tracking. Us-

ing an accurate segmentation method of the CC (e.g. the log Euclidean method in

Chapter 3) can provide an accurate result of mean directions in the CC (Chapter

4) and hence an accurate curvature threshold of fiber tracking in the CC.

Furthermore, we compared the fiber tracking results of the CC quantita-

tively using two probabilistic (Bayesian and Wild Bootstrap) and one deterministic

(FACT) tracking methods. The measured used for comparisons are FA, MD and

length of the fibers. The results indicate that there are insufficient evidences to sug-

126



gest differences in the measures (FA, MD and length of the fibers) obtained using

the three fiber tracking methods at α = 0.05. However, probabilistic fiber tracking

provides all the possible fiber pathways and hence the uncertainty of fiber tracts can

be assessed using probabilistic fiber tracking.

When comparing the results of fiber tracking in the healthy and the MS

subjects, the length of the fibers are significantly shorter in the MS subjects as

compared with the healthy subjects (at α = 0.05). The FA and MD values in the

healthy subjects are not significantly different as compared with the MS subjects.

The significant reduction of FA and increase in MD in MS subjects when compare

with age-matched healthy subjects are well known in the literature (e.g. Tievsky et

al., 1999; Filippi et al., 2001; Coombs et al., 2004). The healthy and MS subjects

used in this work are not age-matched as the healthy subjects are relatively older

than the MS subjects. In healthy subjects, the FA decreases and MD increases

with aging (Burzynska et al., 2010; Sullivan, Rohlfing, & Pfefferbaum, 2010; Zahr,

Rohlfing, Pfefferbaum, & Sullivan, 2009; Sullivan, Adalsteinsson, & Pfefferbaum,

2005). This confirms that FA and MD are both affected by the age and abnormalities

and hence they can be used for distinguishing between healthy and MS subjects only

if the groups consist of aged-matched participants. However, the length of fibers is

a robust measure to distinguish between MS and healthy subjects even in a group

of non age-matched participants.
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Chapter 6

Conclusions and Future Work

The aim of the thesis was to develop statistical methodologies for accurate grouping

and modeling data using Diffusion Tensor Imaging (DTI), taking into account the

complex nature of the data, to improve disease diagnosis and surgical planning. In

fact, the study focused on the Corpus Callosum (CC) as it is a very important region

in the brain which integrates the information (i.e. sensor, motor and cognitive)

between the two hemispheres of the brain and also changes to the size or the shape

of the CC is an indicator of a brain disorder.

In this chapter, a brief summary of the research findings and conclusions of

the thesis is provided in Section 6.1. Then discussions and directions of future works

are presented in Section 6.2.

6.1 Summary and Conclusions

In this thesis, a general background of DTI is provided in Chapter 2. The Mag-

netic Resonance Imaging (MRI) and Diffusion Weighted Imaging (DWI) are first

reviewed. Then DTI is discussed.

In Chapter 3, we proposed an accurate automated method for segmentation

of the CC using Hartigan’s method and DTI. Hartigan’s method was generalized for

the use with f -mean metrics to cluster diffusion tensors (and covariance matrices
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generally which can be used, for example, in longitudinal data analysis). The gener-

alized Hartigan’s method was then applied to segment the 2D and 3D CC of a healthy

brain. For 2D and 3D segmentation of the CC, the log Euclidean and Riemannian

methods provided more accurate segmentation than the other methods (Euclidean,

Cholesky, root Euclidean and Procrustes). When compared with the manual seg-

mentation, the log Euclidean and Riemannian methods provided the most accurate

2D segmentation. For 2D segmentation, they yielded the least variations in the size

and shape of the tensors in the CC. For 3D segmentation, the log Euclidean and

Riemannian methods were the only methods that segment all of the splenium (pos-

terior end) as part of the CC. Hence, the log Euclidean and Riemannian methods

outperformed the other methods (i.e. Euclidean, Cholesky, root Euclidean and Pro-

crustes) in the segmentation of the CC. The log Euclidean method is more efficient,

as the computation of the log Euclidean mean is much faster than the Riemannian

mean (Arsigny et al., 2007). The computation of the Euclidean distance is faster

than the computation of the non-Euclidean distances. Furthermore, the Rieman-

nian and Procrustes means use iterative numerical methods for the computations

and hence are computationally more expensive than the other means (Euclidean,

Cholesky, root Euclidean and log Euclidean). To explore another clustering method,

hierarchical clustering was also applied to segment the 2D CC. Compared with Har-

tigan’s method, hierarchical clustering (single link) yielded holes on the segmented

2D CC whereas no holes were produced when using Hartigan’s method. Because

no holes are expected in the CC of a healthy brain, Hartigan’s method was preferred.

