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Abstract 

 

The differentiation of human stem cells is a complex and highly orchestrated spatiotemporal 

process, where cell morphology, proliferation and cell cycle properties likely play essential 

roles in many cell fate decisions. Recent independent advances in next generation sequencing 

(NGS) and live microscopy imaging technologies have greatly pushed forward stem cell 

differentiation research and have highlighted the need to combine spatial-temporal 

information derived from microscopy with transcriptional information accessible by NGS, as 

a way to better understand the functional links between spatiotemporal, morphological and 

cell cycle dynamics with cell fate transitions. In this thesis we developed novel technological 

pipelines aiming to address that need. In a first part of the thesis, we prototyped a method 

termed positional photoprinting (POPH) that could in principle allow to record the spatial 

localization of single-cells at the end of timelapse imaging experiments as a way to enable 

imaging-derived information to be linked to transcriptional information acquired post 

imaging, by leveraging photoactivatable protein (PA-protein) technologies. In parallel we 

developed a conceptual computational tool, Selection-seq, allowing to link imaged cell 

phenotype to transcriptome from PA-protein expressing cell lines in a Machine Learning (ML) 

style. In a second part of the thesis, we analyzed published single-cell RNA sequencing 

(RNA-seq) data to screen for gene candidates that might constitute a link between cell cycle 

and early neuronal differentiation control, including genes involved in cell cycle regulation 

(CDKs and Cyclins), axon generation and microtubule assembly regulation (KIF families), 

cell pluripotency (AURKA) and neurogenesis (MAP2, SOX2) , and later used a Fluorescence 

Ubiquitin Cell Cycle Indicator (FUCCI) expressing human Neural Stem Cell (hNSC) line 

processed both by live imaging and gene expression profiling to explore the possible 

temporal linkage between cell cycle dynamics and neuronal differentiation in hNSCs, using a 

graph-theory based workflow we established that allows to make a integrative analysis of 

gene interactions using both experimental and meta-analysis data. We found a high 

correlation among our gene list of interest in terms of both expression profile and known 

putative protein interactions, and found that the genes can be grouped into 2 distinct modules 
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with opposite expression pattern during neuronal differentiation. In a third part of the thesis, 

we demonstrate how Machine Learning and multi-focus image fusion technologies can be 

applied to establish an image analysis workflow of high-throughput live imaging data that 

calibrates vignetting, integrates information from multiple z-plane focal layers, quantifies 

neuronal process images challenging to conventional analysis, and quality-controls cell 

lineage data obtained from cell tracking analysis. By quantitatively analyzing live imaging 

data obtained from FUCCI and microtubule-labelled hNSCs differentiating into neurons, we 

found a global correspondence between cell cycle phase and neurite outgrowth, spatially and 

temporally.  Altogether the novel technical insights and technological pipelines and solutions 

presented here could potentiate integration of ‘live’ microscopy and gene expression derived 

phenomics information across many other cellular control processes, cellular differentiation 

paradigms and cell therapy applications. 
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Introduction: Quantitative Microscopy and Machine Learning-Enabled 

Stem Cell Biology: The Next Frontier  

 

1. Human Pluripotent Stem Cells: A new paradigm for Regenerative Medicine 

 

Human pluripotent stem cells (hPSCs), which comprise human Embryonic Stem Cells 

(hESCs) and human induced Pluripotent Stem Cells (hiPSCs), are cells with capacity of 

infinite self-renewal and commitment to a specific cell type from all three germ layers. 

hESCs are derived either from the inner cell mass (ICM) of pre-implantation human 

blastocysts 1, or enucleated human oocyte with somatic cell nuclear transferred (hNT-ESCs) 2, 

while hiPSCs come from human somatic cells, such as fibroblasts, induced by certain sets of 

transcription factors 3 4 notably the so-called ‘Yamanaka factors’ Oct4, Sox2, Klf4 and c-Myc, 

named after Shinya Yamanaka, whose group made the 2012 Nobel Prize winning discovery 

that those factors could reprogram adult somatic cells to an embryonic pluripotent stem cell 

state. Although debates raised on whether hESCs and hiPSCs are functionally and 

molecularly equivalent, and indeed distinct gene expression signatures were found between 

hiPSCs and hESCs 5, later studies indicated that this difference in expression pattern mainly 

comes from genetic unmatching, where the diversity of hiPSCs individual and clonal origins, 

as well as the random inactivation of X-chromosome in female-individual-oriented hiPSCs, 

and an isogenic hiPSCs line from in vitro-differentiated hESCs using a non-integrating 

Sendai virus based reprogramming system, so-called genetic-matched cell line, showed 

majorly consistent transcriptome and function compared to hESCs 6. Later study revealed that 

even genetically unmatched hESCs and hiPSCs also show similar expression patterns and are 

equivalently functional in its potential of differentiating into cholinergic motor neurons 7. 

These researches suggest that, though minor differences do exist in gene expression, hiPSCs 

and hESCs can to a first approximation be regarded as both functionally and biologically 

comparable under many situations. This without doubt expanded the application of hPSCs in 
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medical field as hiPSCs has overcome some limitations of hESCs, including their allogeneic 

natures and any ethic concerns aroused from manipulating human embryos. To ease the 

utilization of hiPSC lines and their genomic, transcriptomic, proteomic and cellular 

phenotyping data in research community, hiPSC cell line banks have been established, such 

as the HipSci consortium (Human Induced Pluripotent Stem Cell Initiative, 

https://www.hipsci.org/), which has led to generation and resourcing of over 800 different 

hiPSC lines from both healthy donors and individuals with inherited genetic diseases, of 

which around 700 lines were genetically characterized and around 500 lines epigenetically 

characterized 8.  

 

As mentioned above, the establishment of hPSC lines has shed new light on the future of 

regenerative medicine, where new somatic cells are expected to be generated from hPSC 

differentiation and replace the functional lost cells due to degeneration diseases or injuries.  

Many studies since have applied hPSCs in these attempts, of which the most highlighted and 

well-studied application is the cell therapy for motor neuron disease (MND) which is induced 

by injured or degenerated motor neurons in brain or spinal cord (reviewed in 9). As neural 

stems cells (NSCs), neural progenitor cells (NPCs) and neurons are only available from 

autopsy material, there are arising needs of hPSCs derived neural cell lines not only for the 

treatment, but also for the establishment of in-vitro disease models 10, and it has been shown 

that hiPSCs from patient can be generated 11 and further differentiated into motor neurons 12. 

For the treatment of spinal cord injury or developmental defects, human embryonic stem cell-

derived oligodendrocyte progenitor implantation in nude rodent model was proven to 

improve the motor neuron axon myelination 13, while show little effect, nor adverse event in 

the clinical trial on human patient 14. For the treatment of neurodegenerative diseases, such as 

Huntington disease, Parkinson disease (PD) or amyotrophic lateral sclerosis (ALS), both in-

vitro and in-vivo experiment using rodent PD model showed that mESCs and hESCs derived 

neurons can survive and form long-distance axon projections after implantation into brain, 

and improve the animal model behavior under test 15 16, and it appeared that implanted 

neurons can co-op with host glial cells, although it may not be essential for the survival of 

https://www.hipsci.org/
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neurons. Similar attempt has been made on psychiatric disorders, where hiPSCs from the skin 

biopsies fibroblast of patient with chronic undifferentiated schizophrenia and chronic 

paranoid schizophrenia were generated, and its ability of differentiating into all 3 germ layers 

was validated by teratoma assay 17. hiPSCs can also be used for regeneration of degenerated 

macula, in diseases such as dry / wet age-related macular degeneration (AMD), Stargardt 

disease or myopic macular degeneration. Injection of hESC-derived retinal pigmented 

epithelium (RPE) cells was found to have no tumorigenesis potential either in rodent model 

or human patients, and can lead to some extent of visual restoration 18 19. A more 

sophisticated way of RPE regeneration could be implanting a whole polarized RPE cell / RPE 

stem cell (RPESC) monolayer, which is supported by biocompatible scaffolds which could 

mimic healthy Bruch's membrane, an ECM-formed structure underlying RPE in-vivo 

function as a support for cell growth and metabolite exchanging barrier. Implantation of 

whole monolayer was therefore reported to better restore RPE function and improve RPE cell 

survival 20 21 22. 

 

Besides the medical applications on neural-system-related diseases, hPSCs were also used for 

regenerating vascular cells, cardiomyocytes and hepatocytes 23 24 25, as well as to use them in 

the treatment of diabetes, myocardial ischemia and generating hematopoietic cells in animal 

disease models 26 27 28 29. hPSCs could also be used for drug discovery to optimize the 

pharmacokinetic properties and avoid any potential toxicity, due to its advantage on 

differentiating into varieties of functional somatic cells which is either the target of drug, or 

metabolism pressure/ drug toxicity burdened, and are usually not directly accessible, such as 

neurons or cardiomyocytes 30.  

 

2. Challenges to hPSC-derived therapeutic tissue design 

 

Despite so many potential biomedical advances of applying hPSCs to regenerative medicine 

as described above, however, a few roadblocks have limited the clinical potential of hPSCs. 
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The issues could roughly be classified into ethical and technical, and the challenges arising 

from technical issues, according to a review by Shinya Yamanaka 31, are mainly of three types: 

tumorigenicity, immunogenicity, and heterogeneity.  

 

As mentioned above, hPSCs can form teratomas when implanted into immuno-deficient mice, 

which is due to their ability to proliferate infinitely. The implanted hPSC-derived cells can 

sometimes also lead to tumorigenesis, through three different mechanisms: (1) the residual 

presence of hPSCs or immature multipotent cells which still possess the ability of 

proliferating in the implanted population, for example hPSCs differentiating into 

dopaminergic neurons will form neural rosettes, from which cells can retain the ability to 

divide infinitely after being injected into rodent models; (2) reprogramming factors used for 

generating hiPSCs through retrovirus transfection, such as c-Myc, may be reactivated and 

lead to tumorigenesis 32  (reviewed in 33); (3) genetic abnormities which either already existed 

before the derivation of hPSC lines or emerged after the cell lines’ derivation. The most 

common genetic abnormality is chromosomal abnormality, of which the risk increases across 

the passages of in-vitro culture, and in hPSCs it is usually the duplications of chromosomes 1, 

12, 17, and 20 34. Single nucleotide variation (SNV), which is either caused by 

reprogramming 35 or accumulated through passages 36, can also result in cancer. Cancer-

related genetic mutations present on even healthy somatic original donors of cells used for 

hiPSC line establishment can be potentially oncogenic, especially this kind of ‘healthy cancer 

mutation’ can happen in human skin 37, which is the source of foreskin fibroblasts used quite 

commonly for hiPSC reprogramming. 

 

The tumorigenesis issue in (1) can be improved by more specific antibody-stained cell sorting 

and purifying, either by a positive selection targeting desired differentiated cell line 

membrane markers, or negative selection targeting pluripotency membrane markers 38 39. (2) 

can be improved by reprogramming using non-viral-vector protocols, where reprogramming 

factors will not be integrated into chromosomes. However, methods used to enhance the 

episomal expression of reprogramming factors can also have potential of oncogenesis 40. For 



14 

 

 

the issue in (3), chromosomal abnormalities can be easily distinguished by karyotyping, but 

for recognizing more complex abnormities, such as SNVs or oncogene mutations, whole-

genome sequencing (WGS) may be required for genotyping. However, WGS has its own 

limitations: (1) it is difficult to detect mutations in a very small portion of cells, and though 

increasing the sensitivity of analyzing algorithms may help it can also reduce the specificity; 

(2) we have not fully comprehended the consequences of many mutations, either synonymous 

or non-synonymous, on gene regions or intergenic regions. Some non-synonymous mutations 

on oncogenes have been proven to be benign 41 while some synonymous mutations have been 

found to contribute to cancer, through the mechanism of altering mRNA-splicing 42. To 

overcome these limitations, timelapse-imaging based phenotyping, as well as single-cell RNA 

sequencing (scRNA-seq) and single-cell proteomics (SCP) technologies maybe required to (a) 

find potential oncogenic factors on transcription, translation and post-translation modification 

(PTM) level and (b) characterize abnormal cells on phenotypic level, including by cell 

morphology and behavior.  

 

Another challenge for the medical application of hPSCs is immune rejection (reviewed in 43). 

Although autologous transplantation of hiPSCs obtained from a patient itself has been 

considered not to induce immune rejection theoretically, T cell infiltration and immune 

rejection of miPSCs produced teratoma has indeed been observed in rodent models 44, these 

observations have been followed by controversial studies 45.  

 

Finally, besides immune rejection another major concern of hPSCs lies on their heterogenous 

nature. Both hESCs and hiPSCs do not represent a “naïve” embryonic stem cell pluripotency 

state, as hESC show more “primed” state properties compared to mouse embryonic stem cell 

(mESCs) and tend to be more similar to mouse epiblast stem cells (mEpiSCs) and hiPSCs 

partially retain a genomic methylation profile of its somatic donor cell, thus showing an 

“epigenetic memory” 46 47 48. This “primed” feature restricted the use of hPSCs in post-

implantation human development modeling. In hESCs, it was found that in different cell lines, 

there was up to 100 fold differences for the expression of lineage specific markers, leading to 
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different differential propensities 49, and that makes it necessary to explore optimal protocols 

of conducting a certain lineage differentiations using different hESC lines 50. Similar 

heterogeneity also exists in hiPSCs. Studies conducting hematopoietic differentiation using 

35 hiPSC lines and 4 hESC lines showed that the differences in IGF2 expression and DNA 

methylation signatures in undifferentiated hiPSCs influence their later commitment into 

hematopoietic cells, where lower expression of IGF2 and aberrant DNA methylation of 

TRIM58 will possibly lead to maturation-deficient hiPSCs. This suggest that genetic and 

epigenetic factors may co-operate in controlling the heterogeneity of cell fate propensity. 

Heterogeneity not only exists across lines but also within a same cell line under 

differentiation. Take neuronal differentiation of hPSCs as example: a typical protocol to 

differentiate hPSCs into neurons tends to involve either (1) 2-stage differentiation, where 

hPSCs firstly form embryoid bodies (EBs) , neurosphere, neuroectodermal (NE) cultures or 

neural precursor cells (NPCs) in specified culture medium environments, then further 

differentiate into neurons 51 52 53, or (2) 1-stage differentiation, where a forced overexpression 

of neuronal factors, like NGN2 or NEUROD1, drives hPSCs to differentiate directly into 

neurons 54. However, most of these methods face a problem of property-diversity of the 

yielded neurons, in terms of function 55, transcriptome 56and epigenome 57. Differentiating 

hPSCs undergo distinct trajectories of expression profile as a function of time and finally a 

highly-heterogenous neuron population forms 58.  

 

Taken together, these problems highlight the need to further elucidate the underlying 

mechanisms underpinning hPSC pluripotency, such as the control of hPSC proliferation, 

specification, differentiation, heterogeneity and tumorigenic potential. 

 

3. Proliferation, Pluripotency and Differentiation Control: A Role for the Cell Cycle  

 

The regulatory network of hPSC pluripotency relies on a core transcriptional circuit that 

involves OCT4, SOX2, and NANOG, of which the importance was highlighted by the 
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original landmark studies from the group of Yamanaka 4 3. Together those factors target a 

variety of genes, including Transcription Factors (TFs) and microRNAs, and regulate a 

number of downstream pathways such as WNT, TGF-β and BMP pathway, thereby helping 

maintain pluripotency 59 60. They also form feedforward loops to enhance their own 

expression 59. 

 

Besides them, the FGF, Activin/Nodal and insulin/IGF-1 signaling pathways are also 

essential for the maintenance of the pluripotent state 61. Activin/Nodal signaling, as well as its 

downstream signaling by SMAD2,3, play opposing roles between hPSCs proliferation and 

differentiation: it was found that in the case of IGF1 signaling induced PI3K/Akt activation, 

Activin A/SMAD2,3, with limited phosphorylation, activate proliferation genes including 

Nanog and contribute to maintenance of pluripotency, while at low level of PI3K/Akt 

signaling, Wnt signaling is activated and cofunctions with highly phosphorylated SMAD2,3 

leading to differentiation 62. The function of FGF2 relies on its dose, as low level of FGF2 

signaling only activates the MAPK/ERK pathway while high level of FGF2 also activates the 

PI3K/AKT pathways, therefore only on the latter case does FGF2 facilitate the maintenance 

of cell stemness 62. 

 

Although much work has concentrated on investigating the regulatory networks underpinning 

of hPSCs pluripotency, the picture is still incomplete and keeps on extending to include new 

regulatory factors and pathways. One recent addition is the CDK-Cyclin signaling that 

controls the cell cycle.  

 

The cell cycle, specifically G1, S, G2 and M phase, are controlled by Cyclin-CDK complexes 

and other check-point proteins such as Rb and E2F family proteins. During the progression of 

hPSC proliferation, CyclinD-CDK4/6, CyclinE-CDK2, CyclinA-CDK2, CyclinA-CDK1, 

CyclinB-CDK1 sequentially form and degrade, each targeting multiple genes and activating 

downstream pathways to help continuing cell cycle progression and clearing checkpoints 

(reviewed in 63). 
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Previous studies have revealed a link between the cell cycle and hPSCs pluripotency and its 

cell fate propensity during differentiation. Compared to somatic cells, hPSCs have a shorter 

G1 phase which lengthens during differentiation 64 65. Using the FUCCI reporter system, 

which allows real-time characterization of cell cycle state in live cells by the fusing orange 

fluorescent tag mKO2 and green fluorescent tag mAG1 respectively to human Cdt1 and 

Geminin that have a cell cycle specific expression abundancy 66, it was found that hPSCs in 

early G1 phase can only differentiate into endoderm, while cells in late G1 phase tend to 

differentiate into neuroectoderm. Subsequent functional characterization found that this 

differing cell fate propensity is due to the regulation of CyclinD-CDK4/6 complex upon 

Activin/Nodal-SMAD2/3 pathway 67. By performing an RNAi screen, a separate study 

instead found that besides CyclinD-CDK4/6 in G1 phase, regulators in S and G2 phase are 

also involved in maintaining pluripotency through interaction with the TGF-β/Activin/Nodal 

pathway 68.  

 

Many factors involved in cell cycle control play important roles in regulating hPSCs 

pluripotency, such as CDK1, CDK2, Rb and E2F2. They either directly control pluripotency 

gene expression, or induce post-translational modifications such as phosphorylation 69 70 71 72 

73 74. Nevertheless, the regulation is reciprocal, as members of the core pluripotency network 

are also able to regulate cell cycle through E2F family signaling 75 76, or indirectly by 

increasing the activity of CDK activators or repressing the activity of CDK inhibitors 77 78. 

The microRNA regulatory network could also act as a linker between pluripotency genes and 

cell cycle genes, through repression of CDK inhibitors 79. Overall, many developmental and 

pluripotency related factors have been found to have a cell-cycle-dependent pattern of 

expression in hPSCs, which is especially enriched in G1 phase and contributes mostly to the 

heterogeneity in hPSCs culture. This cell-cycle dependent expression pattern is maintained in 

the early stages of lineage specification 80. 

 

Besides hPSCs, cell-cycle-regulated cell fate decisions also emerge in more committed cell 
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states during neuronal differentiation. As mentioned above, neuroectodermal differentiation 

occurs preferentially in late G1 phase 67, and it has also been found during cortex 

development that the cell cycle phase of neural progenitor cells during transplantation 

determines their laminar fate of layer assignment 81. On one hand, forcing cells to re-enter the 

cell cycle itself is insufficient to stop neuronal differentiation or alter the cell fate decision 82; 

on the other hand it has been shown that basic helix-loop-helix (bHLH) proneural protein 

NGN2 activation during neurogenesis from NPCs promotes cell cycle exit by suppressing the 

expression of CCND1, CCNE1/2 and CCNA2 83, despite NGN2-driven neurogenesis being 

independent from this cell cycle exit event. Controversial evidences also exist. For instance 

Cdk4/cyclinD1 overexpression was found to shorten the G1 phase and inhibit neurogenesis of 

mouse cortical progenitors, and suppression of Cdk4/cyclinD1 by RNA interference (RNAi) 

was found to lengthen G1 phase and to be sufficient to promote neurogenesis 84. Similarly to 

hPSCs where pluripotency and development related genes are expressed in a cell cycle 

dependent manner, during cortical development in mouse Ngn2 and Ascl1 also has an cell 

cycle dependent expression pattern 85. Besides the potential expressional regulation upon 

proneural genes, the cell cycle gearbox may also influence cell fate decision via controlling 

post-transcriptional modifications. Just like Ngn2 in Xenopus can suppress the expression of 

cyclins, reciprocally Cyclin-dependent kinase (Cdk) mediated multi-site phosphorylation of 

Ngn2 can also inhibit its binding to DNA and thus limit its ability of proneural regulation 86. 

Given that in vitro neuronal differentiation is a highly heterogenous process leading to highly 

heterogenous cell populations, it is therefore interesting to wonder how and to what extent the 

cell cycle may contribute to this heterogeneity.  

 

Altogether those findings emphasize that the cell cycle and indeed many other aspects of cell 

biology, including morphology and proliferation, likely play key roles at many points during 

early human stem cell differentiation. An example is the microtubule-related cell abscission 

machinery and the role it plays in neuronal polarization. Polarization is a process where 

unpolarized neurites on a neuron begin extension growth and form axon-like structure and 

microtubules in axons remodel from a non-direction formation to a polarized ‘plus-end out’ 
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style. During this process, the centrosome in the early stage plays a role as microtubule 

organizing center (MTOC) for axon specification and the localization of axon initial segment 

(AIS) protein TRIM46, and then gradually loses its function as MTOC 87 88. Trim46, then at 

AIS together with KIF3b/KAP3 forms a complex, and builds up at the differentiating axon by 

transporting specific cargos. This AIS-specific localization is maintained by Cyclin-

dependent kinase CDK5 phosphorylation on TRIM46 89. Studies also found that mitotic 

kinesin KIF20A/MKLP2 forms Ephrin-B–RGS cell fate signaling complex with RGS3 

therefore leading to a cell fate transition from proliferating NPCs to differentiating neurons, 

and loss of KIF20A function leads to an early exit of cell cycle and premature neuronal 

differentiation 90, which is similar to the effect of centriole depletion in NPCs. Other kinesin 

proteins, like Kif20b, Kif14 and Cep55, may also influence the cell fate decision of 

differentiating NSCs in vivo, by regulating the timing of abscission and midbody remnant, as 

shown in mouse 91 92. 

 

Thus, future research aiming to systematically unravel the functional links between the 

control of cell morphology, proliferation, cell cycle regulation and cell differentiation will 

likely be key to understand how to overcome current bottlenecks in hPSC-derived therapeutic 

tissue design.  

 

4. Studying hPSC dynamics and heterogeneity using scRNA-seq: status and challenges 

 

Although bulk measures of gene expression in tissue, either using traditional approaches such 

as microarrays 93 or next-generation sequencing (NGS) approaches such as high-throughput 

RNA sequencing (RNA-seq) 94, may be sufficient in many situations, in other scenarios, 

unfortunately, they are far from satisfying. Those scenarios include early stage developing 

embryos where a small number of stem-like cells may commit to distinct cell fates 95, or in 

central neural system (CNS) or immune system where a mosaic of functional diverse cells 

exist. In these cases, we want to characterize the cell type diversities in mixed population, to 
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answer the question of whether the RNA quantity dynamics is the result of global phenotype 

drift or the change of subtype compositions in the population, or to understand the stochastic 

gene expression noises as well as their contribution to cell phenotype heterogeneity 96, which 

makes the expression evaluation on single-cell level essential. Traditionally, reporter-based 

microscopy imaging can allow us to monitor the expression dynamics of one or multiple 

genes in single-cells, and this type of method until now is still being applied to research 

related to hPSCs, as in the case of the ORACLE multiplexed visualization cell fate reporter 

system 97. Immunohistochemistry (IHC) done by immunofluorescence microscopy, single-

cell quantitative PCR (scqPCR) 98 or single-molecule RNA fluorescence in situ hybridization 

(smFISH) 99 can all provide an insight of single-cell expression. For example, in smFISH, 

using 20 bp long oligonucleotide probes labeled with fluorophores, it is possible to 

simultaneously sequence three or four transcripts. However, the low throughput of RNA 

detection limits the application of these methods.  

 

In the specific case of the cell cycle, it is unclear how the cell cycle might lead to 

heterogeneity of pluripotency factors, developmental factors, signaling networks and 

therefore different fate specification among hPSCs in a population. One would want to 

evaluate the global expression profile of the regulatory network and trace its impact on 

single-cell fate decisions, which requires the application of both high throughput next-

generation sequencing and single-cell technologies, with a potential solution being scRNA-

seq. 