The von Mises-Fisher distribution (vmf) is a probability distribution for mod-

eling directional data on the unit hypersphere. Diffusion patterns in the brain are

affected by abnormalities (e.g. lesions) and hence analysing diffusion directions is

useful in diagnosis of such abnormalities. In Chapter 4, we modeled the diffusion di-

rections of the CC as a mixture of vmf distributions for Multiple sclerosis (MS) and

healthy subjects. The segmentation of the CC using the Euclidean method (Chapter

3) was applied to segment the CC in a group of healthy and MS subjects due to the
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faster computation of the Euclidean method as compared with the non-Euclidean

methods. Bayesian information criterion (BIC) indicated that there were at least

three different mean diffusion directions in the CC. Hypothesis tests confirmed that

the three mean directions are significantly different from each other. Diffusion con-

centration around the mean directions were higher and the sum of angles between

the mean directions were smaller on the normal-appearing CC of the MS subjects

as compared to the healthy subjects. The variance of FA in MS subjects was signif-

icantly higher as compared with the healthy subjects. Curvature threshold is one

of the stopping criteria for fiber tracking. The maximum angle between the three

mean directions was proposed as an individual-based curvature threshold to provide

stopping criteria for fiber tracking in the CC.

Fiber tracking is a non-invasive technique to understand the brain functions

and the connectivity in the brain which is useful to diagnose various brain abnor-

malities. In Chapter 5, the proposed individual-based curvature threshold (Chapter

4) was evaluated using the healthy and MS subjects (the same data that was used in

Chapter 4). Using the proposed curvature threshold, the number of fibers that prop-

agated out of the CC of the healthy subjects was reduced, and the deviation out of

the original fiber pathways in the CC of the MS subjects was prevented. Therefore,

the individual-based curvature threshold was more preferable than a fixed curvature

threshold for tracing fibers in the CC. In addition, three measures (average of: FA,

MD, and length of fibers) obtained from fiber tracking of the CC were compared

between three fiber tracking methods (FACT, Bayesian and Wild Bootstrap) and

between the healthy and MS subjects at significance level α = 0.05. There were in-

sufficient evidences to suggest differences in the measures between the three tracking

methods. There were significant differences in length of fibers between the healthy

and the MS subjects (shorter length of the fibers in MS subjects). However, in-

significant differences between the healthy and the MS subjects in FA and MD were

obtained. These are due to the differences in age between the MS subjects (mean

age± sd= 43.60±10.07) and the healthy subjects (mean age± sd= 62.80±9.50). FA
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decreases and MD increases by both aging and MS. This demonstrates that FA and

MD are both sensitive to the age and hence care should be taken when comparing

between groups of a non aged matched participants using FA and MD. The length

of fibers however is a robust measure to distinguish MS and healthy even using a

non aged matched participants.

The relationships between the chapters are summarized as follows:

� Chapter 3: An accurate grouping method for DTI was developed taking into

account the complex nature of the data. This method was then used to develop

an accurate 2D and 3D segmentation of the CC.

� Chapter 4: The segmentation method in Chapter 3 was used to segment the

CC in a group of healthy and MS subjects. Then the diffusion directions of the

CC were modeled using vmf distribution to obtain and analyze information

which were used to propose individual-based curvature threshold.

� Chapter 5: Improved fiber tracking of the CC was obtained using the pro-

posed curvature threshold and the same data in Chapter 4.

Overall, statistical methodologies for accurate grouping and modeling data

using DTI were developed, taking into account the complex nature of the space of

DTI.

6.2 Discussions and Future Work

In this section, some discussions regarding evaluation of the segmentation of the CC

and diffusion directions are provided. In addition, some of the additional interesting

areas of research to explore in the future are recommended.

6.2.1 Evaluation of the Segmentation of the CC

Using Hartigan’s method (Chapter 3), the log Euclidean and Riemannian methods

provided more accurate segmentation of the CC as compared with the other meth-

ods. This confirms and extends the results obtained by Lenglet et al. (2006) which
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indicated that the Riemannian distance provides improved segmentation of the CC,

especially in the regions of the splenium, as compared with the Euclidean distance.

The data used was one healthy brain and the manual segmentation was provided

by an expert. More data and multiple experts will be considered in future works to

confirm the evaluation results.

6.2.2 Classification of Brain Tissue

Classification of brain tissues is assigning a tissue class to each voxel in the image

(e.g. white matter, gray matter, cerebrospinal fluid, muscle, fat and air). Both

classification and segmentation are partitioning of the image into homogeneous re-

gions. Unlike the segmentation, the classes (regions) in the classification can be

disconnected (Palm Dzung, Chenyang, & Prince Jerry, 1998). Palm Dzung et al.

stated that the number of classes in an image are often based on prior information.