 

The development of next-generation sequencing makes it possible to sequence thousands of 

nucleotide sequence at acceptable cost of time and resource, thus allowing the high 

throughput analysis of single-cell transcriptomes. Since the first attempt of single-cell RNA 

sequencing in 2009 100, which almost immediately emerged after the application of bulk 

RNA-seq, many scRNA-seq technologies have been developed in order to increase sensitivity 

and sequencing coverage while reducing bias (reviewed in 101). Although varied in specific 

technical approach, the basic procedures in scRNA-seq are common and include: (1) isolation 
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and lysis of cell/nuclei, where cells will be dissociated and most usually trapped in a droplet 

102, 103 containing cell-specific-barcoded mRNA capturing adapter and lysis buffer for 

proceeding into step (2); (2) capture of polyadenylated (polyA) mRNA molecular, although 

methods of total RNA capturing also exist 104; (3) reverse transcription, barcoding and UMI 

linkage of transcripts;  (4) cDNA amplification by either PCR or in-vitro amplification 105 and 

library construction; (5) sequencing of fragments or full-length transcripts on NGS platform; 

and (6) preprocessing, analyzing and interpretation of sequencing data (reviewed in 106). 

According to their difference in procedure (1) ~ (4), the methods can be roughly classified 

into (1) single-cell sequencing or single-nuclei sequencing 107, depending on whether cell 

nuclei are firstly isolated and purified before the lysis and RNA capturing. The choice of 

methods in (1) could be essential when profiling cells like neurons and heart cells, where 

cells are hard to disassociated into single cells, or prone to the damage from dissociation 

process, which will lead to bias of sequencing data, whereas single nuclei sequencing may 

better retain the origin expression profile 108.  (2) 5’/3’-tagged sequencing 102, 109, 110 or full-

length transcript sequencing 111, 112, depending on whether the full length of transcript was 

captured, sequenced and counted, or only 3’/5’ fragment was captured. The choice of 

methods in (2) could be essential when researchers want to evaluate something other than 

gene expression abundancy, including alternative splicing 113, allele-specific expression (ASE) 

114 or to detect low-abundancy transcripts 115. (3) mRNA sequencing or total RNA sequencing, 

depending on whether polyA-modified mRNA was captured, or total RNA was captured. The 

choice of methods in (3) could be essential when researchers want to explorer non-coding 

RNA families or ribosomal RNA families. 

 

There are also variety of choices for the data processing method of scRNA-seq. Usually the 

data processing includes: (1) quality control of raw sequencing data, aligned sequencing data 

and transcriptome quantification data;  (2) the reads alignment and expression abundancy 

estimation; (3) normalization, batch correction and missing value imputation; (4) feature 

selection and reduction; (5) clustering of cells and gene modules, annotation of clusters; (6) 

pseudo-time lineage construction; and (7) differential expression analysis (DEA) across 
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cluster/time points.  

 

For quality control, it usually includes filtering out those reads/samples with low sequencing 

quality, before read alignment, with tools such as FastQC. 

(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). After read alignment and 

counting, the data is usually in a structure of 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 × 𝑀𝑓𝑒𝑎𝑡𝑢𝑟𝑒   matrixes, where 

observation represents a cell and feature represents the expression abundancies of each gene. 

Researchers may also want to remove the observations in the data of which the corresponding 

cells suffer from damage or cell death and RNA degradation during library preparation. These 

observations usually show: (1) low mapping rate to exome, due to RNA degradation; (2) 

higher mitochondria RNA ratio, because mitochondria RNA tends to be more stable during 

cell death, compared to cytosolic RNA; and (3) low detected gene number / mapped reads 

number ratio, because most of the transcripts were lost and therefore a majority of reads were 

amplified from a small population of transcripts. These quality control concepts were utilized 

in scRNA-seq analyzing software such as Seurat 116. Meanwhile, there are also dedicated 

quality control software such as SinQC, which filter out observations both being gene 

expression outlier and having low mapping rate 117.  

 

Reads alignment refer to a process where short reads generated from sequencing are mapped 

to its most possible location on the reference genome, in our case is human genome. Different 

to a simple substring searching algorithm, there are a few additional considerations: (1) the 

mRNA splicing, which means portions of a single read can belongs to spaced exon region in 

genome, (2) mutation caused missing and mismatched bases, as well as SNV, (3) alternative 

splicing event, (4) the speed and memory efficiency of algorithm, as both reference genome 

and sequencing data are usually of giga-bytes size, and this could be extremely an issue when 

hundreds of overly-saturated sequencing files were generated using non-pooled sequencing 

methods. Traditional aligners which were previously used for bulk RNA-seq sample use the 

linear reference genome for alignment, adopting either spaced-seed indexing based or 

Burrows-Wheeler transform (BWT) based algorithm. An example of former is STAR 118, and 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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of later HISAT 119. The traditional aligners, though proven to be competent on scRNA-seq 

data analysis to some extent, was limited on the computation speed and omitting the UMI 

information which is specific for scRNA-seq. To overcome the speed problem, the concept of 

pseudo-aligner was proposed. In its original publication by Bray et al., instead of mapping 

reads directly to reference genome, a transcriptome de Bruijn graph (T-DBG) was built by k-

mers from transcriptome, therefore each isoform of transcript could be represented as a path 

on the graph, so-called ‘k-compatibility class’, and those redundant k-mer nodes shared by 

different k-compatibility classes were removed. Each read was then hashed against the k-

compatibility classes to get a probabilistic assignment to its originated transcript. An 

expectation-maximization (EM) algorithm was applied to infer the maximum-likelihood of 

the assignment. Based on this concept, pseudo-aligner kallisto was developed 120. Similar 

pseudo-aligners also include Salmon 120. The pseudo-aligners usually have incomparable 

advantage on computational speed compared to traditional aligners 121.  To be better used in 

the era of single-cell technologies, traditional aligners also made improvements, taking 

consideration of UMI information and cell barcodes 122, or convert the whole genome into a 

graph, with deletion, insertion and single nucleotide polymorphism (SNP) represented as 

extra nodes and edges, in order to speed up the alignment process 123 124. 

 

Starting from the dataset generated from different scRNA-seq methods, the quantification 

algorithms can also differ. The protocols generating fragments from full transcripts may be 

followed by a transcript-assembly process from sequencing data, using tools such as 

Cufflinks 125 or Stringtie 126. On the contrary, 5’ or 3’ sequencing generating reads with UMI 

may skip this assembly procedure and directly go for counting.  

 

The reads number from counting is not yet suitable for consequent analysis. A preprocessing 

is required in order to remove the influence of (1) experimental batch effect using models, 

usually based on nearest-neighbor searching, like MNN 127 or kBET 128, of (2) different 

sequencing depths, usually using normalization methods such as RPKM/FPKM , TPM,  

which is considered superior to RPKM/FPKM, as it allows the comparison of transcript 
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portion of a gene across samples, or weighted trimmed mean of the log expression ratios 129, 

or of (3) missing values of gene abundancy due to loss of gene detection, which is a unique 

problem in scRNA-seq, due to the low capturing rate. A series of imputation tools were 

developed for the purpose. For example, MAGIC calculates the Euclidean distance between 

cell observations, and computes the normalized gaussian affinity to construct a Markov graph 

matrix. The data diffusion was then performed by multiplying the power-transformed Markov 

matrix to original 𝑁𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 × 𝑀𝑓𝑒𝑎𝑡𝑢𝑟𝑒  matrix, to get an imputed matrix 130. Similar 

imputers include SAVER, which assume the gene expression in each cell follow a negative 

binomial model, and estimate the prior parameters of this model by Poisson LASSO 

regression, using the expression of other genes as predictor. The posterior gene expression 

value was then imputed using the estimated prior parameter 131. However, other researchers 

may argue that the 2 methods above may impute some zero values, which are really zeros 

value without any gene expression, as drop-outs and assign a non-zero value, therefore 

disrupt the result. scImpute then firstly cluster the cell by PCA feature reduction, then 

establish a mixed Gamma-Gaussian model to represent the gene expression in this cell cluster, 

fit the model by EM algorithm, and then estimate the drop-out possibilities of each gene in 

this cluster by the model parameters. Only those genes with high possibility of drop-out will 

be imputed, thus avoiding the false-positives brought by imputation 132. 

 

Different to traditional bulk RNA-seq, where a limited number of samples represent different 

tissue origin, cell phenotype or experimental treatment, the libraries of scRNA-seq are 

usually mixed and the sample group are implicit, which requires a feature selection, reduction 

and observation clustering process before the DEA can be performed. Principal component 

analysis (PCA) is probably the most widely-used feature reduction skill, which is simple, 

mathematically intuitive and computational efficient. However, it can hardly retain the 

original high-dimensional data structure. Therefore, manifold-based feature reduction 

methods, such as t-SNE 133 or UMAP 134 was developed. After the cell clustering, the 

differentially expressed genes (DEG) across different clusters or experimental will usually 

need to be figure out. In bulk RNA-seq data, a model describing the distribution of gene 
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abundancy counts, such as Poisson model for those variance-proportional-to-mean data, or 

negative binomial model, beta binomial model and other quasi-Poisson model for those over-

dispersion RNA-seq data were adopt for statistical testing of DEG significance (reviewed in 

135). In single-cell RNA-seq data, although some bulk RNA-seq DEA models were still used 

in some published studies, the nature of numerous drop-out zeros (undetected gene 

expression due to failed mRNA capture) or real zeros (non-existing transcripts due to 

stochastic cell expression) in single-cell transcriptome make it doubtful whether those models 

are really applicable. New models specifically for scRNA-seq data were developed, such as 

zero-inflated negative binomial (ZINB) model 136 or generalized Poisson model 137. Besides 

the DEA based on distribution models, there are also DEA methods based on non-parametric 

test like Mann–Whitney U test 116 or based on graph-autocorrelation analysis calculating the 

Moran’s-I 138. The later does not require the cluster information of cell, although a feature 

reduction such as UMAP is still essential. Similar cluster-free-DEA concept was also adopted 

in a recent study using K-nearest neighbor graph to allocate single-cell transcriptome data 139. 

 

As scRNA-seq is usually used to explore a biological system which contains cells undergoing 

complex transitions between cell fates, the sequencing data may exhibit a continuous 

spectrum of different lineages towards distinct fates, and researchers may therefore want to 

identify single-cell trajectories along the transcriptome lineages, as a function of ‘pseudo-

time’ inferred from single-time-point snapshot sequencing data, and map the dynamics of 

gene expression to the transition of cell fate. As we described before, the single-cell 

transcriptome features can be reduced and projected to a low-dimensional space; a graph of 

pseudo-time can therefore be inferred from the coordinates of data points in the space, using 

either minimum spanning tree 140 141, principal graph 142, random walk 143 or  shortest path 143 

on K-nearest neighbor graph, or other methods. Some other trajectory inference algorithm 

may take other information into consideration, including transcriptional bursting 144, RNA 

velocity (calculated from the proportion of pre-matured mRNAs, which represents the speed 

of new mRNA synthesis) 145 or the real time information from experiment 146. The established 

single-cell trajectory can vary in topology, being either linear, bifurcating, circular or 
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disconnected. After the establishment of trajectory, DEA can also be performed on pseudo-

time, using any of the methods described above. 

 

All of these advances in scRNA-seq technologies expanded its potential on application to a 

variety of biological research scenario, and in the foreseeable future it may be possible to (1) 

instead of treating single-cell transcriptome data as genotype clusters, which shows more 

stable and clean expression data, explore deeper and directly perform analysis on a more 

noisy, oscillating and stochastic single-cell transcriptome, and (2) integrate multimodal 

single-cell omics data into the analysis (e.g., in 116), of which the studies were greatly speeded 

due to the application of high-dimension manifold and graph-based-Machine Learning into 

biology research. However, there are still some key challenges limiting its utilization. (1) In 

most of the cases, temporal information is only implicit and involves pseudo time 

assumptions, which will bring misinterpretation of biological process such as cell fate 

transition, (2) the library preparation protocol of scRNA-seq lead to cell lysis and loss of its 

positional information either in-vitro or in-situ, therefore any information on the history of 

cellular behavior will then be lost hence survivor bias plagued. We will discuss the potential 

ways of overcoming these challenges in the later sections. 

 

5. Studying hPSC dynamics and heterogeneity using quantitative and Deep Learning-

enhanced microscopy “image ’omics”: status, challenges and opportunities 

 

As we described above, RNA-seq and microarray technologies allow one to explore gene 

expression in tissues at the transcriptome level; combined with single-cell RNA library 

construction technologies, the precision becomes high enough to look into the expression 

heterogeneity and coherence in a cell population. However, there are many questions 

remaining in terms of describing and studying cell properties, behavior and inter-cell cross-

talks in a spatiotemporal manner, in which case it is necessary to retrieve multimodal, 
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multiparametric data at the single cell level, through an automated quantitative image 

processing on time-lapse fluorescent and bright-field microscopy, namely high-content 

microscopy-based screen (HCMS).  

 

High-content microscopy-based screening (HCMS) is a fast-emerging field based on the 

advances in a few areas: (1) genome-wide gene editing methods, such as CRISPR-Cas9 

knock-in/knock-out and its relevant libraries and cell lines 147, which allows a high-efficiency 

cell level gene expression manipulation 148 and fluorescent tag integration 149; (2) fluorescent 

reagents, generally including fluorescent antibodies, probes, dyes and fluorescent protein tags, 

used live or fixed, which aims to detect specific cellular structures, indicate 

microenvironment  parameters or report the intrinsic expression level of single or a 

combination of genes; (3)  microscopy platforms designated for live cell imaging at ultra-

high resolution and scanning speed, which in the meantime also reduce the cell phototoxicity 

during prolonged imaging session, including spinning disk confocal microscopy 150 and light 

sheet microscopy 151. Those advances, together with the advent of image processing and data 

analysis workflows aided by Deep Learning technologies we (discussed in later sections), 

provide powerful tools towards a wide range of tasks including identifying key gene factors 

involved in a certain biological process and their interactions, profiling global phenotype 

changes under pathological situations or manipulated perturbations, and screening potential 

chemical candidates targeting a certain cellular function.  

 

HCMS is extremely useful in the study of stem cells for the following reasons. Firstly, at the 

tissue level, stem cells usually switch between two states, either differentiate into certain cell 

types to replace those got lost during normal turnover, or maintain a ‘potent’ undifferentiated 

state which allows a cell renewal. The balance between two behaviors can be kept to achieve 

a ‘homeostasis’, or broken leading to any irreversible but meaningful change globally. It is 

therefore important to look into this process, keep tracking stem cell fates in tissue to see 

whether/how the homeostasis is kept or broken. For example, using multiphoton live in-vivo 

imaging of zebrafish adult NSCs (aNSCs), followed by distinguishment of cell types from 
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morphology, fluorescence-tagged reporter and IHC, people found that aNSCs have 3 different 

modes of activity: (a) symmetric division, which contribute to 2 new NSC daughter cells; (b) 

asymmetric division, which contribute to 1 new NSC cell and 1 neuronal progenitor; (c) a 

direct conversion from aNSCs to neuronal progenitors. And the imbalance of 3 activities 

eventually lead to a depletion of aNSCs in adult zebrafish brain 152. The revealing of this 

aNSCs behavior at population level is unimaginable without application of HCMS. Secondly 

it is essential to explore the interplay of stem cell with its context, including surrounding cells 

and extra-cellular matrixes (ECM).  In vivo studies have shown that the microenvironment 

around stem cells, termed ‘niche’, will play a regulatory role that controls stem cell behavior 

153 in a dynamic manner. For example, by video imaging calvarium bone marrow of living 

mice using high-resolution confocal and tow-photon microscopy, people found that different 

hematopoietic cell subsets, including stem cell and progenitors, localized to different 

locations which is determined by the stage of differentiation, and this localization process is 

regulated by both cell and context factors 154. Without live imaging, it is hard to draw above 

conclusion from discrete IHC images on multiple differentiation stages. Thirdly, HCMS is a 

robust tool in finding rare events in stem cell activity, such as the initiation of cancer 155, or 

onset of chromothripsis during mitosis, after structural defects of the nucleus, which could be 

represented on morphology by micronuclei and chromosome bridges 156. Without highly 

automated, high throughput image analysis method, especially those reinforced by Deep 

Learning technology, it could be extremely labor-intensive to capture, track and make 

statistics of these events. 

 

The recent advances in spatial transcriptomics (ST) technologies have brought new goals and 

opportunities for HCMS. ST technologies refers to strategies aiming to quantify RNA 

abundancy across transcriptome in a location-specific style within intact tissue sections, and 

can be roughly grouped into sequencing-based ST (sST) and imaging-based ST (iST) 157. sST 

strategies include (1) microdissection-based sequencing, which apply NGS on multiple ‘tiny’ 

sections on distinct locations with tissue, using laser capture microdissection (GEO-seq 158), 

flowcytometry after photoactivation labeling (NICHE-seq 159) followed by establishing 
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geometry landmarks of cell expression in tissue; (2) in-situ RNA capture based sequencing, 

which uses spatially indexed surface, containing barcoded primers corresponding to its 

specific location, which capture the RNAs from contacting tissue and therefore retains the 

spatial information in following NGS process. Such examples include 10X Visium 

technology 160 and Slide-seq 161. iST strategies, however, use multiple sequential imaging 

rounds (multiplexing) of probe hybridization (osmFISH 162, MERFISH 163) or in situ 

sequencing, either targeted using pad-lock probes (BaristaSeq 164, ExSeq 165) or untargeted 

(ExSeq 165) to detect transcripts at high-throughput, which overcomes the problem of low 

number of genes detected in more naïve technologies such as smFISH 99. 

 

Besides the increasing demands for higher imaging throughput and resolution for iST, it has 

become pressing to dig deeper with both HCMS data and multi-omics data from NGS. As 

reviewed in 166, this can be done by (1) using HCMS data to validate the analysis result from 

NGS, for example, Hériché et al used graph and kernel-based frame work to get candidates 

genes which could be involved in the regulation of mitotic chromosome condensation, and 

use RNAi screen under microscopic live-imaging to validate the predicted candidates 167; (2) 

using subcellularly localized transcriptome or proteome to annotate the image 168; and (3) 

integrating multimodal data including that from HCMS and NGS, with or without time 

dimension, into vector/tensor represented features 169. In some instances, ST data with spatial 

information can even help enhance the efficiency of HCMS data processing. As an example, 

Petukhov et al developed a cell segmentation method Baysor, based on Markov random fields 

framework, it can utilize the observed molecules from iST, optionally in conjunction with 

nuclear stained image data, to produce cell segmentation in 2D or 3D space 170. Altogether, 

alongside with the recent advances in multimodal single-cell NGS data analysis (reviewed in 

171), it is natural to imagine a future blueprint whereby (time-lapse) imaging data from HCMS 

will become an extra ‘modality’ as an addition of information content, especially through 

graph/manifold-based representation and learning methods 172-174.  
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6. Aims of This Thesis Work 

Based on the above the overall aim of this thesis work is to establish novel quantitative 

microscopy and Machine Learning technological pipelines enabling to combine spatial-

temporal information derived from microscopy with transcriptional information, and to 

investigate the spatiotemporal, morphological and cell cycle dynamics of cell fate transitions 

in human stem cells.  

 

In Chapter 1 we describe how we applied photoactivatable (PA) proteins and HaloTag-ligand 

technologies to prototype POsitional PHotoprinting (POPH), an approach aimed at recording 

spatial (𝑥, 𝑦) coordinate information in cultured cells  as a way to link ‘live’ microscopy 

imaging-derived information to single-cell transcriptome information. We show that PA-

protein expressing cell lines are photoprintable and how to evaluate 2D culture photoprinting 

efficiency in FACS and live imaging, as well as the limitations of photoprinting stemming 

from fluorescence heterogeneity and spatial resolution. 

 

In Chapter 2 we describe the construction of a conceptual model termed ‘Selection-seq’ 

aiming to link single-cell transcriptome to imaging phenotype by selective photoprinting and 

discuss its performance using 2 published datasets. We describe analysis of published single-

cell RNA profiling data to explore a list of genes of interest and establish an interaction 

network considering both expression correlation and interaction scores from a meta study.  

 

In Chapter 3 we establish a workflow integrating image preprocessing, nuclear segmentation, 

ridge detection and signal quantification and use it to carry out live imaging analysis of 

neuronally differentiating hNSCs, using that approach we reveal a spatiotemporal correlation 

between G0/G1 phase of cell cycle and neurite outgrowth. We also observe cell cycle phase 

‘reversal’ (i.e. switch in the relative proportions of cells in G0/G1 versus G2/M phase of the 

cell cycle, as assessed by the FUCCI reporter) at early- to mid-stage during differentiation 

that probably relates with cell cycle re-entry. Leveraging qPCR analysis of cells collected at 
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different time points during differentiation, we discuss how this gene expression pattern may 

explain the dynamics of neuronal differentiation from image analysis.  

 

In Chapter 4 we further show that multi-focus image fusion (MFIF) technologies can be used 

to integrate the information from multiple Z-plane positions to yield higher confocal 

microscopy image quality without bringing about excessive phototoxicity, and that it is 

superior to traditional intensity projection methods. We also discuss about possible 

approaches to evaluate the performance of different focusing measures in MFIF workflows. 

We show that Sobel-like filters can be used to evaluate at larger length-scales the angular 

orientation of skeleton branches obtained from ridge detection, and that the orientation and 

distance between branch end points can be used to stitch discontinuous skeletonized images 

by solving linear assignment problem (LAP).  

 

In Chapter 5 we detail collaborative work we did aiming to (1) quality-control cell lineage 

trajectories from image object tracking and locate/clean-up tracks with abnormal tracking 

events; (2) evaluate how well Deep Learning based models perform at predicting the natural 

movements of biological structures by super-temporal resolution image interpolation.  

 

Finally, in Chapter 6 we summarize what we have achieved and discuss future research 

avenues and directions. 
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Chapter 1. Establishing PA-Protein Stem Cell Lines as Tools for Spatial 

Information Positional Photoprinting 

 

This Chapter is dedicated to the memory of the late Dr George Patterson (1971-2021), Senior 

Investigator at NIH, who was our kind collaborator until his untimely passing due to cancer. 

https://www.nibib.nih.gov/about-nibib/staff/in-memoriam-george-patterson 

1. Photoactivatable Proteins: Bringing Spatiotemporal Vision to Imaging 

 

Photoactivatable (PA) fluorophores, including proteins (PA-proteins) and dyes (PA-dyes), 

have been developed to provide useful and flexible tools to label and track specific 

populations or locations of molecules and cells or reveal switching on/off of bioprocesses, in 

vitro or in vivo 175 176 177. They usually possess a changeable conformation in the molecular 

structure which allows an alternation of spectral properties under a certain wavelength of 

laser irradiation, which means a photoactivation from non-fluorescent to fluorescent, a 

photoconversion from one emission wavelength to another emission wavelength, or a 

reversible photoswitching between fluorescent and non-fluorescent state 178 179. The most 

well-known application of PA-Proteins is arguably photo-activated localization microscopy 

(PALM), which uses multiple rounds of photoactivation, excitation and photobleaching of 

individual fluorophores, followed by computational modeling and reconstruction enabling to 

get an ultra-high-resolution image that overcomes the light diffraction limit of traditional 

light microscopy180, 181. Besides that, photoactivation can also be applied to transcriptomic 

profiling, using either traditional methods of labeling 2D or in vivo cell subpopulations by 

single159 or multiple photoactivatable dyes, including Calcein NVOC, PA-JF549 and PA-

JF646 182; or facilitated by a more generalized property of photoactivatable proteins and by 

designing an mRNA-capturing complex (TIVA-tag), which releases Biotin-Cy3-Poly U tag 

under laser irradiation, thereby annealing to poly A tails and capturing cellular mRNAs at the 

https://www.nibib.nih.gov/about-nibib/staff/in-memoriam-george-patterson
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regions of interest 183. These applications provide new insights into both live cell images and 

transcriptomic analysis.  

 

A conclusion of common available photoactivatable proteins is listed as below, mainly based 

on the review in 184:A summary of common available photoactivatable proteins is listed 

below, mainly based on the review in 184: 

 

pa-FP Class pa-FPs ex (nm) em (nm) Brightness Contrast Oligomeric 

State 

Activation PA-GFP 504 517 Medium 70 monomer 

PA-

mCherries 

564 595 Medium 4000 monomer 

  

Conversion PS-CFP2 490 511 Medium > 2000 monomer 

Kaede 572 582 High 2000 tetramer 

KikGR 583 593 High > 2000 tetramer 

mKikGR 580 591 High 560 monomer 

Dendra2 553 573 High 300 monomer 

tdEosFP 569 581 High NA tandem 

mEosFP 573 584 High NA monomer 

  

Switching Dronpa 503 518 High NA monomer 

Padron 396 522 High 140 monomer 

rsFastlime 496 518 High 70 monomer 

rsCherry 572 610 Low 7 monomer 

rsCherryRev 572 608 Low 20 monomer 

KFP1 580 600 Low > 30 tetramer 

FP595 590 600 Medium 70~1000 tetramer 

Table 1.1 A list of available photoactivatable proteins. ex: excitation; em: emission. 
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2. Positional PHotoprinting (POPH): Experimental Design and Choice of PA Proteins 

Our initial plan was to ‘photoprint’ the 2 dimensional (𝑥, 𝑦) coordinate position of cells 

within regions of cell culture by using CRISPR-Cas9 knocked-in cells stably expressing 2 

kinds of PA-proteins (e.g. a PA-green fluorescent protein and a PA-red fluorescent protein) 

and exposing them to 2 different photoactivation excitation gradients along the X and Y axes. 