The previous methods of classification of the brain are mostly based on MRI (e.g.

Choi, Haynor, & Kim, 1991; Lachmann & Barillot, 1992; Bullmore et al., 1995;

Sanjay-Gopal & Hebert, 1998; Van Leemput, Maes, Vandermeulen, & Suetens,

1999; Suckling, Sigmundsson, Greenwood, & Bullmore, 1999; Shattuck, Sandor-

Leahy, Schaper, Rottenberg, & Leahy, 2001; Cocosco, Zijdenbos, & Evans, 2003;

Suri, 2004; Awate, Tasdizen, Foster, & Whitaker, 2006; Hartlep, Pedain, Brady,

& Raghavan, 2006). There has been little research on tissue classification using

DTI. A classification and quantification method based on DTI has been proposed

by Ding, Gore, and Anderson (2003) but it is limited to fiber pathways in the brain.

A classification method using DTI can be explored in the future.

6.2.3 Clustering the Brain Lobes

The cerebral cortex of the brain is classified into four lobes: frontal lobe, parietal

lobe, temporal lobe and occipital lobe. Using the spectral clustering (eigenfunctions

of Laplace-Beltrami Operator) to classify the cerebral cortex into the brain lobes has

been proposed by Lefevre, Auzias, and Germanaud (2014). Studying the clustering

of the cerebral cortex using DTI (i.e. apply the segmentation method in Chapter 3
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Figure 6.1: Segmentation of the CC of a whole slice of the brain using Euclidean
method. The temporal lobe is not identified because the figure shows a midsagittal
slice of the brain.

as in Figure 6.1) can be explored as another potential application to the developed

clustering method.

6.2.4 Diffusion Directions

In Chapter 4, the Euclidean method was used for segmentation of the CC as it is

faster than the segmentation using the non-Euclidean methods but it is less accurate

than the log-Euclidean and Riemannian methods. The log-Euclidean or Riemannian

methods can be applied to provide more accurate segmentation of the CC and hence

more accurate parameters of modeling diffusion directions.

For MS subjects, the diffusion in the lesion regions are distributed randomly

without restriction, and hence directional information is lost in those regions. The

modeling results were obtained using the normal-appearing CC and lesions are not

included to prevent the expected bias in the modeling results, if a misleading prin-

cipal eigenvector is used. Future work can address how the modeling results can be

affected when the regions with MS lesions in the CC are included in the analysis.
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Furthermore, the age of the MS subjects did not match the age of the healthy

subjects. The mean age of the MS subjects ± sd is 43.60± 10.07 and the mean age

of the healthy subjects ± sd is 62.80±9.50. The results of FA showed no significant

difference between the MS and the healthy subjects. This might be due to the

age differences because the FA decreases with the age and hence both the MS and

healthy subjects have similarly decreased FA. A larger data set with age matched

participants can be considered in future work.
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Appendix A

Appendices

A.1 Euclidean and non-Euclidean Distances

The Euclidean and non-Euclidean distances, between the covariance matrices A1

and A2, have been summarized in Dryden et al. (2009) as follows:

Clustering method distance

Euclidean ‖A1 −A2‖

Log Euclidean ‖log(A1)− log(A2)‖

Riemannian
∥∥∥log(A

−1/2
1 A2A

−1/2
1 )

∥∥∥
Cholesky ‖chol(A1)− chol(A2)‖

Root Euclidean
∥∥∥A1/2

1 −A
1/2
2

∥∥∥
Procrustes inf

R∈O(3)
‖L1 − L2R‖

where Ai = LiL
>
i , i = 1, 2

where inf
R
f(R) means the greatest lower bound of f(R), with respect to R. Then

the Procrustes solution to estimate R is

R̂ = arg inf
R∈O(n)

‖L1 − L2R‖ = UVᵀ,
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where arg inf
R
f(R) means R that gives the greatest lower bound of f(R), U,V ∈

O(n) and Lᵀ
1L2 = VΛΛΛUᵀ is the singular decomposition with diagonal matrix Λ of

positive singular entries (Dryden et al., 2009).
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A.2 Euclidean and non-Euclidean Means

The Euclidean and non-Euclidean means for a set of covariance matrices, Ai where

i ∈ {1 . . . n}, have been summarized in Dryden et al. (2009) as follows:

Clustering method mean

Euclidean 1
n

n∑
i=1

Ai

Log Euclidean exp( 1
n

n∑
i=1

log Ai)

Riemannian arg inf
Σ

n∑
i=1

∥∥∥log (Ai
−1/2ΣAi

−1/2)
∥∥∥2

Cholesky ( 1
n

n∑
i=1

chol(Ai))(
1
n

n∑
i=1

chol(Ai))
>

Root Euclidean ( 1
n

n∑
i=1

A
1/2
i )( 1

n

n∑
i=1

A
1/2
i )

>

Procrustes P̂P̂
>

where P̂ = arg inf
P

n∑
i=1

( inf
Ri∈O(3)

‖LiRi −P‖2)

Ai = LiL
>
i
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A.3 Particular Cases of the f-mean

Adjusting the centroids and Gj , after the movement of a covariance matrix from

cluster to another, for particular cases of the f -mean are shown below.

log Euclidean: f(A) = log (A)

ĀCnp = exp
(

1
m(p)−1

[
m(p) log (ĀCp)− log (Ai)

])

ĀCnj = exp
(

1
m(j)+1

[
m(j) log (ĀCj ) + log (Ai)

])

Gj = m(j)
m(j)+1

∥∥log (Ai)− log (ĀCj )
∥∥2 − m(p)

m(p)−1

∥∥log (Ai)− log (ĀCp)
∥∥2

root Euclidean: f(A) = A1/2

ĀCnp = 1
(m(p)−1)2

[
m(p)(ĀCp)1/2 − (Ai)

1/2
] [
m(p)(ĀCp)1/2 − (Ai)

1/2
]ᵀ

ĀCnj = 1
(m(j)+1)2

[
m(j)(ĀCj )

1/2 + (Ai)
1/2
] [
m(j)(ĀCj )

1/2 + (Ai)
1/2
]ᵀ

Gj = m(j)
m(j)+1

∥∥(Ai)
1/2 − (ĀCj )

1/2
∥∥2 − m(p)

m(p)−1

∥∥(Ai)
1/2 − (ĀCp)1/2

∥∥2

Cholesky : f(A) = chol(A)

ĀCnp = 1
(m(p)−1)2

[
m(p) chol(ĀCp)− chol(Ai)

] [
m(p) chol(ĀCp)− chol(Ai)

]ᵀ
ĀCnj = 1

(m(j)+1)2

[
m(j) chol(ĀCj ) + chol(Ai)

] [
m(j)chol(ĀCj ) + chol(Ai)

]ᵀ
Gj = m(j)

m(j)+1

∥∥chol(Ai)− chol(ĀCj )
∥∥2 − m(p)

m(p)−1

∥∥chol(Ai)− chol(ĀCp)
∥∥2

Euclidean: f(A) = A

This is Hartigan’s method, which was discussed in Section 3.3.3.
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A.4 Fiber tracking

(a) Fiber tracking of the CC using the curvature threshold sc.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure A.1: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the healthy subject H2. Using 45° results in continued propagation of some
fibers out of the CC (indicated with the black arrow).
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(a) Fiber tracking of the CC using the curvature threshold sc.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure A.2: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the healthy subject H4. Using 45° and sc provide approx. similar results.
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(a) Fiber tracking of the CC using the curvature threshold sc.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure A.3: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the MS subject MS2. Using 45° results in deviation of some fibers from the
original pathways (indicated by the black star).
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(a) Fiber tracking of the CC using the curvature threshold sc.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure A.4: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the MS subject MS3. Using 45° results in deviation of some fibers from the
original pathways (indicated by the black star).
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(a) Fiber tracking of the CC using the curvature threshold sc.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure A.5: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the MS subject MS4. Using 45° results in deviation of some fibers from the
original pathways (indicated by the black stars).
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(a) Fiber tracking of the CC using the curvature threshold sc.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure A.6: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the MS subject MS5. Using 45° results in deviation of some fibers from the
original pathways (indicated by the black stars).
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(a) Fiber tracking of the CC using the curvature threshold sc.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure A.7: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the MS subject MS7. Using 45° results in deviation of some fibers from the
original pathways (indicated by the black star).
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(a) Fiber tracking of the CC using the curvature threshold sc.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure A.8: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the MS subject MS8. Using 45° results in deviation of some fibers from the
original pathways (indicated by the black star).
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(a) Fiber tracking of the CC using the curvature threshold sc.

(b) Fiber tracking of the CC using 45° as the curvature threshold.

Figure A.9: Comparing fiber tracking of the CC using sc and the curvature threshold
45° in the MS subject MS9. Using 45° results in deviation of some fibers from the
original pathways (indicated by the black stars).
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