The idea was that this would result in creating 2 orthogonal axes of varying fluorescence in 

cell intensities such that the exact (𝑥, 𝑦) position of a cell would be recorded by the specific 

combination of photoactivation level of each of the 2 different PA-proteins, thereby encoding 

each cell’s spatial location on the (𝑥, 𝑦) plane (Figure 1.1, top). We gave this approach the 4-

letter acronym ‘POPH’ for POsitional PHotoprinting. The cells could then be sorted by 

fluorescence activated cell sorting (FACS) with their fluorescent signal recorded and their 

transcriptome could be subsequently profiled. In this way, we reasoned in theory we could 

map a cell’s transcriptome back to its original location in culture (according to the extent of 

photoactivation of the 2 PA-proteins, encoding its (𝑥, 𝑦) coordinates) and by extension to any 

information about that cell derived from timelapse microscopy imaging prior to POPH and 

fixation (Figure 1.1).  
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Figure 1.1 The rationale behind establishing a method for POsitional PHotoprinting (POPH). 

2 different PA-proteins could be activated in gradients along 2 orthogonal axes, followed by 

FACS cell sorting according to the extent of photoactivation in each cell and in turn followed 

by scRNA-seq, thus enabling the back-mapping of cell expression profile to cell location in 

2D culture.  

 

As the first step, we need to decide on the PA-proteins to use. The criteria for protein 



36 

 

 

selection were (a) the activation, excitation and emission spectrum of the 2 proteins should 

not overlap, otherwise there would be interference during photoprinting and subsequent 

FACS; (b) there should be an extra channel left for a nucleus fluorescent protein to enable the 

live timelapse imaging and tracking of cells at short time intervals, in our case this could be 

achieved by having cells co-express also e.g. a H2B-miRFP670 fusion protein of histone 2B 

which would emit far red fluorescence distinguishable from the 2 PA proteins. After 

searching for many possible PA protein combinations that could fit the criteria above, we 

identified and selected PA-GFP and KFP1 as suitable candidates to establish positional 

photoprinting.  

 

PA-GFP was first designed and introduced by Dr George Patterson from NIH in 185, where a 

T203H mutation was generated in wild type GFP protein, which significantly increased the 

relative fold change on minor absorption peak (at ~488nm) after photoactivation under 

400nm ultraviolet (UV) exposure, from around 3-fold in wild type GFP to around 100-fold in 

T203H mutant. The mechanism of this photoconversion lies on a photochemistry reaction 

leading to a shift in the chromophore population from the neutral phenolic form to the anionic 

phenolate form. T203H was later known as PA-GFP.  

 

KFP1 was first introduced in 186, as a mutant of PA-protein asCP 187. Unlike its prototype 

showing a highly reversible kindling process (the photoactivation) where the protein drops 

back to non-fluorescent state <10sec after irradiation, KFP1 shows a semi-reversible kindling, 

meaning it will relax to non-fluorescent state similar to asCP upon short irradiation laser 

exposure, but will stay to a relative high extent of activated state (with excitation maximum at 

580 nm and emission maximum at 600 nm) after long exposure. 

 

We obtained a mPA-GFP-H2B-6 plasmid as a gift from Michael Davidson (Addgene plasmid 

#57137, RRID: Addgene_57137). pKindling-Red-N (KFP1) was created by the Lukyanov 

KA group and purchased from Evrogen (Cat. #FP301).  
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We used CRISPR-Cas9 Nickase technology to knock in the target gene. The CRISPR Cas9-

Nickase system uses a mutant of Cas9 enzyme which instead of causing double strand DNA 

cleavage on one site, only induces cleavage on single strand 188. Using 2 guide RNAs with 

Cas9-Nickase targeting neighboring sites on DNA positive and negative strand respectively, it 

can lead to double-strand break, and a desired DNA segment on the donor plasmid can then 

be inserted to the site by the mechanism of homology directed repair 189. 

 

To construct CRISPR knock in plasmids, a template of a CRISPR donor plasmid carrying a 

ROSA-H2B-miRFP670 construct targeting the ROSA26 genomic safe harbor knock-in locus, 

as well as an All-in-One Cas9-Nickase/ROSA26 sgRNA/GFP plasmid, were provided by Dr. 

Sungmin Kim and amplified by a QIAGEN Plasmid Maxi Kit, following the relevant 

protocol. As we wanted the fluorescence of PA-proteins to be localized at the cell nucleus, 

therefore avoiding the diffusion of photoactivated proteins during photoprinting which could 

lead to a reduction of printing efficiency, a histone protein H2B tag was either retained or 

inserted into the donor plasmid upstream of desired DNA segment.  

 

3. Construction of PA-Protein Expression Vectors and Establishment of Relevant Cell 

Lines 

 

The insertion of desired DNA segments followed the strategy of In-Fusion cloning. DNA 

segments were PCR cloned (with Phusion High-Fidelity DNA Polymerase) from original 

plasmid with primers which extend a 15bp homologous overhang to target site on both 5’ and 

3’ end of segment. The target plasmids were digested by corresponding restriction enzymes 

and the insertion of cloned segments were done following the protocol of In-Fusion HD 

Cloning Kit. The constructed plasmid was transformed into NEB 5-alpha Competent E. coli 

using heat-shock protocol, and single colonies were picked for a miniprep using QIAprep 

Spin Miniprep Kit. A restriction enzyme digestion targeting flanking region of the desired 
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segments, followed by gel electrophoresis was performed to initially confirm the successful 

insertion. Plasmid samples were then sent to Sanger sequencing service at Eurofins Genomics. 

A list of primers used for cloning was shown in Table 1.2, and the product plasmid structure, 

as well as plasmid construction workflow, were shown in Figure 1.2. 

 

Source Primers Product 

mPA-GFP-H2B-6 

F: 5’-

AATTCGGATCCTTTAATTAATCGACGGTACCGCC

ACCAT-3’ 
H2B-paGFP 

R: 5’-

TCAGCGAGCTACGCGTTACTTGTACAGCTCGTC

CATGCCG-3’ 

F: 5’-

AATTCGGATCCTTTAATTAATCCACCGGTCGCCA

CCAT-3’ 
Cyto-paGFP 

R: 5’-

ATCGAGAAGCGTCGACCGCCTTAAGATACATTG

ATGAGTT-3’ 

pKindling-Red-N 

5’-CTAAGGATCCACCGGTCG-3’ 

H2B-KFP1 
5’-

TCAGCGAGCTACGCGTGATCTAGAGTCGCGGC-

3’ 

F: 5’-

TACCTTTCTCTTCTTTTTTGGACCGTTGTGGCCC

AGCT-3’ 

KFP1-NLS 1st 

Product 

R: 5’-GCCACCATGGCCTCCCTGCT-3’ 

F: 5’-CTCAAGCTTCGAATTCGCCACCATGGCCT-

3’ 
KFP1-NLS 2nd 

Product 
R: 5’-

TTAACAACAACAATTGTACCTTTCTCTTCTTTTT

TGG-3’ 

KFP-NLS (Without 

Stop Codon) 

F: 5’-

CCAAAAAAGAAGAGAAAGGTATAGCAATTGTTG

TTGTTAAC-3’ 

KFP1-NLS Final 
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R: 5’-TTTTGGACCGTTGTGGCCCAG-3’ 

Table 1.2 Primers Used for Plasmid Construction 

 

To establish the CRISPR Cas9 knock in cell line, these plasmids were transfected into hPSC 

line H9 and cancer cell line U2OS (See Appendix for details of cell culture) using FuGENE 

HD Transfection Reagent together with All-in-One Cas9-Nickase/ROSA26 sgRNA/GFP 

plasmid.  For H9 cells which are sensitive to toxicity brought about by G418 selection, after 

transfection, 3 rounds of FACS were performed to purify the cells with desired fluorescence. 

For pa-GFP cell lines, the gate for FACS sorting was configured to only contain a cluster of 

cell population which has similar intensity of V.525 signal representing the excitation 

fluorescence of PA-GFP under 405nm UV exposure. The cell exposure under UV during 

sorting was at microsecond level which was not sufficient of inducing permanent 

photoactivation of endogenous PA-GFP. For U2OS cells, cells were firstly treated with G418 

at 300ug/ml to select cells with drug resistance, and after sorting cells were sorted into each 

well of a 96 well plate to form a clonal single cell colony. 
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Figure 1.2. The construction strategies for H2B-paGFP, Cyto-paGFP and H2B-KFP1. The 

H2B-PAGFP/PAGFPPA-GFP/PA-GFP fragment was cloned from donated plasmid using 

PCR, and In-Fusion cloned into desired site on CRISPR knock-in donor plasmid. The 

construction strategies of H2B-KFP1. Note that H2B-KFP1 is constructed on the backbone of 

H2B-PA-GFP, while the strategy is similar to that of H2B-paGFP.  

 

To validate the successful knock-in of target sequences, the total DNA of cells were extracted 

using DNeasy Blood & Tissue Kit. A junction PCR using primers targeting ROSA26 site was 

performed on the total DNA to confirm the correct insertion of segments. The primer for 

junction PCR was designed to both detect (1) the successful knock-in of desired sequence, by 

targeting a conserved loci on this sequence (~1000bp), and (2) the integration of sequence to 

ROSA26 site in cell genome, by targeting a locus upstream of ROSA26 site (~2000bp). To 

establish a dual knock-in cell line with expressions of PA-GFP and H2B-miRFP70, ROSA-

H2B-miRFP670 plasmid and ROSA-Cyto-PAGFP or ROSA-H2B-PAGFP plasmid, along 

with All-in-One Cas9-Nickase/ROSA26 sgRNA/GFP plasmid, were co-transfected into the 

H9 WT cell line using the similar strategy. We later confirmed the homogenous fluorescence 
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of PA-proteins in the knock in cell lines under Yokogawa CV7000S spinning disk confocal 

system. We also confirmed successful photoactivation of PA-GFPs and KFP1 using the 

‘Fluorescence Recovery after Photobleaching’ (FRAP) mode under Leica SP8 laser scanning 

confocal microscope (LSCM) (Figure 1.3). 
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Figure 1.3 The constructed H2B-paGFP and H2B-KFP1 cell line. (A) The Junction PCR 

designation (top) and its results (bottom). SV40PA-R and FUCCI2a-seq FW1 target loci on 

inserted sequence, and Pre-ROSA5HA-F target loci on genome upstream of ROSA26. H9 

Knock in cell line 2 showed 2 correct band sizes, which indicated that the desired sequenced 

was integrated on ROSA26 site. (B) The photoactivation process of H9 H2B-PA-GFP/H2B-

miRFP670 cell line. (C) Left: photoactivation of H9 Cyto-PA-GFP/H2B-miRFP670 cell line, 

the marked circles on the image are the regions of interest (ROIs) manually defined in Leica 

SP8 FRAP mode. Note that although the laser irradiation is strictly limited in the ROIs, the 

photoactivated PA-GFP diffused to cytoplasm outside of ROIs. This could be useful, though, 

to label all the parts belonging to one cell on image, like dendrite structure, by only 

photoactivating a small region. Right: photoactivated U2OS H2B-KFP1 cell line. The 

fluorescence of KFP1 form ‘little condensates’ in cell nuclei, as well as showing highly 

heterogenous fluorescence intensities. 

 

To establish the PA-protein expressing hNSCs cell line, we differentiated the corresponding 

hPSC line with Gibco PSC Neural Induction System. In order to confirm the normal 

biological function of differentiated cell line, we performed neuronal differentiation with the 

application of B-27 in neurobasal medium on a coated 22 mm * 22 mm square cover glass in 

a 35mm LCI Chamlide magnetic chamber. After 12 days of differentiation, the cells were 
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fixed by 4% paraformaldehyde (PFA) and immunohistochemistry (IHC) was performed using 

mouse IGG anti human MAP2 as primary antibody and CF555 tagged goat anti mouse IGG 

as secondary antibody following the relevant protocol. After the incubation and wash of 

secondary antibody, the cover glass was mounted on a Superfrost glass slide using FluorSave 

Reagent as mounting buffer, then imaged on Leica SP8 STED LSCM platform. We 

confirmed a significant increase of MAP2 expression after the differentiation process, 

suggesting the hNSCs can successfully differentiate into neuronal cell line, and FRAP 

experiment also showed that both H2B-miRFP670 and H2B-paGFP are sustainable after 

fixation and IHC, and PA-GFP retains an ability of being photoactivated as well (Figure 1.4). 

 

 

Figure 1.4 The established hNSC H2B-PA-GFP/H2B-miRFP670 cell line. (A) 
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Immunohistochemistry (IHC) results of the cell line before (left) and after (right) neuronal 

differentiation. There is an obvious increase of MAP2 signal after differentiation which 

accumulates at axon structures. (B) Photoactivation of the cell line after IHC. Nuclear H2B-

miRFP670 fluorescence was retained and PA-GFP in the square ROI was successfully 

activated in ~10 frames of scanning. 

 

Despite the success of PA-GFP knock in, the knock in of H2B-KFP1 was very challenging 

and troublesome. After the transfection of donor plasmid, both U2OS cell and H9 cell showed 

massive cell death, suggesting a potential cytotoxicity of protein expression. The KFP1 in the 

cell nucleus showed highly heterogenous fluorescence intensity, and the fluorescence was 

unevenly distributed, forming ‘condensates’ (aggregates) in the nucleus (Figure 1.3 C). 

Considering the tetramer-form of KFP1 protein and its potential deleterious effect when 

integrated into chromatin, we decided to attach a SV40 Nuclear Localization Signal (NLS) 

PKKKRKV sequence to the end of the KFP1 protein. SV40 NLS was firstly be found to have 

the ability of localizing proteins into cell nucleus in 190, by the mechanism of binding to 

soluble transport factor karyopherin which transport the protein into nucleus through nuclear 

pore complex.191 To insert this long NLS without designing PCR primers of extra length and 

overly complex sequence which will badly influence its annealing leading to higher rate of 

failure, the cloning was done in 2 rounds of PCR gradually extending the flank sequence. 

After PCR, we realized the inserted KFP1-NLS segment lacked a stop codon, therefore an 

extra procedure of mutagenesis to add a TAG stop codon at the end of NLS was performed. A 

full illustration of the process in shown in Figure 1.5. 
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Figure 1.5. The construction strategy of KFP1-NLS plasmid. The KFP1 sequence was cloned 

from the original KFP1 plasmid we purchased. Using 2-stage PCR, a complete NLS was 

appended downstream of KFP1 sequence. The KFP1-NLS sequence was then inserted back 

to its original backbone. We then used mutagenesis to induce a stop-codon at the end of its 

coding sequence. We then used In-Fusion clone to insert KFP1-NLS to ROSA26 CRISPR 

donor plasmid backbone. 

 

However, even using the KFP1-NLS construct, the problem was not fully addressed. The 

heterogeneity and condensation of KFP1 fluorescence still exists in the cell nuclei (Figure 1.6 

Part-I A). The cytotoxicity after transfection of plasmid was still dominant, and an 

experiment was carried with variables controlled to confirm this cytotoxicity is due to the 
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expression of plasmid, instead of the transfection reagent, the plasmid DNA solution or cell 

situation (Figure 1.6 Part-I C). Differently to PA-GFP which emits green fluorescence under 

405nm UV before activation, KFP1 does not show any fluorescence before activation, and its 

irreversible photoactivation requires long exposure under the irradiation laser, which makes it 

tricky to purify cells based solely on KFP1 expression by FACS (Figure 1.6 Part-II A, from 

186).  

 

For U2OS cells, purifying cells by G418 selection could yield a cell population with 65%~75% 

of cells showing KFP1 fluorescence, however for hPSCs such as H9 cell line, treating cells 

with G418, even with an extremely low concentration, will lead to cell death or altered cell 

morphology. We therefore explored what extent of exposure could efficiently photoactivate a 

large population of KFP1 transfected cells irreversibly, thus allowing for consequent FACS. 

We used 2 photoactivation strategies: (a) ‘Exhausted’ photoactivation which perform a high-

energy laser exposure of 2 secs, repeating tandemly 9 times every minute followed by 

imaging to evaluate activated fluorescence intensity; (b) ‘Relaxed’ photoactivation which 

only perform a laser exposure of 5 secs every minute. The imaging was done on Yokogawa 

CV7000S platform lasting around hour. The mean intensity of the frames was measured by 

ImageJ and plotted as a curve (Figure 1.6 Part-II B). From the results, it is obvious that the 

photoactivation is highly reversible. Although the fluorescence, reflected as a general trend of 

field of view (FOV) mean intensity curve, showed some increase across time, the saturation 

and even photobleaching effect was also significant. We then sorted the cells activated in the 

experiment by FACS. However, the cell number passing gate was few and there were no cells 

seeded that survived after FACS. This also suggested a potential phototoxicity effect of long 

time photoactivation. 
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Figure 1.6-Part-I. The fluorescence properties of KFP1-NLS. (A) Nuclear fluorescence of 

KFP1-NLS transfected cells. (B) The local sequence of the NLS tag. (C) Transfection of 

KFP1-NLS lead to massive cell death. KFP+ TR+: both KFP1-NLS donor plasmid and 

transfection reagent in medium; PA-GFP+ TR+: PA-GFP transfection group; KFP+ TR-: A 

control group with only KFP1-NLS donor plasmid, transfection reagent absent.  

 

Figure 1.6-Part-II. (A) Chart showing semi-reversible photoactivation of KFP1 from its 

original publication. Top: reversible activation. Bottom: irreversible activation, where a 

certain extent of reversing still happens; Blue line: asCP; Red line: KFP1. (B) Mean intensity 

curve of FOVs in KFP1 cell culture, both of exhausted group and relaxed group. Right shows 

the pattern of fluorescence change in each activation iteration. 
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4. Evaluating the Optical Properties of PA Protein Cell Lines, by FACS and Confocal 

Live Imaging 

 

We then asked the similar question, as raised during addressing the problems of KFP1, about 

PA-GFP. Although PA-GFP is shown to be much more ‘cell-friendly’ compared to KFP1, we 

wanted to know the properties of fluorescence dynamics (a) under photoactivation and (b) 

during the live imaging/sorting after photoactivation.  

 

To answer question (a), we performed FRAP experiment on U2OS cells with Cyto-PA-GFP 

expression (Figure 1.7 A). Multiple ROIs (10~50 varying from the experiments) were 

selected on cell area under an LSCM, and these regions were photoactivated using different 

UV laser intensities (represent by the percentage of laser power), or using different exposure 

time length (represent by the frame number of scanning) under the FRAP mode of 

microscopy. More specifically, laser scanning of defined ROIs was performed at configured 

iterations, and for each iteration there was 1 frame scanning using high energy UV to 

photoactivate (bleaching frame) and 1 frame scanning using low energy 488nm laser to 

evaluate the extent of photoactivation (measuring frame). The mean fluorescence intensities 

of each ROIs in the measuring frame were recorded by Leica SP8 LAS X software and 

exported to csv format for further analysis.  

 

We found that (I) using longer exposure (30 secs against 5 secs) of low energy 405nm UV 

(30% power) for activation will lead to higher after/before fluorescence intensity ratio. Using 

a Kolmogorov–Smirnov test (KS test) upon the cumulative distribution functions (CDF) of 

the 2 experimental groups showed significantly different distribution of the functions, with 

𝛼 < 0.001 (Figure 1.7 Part-I B). By plotting the distribution (violin plot) and mean value 

(curve plot) of post-activation fluorescence across all ROIs, we then noticed that, 

accompanied with the increase of exposure time, there is a saturation and even decrease of 

activated GFP fluorescence (Figure 1.7 Part-I C), which could probably due to 
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photobleaching, a process of fluorophore permanently losing its ability to fluoresce, because 

of non-specific reactions driven by light energy 192.  

 

By plotting a scaled (standardizing their final intensity) fluorescence intensity curve of all 10 

ROIs during photoactivation, we also found (II) this saturation and decrease of fluorescence 

is more dominant when using higher power of UV for activation, which also leads to more 

heterogenous intensities across all ROIs (Figure 1.7 Part-II). From the result, we think lower 

power of activating UV, like 25%~30% percent power may lead to more consistent result, 

although it is not always practical to use lower power, especially when photoactivation 

efficiency becomes a major issue, under situations such as photoactivating large area of cells 

in a culture plate. 

 

 

Figure 1.7-Part-I Evaluation of PA-GFP optical properties under LSCM. (A) An example of 

how are FRAP experiment performed on LSCM. (B) Longer exposure time (30 secs to 5 

secs) will lead to higher extent of photoactivation. A Cumulative Distribution Function (CDF) 

was generated according to the ROIs fluorescent intensities distribution, and KS-test was 

performed on the 2 CDFs, confirming a significantly different distribution. (C) When 

increasing the exposure time to > 60 secs, the activated intensities showed a saturation.  
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Figure 1.7-Part-II The timelapse experiment of activating PA-GFP with different percentage 

of laser power. When the power increased to over 50%, there was a decrease of activated 

intensity, potentially due the photobleaching under strong irradiation laser. Also, the intensity 

across different ROIs became more heterogenous. Note here all the curves went through 

‘ceiling’ normalization, which means they were scaled by the intensities of last frame, making 

all the curves merge at a single end point. 

 

To answer the question (b), we performed photoactivations on 2D continuous cell culture 

followed by either FACS or long timelapse live imaging (Figure 1.8 - Figure 1.11). We found 

that a clear pattern of gradient intensity, which was easy to be distinguished from noises, was 

formed after a photoactivation with incremental scanning frame across culture region (Figure 

1.8 A).  

 

Nevertheless, this gradient pattern was still not sufficient of mapping individual cells to their 

spatial location with very high confidence, as there was overlap of fluorescence intensity 

across different ROIs. We then photoactivated and performed FACS on the printed and 

disassociated U2OS cell culture, which had H2B-PA-GFP knocked in, either within or 

outside of scanning region. As a reference, a plate of purely non-activated U2OS H2B-PA-
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GFP cells (marked as wild type) were also disassociated and sent for FACS. The single-cell 

signals, including the 525nm green fluorescence under the excitation of 405nm UV laser 

(V525.A) and 488nm blue laser (B525.A), as well as FSC A/H and SSC A/H signal which 

represent cell volume and shape, were recorded during sorting and were exported on csv 

format for further analysis. We used the data to perform a data filtration and plotting again in 

the R environment (https://www.r-project.org/).  

 

We noticed that, although the photoactivated and non-activated U2OS H2B-PA-GFP cells are 

not completely separable just considering B525.A signal (as shown by green arrow in Figure 

1.8 Part-II B), on the 2D chart considering both log-transformed B525.A and V525.A, wild 

type H2B-PA-GFP U2OS, non-activated H2B-PA-GFP U2OS and activated cells were very 

well grouped (Figure 1.8 Part-II A, right bottom). We therefore plotted the distribution 

density of the signal ratio of B525.A and V525.A (B2V ratio), and found the overlap of cell 

populations were better separated (Figure 1.8 Part-II B, bottom). Interestingly, when plotting 

the distribution of cells’ 525nm fluorescence intensity under 405nm laser, we found a ‘basin’ 

on the distribution peak (shown by yellow arrow in Figure 1.8 Part-II B, top), which could 

possibly correspond to the cells with non-activated form of PA-GFP protein depleted from 

photoprinting. 

 

 

https://www.r-project.org/
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Figure 1.8-Part-I. 1D Photoprinting of cell culture. Purple rectangle shows the region been 

photoactivated and measured. The deep blue curve shows the scaled result directed measured 

by LSCM software, where we could see the 1D intensity profile before activation is noisy, 

not being able to distinguish from background, while after photoprinting a clear gradient 

pattern was formed. The left bottom chart shows unscaled pattern, in which we could figure 

out a huge increase of fluorescence after photoactivation.  
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Figure 1.8-Part-II. (A) The photoactivated, non-activated and wild type U2OS cell 

population from FACS. FSC: Forward Scatter; SSC: Side Scatter; A: Area of the signal peak; 

H: Height of the signal peak. Cells were plotted by their scatter signal and the shape/size 

outliers which are visually distinguishable were filtered out (filter threshold shown by dotted 

line on chart). The cells passed through filtration were then plotted according to their 

fluorescence under UV or blue laser (right bottom). (B) The density distribution of (a) cell 

green fluorescence intensity under UV (left); (b) cell green fluorescence intensity under 
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488nm blue laser (right) and (c) cell B2V ratio (bottom).  

 

Given this satisfying result, we asked whether this workflow could be also applied to H9 cells. 

We then tested whether a 2 step 1D photoprinting in H9 H2B-PA-GFP/H2B-miRFP670 cell 

culture could generate 3 FACS separable cell populations: non-activated cells, weakly-

activated cells and strongly-activated cells. We photoprinted the relevant cell line on LSCM 

with staged exposure time, either 20 scanning frames or 50 scanning frames. Therefore, we 

were able to generate 2 microscopically visually-distinguishable activated cell populations 

(Figure 1.9 A), with weaker or stronger 525nm fluorescence under 488nm. As a reference, we 

sent another culture plate of purely non-activated H9 H2B-PA-GFP/H2B-miRFP670 cells for 

FACS as well. 

 

To our disappointment, though, the weakly and strongly activated H9 cell populations were 

not completely separable, even considering the B2V ratio. As Figure 1.9 B shows, after 

manual scatter filtration on the chart, when cells were plotted by V525.A and B525.A (top 

left), although we could roughly deduce from the chart that a cell population (marked by 

lower dark blue region) had higher B525.A level compared to the population marked by 

upper dark blue frame, these 2 populations did not have a clear border line. Furthermore, a 

group of non-activated H9 cell, as marked by red frame, also fell into the upper dark frame, 

even though they should not have B525.A signal at all (indicated by red region).  

 

When plotting the B2V distribution density, we could not find any significant additional peak 

beside non-activated peak and the single activated peak (top right), only a very minor ‘spike’ 

was found (indicated by orange arrow). Considering that PA-GFP protein was H2B-tagged 

which means it will condense along with chromatin during the G2-M phase of cell cycle, 

which could potentially contribute to the heterogeneity of intensity, and this cell line also has 

a far-red nuclear fluorescence, H2B tagged miRFP670, we decided to normalize the H2B-PA-

GFP signal, either B525.A or V525.A, by dividing it by the H2B-miRFP670 signal. After the 

normalization, the 2 activated cell populations could be better separated on the chart (bottom). 
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However, the ‘false positive’ non-activated cell population continued to be a problem 

(indicated by red square). 

 

 

Figure 1.9 Attempt to FACS separate 2-stage photoprinted cells. (A) Cells been 

photoactivated by either 20 frames or 50 frames to form population of weak (left 2) or strong 

(right 2) images. (B) FACS data plotted using R package ggplot2. Before normalizing with 
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miRFP670 signal, the differently activated cells were hard to be separated (top left). And on 

the density plot, the peak of activated cells did not show a clear two-peaks pattern.  After 

normalized by miRFP670 signal, differently activated cells are now a bit more separatable. 

However, the ‘false positive’ non-activated cells were not eliminated in this way (indicated by 

red polygon before normalization and red square after normalization).   

 

We then tested the application of PA-GFP photoprinting in long timelapse live cell imaging, 

the workflow of which is introduced in Figure 1.10. The 525nm green channel and 670nm 

far-red channel were imaged every 5mins, for a timelapse session of 12 hours, which was 143 

time points in total (Figure 1.10 Part-I). Unlike in FACS we used B2V ratio for distinguishing 

activated and non-activated cells, during live imaging we wanted to avoid frequent imaging 

under high energy UV exposure, because of its adverse influence on cell viability 193.  

 

We therefore used a scaled PA-GFP fluorescence intensity, similar to the strategy we used 

before, by dividing it with the intensity of far-red signal. The activated and non-activated cell 

could then be represented by 2 peaks on histogram, with the ‘valley’ location instable during 

imaging (Figure 1.10 Part-II Left). To dynamically determine the threshold for separating cell 

populations, an Otsu thresholding method 194 was applied. Plotting the cell population point 

to a 2D plane with comparison to its corresponding image frame validated that the separation 

method can faithfully represent the real cell populations in fluorescence (Figure 1.10 Part-II 

Right).  
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Figure 1.10-Part-I. Workflow of post-activation live imaging. 6 square regions in H9 cell 

culture were photoactivated under LSCM, and these regions were further imaged at 5min 

interval under spinning disk microscopy. The cell culture was finally fixed and got PA-GFP 

fluorescence checked again under LSCM. 
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Figure 1.10-Part-II Representing the cell population in image analysis. (A) The threshold 

distinguishing activated and non-activated cell population moves with time, due to the 

fluorescence decay. (B) Plotting the population to 2D plane and the comparison between the 

corresponding frame under microscopy.  

 

We used the software LEVER 195 developed by the group of our collaborator Prof Andy 

Cohen (Drexel University, USA) to segment and quantify cells in images, followed by 

plotting of several metrics of the cell population. We found there was a decay of activated 

fluorescence to over 50% after 12 hours of imaging (Figure 1.11, Up-left). We also found a 

decrease of cell area accompanied by increase (and later decrease) of cell number at 4 hours 

(Figure 1.11, Bottom, indicated by yellow arrow).  

 

 

Figure 1.11 The fluorescence of photoactivated cells decayed over time (top), and there was 

a sudden decrease of cell area compared to non-activated cells, accompanied by the peaking 

of cell number, followed by the decrease of cell number at around 4 hours. This is unique in 

photoactivated cells, where cell areas in non-activated cells remains very consistent (bottom 
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right). 

 

When looking into further details of this phenomenon, we found that cells after activation 

showed unhealthy morphology, producing cell debris (which contribute to the reduction of 

mean cell area in statistics) followed by cell death (Figure 1.12 A, middle). In general, this 

was reflected by the decrease of cell cumber in contrast of the increase of non-activated in the 

same FOV (Figure 1.11 C, up). On the other hand, the photoactivated cell indeed showed 

sustainable green fluorescence making it easy to be distinguished from other cells and tracked, 

although there is also indeed a general trend of gradual decrease of the post-activation 

fluorescence intensity. Some of the activated cells could commit to going through normal 

mitosis and the fluorescence could be inherited by daughter cells (Figure 1.11 B). 

 

 As a conclusion here, PA-GFP was proven to be a powerful tool in live imaging, and a 

segmenting, tracking, and quantifying workflow was established, however problems also 

existed, especially regarding the spatial resolution and cell phototoxicity, which limited its 

application, which made us wonder if there is any other alternative way of photoprinting. 
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Figure 1.12 Further details of the live imaging on photoactivated H9 cells. (A) Cell image at 

0-hour, 3-hour and 12-hour post photoactivation. (B) A mitosis event of photoactivated cells. 

(C) Top: The cell number of activated and non-activated cells over time, to make them 

comparable on chart, the number of activated cells were timed by 6. Bottom: The cell 

number, cell area and net fluorescence intensity (with background median extracted) over 

time. The scatter showed individual cell sizes been estimated. Note that massive cells with 

small size were detected before time point 50, which are possibly cell debris instead of real 

cell.  

  



61 

 

 

5. Attempt of Photoprinting 2D Culture with HaloTag Ligand Photobleaching 

 

Besides photoactivating KFP1 and PA-GFP fluorescent proteins, we also tried to photoprint 

cells using photobleaching. Using a H9 H2B-HaloTag cell line kindly provided by Dr. S. Kim, 

we performed HaloTag ligand staining and photobleaching. HaloTag is a modified bacterial 

haloalkane dehalogenase protein tag which was firstly reported by 196. It can cleave halides 

from aliphatic hydrocarbons by a nucleophilic displacement mechanism, and therefore form a 

covalent bond between the enzyme itself and its hydrocarbon substrate, which, in the 

situation of its biological applications, is the synthetic fluorescent dye. By a manually 

induced mutation on the histidine of its wild type protein, the formation of covalent bond 

becomes irreversible, allowing an enriched fluorescent dye localized at where HaloTag is 

expressed. In our case, we used 2 HaloTag ligands for photoprinting, namely Oregon Green 

488 dye (OrGn) and Janelia Fluor HaloTag Ligand 646 (JF646).  

 

This photobleaching process was run by FRAP mode on a laser scanning confocal 

microscope. 6 ROIs (3 ROIs for each dye) were defined for the photobleaching: for the 

photobleaching of each HaloTag ligand, ROI #1 was defined as a square of 400 * 400-pixel 

size under 40X magnification lens, ROI #2 as 233 * 400 pixel and ROI #3 as 167 * 400 pixel. 

ROI #1 was scanned for 60 frames of 400Hz under LSCM, using defined laser power for the 

specific dye, ROI #2 scanned for 120 frames and ROI #3 scanned for 360 frames. Therefore, 

the cells in ROI #1, #2, and #3 were respectively scanned for 60, 180 and 540 frames in total. 

The ROIs for the other dye were defined at 90° angle to the first one (Figure 1.13 Part-I B).  

 

At the initial attempt, we found there was a ‘saturation’ of HaloTag staining when more than 

1 fluorescent ligand was applied (Figure 1.13 Part-I A). When increasing the dose 

concentration of one ligand, the fluorescence of the other ligand decreased. We hypothesized 

that this to be the result of competitive binding of HaloTag ligands. To get the fluorescence of 

2 ligands comparable, we tested and chose the concentration of OrGn to be 800nM and JF646 
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to be 40nM. Another problem during the attempt was the interference of bleaching lasers. We 

found that the bleaching of OrGn under high intensity of 488nm laser will also bleach the 

fluorescence of JF646 (Figure 1.13 Part-II, right, extra bleached JF646 region indicated by 

red circle). Profiling cell location and k-means clustering (using MATLAB k-means function, 

3 classes) based on cell fluorescence intensity showed that this interference of bleach led to 

unexpected cell clustering result, where the cells with JF646 stain in the ‘extra bleached 

squared region’ by 488nm laser were clustered as one group, while cells in 540 frame JF646 

bleaching group which happens to fall in 60 frame OrGn bleaching group, where interference 

from 488nm laser was trivial, were clustered together with 180 frame JF646 bleaching group 

(Figure 1.13 Part-II, Up-left). We found that although 488nm laser could lead to 

photobleaching of JF646, 633nm laser could not in reverse photobleach OrGn significantly 

(Figure 1.13 Part-II, Bottom-right). Based on this phenomenon, we firstly performed 

photobleaching of OrGn, followed by photobleaching of JF646. By giving extra JF646 

scanning to less-interference region, we finally made to generate a relatively even grid of 

photoprinting, although a minor interference of 488nm laser is still of visible (Figure 1.13 

Part-II, influenced region indicated by yellow square).  

 

 

Figure 1.13-Part-I. Competitive binding of HaloTag ligands and the designation of 

photobleaching ROIs. (A) Green and purple surface showed the relationship between the 

HaloTag ligand fluorescence intensity under microscopy and the concentration of the 2 

ligands. (B) The configuration of the ROIs in FRAP mode of LSCM. We used this strategy to 
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reduce the photobleaching time as much as possible. 

 

Figure 1.13-Part-II Cross interference of photobleaching lasers. 488nm laser can lead to 

photobleaching of JF646, and result in unexpected cell clustering based on nuclear 

fluorescence intensity. However, 633nm laser will not photobleach Oregon Green. We then 

used a sequential photobleaching which firstly photobleach OrGn, followed by 

photobleaching of JF646, and later correct the uneven photobleached JF646 pattern by 

selectively making extra bleaching to less-influenced region. 

 

We then followed the protocol of watershed segmentation on MATLAB official website 

(http://www.mathworks.com/help/images/ref/watershed.html) to segment the printed cells in 

the image area, recording the mean intensity in the cell and again performed k-means (k=9) 

clustering on the ‘evener printed’ cell culture.  Unexpectedly, when considering cell signals 

both in 525nm and 670nm channel, which gave rise to 9 clusters, the cells were clustered in 

an extremely messy manner (Figure 1.13 A, right most). We then changed the strategy to 

perform k-means clustering on each channel individually. We found that when setting the 

cluster number to 3 in OrGn channel, cells happened to fall on the border of printing ROIs, 

which were not fully bleached, and were clustered into 1 group, while the cells in 180 frame 

http://www.mathworks.com/help/images/ref/watershed.html
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bleaching and 540 frame bleaching ROIs were grouped together (Figure 1.13 A, B. Border 

cells marked by red/yellow links). By changing the cluster number to 4 which allows to 

cluster those ‘border cells’ in an extra group, the clustering can then show a uniform pattern 

which roughly represent the 3 printing regions. However, the clustering result of JF646 

bleaching channel showed messy pattern no matter setting cluster number to 3 or 4 (Figure 

1.13 B, middle and right.). Apparently, the highly heterogenous fluorescence intensity after 

bleaching (Figure 1.13 C) badly influences the grouping result of cells by their intensity, 

which limited the use of step-wise bleaching-based photoprinting. 
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Figure 1.13 (A) ‘Evenly’ photoprinted cell culture. Rightmost is the 9-class k-means 

clustering result for 4 times. K-means clustering, whether using the traditional Lloyd 

algorithm 197, or the improved k-means ++ algorithm 198, will pure randomly pick-up the first 

2 cluster centroids. Both algorithms will iterate through all the observations, reassign to 

minimize the summed distances of observations to the centroid it assigned to. Therefore, the 

clustering result will not be identical every time, because of the random seeding of centroids. 

(B) 3/4 class k-means clustering of each channel individually. (C) Points in 3D and 2D 

showing the intensity of cells across spatial variable X and Y. Note the outliers which bring 

heterogeneity and difficulty for correct grouping of cells. 

 

6. Conclusions 

 

In this chapter, we set out with the aim to establish a pipeline that could preserve the spatial 

information of cells for scRNA-seq, we. To that end we leveraged PA-Proteins as tools for a 

grid-wise cell culture positional photoprinting. By carefully deciding the criteria for 

activation, excitation and emission wavelengths, we selected two PA-proteins suitable for 

POPH: PA-GFP and KFP1. 

 

The construction of CRISPR-Cas9 knock-in plasmids allowing the nuclear or cytosolic-

expression of PA-GFP was easy, while that of KFP1 was hard, as endogenous expression of 

H2B-tagged KFP1 led to excessive cell death. We further used NLS tag for the nuclear 

expression of KFP1 while the cell death issue was not fully addressed, and the optical 

properties of KFP1 made it extremely difficult to establish the relevant cell lines in stem cells, 

including H9 and NSC. 

 

When testing PA-GFP photoactivation in cells, we found the post-activation fluorescence 

intensity was highly heterogenous, especially when photoactivated under high laser power. 

Reducing the irradiation laser power could help improve the problem of heterogeneity, but 
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potentially unfortunately also lower the photoprinting efficiency, which could become 

especially problematic when applied to photoprinting large areas of cells. Later experiments 

performing FACS after photoprinting further validated the existence of post-activation 

heterogeneity. Although during analysis of FACS data, scaling the post-activation signal with 

pre-activation signals and other reference signals can to some extent reduce heterogeneity, 

considering the real-time nature of FACS it could be tricky to further apply more complex 

processing protocols on the signals, and the current protocol was still insufficient to 

distinguishing cells having been photoprinted with different exposure times, indicating the 

need for further efforts to increase the resolution of PA-GFP-aided photoprinting. 

 

Besides the FACS experiment, we also applied PA-GFP photoprinting to timelapse live 

imaging of H9 cells. We found the post-activation cellular fluorescence of PA-GFP was 

sustainable despite a general trend of reduction. However, it is also obvious that either the 

process of photoactivation, or the imaging of post-activated PA-GFP, leads to exacerbated 

cell death compared to non-activated cells. In the future, different photoactivation protocols 

and longer post-activation imaging sessions could be tried to further test the potential of 

applying PA-GFP in live imaging of stem cells, as it has been proven to be a powerful tool in 

imaging. 

 

We also tried another route of photoprinting that uses photobleaching of fluorescent HaloTag 

ligands, instead of activation of PA-proteins, to establish photoprinted intensity gradients. By 

carefully testing and recording HaloTag ligands’ fluorescence under different concentrations, 

we addressed the problem of ligand competitive binding. By adjusting the order of 

photobleaching laser application, we (to some extent) addressed the problem of cross-

interference during bleaching where 488nm laser used to bleach Oregon Green will also 

bleach JF646. However, there are still 2 major challenges (a) the photobleaching efficiency 

and (b) the resolution of post-bleaching fluorescence, which was proven to be problematic by 

cell segmentation and k-means clustering of nuclear fluorescence. Both PA-GFP and HaloTag 

ligands were found suitable for photoprinting although further refinements are needed to 
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generate distinguishable cell populations. 

 

Ultimately, given the challenges with developing the POPH technology, and given the fact 

that in the meantime spatial ‘omics technologies based on in situ probing, sequencing or 

capturing began to be published and became quickly mainstream 199 200, we decided to cease 

work in this project. Of note, although spatial ‘omics technologies have largely accomplished 

our original intention behind the development of positional photoprinting, we think that 

POPH could have unique applications that are not possible by spatial ‘omics, in particular in 

the context of deep tissues where photoactivation could be performed not just along X and Y 

but also Z (depth) axis of samples and used to encode depth information in a way that is 

currently not feasible with spatial ‘omics approaches. This might require further development 

of the POPH approach for instance by multiplexing different photoactivatable probes in order 

to address the above mentioned photoprinting-resolution issue182. Emerging developments 

like DNA nanoball in situ capture technology provide with an imaging-free tool to profile 

spatially the transcriptome at subcellular level, which makes it possible to perform multi-

channel live imaging of target tissues without influencing consequent spatial sequencing 

results201. For the reasons above, we expect there is likely future scope to revisit POPH 

approaches, where POPH-like methods may be utilized to establish a spatial-temporal atlas of 

cell population dynamics, while ‘capture-and-sequencing’ based methods can further extend 

the ‘omics profiling resolution to single-cell level. 

  



68 

 

 

Chapter 2. Analyzing in silico scRNA-seq Data to Explore Factors Involved 

in Cell Fate Decisions 

 

1. Selection-seq: A Conceptual Experimental Model Linking Transcriptome to Image 

Phenotype by Selective Photoactivation 

 

In chapter 1, we tested 2D positional photoprinting or POPH with either photoactivation of 

PA-proteins or photobleaching of HaloTag ligands. While our preliminary results were 

exciting, we came to realize that step-wise photoprinting (at least in the way in which we 

were carrying it out) was insufficient to generate FACS-separable cell populations of more 

than 1 activated or bleached group. We therefore wondered whether there could be some way 

of retaining the information of cell phenotype during live imaging for later transcriptomic 

profiling using just 1 labeled cell group. An intuitive idea is to label the cells of each 

phenotype in each well, respectively, and in this way, we could get ‘pure’ populations of each 

phenotype for sequencing/expression profiling. This plausible method however, is sometimes 

impractical as specifically photoactivating sufficient number of cells in the same phenotype 

within a highly heterogenous culture is difficult, time consuming and labor intensive. When 

considering phenotypes of cell behavior during live imaging, it could be even more time 

consuming as we need to computationally segment, lineage and classify cells into different 

types within image stacks, which would take days before we could make any labeling on cells 

that we could confidently assign to a given phenotype.  

 

One acceptable substitution for the method above is to label a niche of cells, which could 

roughly e.g., comprise 1~3 phenotypes in total, where 1 phenotype may be dominant and the 

others constitute a minor cell subpopulation. This labeling can be done immediately after 

imaging without any need for knowledge about cell phenotype during live imaging, which 
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could be backtracked thereafter after labeling. In this way, we could get the proportion of 

phenotypes in labeled and sorted cell populations. After single-cell RNA sequencing, we 

could then get a matrix of expression features of all the cells, with a certain cell 

subpopulation labeled with photoactivated PA-protein. We would know the proportion of 

phenotypes in this labeled population, as well as the expression features of every cell of the 

population, and our goal would be to use the information to predict the phenotype of other 

unlabeled cells, which only have expression features known (Figure 2.1, A). 

Based on considerations above, we decided to pursue this approach and we designed a 

conceptual experiment termed ‘Selection-seq’. Imagine we have got a M * N matrix of cell 

expression profiles, with each row 𝑂𝑖 (𝑖 ∈ 𝑀) as observations (cells) and each column 𝐹𝑗 (𝑗 ∈ 𝑁) 

as features (gene expression quantity). Among all the observations, there are altogether K 

phenotypes, and their proportions among all the cells can be represented as 𝑃𝑘 (𝑘 ∈ 𝐾), Of the 

matrix, a certain number of rows are marked as ‘photoactivated’, recorded during the FACS 

process or any other single-cell signal detection process before RNA library construction. 

Therefore, we could extract these rows out as a submatrix m * N. To facilitate computing 

efficiency, a subset of Fj, 𝐹𝑗′(𝑗′ ∈ 𝑛), can also be extracted which contains features of highest 

variance among all the observations. For the submatrix m * n, we know the proportion of 

observation phenotypes, which serves as a label 𝑝𝑘, and can also be regarded as a probability 

distribution, as ∑ 𝑝𝑘 = 1𝐾
𝑘=1 , and we want to establish a model which could predict the 

probability distribution, or, label, of a single observation Oi. 

 

The issue therefore become a weak-supervised Machine Learning (ML) problem, where we 

have the proportion of labels in the training group. Learning from label proportions has been 

mathematically proven to be possible in 202. Due to the insufficient mathematical knowledge 

of the author, we are not going to review about the details of proving. To further validate this 

thought experiment, we designed a multi-layer perceptron (MLP)-like model, as shown in 

Figure 2.1 B. Multi-layer perceptron is a kind of artificial neural network (ANN), with an 

input layer, an output layer, with one or more fully connected hidden layers. For each layer, 



70 

 

 

there is a weight matrix W, a bias matrix B and a post-activation function A, therefore, the 

layer can be represented as  𝑦 =  𝐴(𝑊𝑥 +  𝐵), where y is layer output, and x is layer input. 

Considering the computing efficiency and following analysis, we made some modifications 

to a classic MLP structure. As we have the empirical knowledge that the expression profile of 

each cell follows the same rule, which means we can use the same method (or mode) to 

extract expression features from every cell, we added a 1D convolution layer with input 

dimension equals to feature number n and output dimension as we defined (in our case is 20), 

convoluting across observations to extract the high-order features from transcriptome. The 

extracted feature matrix was flattened to 1D, yielding a 1000-element vector. Through the 1st 

fully connected hidden layer with ReLU activation, the dimension of the vector was reduced 

to 200; through the 2nd hidden layer with SoftMax activation, the vector was reduced to the 

same dimension of the cell type, and became a probability distribution which summed up to 1. 

The Poisson distribution loss was calculated between prediction and ground truth, and fed 

backward to layer weights. The model was constructed using Python library TensorFlow v2. 
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Figure 2.1 The concept and design of ‘Selection-seq’. (A) The design of the experiment, after 

imaging, a cell niche was photoactivated which contained 55% of cell type B (dominant 

population), 15% cell type C and 30% cell type A (minor population). All the cells in culture 

were disassociated and went through FACS into library establish vessel individually, which 

could either be a well in 384 well plate, a chamber in microarray or lysis buffer drop in drop-

seq system. The cells with activated fluorescence can be distinguished and marked. Finally, 

we got the expression profile of all the cells, of which a certain group will be marked as 

‘photoactivated’, and we have the information of the phenotype proportions in this group. (B) 



72 

 

 

The design of Multi-Layer Perceptron (MLP) for predicting the phenotype of cells with 

known expression features. 

 

To acquire training set and validation set for this model, we downloaded 2 scRNA-seq Seurat 

datasets online. Dataset 1 is Peripheral Blood Mononuclear Cells (PBMC) provided freely by 

10X genomics as a demonstration data, which is also used as tutorial data of scRNA-seq data 

analysis package Seurat v3 203 (https://satijalab.org/seurat/articles/pbmc3k_tutorial.html).  

PBMCs are primary cells with relatively small amounts of RNA (~1pg RNA/cell). In Dataset 

1, totally 2,700 cells were detected, sequenced on Illumina NextSeq 500 with ~69,000 reads 

per cell. The dataset itself does not come with further biological study/analysis. Following the 

protocol of Seurat, we grouped PBMC data into relevant cell populations, using a UMAP 

clustering algorithm 204. Differently to traditional PCA clustering strategy which aims to find 

the basis vector of an orthogonal linear transformation that can best explain the data variance, 

by calculating the eigenvalue-top-ranked eigenvector of the covariance matrix of targeting 

features 205 the UMAP algorithm constructs a manifold (i.e. a high-dimensional graph) from 

the Euclidean distance between data points, using a strategy to (a) estimate the radius 

threshold of establishing edges from the nearest N neighbors locally to every point; (b) 

establish a probabilistic connection within a radius threshold based on the point distances; (c) 

filter the edges while ensuring every point is linked to at least one other point. (d) project the 

high-dimensional manifold to low dimensions by a force-directed graph layout algorithm 204. 

Compared to PCA algorithm and other manifold-based dimension reduction algorithms, such 

as t-SNE 133, the UMAP algorithm retains the information of data structure better, with a 

good speed performance.  

 

We then annotated the clusters using known peripheral blood cell markers. The cells were 

annotated into Naive CD4 T, CD14+ Mono, Memory CD4 T, B, CD8 T, FCGR3A+ Mono, 

NK, DC and platelet cells (Figure 2.2, Up). To make sure each group has enough number of 

cells for the establishment of a training set, we only chose Naive CD4 T, CD14+ Mono, 

Memory CD4 T, B, CD8 T, FCGR3A+ Mono, NK, totaling 7 groups of cells for next step. Of 

https://satijalab.org/seurat/articles/pbmc3k_tutorial.html
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all the 13714 genes being profiled, we selected 2000 genes with highest variance across 

observations as features. 

 

 

Figure 2.2. The scRNA-seq Datasets Used for Selection-seq. Top: Peripheral Blood 

Mononuclear Cells (PBMC) dataset, we chose Naive CD4 T, CD14+ Mono, Memory CD4 T, 

B, CD8 T, FCGR3A+ Mono and NK data for following analysis. Bottom: the H1/H9 cell 
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differentiation dataset. The data points from scRNA-seq, containing the expression 

abundancy of each gene in each cell, got dimension reduced using UMAP, the 2 highest 

principal components in feature space were plotted in 2D. 

 

For each training group of 50 observations, 3 subpopulations were randomly selected from 

cell types, of which 1 population was the dominant type and the other 2 minor types. 70%~90% 

(the proportion being randomly decided from this range) of the cells in the training group are 

from dominant cell type. For the remaining cells, one minor type will occupy around 

30%~70%, which was also randomly decided. The proportions of cells of different types 

were recorded as the ground truth y. Augmentations were made by randomly shuffling the 

order of observations in the training group. 

 

Given that determining how many photoactivated cell niches are required for an accurate 

prediction is a main question of interest, in order to explore the impact of training group 

number generated on the prediction results we generated 100, 300, 600, 1000 groups 

respectively for different training and prediction sessions. Although each session had 

different ‘original’ group numbers, the training groups were augmented for 150, 50, 25 and 

15 rounds each, yielding the final training set of identical size 15000. 50 epochs of fitting 

were performed. 

 

Accuracy and losses during training were recorded in Figure 2.3 Part-I, Top. We found that 

when using 1000 groups of cells the fitting quickly converged in 2 epochs. The training and 

validating group showed similar accuracy, indicating low extent of overfitting. When the 

number of original cell groups dropped to 300, an oscillation of accuracy occurred across 

epochs, indicating a potential overfitting due to too many augmentations without bringing 

additional information. After fitting was finished, we applied this model to predict the cell 

phenotype of single-cell transcriptome, which was done by repeating 300 observations for 50 

times to form a pseudo group and feeding this pseudo group to the model. The cell type with 

highest probability from the predictions was chosen as the predicted cell type. Out of 200 
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single-cell transcriptomes being tested, 182 had their cell type correctly predicted, 

corresponding to an accuracy of 91% (Figure 2.3 Part-II, Right). 

 

We then applied the same workflow to another scRNA-seq dataset. This dataset profiles the 

single-cell transcriptome of hESC lines H1 and H9, human foreskin fibroblast (HFF), and a 

few cell lines differentiated under chemically-defined culture conditions from H1 cell, 

including neural progenitor cell (NPC), endoderm derivative cells (DEC), endothelial cells 

(EC), trophoblast-like cells (TB) 206. In the study, authors performed a cohort of scRNA-seq 

experiments profiling snapshots of lineage-specific progenitor cells differentiated from 

H1/H9 human ES cells using their established differentiation protocols, all adapted to 

chemically-defined culture conditions; they then focused on definitive endoderm (DE) 

differentiation from hESCs and transition from mesendoderm toward DE, either under 

normal condition or under acute hypoxic treatment. They sequenced the transcriptomic 

dynamics across time in the above process. The authors analyzed the transcriptomic data, and 

figured out potential factors involved in the enhancement of hypoxia upon DE differentiation, 

and that KLF8 is a novel regulator in transition from mesoderm to DE. Again, the 

transcriptomes of cells were UMAP-clustered, while without annotation as their cell type has 

been indicated by different batch of sequencing (Figure 2.2, Bottom). The same MLP-like 

model used on PBMC data was used on this dataset, of which the training set was generated 

by repeating 500 observations for 30 times. The final prediction assessment on 100 individual 

cells got 88% of cell types being correctly predicted, and those not correctly predicted were 

all H1 and H9 cells, suggesting a generalized acceptable performance of this model on 

different datasets (Figure 2.3 Part-II, Right). Generally the MLP-Model worked a bit worse 

on the differentiation dataset compared to the PBMC dataset, which is reflected in the 

training/validation accuracy curve (Figure 2.3 Part-I, Bottom) and the prediction result. This 

is due to the very similar expression profile between the H1 and H9 cells, which makes it 

difficult for the model to distinguish. However, on the other hand this indicates robustness of 

the model against overfitting. 
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Figure 2.3-Part-I in silico Accuracy and Losses of ‘Selection-seq’ during Training and 

Validation. (A) The accuracy of each experiment using different ‘original group number’ 

across epochs. We observed that Group 1000 and Group 600 do not have much difference in 

accuracy; Group 100 showed lower and unstable accuracy, suggesting insufficient training 

data and an overfitting brought about by too many augmentation rounds. As a trade-off 
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between the prediction accuracy of the model and practicality in actual experiment, given that 

photoactivating groups of high numbers of cells is extremely labor-intensive, we chose Group 

300 as training set generation protocol. (B) For the H1/H9 differentiation dataset, we chose to 

generate a training set by augmenting 500 observations 30 times. In total therefore the 2 

datasets had training sets of same size. 

 

Figure 2.3-Part-II The comparison of prediction results and ground truth. If the cell type 

with highest score from predictions coincides with the ground truth cell type of that 

observation, the row is filled in green otherwise the row filled in red. Left: PMBC. Right: 

differentiating hPSC. 

 

Although the observed good performance of the model looks encouraging, there is still a 

great challenge as the results suggest that we may need to photobleach around 300 cell niches 

to get the model to work with confidence, which makes high demands for photobleaching 

efficiency by microscopy and requires high cost of sequencing with so many individual 

samples provided. 
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2. Analysis of scRNA-seq Data on Neuronal Differentiation  

 

Next, we moved our focus to another published scRNA-seq dataset, corresponding to NGN-2 

overexpression-driven neuronal differentiation from hiPSCs 207, where cells were collected at 

0-hours, 6/12-hours, day 1, day 2, day 5, week 2, week 4 and week 5 post doxycycline-

induced NGN2 overexpression, and processed by scRNA-seq. In the publication, the authors 

found high transcriptomic dynamics and cell fate heterogeneity of the neuronal cells driven 

by NGN2 expression, and this heterogeneity could be induced by various durations of NGN2 

induction. In our case we are interested in understanding what role cell cycle related factors 

may play in this process, and therefore made further in silico analysis of the published dataset. 

 

We downloaded the data from ArrayExpress208 using accession code E-MTAB-10632. To 

facilitate our analysis on time-sequence single-cell transcriptome data, we used a powerful 

tool, Monocle3, for (a) clustering and classifying cells; (b) constructing single-cell 

trajectories; and (c) performing gene differential expression analysis 209 210 211. We firstly 

preprocessed the data by Seurat v3203 to filter out low quality observations which have 

abnormal reads-to-feature ratio or too high mitochondria-oriented RNA percentage, then fed 

the cleaned expression matrix to Monocle3. A UMAP clustering was performed to cluster 

cells. After clustering, a trajectory of single-cell transcriptomes was established in a semi-

automatic manner. The starting point of the trajectory was manually selected and a graph-

learning algorithm then segmented the cells into partitions and established traces and 

branching points (which theoretically represent a ‘cell fate decision event’) of transcription, 

and assigned each cell with a ‘pseudo-time’ on this trajectory (Figure 2.4 Part-I B). From the 

trajectory chart we can clearly figure that the cells of different sequencing times were 

properly ordered on the trajectory.  

 

In parallel by clustering cells the top 50 marker genes of each cluster were also computed and 

the top 3 of them was plotted for every sampling time point (Figure 2.4 Part-I A).  
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We further performed gene differential expression analysis (DEA) on the dataset. DEA was 

done in either of the 2 ways: (a) fitting a generalized linear model of quasi-Poisson 

distribution to the expression of genes as a function of any variables, in our case, the real time 

of cell differentiation. The coefficients of fitted functions were statistically tested against 0 by 

Wald test; (b) performing a spatial autocorrelation analysis of data points on UMAP-reduced 

2D space, giving a Moran I and q value for each gene which represent their variance of 

expression on the map. While we performed both of the analyses, we used method (b) to filter 

through all the 17546 genes of cells. By the criteria of (1) Moran’s-I > 0.1 and (2) q value < 

0.001, we selected 3677 genes for subsequent analysis.  

 

By performing UMAP clustering on the filtered genes instead of cells, 7 co-expression gene 

modules were found, and their aggregate gene expression against time was calculated and 

plotted (Figure 2.5 A, B). We found that gene modules 1, 2, 3, 5 showed a very clear pattern 

across time, where modules 1 and 5 showed an initial increase followed by decrease, module 

3 showed a delayed increase (compared to 1 and 5) followed by decrease, and module 2 

showed a stable increase across time. We also calculated the enrichment of the top 50 marker 

genes in different modules at each sampling time (Figure 2.6). We found that most genes in 

hour 0 and hour 6/12 were enriched in module 1, most genes in day 1 and day 2 were 

enriched in module 3, and after day 4, most marker genes were enriched in module 2. A gene 

ontology (GO) analysis in GO class ‘biological process’ was performed on the genes in the 

above 4 modules. GO analysis revealed that the genes in module 1 are enriched in RNA 

synthesis, and genes in module 2 and 3 enriched in neurogenesis and synapse generation. 

Considering that module 3 expression increased and decreased during differentiation, it is 

most probably related with genes of (or linked to) neural progenitor cells. Genes in module 5 

are enriched in GO BP term cell cycle regulations. 
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Figure 2.4 Analysis of hiPSC neuronal differentiation scRNA-seq data – Part 1. (A) UMAP 

clustering of single-cell transcriptome (left) and pseudo-time trajectory established on the 

cells (right), The initial point was manually decided by roughly clicking in the center of ‘0-
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hour’ cluster. (B) Top 4 marker genes for each sampling time. The size of dot represents their 

expressed percentage in the cells of this cluster and the color represents the log10 of their 

mean expression level. 

 

 

 

Figure 2.5 The co-expression modules found and their expression abundacey across 

sampling time. (A) 7 main gene co-expression modules were found and the aggregate 
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expression of all genes in each module was calculated and plotted on a heatmap. (B) The 

expression profile of each gene module reflected on the UMAP clustered cell map. 
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Supplementary Figure 2.6. Genes in different co-expression modules. Top: Bar-plot 

showing the enrichment of marker genes in each gene module across different sampling time 

points. Bottom: Gene ontology analysis of genes in 4 co-expression modules. The annotation 

of gene list was done on website DAVID Bioinformatics Resources 

(https://david.ncifcrf.gov/) 212, using GO term ‘GOTERM_BP_ALL’. 

 

From literature reading, we concluded on an ‘interesting gene list’ which are mainly involved 

in cell cycle regulation, axon generation and microtubule assembly regulation, cell 

pluripotency and neurogenesis. These genes are listed in Table 2.1. 

 

Genes Note 

MAP2 

Neural Markers 
NEUROG2 

PAX6 

SOX2 

KIF14 

Microtubules KIF20A 

KIF20B 

CDK1 

Cell Cycle Indicator 

CDK2 

CDK6 

CCNA2 

CCND1 

CCNE2 

RGS3 

Centrosome and Midbody 

Related 

PLK4 

AURKA 

AURKB 

CEP55 

TRIM46 

TUBB3 Neuronal Marker 

Table 2.1. Interesting gene list from literature review. Genes are grouped according to their 

https://david.ncifcrf.gov/
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biological role. 

 

We plotted the expression profile of some genes in this list which also passed Moran’s-I 

filtration, either the color of expression extent on the map, or the fitted expression curve 

across time. We found that cell cycle factors CDK1, CDK2, CCNA2, centrosome-

microtubules assembly factors AURKA, KIF14, KIF20A, KIF20B, CEP55 all belong to gene 

module 5 which means their expression increased first and then decreased. On the other hand, 

neuronal marker MAP2 and centrosome-microtubules assembly factor TRIM46 belong to 

gene module 2 where expression stayed low at first and then increased, in a way negatively 

correlating with genes in module 2. SOX2 belongs to module 1 and CDK6 belongs to module 

3. Notably, CDK6 was assigned to a different module compared to CDK1 and CDK2, 

indicating a difference in their roles during neurogenesis. The expression map and curve 

across pseudo-time in trajectory of these factors showed similar patterns which is in 

consistent of their module assignment (Figure 2.7). 
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Figure 2.7. The expression patterns on map (A) and as curve across pseudo-time (B) for 

some of genes in interested list. We could find negatively related trends of genes belonging to 

module 2 and module 5, respectively. For example, MAP2 and TRIM46 against AURKA, 

CDK2, CEP55 and CCNA2. 
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3. Exploring the Interaction Network of Candidate Genes from scRNA-seq Data 

Analysis 

 

As some of the above-mentioned genes showed similar patterns and were found within the 

same co-expression gene modules, we were curious whether they have any reported 

interactions. We firstly calculated the Pearson correlation score of all the 3677 Moran’s-I 

significant genes (referred as ‘DE genes’ hereinafter, for convenience), using the corSparse 

function in R package qlcMatrix (https://CRAN.R-project.org/package=qlcMatrix). We also 

extracted the correlation score of these genes from STRING database. STRING is a database 

of known and predicted protein-protein interactions. The interaction score was calculated as 

an integrative consideration of high-throughput published experimental data, computational 

predictions and research publication text mining 213. We firstly tried to plot gene correlations 

in expression alone, or together with STRING interaction score in 2 dimensions. As a 

negative reference, we randomly selected other 85 genes from DE genes and extracted their 

gene expression correlations and interaction score, making a total correlation map of 100 

genes. 

 

We checked the distribution of Pearson correlation scores on gene expression, which was 

calculated in the previous step, and got a quantile level list of all correlations with spacing of 

5%, both positively and negatively. The correlations were plotted in 2D space, those between 

interested genes were colored as cyan, otherwise red. The correlations with absolute value 

above 85% quantile level (correlation score absolute value > 0.05) were text-labelled. In the 

case of plotting gene expression correlations alone, the y-position of points was sampled 

randomly between 0 and 1 (Figure 2.7 A). In the case of plotting gene expression correlations 

and STRING interactions, the correlation score from 2 individual sources became the 

coordinates in 2 dimensions. 

  

https://cran.r-project.org/package=qlcMatrix
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Figure 2.8 Expression and published protein interaction scores of genes in our ‘interesting 
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gene list’. Cyan dots suggested the interactions of genes in interested list, red dots suggest 

interactions of genes randomly selected, or between random-selected genes and interested 

genes. We can find that in (A), most of the cyan dots fall above the 95% quantile threshold 

(shown in dotted line), which means they have expression correlations stronger than 95% of 

other interactions plotted in this chart. In (B), we found that although a big cluster of 

interested interactions at up right corner, meaning they have both strong correlations in 

expression and reported protein interaction, there is also plenty of genes, especially those at 

bottom left corner, showing a negative correlation between cell cycle related genes and 

neurogenesis related genes, meaning their interactions were not yet reported. 

 

From the charts in Figure 2.7, it is easy to draw a conclusion that the correlations in 

expression between genes in the interesting gene list is generally stronger that randomly 

selected genes. Some of them also have a high level of reported protein interaction score, 

especially between those factors involved in cell cycle regulation, microtubules assembly and 

centrosome/midbody regulation, suggesting a tight co-regulatory network between these 

factors. To explore if there are any other factors serving as intermediates in their interaction, 

we tried to plot an interaction network among them, considering both the expression data and 

STRING interaction data. 

 

The matrixes of Pearson correlation score of expression, as well as a scaled (divided by the 

maximum interaction score in the database, which is 1000, leading to a value between 0 and 1) 

STRING protein interaction scores of the 3677 DE genes, were integrated to form a new 

single matrix following a function 𝑆𝑐𝑜𝑟𝑒𝑖𝑛𝑡𝑒 = 𝑆𝑐𝑜𝑟𝑒𝑝𝑐𝑜𝑟  × (𝑆𝑐𝑜𝑟𝑒𝑆𝑇𝑅 + 0.5), where the 

sign of matrix value represents whether the 2 genes are positively or negatively correlated. 

This matrix was used as an adjacency matrix to generate a graph using R package igraph. 

Inspired by the concept of scale-free network 214 in WGCNA analysis workflow 215, we 

decided to simplify this network by thresholding edges until the degree of vertices (which 

means the number of edges linked to the vertex) complies with power-law, where most of 

vertices are of low degree while a small number of vertices are of high degree, which 
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according to the report can theoretically mimic the protein interaction/co-regulatory network, 

although there are also articles (especially according to some recent advances in statistics 

study) that oppose this idea, arguing that scale-free networks are rare and not the case in 

protein-interactions 216 217. Unlike WGCNA workflow which uses a soft thresholding by step-

wise increasing the power exponent of edge weight, we used hard thresholding to directly 

increase the threshold value step-wise until the network became scale-free. This workflow 

was done by (1) A initial filtration of edges by edge weights (Figure 2.10, Top), which deleted 

edges with weight less than 85% quantile (0.066), (2) After the initial filtration, we checked if 

there was any ‘bias’ in the edge weights and node degrees distribution. We found that edges 

with positive weights are much more abundant than edges with negative weights, suggesting 

that there were more positive expression correlations (Figure 2.9, Middle). Of all nodes with 

degrees ranging from 0~2500 (Figure 2.9, Top), co-expression modules 1, 2 and 5 have the 

most of high-degree nodes, modules 3 and 4 also have some of high-degree nodes, while 

nodes in modules 6 and 7 are mostly of low degrees (Figure 2.9, Bottom). (3) Finally, by 

evaluating the r-square of degrees, isolated nodes and distribution of node degrees (maximum 

and mean degrees) during the gradient increasing of threshold, we found an acceptable edge 

weight threshold, 0.094, which made a balanced consideration on the integrity of network and 

proper distribution of node degrees (Figure 2.10, Bottom). Filtration of edges and nodes was 

then conducted with this threshold. 
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Figure 2.9 Protein co-regulatory network. (A) The histogram of vertices degree distribution 

and edge weight distribution of the full graph before the hard thresholding. (B) The step-wise 

thresholding and corresponding R^2 value. (C) The constructed graph containing the genes of 

interested and vertices on the shortest paths. 

 

After the secondary thresholding of edges, in this simplified scale-free graph, we used 

Dijkstra shortest path finding algorithm 218 in igraph package, to find all the vertices (genes) 

on the shortest path between every pair in the interested gene list, the absolute values of edge 

weights were considered during path finding. Finally, we only kept the vertices of interested 
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genes and those on the shortest path. The graph was exported in gml format and visualized in 

Cytoscape219 (https://cytoscape.org/) (Supplementary Figure 2.11, Top). We found that genes 

PDPN, STMN1, HMGN2 and RPL22 were included on the shortest paths. 

 

In order to visualize a more global structure of this interaction network, we further expanded 

the ‘shortest path graph’ by including neighboring nodes and clusters. Specifically in our case, 

nodes in the shortest path graph, as well as neighboring nodes to the former, were extracted 

as subgraphs from the scale-free network. Edges with weights less than 0.5 were deleted, 

with exception that all the edges in shortest path graph were kept. After filtering edges, nodes 

with zero degree were also deleted. Finally, we obtained an expanded graph with 408 nodes 

in total. The graph was visualized in Cytoscape using Compound Spring Embedder 220 

(CoSE), which is an improved version of the traditional force-directed layout scheme. This 

allowed us to obtain a layout driven by gene interaction extent, reflecting a global structure of 

gene interactions. 

 

 

https://cytoscape.org/
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Figure 2.10 Evidence basis for thresholding of the graph edges. (A) The distribution of edge 

weights (log10 transformed) before the initial thresholding. (B) The 𝑅2 , isolated node 

number, mean and maximum of all node degrees during increasing the weight threshold. We 

want to find a balanced threshold which makes the network ‘scale-free’ while not damaging 

its structure (meaning not inducing lots of isolated nodes with 0-degree). 

 

We further performed gene enrichment analysis on the genes in the expanded graph using an 

online tool Enrichr 221.  6 gene set libraries were included in the analysis in total, namely 

Descartes Cell Types and Tissue 2021, KEGG 2021 Human, Elsevier Pathway Collection, 

GO Biological Process 2021, GO Cellular Component 2021, and GO Molecular Function 

2021. We found most of the genes in the network were enriched in translational and 

ribosomal GO terms, as well as in RNA/Protein-binding related terms. Interestingly, we also 

find enrichment of genes in neuronal development (in Descartes Cell Types and Tissue), in 

neuronal diseases (KEGG Human) and cell cycle phase transition (Elsevier Pathway 

Collection), despite that most of the genes in the network should be involved in protein 
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translation machinery, The result indicated the robustness of gene enrichment analysis in 

characterizing small functional clusters of genes hidden in a large list of irrelevant genes. 
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Supplementary Figure 2.11 Top: The constructed ‘shortest path’ graph. Of all the nodes in 

the graph, the background color of the node (blue and red) represents if the gene is in the 

interested list or not; the foreground color (yellow to purple) of the node text label indicates 

how many gene nodes are linking to this node; the size of the node represent the Moran’s-I of 

the gene expression (larger means the gene is ‘more differentially expressed’ across different 

time points during the neuronal differentiation. The color of the edges (deep blue to deep red) 

indicates the sign of interaction, blue means the 2 genes are negatively correlated, and red 

vice versa. Bottom: The expanded graph including both the genes on the shorted path graph 

and the genes neighboring to the ‘shortest path’ genes with linking edges weight > 0.5. The 

background color of the node (yellow to red) represents Moran’s-I of the gene expression; the 

color of the edges (green to purple) indicates the sign of interaction. The graph layout was 

organized by CoSE based on edge weight forces.  
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Supplementary Figure 2.12 Gene set enrichment analysis using Enrichr, on following gene 

set libraries: GO_Biological_Process_2021, GO_Cellular_Component_2021, 

GO_Molecular_Function_2021, Descartes_Cell_Types_and_Tissue_2021, 

Elsevier_Pathway_Collection and KEGG_2021_Human. 

 

4. Conclusions 

 

In Chapter 1, we discussed about grid-wise positional photoprinting, a method we prototyped 

with the potential to enable linking microscopy and gene expression data, and described 

current limits of its present implementation including limits in spatial accuracy and resolution. 

We therefore set to explore alternative approaches and we considered the possibility, instead 

of linking transcriptome to cell location, of linking transcriptome to certain cell phenotypes 

observable under microscopy imaging by photoprinting multiple selected groups. Based on 

this consideration, we proposed a conceptual model ‘Selection-seq’, which uses 1D 

convolution and MLP to solve a weak-label problem that assign single-cell transcriptomes to 

cells of certain phenotypes. This light-weight model showed robust results on simulated 

datasets generated from published scRNA-seq data. However, the relatively high number of 

cells required to print and sequence sufficient cells and data points for this approach makes it 

potentially expensive in terms of both time and cost, which nevertheless may be eventually 
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solvable by AI-controlled imaging devices and multiplexed single-cell library barcoding 

technology. Microdissection and optical-tweezer technologies has the same underlying 

concept of selective photoprinting, that collect a small population of cells which are 

correlative in space for subsequent sequencing. Some of the technologies could even reach 

single-cell accuracy when assigning transcriptome data, which is not currently feasible using 

Selection-seq. However, they both require dedicated instrument for the purpose, where 

selective-photoprinting provides a cheaper choice. 

 

We then turned to a published scRNA-seq dataset comprising RNA-sequencing data from 

multiple time points during the neurogenesis process, which we are interested in. Following a 

standard NGS data processing protocol, we checked the expression pattern of a list of 

interesting genes during neuronal differentiation from hPSCs. Differential expression analysis, 

gene module clustering and gene ontology analysis was performed, and we found thoses 

genes can roughly be grouped into 2 modules that has negatively-correlated expression 

pattern. To further explore the possible interaction between those genes, we checked their 

Pearson correlation of gene expressions across time, as well as their known relations in 

published studies, as quantified by the interaction scores in STRING protein interaction 

database as a proxy. 

 

Inspired by the concept of WGCNA and relevant graph theory, by statistical test and filtration 

of node degree and edge weights, we constructed a scale-free gene interaction network taking 

both the expression correlation and protein interaction score into consideration.  By 

extracting the sub-graph containing all the interested genes and those genes on the shortest 

paths between the interested genes, we were able to get a small network showing the possible 

interactions and candidate inter-players in these interactions. This method is new to our 

knowledge. Interestingly, we found RPL22, HMGN2 and STMN1 on the shortest path of the 

graph, which were not included into the gene list. RPL22 is linked negatively with MAP2 and 

STMN1 and positively with HMGN2 and CCND1 in the sub-graph, and plays an important 

role in ribosomal translational activity. HMGN2 is linked positively to multiple cell cycle and 
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microtubule related genes in the sub-graph, and its protein product is reported to be 

associated with helping maintain an open chromatin configuration and is associated with 

transcriptionally active chromatin (https://www.genecards.org/cgi-

bin/carddisp.pl?gene=HMGN2). STMN1 is reported to link functionally the cell cycle and 

the control of microtubules dynamics 222. PDPN is reported to co-localize with Nestin 223, and 

may be involved in the ECM formation during the neuronal differentiation process. 

Altogether, our analysis indicates a potential role of cell-cycle regulated transcriptional and 

translational mechanisms in neuron development, and further efforts should be made to 

elucidate the exact protein interactions involved in this process. The expanded graph also 

showed a strong gene enrichment on gene sets related with ribosomal functions, indicating a 

close relation with current gene list and translational activity.  

  

https://www.genecards.org/cgi-bin/carddisp.pl?gene=HMGN2
https://www.genecards.org/cgi-bin/carddisp.pl?gene=HMGN2
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Chapter 3. Revealing Links Between the Cell Cycle and Neurogenesis by 

Timelapse Imaging and Image Analysis of Neuronal Differentiation in vitro. 

 

1. Image Processing and Analysis of Cellular Images: Flat Field Correction, 

Segmentation, Tracking, Vessel Detection and Quantification 

 

Although alternative workflows also exist that either use traditional methods or Deep 

Learning based methods like segmentation-free feature-extraction 224 225, most of HCMS, 

especially that which uses fluorescent nuclei images, involves the following procedures: (a) 

field of view (FOV) vignetting correction; (b) segmentation; (c) feature extraction; (d) cell 

feature data preprocessing, including quality control, cleaning of low-quality data and outliers, 

correction/normalization; (e) data processing, including feature selection/reduction, 

population data aggregation, similarity and correlation measurement, clustering and 

classification and (f) post processing data visualization 226.  

 

Mathematical modelling of camera image digitalization during microscopy imaging can be 

represented as 𝐷 = 𝐼𝑙𝑙𝑢 ∗ 𝑂𝑏𝑗 ∗ 𝐶𝑔𝑎𝑖𝑛 + 𝐶𝑜𝑓𝑓𝑠𝑒𝑡 , where D represents the digital image 

acquired, 𝐼𝑙𝑙𝑢 the illumination, 𝑂𝑏𝑗 the biological object, 𝐶𝑔𝑎𝑖𝑛  the camera gain and 𝐶𝑜𝑓𝑓𝑠𝑒𝑡 

the camera offset 227. Due to lots of factors during imaging, including optics, dust on lenses, 

light sources and especially vignetting, illumination is usually not evenly distributed across 

FOVs, and this uneven illumination can lead to 10–30% variation in image object intensity. 

Neglecting uneven illumination can lead to 35% false detection and missed detections of cell 

objects in images 228. This raises the need to correct images in order to remove the influence 

of uneven illumination, using so called flat-field correction approaches. In the formula, term 

𝐼𝑙𝑙𝑢 ∗ 𝐶𝑔𝑎𝑖𝑛 + 𝐶𝑜𝑓𝑓𝑠𝑒𝑡  can be conceptualized as a brightfield image (BFI) taken at a 

background without any biological object, and the term 𝐶𝑜𝑓𝑓𝑠𝑒𝑡 can be conceptualized as a 
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dark field image (DFI) taken without any illumination. Therefore, the biological object can be 

calculated by 𝑂𝑏𝑗 =  
𝐷−𝐷𝐹𝐼

𝐵𝐹𝐼−𝐷𝐹𝐼
. This then serves as a theoretical model for flat-field correction. 

 

The most essential part in flat-field correction is the acquisition of BFI and DFI. Although 

those images can be acquired by a careful calibration during imaging and be used for 

correction, known as ‘prospective methods’, nevertheless the BFI and DFI are not always 

available, especially in the case of experimental image datasets available online. Furthermore 

the prospective methods are not always  sufficient for image correction, because they are 

based on the hypothesis that imaging condition is consistent during the acquisition of 

calibration image and experimental image 229. Another type of methods called ‘retrospective 

methods’, aims to build up a background calibration model from experimental images. These 

methods include (a) ‘rolling ball algorithm’, which averages the intensities of each pixel by a 

disk-like filter to get a background extracted, based on the hypothesis that the background has 

different spatial frequency and intensity compared to foreground 230, (b) averaging all images 

to get a background assumption 229, (c) using a polynomial model to describe the illumination 

variation and fit the model by minimizing image entropy 231, or (d) firstly extract low-

frequency background by the first-derivative of image, then apply the low-order polynomial 

model 232. Retrospective methods provide powerful tools for flat-field correction but suffer 

from drawbacks for instance: Gaussian smoothing and image stack averaging methods tend to 

prove difficult when dealing with images that have high spatial variance globally (such as cell 

colonies that stay in certain regions of an image); first-derivative based background 

extraction is prone to noises; low-order polynomial models are not always useful fitting sharp 

decreases of intensity such as those occurring at image borders, while increasing the order of 

the polynomial model makes fitting computational intensive and brings problem of 

overfitting. 

 

Segmentation is a process of detecting objects in an image by grouping and labeling 

connected pixels which belong to this object together. As individual cells are often the 

minimum units which we are interested in during live cell image analysis, segmentation of 
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cells - either nucleus, cell body or other cell components - is of great importance. Traditional 

cell segmentation methods are either (a) model based, e.g., built on the basic assumption that 

cell nuclei are convex closed regions and have a clear border to be distinguished from 

background. The methods therefore aim to either find the edge and contour of the region 233 

234 235, or use a watershed-like algorithm which thresholds the distance-transformed image 

and finds regions around intensity maxima by region growing 236 237; (b) feature based, i.e. 

they calculate features for each pixel and try to classify pixels into ‘cell pixels’ or 

‘background pixels’ by C-Means clustering 238, Bayesian classification 239 or Krill Herd 

algorithm 240, optionally followed by morphological operations, combined with model based 

algorithms to decide the seed points for cells/nuclei; or (c) Machine Learning based, which 

uses a series of image transformation methods, including Gaussian filtering, Laplacian 

transformation, difference of Gaussian transformation, spatial frequency calculation, Hessian 

eigenvalue measurement and structure tensor eigenvalue measurement, with the aim to get 

features from every pixel, and train a random forest classifier on manually annotated ground 

truth to classify the pixels into foreground and background, followed by local maxima 

thresholding to detect objects 241. 

 

Recent advances and blooming applications of Deep Learning in image processing provide 

new and powerful tools for cell segmentation 242. Compared to traditional Machine Learning 

based segmentation methods, one major difference of Deep Learning based networks is that 

they require less effort from the user to pre-process image data and fine-tune feature selection 

and extraction 243. Considering most of Deep Learning based methods are built on the basis 

of U-Net structure, which is a fully convolutional network (FCN) with U-shaped autoencoder 

architecture, tandemly repeating a network unit containing a convolution layer, a rectified 

linear unit (ReLU) and a max-pooling layer, through which the spatial information on X-Y 

dimension is compressed and the feature information on C (Channel) dimension is expanded, 

it may be that this type of architecture is particularly effective at abstraction and feature 

selection on the input images 244. Well-known U-Net based cell segmentation methods 

include DeepMIB 245, Cellpose 246 and StarDist 247. The classical U-Net is only able to 
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separate foreground and background, that is, to perform a 2-class classification, which is 

insufficient to segment touching cells, while later U-Net based methods have addressed this 

issue by either predicting a third class of touching boundaries (3-Class U-Net) 248, or 

predicting the radius to polygon vertices of every pixel belonging to foreground 247, or 

predicting the diffusion gradient horizontally and vertically in foreground followed by 

gradient tracking to define the cell boundaries 246. Besides the U-Net based framework, 

Mask-R-CNN 249 and Faster-R-CNN 250 which combine the classical architecture of a 

convolutional neural network (CNN) with region proposal network (RPN) are also possible to 

be applied to cell segmentation 251. RPN has both a classifier and regressor, where the 

classifier predicts the probability of regions belonging to foreground, and in turn the regressor 

predicts the coordinates of the region, thus allowing detection of objects within an image. 

However, compared to the light-weighted U-Net architecture, R-CNN based segmentation 

tools usually require more computational resources especially GPU resources to be trained, 

which limits their wide application. 

 

Supplementary Figure 3.1 The architecture of classical U-Net for segmentation, taken from 

the original publication 244. 
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The segmentation of cytoskeleton images is one of the most complicated tasks of cell 

segmentation due to cytoskeletal filaments’ massive crosslinking, lack of typical morphology 

for instances and frequent out-of-focus events. Although strategies exist to only analyze the 

orientations or filament networks without segmenting individual filaments, cytoskeletal 

filament segmentation using a typical workflow including (a) directional filtration and 

enhancement; (b) filament network binarization (optionally with skeletonization) and (c) 

extraction of single filaments, is important in revealing otherwise inaccessible  statistical 

information about cytoskeletal fiber position, orientation and length, as reviewed in 252 . The 

most essential step for cytoskeleton segmentation is to find the binarized centerline of 

filaments, namely ridge detection. Conventional methods for ridge detection are usually 

global or localized adaptive thresholding after image filtration aiming to remove noises 253 

and/or to enhance the vessel-like structures by Laplace filter 252, by line filter transform and 

orientation field transform 254, 255, or by Hessian matrix eigenvalue 256. The thresholded image 

can be morphologically thinned and have nodes and edges extracted for further analysis 257. 

 

A major drawback of analyzing conventional cytoskeleton images is that they prove 

challenging for detecting complete filaments on images of low signal-to-noise ratio (SNR). 

Segmentation algorithms on such images tends to produce discontinuous binarized ridges and 

false positive artefacts which leads to wrong detection of edges and nodes. To overcome the 

limitation, algorithms have been developed to either track whole filaments by template 

matching, where a correlation field and orientation field is generated according to which the 

likelihood of two neighboring pixels of belonging to the same filament is evaluated and 

segments are tracked along pixels until the likelihood drops below an acceptable threshold 258, 

or directly filter out too short segments by non-maximum suppression, and assembling other 

segments based on their spatial proximity and end-to-end orientation, using graph-base 

connection algorithms 259.  

 

Besides the classical methods of cytoskeleton segmentation, model-based and Deep Learning 
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base methods are also available. Model-based methods assume filaments to be 2D curves that 

can  be described using, for example, a polynomial function 260, and can be fitted by the 

pixels in the image. A widely used model for filaments is called deformable contours, which 

considers 2 kinds of energies during the fitting of so-called “stretching open active contours” 

(SOACs): the internal energy, which is penalized by sharp changes of filament orientation; 

and the external energy, which consists of stretching force and image force, where the 

stretching force is evaluated by the image intensities at contour tips and the mean 

background/foreground intensity and drives the tip to either stretch or shrink, and the image 

force is the gradient vector from gaussian filter image, which ‘squeezes’ the active contour to 

the central line of filament 261 262. Other model-based methods include fitting the filament 

curve by multiple B-Spline surfaces 263 or using conventional segmentation methods to get a 

skeleton and fit a Gaussian model along the skeleton to detect filament segments and segment 

centers, then using an interpolation to link segments together 264. Deep Learning 

segmentation methods for the cytoskeleton are similar to those for cell nuclei, usually based 

on U-Net architecture 265 266. A challenge for Deep Learning based supervised segmentation 

methods, however, is the labor-intensive work of ground truth generation, which is especially 

the case for very complicated cytoskeletal structures from fluorescence microscopy.  

 

In addition to segmentation, tracking of cell lineages is another challenge in ‘live’ image 

analysis. By contrast to the abundance of methods for segmentation, cell tracking methods 

are few and roughly can be categorized into (a) tracking by detection, (b) tracking by model 

evolution (reviewed in 267). In (a), the cells are firstly segmented, and based on the features of 

segmentation, and cells from sequential frames are linked together using nearest neighbor 

search 268, overlapping detection, 269 Bayesian filter 270 271 or graph-based methods 272 273. In 

these methods, graph-based tracking approaches are most often preferred because by 

constructing a cost-matrix of different modes of frame linking an algorithm can therefore be 

able to detect multiple biological events including cell fusion, mitosis, cell death and 

loss/rescue of detection. In (b), segmentation is recursively done with segmentations evolving 

on the basis of the segmentation results from the previous frame 274. Deep Learning based 
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tracking methods have also been emerging recently 275 276. 
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2. ‘Live’ Cell Imaging Experimental Design and Preprocessing of Timelapse 

Microscopy Images 

 

To better understand cell behavior and its relation with the cell cycle during neuronal 

differentiation of hNSCs, we performed two long-timelapse imaging sessions of 

differentiating hNSCs in vitro. Similar to the method used for validating the differentiation 

potential of PA-GFP expressing H9 cells and their derived hNSCs, we differentiated hNSCs 

by applying B-27 and GlutaMAX-L into the neurobasal medium.  

 

The hNSC line used for imaging was a hNSC line expressing FUCCI and H2B-HaloTag 

(Figure 3.2 A and B) kindly made and provided by Dr. Sungmin Kim. This cell line has a 

FUCCI system which makes cells express a red fluorescent nuclear signal when cells are in 

G0/G1 phase of the cell cycle and express green nuclear signal when cells are in G2-M phase 

of the cell cycle. In G1-S-G2 cells can display both red and green nuclear signal which 

appears as yellow color in composite RGB images of all channels. 

 

In a first set of imaging experiments, we carried out hNSCs differentiation for 7 days on cell 

culture kept in PhenoPlate™ 96-well microplates with 1.5H polyolefin bottom. To record 

images of the microtubule cytoskeleton structures of cells a SPIROCHROME SiR-Tubulin 

Kit was used to live stain microtubules. This staining system is based on the fluorophore 

silicon rhodamine (SiR) and the microtubule binding drug Docetaxel, binding to microtubules 

structures in the cell and emitting 670nm far red fluorescence under 633nm excitation 277. In 

our specific case, neuronal differentiation was carried out with 50nM of SiR-tubulin applied 

to the cell medium before imaging.  

 

Imaging was terminated every 24 hours and restarted after fresh medium was applied to the 

cell culture. During the medium change, cells treated with SiR-tubulin stain for the previous 

24 hours were changed to medium free of SiR-tubulin to allow a break from the SiR-tubulin 
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stain, and the other identical well of cell culture, which was in the same experimental group, 

was changed from ordinary differentiation medium to medium containing SiR-tubulin. 

Therefore, assuming there are two wells of cell culture, well A and B in the imaging group, 

both wells of cell were imaged on FUCCI system every day, but (a) only A was stained and 

imaged on microtubules on day 01, while B was kept in ordinary fresh medium, and (b) only 

B was stained and imaged on day 02 while A was on break from SiR-tubulin during day 02, 

and on day 03 it went back to (a) again (Figure 3.2 C). This experimental design is based on 

our previous observation that treating H9 and hNSCs with SiR-tubulin, even at an ultra-low 

concentration of 50nM over 36 hours, leads cells to cease mitosis and causes severe cell death. 

Further decreasing SiR-tubulin concentration results in low SNR ratio during imaging, 

yielding low-quality images. 

 

During imaging on the Yokogawa CV7000S platform, the FUCCI signal of cells was 

captured by imaging cells with a 20X air objective every 30 minutes with 488nm and 561nm 

lasers, each at 30% of maximum power and 100ms exposure time. Microtubules in far red 

fluorescence emission channel were imaged every 15 minutes under 633nm laser at 15% 

power and 85ms exposure time. This imaging configuration was previously tested on other 

hNSC lines to avoid phototoxicity during imaging. A neighboring 3 X 4 matrix of FOVs were 

imaged on cell culture and merged together to form a bigger FOV.  

 

A second set of imaging experiments inherited all the configurations of the first imaging 

experiment above, except: (a) besides the normal differentiation and imaging group, an extra 

group was added, where cells were also treated with 100nM Longdaysin 278,  a small 

molecule  known to be able to lengthen the cell cycle by inhibition of Wnt/β-catenin 

signaling; (b) On differentiation days 1 to = 9, a matrix of 2 ×  2 FOVs (under 20X lens) was 

imaged instead of 3 ×  4 . On days 10 to 12 of imaging, the matrix changed to 3 ×  4 by 

expanding the imaging region left, right and up-ward; (c) A extra well of cell culture was 

imaged on day 11 on only 1 FOV, making a 3D imaging with Z-position spacing of 0.5uM, 

expanding the Z range to ±2um of best-focusing layer for the FUCCI channel, and to ±4um 
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of best-focusing layer for the microtubules channel; (d) The imaging time expanded to 12 

days, aiming to record cell phases of mid-to-late stage of neuronal differentiation; (e) The 

imaging interval of FUCCI signal was reduced to 15 minutes, making the merged FUCCI 

channel which represents cell nucleus trackable. After the whole imaging session, IHC of 

Map2 expression was performed to validate the successful neuronal differentiation of the cell 

culture, similar to the method described in Chapter 1. 

 

 

Figure 3.2 The designation of imaging experiment. (A) The schematic of HaloTag reporter, 

inspired by and based on the figure in 279. (B) The schematic of FUCCI 2.0 cell cycle 

reporter, inspired by and based on the figure in 280. (C) The schematic of ‘staining-and-

release’ workflow, where well A and well B in the same experimental group was stained and 

imaged alternately through the whole imaging session, to avoid a single well of cell culture 

being stained longer than 1 day. 

 

After the imaging data was collected, the first step to perform image analysis was flat-field 

correction. As the intensity of microtubules channel shows a gradual increase across imaging 

every day, due to the slow speed of SiR-tubulin binding at low concentration, a single 
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calibration image shot on empty background of cell culture, on single time point, would not 

be sufficient to correct images on all time points. We therefore decided to use the 

retrospective method as introduced above, adopting a protocol called ‘segment and correct’.  

 

Based on the hypothesis that background intensity of BFI can be represented by a continuous 

function 𝐼𝐵𝐹𝐼 = 𝐹(𝑥, 𝑦), where 𝑥 and 𝑦 are the coordinates of the pixel location in the image, 

our goal was to fit the function 𝐹(𝑥, 𝑦) for every pixel in the image, finally generating a 

pseudo-BFI for calibration. The cell images were firstly segmented on a roughly trained 

ilastik241 (https://www.ilastik.org/) model, to allow a rough separation of background and 

foreground (Figure 3.3, Top). The 𝑥 and 𝑦 coordinates of all background pixels were taken as 

data point features and the intensities of the background pixels became the ground truth 𝑦 

value of the data point.  

 

We used 2 different types of regression model to fit the function: (a) a traditional polynomial 

regression, with parameters set as: degree = 2, interaction only = False, include bias = True, 

therefore the polynomial function could be represented as �̂� = 𝑊 × (𝑥2 + 𝑦2 + 𝑥𝑦 + 1), and 

the training  aims to fit this function to minimize the summed loss ∑(𝑦 − �̂�) across all data 

points and (b) a Random Forest regressor, with parameters set as: n_estimators = 1000, 

max_depth = 10, max_samples = 10000, which means totally 1000 decision trees  each 

trained on a bootstrapped 10000 data points from all data points, allowing the branching of 

trees to level 10. The Python library scikit-learn 281 was used for the above 2 regression 

model establishment. 

 

Both regression models showed some extent of regressing and fitting the intensity function 

across space. After acquiring the pseudo-BFI pB, the corrected image was calculated by 

𝐼𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 =  𝐼𝑟𝑎𝑤 ×
𝑝𝐵̅̅ ̅̅

𝑝𝐵
 . We found that Random Forest regression-based correction 

performed better upon polynomial regression, successfully correcting the sharp decreased 

intensity at the border of images, where a polynomial regression model was not able to 

correct completely (Figure 3.3, Bottom, marked by yellow and green square). This is 
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probably due to the nature of low-order polynomial functions, which are insufficient to fit 

sharp changes. Moreover, we found the Random Forest regression model is able to 

compensate some non-uniform changes on the background intensity (Figure 3.3, the 

‘Calibration Map’, note the shadow on the right bottom corner generated by the model).  

 

To test how robustly it works on timelapse image stacks where the general intensity changed 

over time, we applied this workflow on the microtubules channel images. The segmentation 

of ilastik was done and the model was trained on background pixels every 40 frames as a 

‘sampling time point’. To correct images captured between the sampling time points, a linear 

interpolation was performed on the pseudo-BFIs generated by the model, to get pseudo-BFI 

on every time point. We found that although the general intensities changed in the 

microtubule channel across time, the model can generate different pseudo-BFIs accordingly, 

and successfully correct images at all time points (Figure 3.3, Bottom). 
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Figure 3.3 Flat-field correction of acquired images. Top left: an example of what 
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transformation was performed to get pixel features (for segmentation) on ilastik. Top right: 

binarized segmentation of foreground (in blue). Middle left: A example of random forest 

decision model, image source from (https://community.tibco.com/wiki/random-forest-

template-tibco-spotfirer-wiki-page). Center: calibration image generated from the model. 

Middle right: random forest regression model working on timelapse microtubules image 

stack. Although general background intensity of the original image on timepoint 21 and 

timepoint 377 differed much, the model can generate corresponding calibration images and 

compensate the vignetting. Bottom: comparison between original image, polynomial 

regression model corrected image and random forest regression model corrected image. 

 

After FFC, the 3 channels of merged images can either be merged for a direct visualization, 

or quantified separately for further analysis. To quantify the images, all the images were 

rescaled to 0.25 of their original size using relative functions in Python package scikit-image, 

to reduce the computation resources it required. The FUCCI red and green signals were 

firstly merged together as a ‘nuclear signal’ (Figure 3.4, Middle left), and the U-Net based 

model ‘2D_paper_dsb2018’ from Python package StarDist was used for cell segmentation. 

The labeled segmentation images acquired (Figure 3.4, Bottom left) were used either for a 

region property quantification with scikit-image region_props function, or for cell tracking 

using ImageJ plugin TrackMate (Figure 3.4, Bottom middle). The parameters specifically set 

for TrackMate are shown in Table 3.1. The track information was then saved as csv format for 

further analysis. 

 

Threshold for Segmentation Area: < 300 pixel^2 

Distance Threshold for Linking 30 pixels 

Maximum Gap for Linking 1 frame 

Distance Threshold for Gap Linking 30 pixels 

Allow Splitting  No 

Allow Merging No 

Extra Weight Considered for Linking Area: 1 

Threshold for Tracks Frames in Track: > 5 frames 

https://community.tibco.com/wiki/random-forest-template-tibco-spotfirer-wiki-page
https://community.tibco.com/wiki/random-forest-template-tibco-spotfirer-wiki-page
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Table 3.1. Parameters used for TrackMate. 

 

For the microtubules channel, a more dedicated model training (compared to that used for 

FFC) was performed in ilastik. The generated probabilistic foreground map was used for 

vessel detection by scikit-image function ‘meijering’, which is from the published neurite 

detection algorithm in 282. The vessel probability map (Figure 3.4, Center) was threshold at 

0.5 to binarize and the binarized image was thinned using function ‘skeletonize’ 283 in the 

same Python library (Figure 3.4, Middle right). 

 

 

Figure 3.4 The image quantification pipeline. Top left: the merged images of FUCCI and 

Microtubules channels. Cells during neuronal differentiation clearly form clusters and 
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intercellular axon-like structure which could be reflected by microtubules staining. Top right 

and middle left: merged FUCCI nuclear channel and microtubules channel. For merged 

FUCCI channel, segmentation followed by cell tracking and phenotype quantification were 

performed (bottom). For microtubules channel, ilastik segmentation, ridge detection and 

skeletonization were performed (middle right). 
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3. Quantification of nuclear and microtubule signal in a timelapse manner 

 

With preprocessed images in hand, we then performed quantifications on cell nucleus and 

microtubules. The properties measured for nucleus signal, microtubules signal and global 

properties of the merged images were listed in Table 3.2, 3.3 and 3.4, of which some 

properties were calculated as described in scikit-image document: 

 

Properties to Measure Notes of the Property 

label The label number of the nuclear region 

area Number of pixels of the region. 

eccentricity Eccentricity of the ellipse that has the same second-

moments as the region. 

centroid Centroid coordinate tuple 

intensity_max Value with the greatest intensity in the region 

intensity_min Value with the least intensity in the region 

intensity_mean Value with the mean intensity in the region 

moments_hu Hu moments (translation, scale and rotation invariant) 284 

orientation Angle between the 0th axis (rows) and the major axis of 

the ellipse that has the same second moments as the region, 

ranging from -pi/2 to pi/2 counter-clockwise 

solidity Ratio of pixels in the region to pixels of the convex hull 

image 

Table 3.2. Properties measured for merged FUCCI nuclear signal. 

 

Properties to Measure Notes of the Property 

Area Number of pixels of the segment 

Summed Pixels The sum of all pixels in skeletonized image 

Mean Signal The mean of intensity signals in original image, on the pixel 

locations of skeletonized image 

Maximum Segment 

Length 

The maximum summed pixel number of skeleton segments in a 

skeletonized image 
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Table 3.3. Properties measured for microtubules signal. 

 

Properties to Measure Notes of the Property 

Background Level The median value of regions which did not fall into segment 

area, in each imaging channels 

Signal Recall The summed number of pixels in segment region divided by the 

sum of all signal intensities on original image 

Cell Number The maximum value of area labels from StarDist nuclear 

segmentation 

Per Cell Signal The summed number of pixels in segment region divided by 

number of cells detected by nuclei segmentation on original 

image 

Table 3.4. Global properties measured for the merged image. 

 

To improve computing efficiency, when analyzing the nuclear populations, we randomly 

sampled 1 × 105 cells from the segmentations in the image stack acquired every day, across 

all sub time points. This contributed to ~10% of the real total population which we believe 

could be representative on the real distribution of cell properties. The signal intensities from 

FUCCI green and FUCCI red channel had the corresponding background signal level 

extracted and log transformed to get the R2G (Red compared to Green) ratio making sense. In 

this case R2G ratio is calculated by 𝑅2𝐺 =  log 𝐼�̅� −  log 𝐼�̅� , therefore this R2G ratio to plot is 

actually already log transformed. 

 

We firstly looked into the 7-Day differentiation dataset. By plotting the histogram of FUCCI 

Green/Red ratio, we could figure out 2 distinct cell populations with different FUCCI cell 

cycle phase, as well as a small ‘intermediate’ population between the 2 major populations, at 

the first glance, and a manually set threshold can be used to distinguish the cell populations 

of different cell cycle phases (Figure 3.5, B). Applying this threshold standard to cell FUCCI 

signals on each day, we could find that there is a switch from FUCCI green population to 

FUCCI red population across the differentiation process (Figure 3.5, A), despite the general 

increasing trend of cell numbers in all of the 3 populations (Figure 3.5, B).  
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Interestingly, we could also observe a reduction of absolute value both on FUCCI green and 

red signals (Figure 3.5, C). This could be probably due to the altered expression level during 

cell differentiation, but without suggesting the need to adjust the cell cycle phase threshold 

(which is also indicated by Figure 3.5, A). 
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Figure 3.5 FUCCI signal and population shift during the neuronal differentiation from 

hNSCs. (A) by plotting the histogram of cell density across FUCCI G2R ratio on 

differentiation day 1 to day 7, we could observe a population shift from FUCCI green cells 

(G2-M phase) to FUCCI red cells (G1/G0 phase). (B) left indicate a general trend of cell 

number increase in all of the 3 cell cycle phase populations (right showing the standard of 

distinguishing the population). We could find FUCCI red cells increase faster compared to 

FUCCI green cells. (C) Plotting all the cells in FUCCI green/red 2D space with their phase 

labelled in different colors. A reduction of FUCCI signals in day 7 compared to day 1 can be 

observed. 

 

We then turned to the 12-day differentiation dataset, focusing mainly on the FUCCI signal 

instead of population. As a conclusion here, we observed an increase of FUCCI R2G ratio 

reflected by cell signal statistics, which begins from a very early stage during neuronal 

differentiation, accompanied by an increase of the per cell microtubules ridge signal, which 

roughly represents the axon segment of differentiating NSCs. This increase of R2G ratio was 

not due to the proliferation of cells, as the R2G ratio in the NSC reference group was not 

increasing significantly, despite the NSC group cells reaching nearly 100% confluency at the 

end of day 7.  

 

However, there is also a possibility that the increase of R2G ratio is caused by the slowing of 

cell proliferation. To look deeper into this possibility, we plotted the R2G ratio, as well as the 

cell number of 3 experimental groups, the normal neuronal differentiation group (marked as 

NDiff in figures below), the Longdaysin treated differentiation group (marked as LDS) and 

NSC proliferation group (marked as NSC), as curves across all 12 days of differentiation. 

When looking at the statistics of nuclear signal properties, first, just like what we concluded 

from the 7-Day dataset, there is a clear and consistent cell phase distinction across the whole 

differentiation process, which means we could simply set a standard for cell phases and apply 

it to the cell nuclear intensity data of every day (Figure 3.6, A). We found that the Fucci 

Red/Green ratio quickly increased during differentiation day 1, while the cell number still 
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increased, until reaching its maximum at roughly day3. We also found that unexpectedly, 

although there was a general trend of rising R2G ratio, an unusual decrease of R2G ratio 

occurred between day 5 and day 6 of neurogenesis. The total cell number peaks at day 5 and 

then decreases, suggesting that cell divisions still widely exist at least during early stage of 

neuronal differentiation (Figure 3.6, B and C). All the observations suggested that, even there 

was a causal relation underlying between the slowed proliferation and R2G ratio, the latter is 

not likely to be the dependent variable. 
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Figure 3.6 The statistics and dynamics of cell R2G ratio as well as the cell number in the 3 

groups during the 12-day imaging (note that the imaging session of NSC group was aborted 

on day 8 and the session of Longdaysin treated group was aborted on day 10). (A) plotting a 

randomly sampled cell population (500 cells from every day, all 3 groups). We could find that 

the standard ‘if log2 FUCCI Red > log2 FUCCI Green can be used to distinguish the cell 

population, which works consistently on every day’s data. (B) the cell number and R2G ratio 

dynamics of 3 groups (the curve of R2G ratio got gaussian smoothed with sigma = 3). (C) the 

R2G ratio dynamics of all 3 groups, with standard deviation of the signal on every time point 

indicated as the shadows. We can observe a general increasing trend of cell number and a 

stable R2G ratio in NSC group, which is not the case in the other 2 groups. 

 

When considering simultaneously the dynamics of the nuclear signal and the microtubules 

signal, we found that they may change in a correlated manner. As the cells were becoming 

more and more sparse during differentiation and finally formed small radiating colonies in 

culture, it could be essential to scale and remove the influence of cell density when 

quantifying the microtubules. Therefore, we used the metric 
Sum Skeleton Pixels

𝑆𝑢𝑚 𝐶𝑒𝑙𝑙 𝑁𝑢𝑚𝑏𝑒𝑟
 to represent the 
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density of neuronal processes (and the extent of neuronal differentiation). We found that, 

besides a general trend of increasing per cell skeleton pixels in NDiff and LDS group and 

stable per cell skeleton pixels in NSC group, when looking at the end of day 5 and start of 

day 6, we found a sharp drop of R2G ratio coincident with the sharp rise of per cell skeleton 

pixels in NDiff and LDS (Figure 3.7). The underlying logic of this phenomenon remains 

unclear. 

 

 

 

Figure 3.7 The dynamics of FUCCI R2G ratio and per cell skeleton pixel number. Note that 

at the end of day5 and start of day6, a sharp drop of R2G accompanied with the rising of per 

cell skeleton. 

 

We also sought to inspect lineage tracks obtained by TrackMate. To make the results more 

reliable, we carried out a quality control whereby the standard deviations (stds) of FUCCI 

signal, cell position, morphology and rotation-invariant moments (Hu’s moments) were 

calculated among the features of all spots (single cell in single frame) belonging to the track 
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and normalized using Z-score  following the formula 𝑧 =  
𝑥− 𝜇

𝜎
, where 𝜇 is the mean value 

and 𝜎  is the standard deviation, to standardize them to a normal distributed variable to 

𝐷𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 ~𝑁(0, 1) . These properties of all tracks were mapped to 2-dimensional space 

using PCA reduction, taking principal components PC1 and PC2, outliers on the PCA map 

could therefore be easily distinguished and manually excluded. Visually we found there was 

not any obvious batch effects of track stds features across different plates or different time 

points during differentiation (Figure 3.8, A), which means the difficulty of tracking nucleus 

movements does not change significantly through the 12-day period of neuronal 

differentiation, despite the obvious change of nucleus density and colony morphology in cell 

culture.  Also, we could easily find some outliers of the tracks, which were distant from the 

major population.  

 

After acquiring the outlier-filtered tracks, we further looked into the dynamics of stds of 

FUCCI red/green signal, as well as the mean of R2G ratio during neurogenesis. We found 

that the mean value of R2G ratio on tracks had the similar increasing trend as in the 

population statistics, and also similar to the cell population, there was a decrease of R2G 

mean ratio on tracks occurred between day 5 and day 6 of neurogenesis (Figure 3.8, B). 

Surprisingly when we looked at signal stds on tracks,  although as we expected the stds of 

both signals gradually decreased in neuronal differentiation group (indicating the saturation 

of FUCCI red signal and depletion of FUCCI green signal in differentiating neuron cells) and 

the stds of FUCCI red signal in Longdaysin treated group was lower compared to normal 

neurogenesis group (which was also to be expected as Longdaysin treatment leads to 

lengthening of cell cycle)  the stds of FUCCI green in Longdaysin group did not significantly 

decrease and remained higher compared to the normal neurogenesis group, despite the fact 

that the R2G ratio indeed decreased in Longdaysin group, and both red and green signals 

showed similar trend in two experimental groups (Figure 3.8, B). 

 

Besides the dynamics of signal stds across tracks, surprisingly we also found that the cell 

cycle dynamics in normal differentiation group and Longdaysin group showed very high 
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consistency, when analyzed either in cell populations or tracks. When plotting the mean 

FUCCI red signal and FUCCI green signal on tracks or in total cell populations across time, 

we found even the signal oscillations of both groups coincident (Figure 3.6, Figure 3.8 B). 

Although the oscillations could be due to the imaging issues of confocal microscopy, the 

general trend of signals were also similar (e.g., the relatively smooth decrease of FUCCI red 

and increase of FUCCI green at the end of day 5). This may suggest that neuronal 

differentiation entails highly consistent cell cycle dynamics, indicating potentially a strict cell 

cycle control mechanism underpinning this process. We also plotted the FUCCI signal 

standard deviations on tracks across time. As majority of cells are supposed to switch from a 

state of active proliferation to a state of G0 cell cycle exit during differentiation, where Fucci 

green signal converge to 0% and Fucci red signal converge to 100% strength, we expected 

the standard deviation of FUCCI red and FUCCI green signal on lineage tracks both 

gradually decrease across time. In both normal differentiation and LDS treated differentiation 

group, Fucci red and green signal both finally decreased as expected. However, unlike the 

quite similar dynamics of FUCCI red signal standard deviations in normal and LDS group, 

the decrease of FUCCI green standard deviation in LDS group seems to be 'delayed' 

compared to normal differentiation group. This indicates that the treatment of Longdaysin 

might possibly delayed the switch of cell cycle state. However, to validate the hypothesis, 

further analysis which was not involved in this thesis are to be taken, to explore the reason of 

slowed decrease of FUCCI green standard deviation. 
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Figure 3.8 The analysis of cell tracks during differentiation. (A) The principal components 

(PCs) were calculated based on the stds feature of spots in each track, and the tracks were 

then plotted in 2D space with outliers easy to be distinguished from main population. There 

was no significant batch effect on the PCs of tracks, either across wells (experimental groups) 

or across time points during imaging. (B) Left: the mean value of FUCCI red/green signal on 

tracks of (a) normal differentiation (b) Longdaysin treated and (c) NSCs groups. 

Right: the dynamics of stds of FUCCI red (top left) and FUCCI green (top right) signal on 

tracks in both groups. Strangely, the stds of FUCCI green signal in Longdaysin treated group 

did not show decrease across time. The trend of mean value of R2G ratio on tracks is similar 

to the result from cell population statistics.  
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4. Exploring the Spatial Correlations between Nuclear FUCCI and Microtubule Signal 

 

Given that cell cycle signal showed significant change during NSC differentiation, with quite 

consistent pattern across different experimental groups, along with results indicating a 

potential relation between microtubules signal and Fucci cell cycle signal, we then went on to 

explore how these signals are coordinated spatially. At first glance in images of the merged 

channels, we can intuitively conclude that the stained microtubules seem to originate from 

cell clusters that have a higher ratio of G1/G0 phase (marked by red squares in Figure 3.8, 

Top left). To validate our hypothesis, we performed quantifications directly on pixel features 

(segmentation-free quantification) on the dataset of 7-day differentiation. 

 

We firstly applied a modified version of Gaussian filter on the 3 channels of image (FUCCI 

red, FUCCI green and Microtubules). The filter was built on a disk-shape morphology filter 

from scikit-image. The radius of disk is 100 pixels. Distance transform followed by a 

Gaussian function transform on distance from center was applied to the filter, then the values 

on filter was divided by the sum of all values (Figure 3.9, A). The signals of 3 channels were 

spatially averaged by the filter constructed to form a rough spatial distribution (Figure 3.9, B 

and C). This spatial distribution maps of every channel were then rescaled to 1/8 of the 

original size and flattened to 1D array. Pearson correlation test was then applied between the 

arrays of (a) FUCCI red and microtubules; (b) FUCCI green and microtubules. 

 

By evaluating the Pearson correlation score between FUCCI red and microtubules, of images 

on the ‘middle time point’ of day 1, 3, 5, and 7, we found that (a) there was a very strong 

correlation between the 2 signals, ranging from 0.83 to 0.92; (b) this correlation score seems 

to increase within differentiation, from 0.83 on day 1 to 0.92 on day 5 and day 7 (Figure 3.10). 
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Figure 3.9 Pre-processing of images for spatial correlation analysis. (A) Left: intuitive view 

showing the correlation between FUCCI red cells and microtubules. Right: Gaussian filter 

used for preprocessing. (B) preprocessed (and merged) FUCCI signal channel. (C) pre-

processed microtubules signal channel. 
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However, this evidence may not be sufficient to prove a spatial correlation of FUCCI red (i.e. 

G0/G1 status) and microtubules, because the location of the both signals should be roughly 

restrained to where a cell colony locates. To further validate this, we compared this 

‘microtubules correlation score’ between FUCCI red and FUCCI green signals. To evaluate 

the correlation, the signals on all the images acquired on day 1, 3, 5 and 7 were extracted and 

got correlation score computed through the method as described above, with the only exempt 

that, to accelerate computing on so large number of images, the convolution using Gaussian-

like filters was replaced by a block-reduce function calling NumPy mean function. We found 

that there is clearly a higher correlation score with microtubules for FUCCI red signal, 

compared to that of FUCCI green, on all of the 4 days (Figure 3.11). Interestingly, contrary to 

the case with the FUCCI red signal where correlation with microtubules gradually increased 

and saturated, the correlation between the FUCCI green signal and microtubules peaked on 

day 3 and then kept decreasing. 
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Figure 3.10 Correlation between FUCCI red signal and microtubules signal, on 

differentiation day 1, 3, 5 and 7. The middle time point on each day was selected as sampling 

point. Note that there seems to be an increase of correlation score accompanies with 

differentiation process. 
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Figure 3.11 Comparison of Pearson correlation score between (1) FUCCI green and 

microtubules, and (2) (1) FUCCI red and microtubules. Evaluated on images of all time 

points of day 1, 3, 5 and 7. 

 

We next asked whether the FUCCI red signal on images correlates with the microtubules 

signal not just spatially but also temporally. In other words, we asked whether the increase of 

FUCCI red local signal correlates with the increase of microtubules local signal on time-

series image. To address this, we further calculated the correlation between the ‘delta signal’. 

We chose 3 equally-spaced time point every day, calculating the local signal differences from 

time point #1 to time point #2, and from time point #2 to time point #3, in FUCCI channel 

and microtubules channel. We therefore got 2 difference image every day on all of 3 channels 

and correlation between the difference images were calculated using the method above. This 

correlation between deltas will reflect the relationship between the newly emerged G1/G0 

cells and newly generated axon-like structures. As we would expect the SiR-tubulin-stained 

fluorescence will take hours to reach its maximum intensity, we focused on the analysis of the 

second difference image every day, to get a more reliable result. 

 

Just as what we expected, from the results we found that there was a moderate-to-strong 

positive correlation between the delta FUCCI red signal and delta microtubules signal. 

Although there was also a very weak correlation between delta FUCCI green and delta 

microtubules, it is always much lower at every time points compared to the former. To our 
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surprise, however, the correlation between delta FUCCI red and microtubules seemed to 

show a decreasing trend during differentiation, suggesting the relation between newly 

emerged G1/G0 cells and newly generated axons could happen specifically at an early stage 

of differentiation. Another strange observation is the correlation in stage 2 was always higher 

compared to stage 2. We think this was probably due to the gradually increased binding of 

SiR-tubulin dye, as according to the protocol, it takes around 6 ~ 12 hours for the dye to stain 

cells completely. Therefore, the correlation score in stage 2 may better represent the actual 

correlation, as shown in Figure 3.12. 
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Figure 3.12 Pearson Correlation between the delta FUCCI signal and delta microtubules 

signal. Note that red dots represent corresponding delta FUCCI red signals and delta 

microtubules signals, and dark blue dot represent that of delta FUCCI green. 
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5. Conclusions 

 

In this chapter, we focused on the image quantification and analysis of two live imaging 

datasets on hNSCs neuronal differentiation. The signal of microtubules (which roughly 

represent the structure of neuron process) and of nuclear FUCCI system were recorded during 

the imaging. To pre-process the images, especially to remove the image vignetting, we 

adopted a Random Forest regression model to perform a segmentation based retrospective 

flat-field correction, which used software ilastik to separate foreground and background, 

followed by the generation of training set using the background pixel intensity and 

coordinates. Random Forest regressors showed stronger ability to calibrate a background with 

relative non-linear and complex patterns, compared to low-order polynomial regressor which 

was traditionally used for flat-field correction. 

 

Analysis of the dynamics of FUCCI signal and microtubules signal indicated that, compared 

to undifferentiated NSCs, differentiating NSCs showed a conversion from FUCCI green cell 

population (G2-M cell cycle phase) to FUCCI red cell population (G1 cell cycle phase), this 

conversion was further validated by FACS. When looking at the FUCCI signal ratio across 

time, we found that similar to population, there was a general and consistent increase of 

log10 R2G ratio in normal differentiation group and Longdaysin-treated differentiation group, 

accompanied with an increase-and-decrease cell number which peaks on day4 and day5, 

followed by a sharp decrease of R2G ratio, while the R2G ratio was stable in undifferentiated 

group, and the cell number kept increase. There was also an increase of per cell neurite 

skeleton length across time, and the dynamics of neurite skeleton (microtubules) and FUCCI 

signal may potentially correlate. However, still we do not have direct evidence that link 

neurogenesis to cell cycle state transition. 

 

We later performed tracking on the segmented nuclear FUCCI signal. Using the signal 

statistics on each track, we performed cell track quality control using UMAP clustering. We 
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will further discuss the quality control methods of cell lineage tracks in Chapter 5. The result 

from track analysis is consistent of that from cell population/signal analysis, except that when 

looking at the variance of FUCCI green signal on tracks, normal differentiation group and 

Longdaysin treated group showed different behaviors, despite their very similar pattern on 

other statistic metrics. This may probably due to some unique feature of Longdaysin treated 

NSCs. 

 

We then looked into the spatial correlation of microtubules and FUCCI signal, and found 

FUCCI red signal has a stronger correlation, no matter in a static (signal) or a dynamic (Δ

signal) view, compared to FUCCI green signal. This observation serves as more 

straightforward evidence indicating a relation between neurogenesis and G1/G0 transition, 

although still not in single cell level. The analysis could be further extended by being 

combined with more powerful and accurate single cell segmentation and tracking algorithm, 

allowing us to generate a complete cell lineage from imaging in high-throughput manner and 

jointly study the neurite growth and cell cycle activity across the whole lineage. 

 

Previous studies in mouse and primate models have pointed out that, during corticogenesis 

where neurons are generated by increasingly frequent differentiative divisions, there is a 

lengthening of G1 phase which slows down cell cycle progression and cell proliferation 285. 

The lengthening of G1 phase selectively happens in cells undergoing neuron-generating 

divisions 286, and may act as a ‘vulnerable window’ to differentiation signals. By using 

fluorescent cell lines expressing the FUCCI system and ‘live’ stained for microtubules, our 

work provides new insights into the correspondence between cell cycle phase and 

neurogenesis at lineage and population level, spatially and temporally. However, further 

individual cell lineage analysis is required to validate the re-entry event. Together with the 

finding of close correlation between the expression pattern of cell cycle regulators and 

microtubules-related factors, our work in this chapter suggests a complex and coordinated 

interplay between cell cycle control and neuronal differentiation. 
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Chapter 4. Refining Live Imaging Analysis Workflows: Multi-focus Image 

Fusion and Skeleton Stitching 

 

1. Multi-focus Image Fusion: Compressing Information from Multiple Layers into One 

 

Two problems related to image focusing during confocal live imaging of 2D cell cultures 

have significant influence on the quality of image analysis results: (a) the Z-Axis structure 

(i.e., three-dimensional organization) of the 2D cultures and (b) Z focus drift during imaging. 

As confocal microscopy has a very narrow focal plane due to pinhole filtration, it can only 

reveal cellular structures around a given Z-position, while out-of-focus objects form diffuse 

and obscure patterns on the image, with structure details hard to distinguish. This is a major 

issue when imaging crowded cell populations, where cells become ‘squeezed’ into 

higher/lower Z-positions due to external forces and cell components become distributed in 

3D, including the cytoskeleton and mitochondria. Focus drift can be due to multiple reasons, 

including evaporation of cell medium, temperature changes causing expansion/contraction of 

imaging materials, mechanical perturbations and cell motility 287. Although 3D imaging and 

reconstruction can efficiently address the out-of-focus problem, the high number (usually 

over hundred) of Z-positions and images that this approach demands makes the method tricky 

to apply to long-timelapse imaging, due to the additional phototoxicity induced by the higher 

and cumulative temporal frequency of exposure to light. Therefore, MFIF technologies could 

be a good alternative to balance the need for 3D information and long-time imaging. 

 

MFIF refers to methods for creating all-in-focus images from a series of partially focused 

images, which are usually from a Z-position stack. It can roughly be categorized into 3 

classes: (a) spatial domain methods, (b) frequency/transform domain methods and (c) Deep 

Learning based methods 288. Spatial domain methods aim to measure the focusing properties 

of the images and generate a weighted map for each image in the series, and an all-in-focus 



136 

 

 

image is then computed by summing-up the weighted intensities of all the images. Depending 

on the basic image units for the focusing measure, they can further be categorized into block-

based methods, pixel-based methods and segmentation-based methods. Many focusing 

measures can be applied to the image units, including gradient-based measure, Laplacian-

based measure, statistics-based measure, wavelet/discrete cosine transform based measure 

and others. A table of these measurement terms are listed below, according to the review in 289. 

 

Type Focus operator Description 

Gradient Based 

Measure 

Gradient energy The absolute value/sum of 

square/variance of the first 

derivative in the x and y 

directions of the image, either 

untreated, Gaussian filtered, 

Sobel operator filtered, Z-

stacked or intensity gradient 

threshold. These metrics aims 

to detect the local intensity 

change of the image, on both 

or single directions. 

Gaussian derivative 

Threshold absolute gradient 

Squared gradient 

3D gradient 

Tenengrad 

Tenengrad variance 

Laplacian Filter 

Based Measure 

Energy of Laplacian The local sum/variance of the 

image which is filtered by 

Laplacian operator or 

modified Laplacian operator. 

These metrics aims to detect if 

there is a strong evidence of 

object edges on the image. 

Modified Laplacian 

Diagonal Laplacian 

Variance of Laplacian 

Laplacian in 3D window 

Wavelet Transform 

Based Measure 

Sum of wavelet coefficients Wavelet transform and DCT 

(Discrete Cosine Transform) 

based measure firstly apply 

wavelet/DCT transform on the 

Variance of wavelet coefficients 

Ratio of the wavelet coefficients 
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Ratio of curvelet coefficients image, which decompose the 

image into discrete signals 

with different frequency, then 

calculate the sum/variance or 

other features of decomposed 

signal.  

DCT Transform 

Based Measure 

DCT energy ratio 

DCT reduced energy ratio 

Modified DCT 

Statistics Based 

Measure 

Chebyshev moments-based The variance/high-low 

frequency 

ratio/histogram/other 

statistical features of the 

image pixel intensities, or 

other extracted features 

(Chebyshev moments PCs) of 

the image.  

Eigenvalues-based 

Gray-level variance 

Gray-level local variance 

Normalized gray-level variance 

Modified gray-level variance 

Histogram entropy 

Histogram range 

Table 4.1. Focusing measures used for MFIF. 

 

Unlike spatial domain MFIF, frequency/transform domain MFIF methods do not perform 

focus measurements directly on image units, but instead firstly decompose the image into 

coefficients, measuring properties of those coefficients (such as activity level), and then 

perform coefficient merging following certain rules and strategies, followed by an inverse 

transform into images 290. These methods include pyramid-based methods 291 292, wavelet-

based methods 293 294, sparse representation-based methods 295 and gradient representation-

based 296 methods. Altogether, these methods bring possibilities to integrate microscopy 

information from multiple Z positions without the cost of excessive computation or cell 

phototoxicity 297 298.  
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2. A Workflow For Introducing MFIF into Timelapse Neuronal Imaging 

 

As cytoskeleton and axons can form very complicated structures in 3D space, which cannot 

be completely represented by a single Z-layer confocal image, as we were interested in 

visualizing the dynamics of microtubule structures during live imaging, we decided to adopt 

the concept of MFIF in our study. To test our proposed workflow, four 3D image datasets 

were generated:  

 

Cell 

Line 

Lens 

Magnification 

Numerical 

Aperture 

(NA) 

Z-layers 

Acquired 

Z-Position 

Spacing 

Cell Structure Live 

Imaging? 

H9 60X 1.2 ±6 0.5uM Microtubules No 

U2OS 60X 1.2 ±6 0.5uM Microtubules No 

U2OS 60X 1.2 ±6 0.5uM Actin No 

hNSC 40X 0.95 ±4 

 (nuclear)  

±8 

(microtubules) 

0.5uM Microtubules 

and Nuclear 

Yes 

Table 4.2. Image datasets used for our MFIF workflow. 

 

Our proposed method of MFIF includes the following steps: (a) calculate a set of focusing 

scores on every pixel in the images, based on certain groups of focusing measures; (b) 

generate a probability distribution of focusing on each Z-position for every pixel; (c) Assign 

the probability-weighted sum of pixel values on every Z-position to its location in the fused 

image. 

 

Facilitated by the studies in 289, we chose the following focusing measures as an integrated 

consideration of the accuracy and computing efficiency performance (Table 4.3, Figure 4.1). 

Rather than directly performing focusing measurements on single pixels, after the relevant 
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transform on images (such as Laplacian transform and wavelet transform) finished, we 

convoluted a Gaussian weighted filter, so called ‘weighted receptive field’, across the image, 

therefore allowing to consider both the focusing measure on a given pixel, and also the 

measure on its neighboring pixels. This could be useful when an ambiguous focusing score 

occurs on a pixel, where the microscope can focus on 2 discrete Z-layers because of the 3D 

structure. Considering the neighboring focusing layer helps to maintain the focusing scores 

changing smoothly, with Z-layer assignment probability not shifting quickly between layers 

thus forming artifacts on the fused image. 

 

Focusing Measure Type 

Gray-level Variance Statistical 

Histogram Range Statistical 

Energy of Laplacian Laplacian 

Variance of Laplacian Laplacian 

Tenengrad Sobel 

Tenengrad Variance Sobel 

Sum of Wavelet Coefficients Wavelet 

Variance of Wavelet Coefficients Wavelet 

Table 4.3. Focusing measures adopt in the workflow, based on the study in 289 
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Figure 4.1. The algorithm formula of the measures adopted in the MFIF workflow. Note that 

we selected Daubechies wavelets 10 (Db 10) for discrete wavelet decomposition (DWT) 

when calculating sum of wavelet coefficients, and chose Db 6 for calculating variance of 

wavelet coefficients, based on empirically satisfying results. 

 

After the convolution, the measures of each pixel on each Z-layer were normalized by z-score, 

summed together, and the summed scores on each layer were put into a SoftMax function to 

calculate a ‘best focus probability’ of layers on the pixel. Finally, the weighted sum of pixel 

intensities on each layer based on best-focus probability was calculated followed by a 

Gaussian filtering to remove any sharp changes in pixel intensity. The probability map 

generated in this way can also be rendered and used for indicating the Z-position of cell 

structures (Figure 4.2 A).  
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Figure 4.2. Workflow and possible refinements of our proposed MFIF. (A) MFIF workflow. 

Different focusing measures were completed on the whole image to generate ‘in-focus score 

maps’ for each measure. A weighted receptive field then convoluted to generate an averaged 

multi-channel map, making the in-focus score of every pixel considering neighbors. The in-

focus score of every pixel was z-normalized and SoftMax transformed into an in-focus 

probability distribution. The probability map can either be used to indicated the Z-position of 

cell structures, or multiplied by original Z-stack image to get an infused all-in-focus image. 

(B) A possible refinement of the algorithm, which considers the neighboring pixels with 

higher variance of in-focus score across layers more, could be accomplished by applying a 

weight to receptive field filter, which correlates with the variance value. 

 

As the final Gaussian filtering may obscure some of the details in the fused image while we 

also wanted to avoid the sharp changing of Z-position assignment weights, based on the 

variance of in-focus probability distribution we reasoned we can further improve the 

sharpness of fusion by substituting the final Gaussian filtering with a modified convolution, 

where in the convoluting area neighboring pixels with higher variance of in-focus probability 

are assigned a higher weight compared to those with lower variance (Figure 4.2 B). Such a 

modification gives more prominence to neighboring pixels with higher in-focus variance 

across Z-positions (i.e. pixels more likely to be in an ‘object region’) compared with pixels in 

the background area, which lacks object references for the focusing measure and tend to 

show less variable (i.e. noisy) in-focus probability across Z-layers. 
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We then applied the method to our acquired dataset. The method worked quite well on the 

first 3 test image sets (of single imaging time points), as shown in Figure 4.3. As a 

comparison reference, Z-stack images were also gray-level-intensity-averaged to create a 

‘mean intensity image’, which theoretically also possesses the information of all layers. As 

can be seen in Figure 4.3 we found MFIF treated images performed better in retaining 

structure details on different Z-positions. This superior performance was more significant 

when images had more complicated 3D structures, e.g. actin-stained U2OS cells were ‘flatter’ 

in structure compared to microtubule-stained U2OS cells, hence the advantage of MFIF in 

detail representation was less dominant in actin-stained cells, compared to mean images 

(Figure 4.3, Top).  
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Figure 4.3. MFIF fused images from single time point image sets compared to a mean 

intensity image. Green squares highlight superior retention of structural details in the MFIF 

images.  

 

We also tested the established MFIF workflow on 3D live images on neuronally 

differentiating hNSCs, as described in Chapter 3. It is worth mentioning that, using the 3D 

imaging protocol as mentioned above, there was no observable cell phototoxicity or 

bleaching of fluorescence during the total imaging sessions of 12 hours thanks to the limited 

number of sampling Z-positions. We found in the MFIF results that the live image sequence 

was properly fused, without any abnormal artifacts or sharp changes of image patterns neither 

spatially nor temporally. The neurites in the live image became constantly in focus allowing 

long-time tracking without loss of detection (Figure 4.4 A). Compared to images manually 

selected as ‘best-focus’ image, the fused image showed more details which were lost in the 

former (red circle in Figure 4.4 B). Conspicuously, the fused image seemed to have also an 

apparently better image quality and higher signal to noise ratio. 
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Figure 4.4. The fused images of hNSC neuronal differentiation. (A) a time-series of fused 

all-in-focus images from in vitro differentiating live hNSCs. Even very thin neurite 

structures, which were often found to shift in and out of focus in single layer confocal 

imaging, stayed constantly in focus. (B) Comparison between MFIF fused images and 

manually selected ‘best focus’ images. 
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3. Questions in MFIF: Where to Apply MFIF and What is a ‘Good Focusing Measure’? 

 

To the best of our knowledge, Maximum Intensity Projection (MIP; Z-projection) is often 

regarded as a ‘golden standard’ for MFIF-like preprocessing in confocal (fluorescence) 

microscopy images due to the general assumption that the Z-plane where a pixel has the 

highest signal intensity corresponds to the best plane of focus for that pixel. However, this is 

not always the case. Exceptions include (a) when cell debris accumulate at a certain layer, 

which can wrongly lead to the debris signal being selected as the ‘best focus’ signal of the 

biological structure we want to explore; (b) when dealing with bright field images, where the 

highest intensity does not relate to the best focusing state. MIP also has other limits, such as 

being prone to local pixel noise, which makes it not suitable for determining the Z position of 

target structure. 

 

It is therefore natural to raise 2 questions: (1) How does the MFIF workflow we established 

perform in those exceptional situations where MIP does not perform well? And (2) In those 

exceptional situations, are there any focusing measures that have the highest efficiency of 

separating the best focused structure out of its background? In other words, how can we find 

out the ‘best focusing measure’ or at least a ‘good focusing measure’? 

 

To answer the questions, we performed 2 in silico experiments. 

 

In experiment #1, we used the 3D image stack from an IHC stained (antibody targeting Map2) 

H2B-miRFP/H2B-PA-GFP expressing NSC cell line (after 12 days of differentiation) 

acquired on LSCM, as previously shown in Figure 1.4, Bottom. To test how MFIF workflow 

performs on a ‘messy’ image stack, we extracted the channels in 500nm~550nm (channel #1) 

and 650nm~700nm (channel #2), respectively, which represent the signals of photoactivated 

PA-GFP and miRFP670 respectively. This resulted in an 18-layers image Z-stack in both of 

the channels. A maximum Z-projection and a standard MFIF workflow, as described in last 
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section, were applied to the stack of both channels. The fused/projected channel images were 

merged to compare the results. 

 

Our initial consideration for choosing this image set was because of the massive cell debris 

observed in the nuclear signal channel. We expected the MFIF workflow to find out the true 

focusing layer using the information of neighboring cell area, because of the ‘reception field’ 

mechanism. To our surprise (although in reality not so surprisingly) the MFIF workflow 

failed to remove the debris from the fused image. This could most probably be due to the lack 

of overlap between cells and debris. However the result was still encouraging: we could 

notice that, probably due to either autofluorescence or the chemical-optical features of the 

antibody-associated fluorophore, there were obscure but significant traces of neuron axon-

like structures in MIP-projected channel #2 image, which were suppressed in MFIF fused 

images, making the background much cleaner compared to the former (Figure 4.5, red square 

A and B). It is also worth mentioning that a cell-body-like region with weak green 

fluorescence was also suppressed in MFIF fused image (Figure 4.5, red square C). Altogether, 

when dealing with ‘messy’ image data with background noises, we found that the MFIF 

workflow behaves more robustly compared to MIP, and has the ability to recognize and 

suppress non-well-focused structures that are usually not useful for further analysis. However, 

it is still not sufficient of removing high-intensity debris. 
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Figure 4.5. The comparison between MIP and MFIF applied to ‘messy’ IHC images. Red 

square A and B showed the ability of MFIF to remove the background traces of neuron 

process, red square C showed a suppressed cell-body-like autofluorescence region. 

 

In experiment #2, we used 2 different image stacks (a) from confocal fluorescence imaging in 

differentiated hNSCs (stained with SiR-tubulin), imaged with 20X lens across 17 Z-layers 

with 0.35uM spacing and (b) from bright field microscopy imaging in undifferentiated 

hNSCs imaged with 20X lens across 19 Z-layers, with 0.5uM spacing. Differently from the 

MFIF workflow in last section, here we used another set of focusing measures,  listed in 

Table 4.3: 

 

Name Type Description 

Modified Laplacian Laplacian Using a modified Laplacian 

operator as described in 289 

Wavelet Energy Wavelet Local sum of wavelet 

transformed image 

Wavelet Variance Wavelet Local variance of wavelet 

transformed image 

Local Gray Level Variance Statistics Local variance of pixel intensity 

gray level 

Structure Tensor Eigenvalue Structure Tensor The major eigenvalue of 

decomposed image structure 

tensor, which will be introduced 

later in the chapter 

Intensity of Gaussian Intensity A ‘softer’ version of maximum 

projection, Gaussian smooth the 

image followed by SoftMax of 

pixel intensities on each layer 

Maximum Projection Intensity Assign focusing probability 1 to 

the layer which has the 

maximum local gray value. 

Table 4.3. Focusing measures used for experiment #2. 
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Figure 4.6. MFIF fused images of 2 image datasets from experiment #2. Top left: the 

confocal fluorescence image of differentiated hNSCs. Top right: the bright field image of 

undifferentiated hNSCs. Note the very bright, enhanced cell debris in the FOV. Bottom: the 

background of fused brightfield image showed a complex ‘ripple-like’ background pattern, 

due to the not fully calibrated pinhole configuration in our spinning-disk confocal 

microscope. Because of its complex and non-linear feature, it cannot easily be removed by 

retrospective flat-field correction (like the Random Forest regression model described in 

Chapter 3) but using a calibration image on blank background as shown here can remove the 

pattern’s influence. 

 

The fused images showed good quality, despite the fused bright field image showing 

enhanced cell debris instead of suppressed it. This could due to the very clear border and 
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bright intensity of the cell debris in the bright field image, which is exactly the criteria of a 

‘well focused’ object in the MFIF workflow. Further refinement of the algorithm could be 

done to exclusively suppress the signal at a Z position very different from other focused 

objects, but this function would need to be carefully designed as sometimes (especially e.g. in 

the case of neuronal axons and dendrites) the target structure itself varies a lot in its Z-

position. A local structural comparison of MFIF fused, average Z-projected and MIP Z-

projected bright field image is shown in Figure 4.7. As we expected, MIP performed terribly 

on bright field image Z stack, hardly retaining any useful biological structure, while an 

average projection showed better results, and MFIF fusion can retain even more details 

compared to average Z-projection. Nonetheless, to our disappointment, when compared to the 

‘best focused’ Z layer (the center Z position #7, in our case) all of the fused results were of 

poor quality with most of local details lost. Interestingly, through the multilayer fusion the 

composed images showed some phase-contrast-like pseudo-3D features, in the future this 

could constitute an interesting output to explore and optimize for. 
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Figure 4.7. Comparison of MFIF fused bright field image and that from max-projection, 

average projection or the best-focused layer. Maximum Z-projection (MIP) produced an 

image that is hard to visualize. Compared to the result from average Z-projection, MFIF 

retained more details (though also included more details in the cell debris). Compared to the 

best-focused layer, however, most of the details other than edges of structure, were lost, while 

it instead generated phase-contrast-like pseudo-3D features. 

 

One possible reason for the lack of details in MFIF fused images is that bright field 

microscopy generates images of opposite intensity distribution on each side of the best-focus 

layer, where the high-intensity pixels and low-intensity pixels changed their position. 

Therefore, those pixels counteracted during the process of fusion, and eliminated the details 



151 

 

 

closed by edges of structure, as shown in Supplementary Figure 4.8. 

 

 

Supplementary Figure 4.8. An example of controversial pixel intensity distributions in 

layers above and below the best-focused plane in bright field images. Note the pixel 

intensities in corresponding locations marked by squares with same color. 

 

We then tried to test MFIF workflow on the other exceptional problem, using the confocal 

microscopy images in experiment #2 and wondered: could we use the best focus probability 

generated from MFIF workflow to represent the 3D biological structure?  

 

In our case here, we used the confocal image of SiR-tubulin-stained differentiated neurons, of 

which colonies and processes usually shows a complex, overlapping but highly organized 

structure. We not only want to use the focusing probability to predict the Z-position of a 

structure, but also want to represent how ‘confident’ this prediction is. For example, if 2 

axon-like structures overlap in region A, we will find the generated focusing probability 

curve peaks at 2 Z-positions, say 𝑍1  and  𝑍2 . We cannot simply assign the probability-

weighted average �̅� = ∑ 𝑃𝑍𝑖

𝑍𝑚𝑎𝑥
𝑧=1 × 𝑍𝑖   as the Z position in region A, which should be roughly 

between  𝑍1 and  𝑍2 , because it does not tell us how far are these 2 Z positions away from 

their average position �̅�. However, it is not satisfying either to take the Z position which has 

the highest best-focus probability, because in this way we omit the information of 
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overlapping structures which we already got from MFIF. 

 

We therefore took a creative approach to represent the Z position of the structures, inspired 

by the HSV color space. Here the weighted �̅� was represented by the hue of color (H), the 

intensity on fused gray-level image (scaled to range between 0~1) was represented by the 

visibility of color (V), and the standard deviation of best-focus probabilities across Z-axis 

was represented by the saturation of color (H). To avoid any confusion of color hue near 0 

and near 1, the weighted �̅� was scaled to a range (0.17, 0.83). The final result of Z-position 

representation in fused confocal fluorescence image is shown in Figure 4.9. We found that (a) 

the Z position of ‘neurite bundles’ is higher (indicated by red color) compared to single 

processes (indicated by green color); (b) there are more overlapping structures in bundled 

processes which are indicated by white, low-saturation colors; (3) despite some exceptions 

(marked by blue rectangle), most of the Z-position predictions are consistent in neighboring 

FOVs. 
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Figure 4.9. HSV color represented Z-position prediction from MFIF fusion. Color hue from 

green to red indicated the increasing of Z-position. Color visibility (brightness) indicated the 

pixel intensity in fused image. Color saturation indicated a complex overlapping structure on 

Z-axis in the local region. Blue rectangle marked a single process of which the Z-position 

prediction varied in different FOVs, although we could still roughly find a gradient change of 

its Z position. 

 

This leads us to the question of what is the best or at least a good focusing measure. It is a 

hard question, as for different types of images, the best focusing measures vary. Furthermore 

to evaluate how good one focusing measure works, except the labor-intensive and sometimes 

subjective manual reviewing by a human expert, we still need to use another focusing 

measure on the fused image, and ask: “what is the best focusing measure for the evaluation?”, 

then go back to the question itself, because the best focusing measure for evaluation is most 

likely to be the best focusing measure for fusion. 

 

To address the problem, we tried 2 ways of visualizing the results of MFIF workflow, by (1) 

plotting the Z-position prediction results in PCA feature space and by (2) plotting an averaged 

best-focus probability curve, across all sampling points. Using these 2 methods, we compared 

the MFIF result using all focusing measures listed in Table 4.3, on both the confocal and 

brightfield datasets in experiment #2. 

 

Specifically, we: (a) Fused images were generated from both the bright field and confocal 

image stack, using the focusing measures in list one by one, therefore we got one fused image 

corresponding to each focusing measure; (b) For each fused image, we sampled 5*5-pixel 

regions on it with 10 pixels spacing. The Z-position assignment (or best-focus) probability of 

every pixel in the region was averaged and SoftMax function treated to make it summed to 1; 

(c) For the PCA method, the probability vector of each sampling point got dimension-reduced 

(by module ‘decomposition.PCA’ in Python package scikit-learn) and plotted to 2D space; for 

averaged curve method, the probability vector of each sampling point for each focusing 
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measure was averaged to a single vector, which was plotted as a curve through the Z-Axis. 

 

The result of PCA method is shown in Figure 4.10. Note that besides the sampling point from 

fused images using each focusing measure, we also added an ‘even point’ in the figure, which 

was dimension-reduced from a vector with equal probabilities on every Z-layer. In the PCA 

map of fused confocal images, we can find that sampling points from most of focusing 

measures, got their mass center around the ‘even point’, except focusing measure ‘wavelet 

variance’ (marked by red rectangle), of which the points centered in another point away from 

even point. Indeed, when we checked the fused image using wavelet variance, it looked 

worse compared to all other focusing measures (data not shown). Interestingly, the sampling 

points of maximum projection looks more discrete on PCA map. This is probably due to the 

lack of intermediate status of its results, which means it got probability assigned on each 

layer with value either 0 or 1, without any other possible value. 
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Figure 4.10. The PCA map of sampling points, from the fused image using each focusing 

measure. X axis is PC1 and Y axis is PC2. The outlier cluster of wavelet variance was marked 

by red rectangle in the map of fused confocal images. 

 

The abnormal clustering of wavelet variance sampling points gave us hope of excluding the 

bad focusing measures from the list, but not of getting the good focusing measure. We then 

looked into the averaged curves (Figure 4.11). In fused confocal images, consistent with the 

result on PCA map, the curve of wavelet variance showed different peaking location. As a 

golden standard here, the curve of maximum projection showed a sharp peak at the highest Z 

position.  

 

As described above, MIP is no longer the golden standard in bright field imaging. When 

looking at the curve, we found the result of modified Laplacian, wavelet energy and structure 

tensor major eigenvalue showed a pattern of ‘double peaks’ flanking the best-focused layer. 

This further validated our previous hypothesis that lots of image details lost in fused bright 

field images due to the counteraction of images on controversial phase. Also, this curve 

suggested that the above 3 focusing measures got most sharp focusing prediction, and among 

them modified Laplacian got the best result. This deduction was further validated by 
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manually checking the quality of fused images (data not shown). 
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Figure 4.11. The averaged focus probability curve on all sampling points, which shows the 

best-focus probability assignment through Z-axis, in both confocal fluorescence image (left) 

and bright field image (right) 
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4. Stitching of Skeleton Images Obtained by Microtubule Staining 

 

In Chapter 3, we discussed a workflow for pre-processing and quantifying images obtained 

by microtubule staining. However, there are still some limitations in the above workflow, 

including: (a) some of the microtubule bundles were crosslinked and when inspecting them 

on skeletonized images the become a segment with complex structure making any 

quantification on this segment tricky (e.g., orientation) and meaningless (e.g., area); (b) 

contrary to (a), due to loss of detection either at pixel classification (binarization) or ridge 

detection, a complete axon was usually represented by a few discrete segments on the 

skeleton image. 

 

To address the issue of cross-linking in (a), we extracted all the vertices in the skeleton by a 

3*3 convolution filter calculating the connectivity of every pixel, and therefore the vertices 

were classified into (a) end points of segment, (b) branching points which link 2 or more 

segments together, (c) isolated vertices which are regarded as noises (Figure 4.12 A, top 

middle). The single segments were then separated from cross-linking structures, and assigned 

to a specific label (Figure 4.12 A, top left), allowing further region property quantification.  

 

To evaluate the direction of segments, 2 Sobel-like filters, which aimed to enhance the local 

signal at certain directions, were applied and the directions were represented by a vector 

D(HV, DB)∈R2, where the first value represent how ‘horizontal’ the segment is, and the 

second value represents how ‘diagonal’ the segment is. These filters are: 

 

Horizontal and Vertical (HV) Filter 
0 −1 0
1 0 1
0 −1 0

  , 

and Diagonal and Back-diagonal (DB) Filter 
√2 0 −√2
0 0 0

−√2 0 √2

. 
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The directions evaluated can be rendered and visualized as a colored image (Figure 4.12 A, 

Bottom right).  

 

In some of the cases, we would want to consider a wider range to determine the direction of a 

skeleton segment. In this way, larger filters can be applied, however suppressions to signal of 

other direction must be applied, otherwise even the pixel signal of opposite directions could 

get a positive value after convolution. We designed an example of such larger Sobel-like 

filters (Figure 4.12 A, Middle right). 
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Figure 4.12 Some additional operations to refine the quantification of microtubules. (A) The 

workflow of vertices extraction and segment isolation and calculation of directions. 

Directions of every pixel were calculated by convoluting 2 Sobel-like filters on the 

skeletonized image (top left), yielding a rendered direction image (bottom right). End points, 

branching points and isolated points were also extracted (top middle), and the ‘left over’ 

segments can then be isolated from any complicated crosslinking network (top left). The 

skeleton segments of different direction can also be extracted individually (middle left and 

bottom left). To consider skeleton direction in a wider range, we can use larger Sobel-like 

filters, although a more sophisticated designation of the filter is needed. (B) To facilitate the 

stitching of segments, the tangent angles, as well as Euclidean distances, were calculated 

between every end point pairs within a threshold range (left). The LAP-stitched skeletonized 

image of differentiating hNSCs (right). 

 

To address the issue of broken segments belonging to a same axon as described in (b), we 

sought to perform a stitching to link segments on a same process together. Therefore, for 

every end point pair in an image within the distance threshold, we calculated the tangent 

angle between the segment and the link between the 2 end points (Figure 4.12 B, Left). A 

linkage benefit was calculated using tangent angle 𝜃1, 𝜃2 , and distance d by a benefit formula 

we designed: 

 

𝑓𝐵(𝜃1, 𝜃2, 𝑑) =  𝑒−(𝑚
𝜃1 + 𝜃2

𝑑
+𝑛𝑑)

    (1) 
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This thus enabled us to link segments on the same axon properly by solving a LAP to 

maximize the linkage benefit globally. 

 

The derivative of formula (1) over d, is: 

 

 
𝜕𝑓𝐵(𝜃1,𝜃2,𝑑)

𝜕𝑑
= (𝑚(𝜃1 + 𝜃2, )𝑑−2 − 𝑛) 𝑒−(𝑚

𝜃1 + 𝜃2
𝑑

+𝑛𝑑)
   (2)  

 

Assuming the maximum allowed tangent angle is 𝜃𝑚𝑎𝑥, the maximum allowed distance is  

𝑑𝑚𝑎𝑥 , and we propose an 'optimum distance' 𝑑𝑂𝑝𝑡  that, when 𝜃1 = 𝜃2 =  𝜃max  and 𝑑 <

 𝑑𝑂𝑝𝑡, the benefit will increase along with d until d reaches 𝑑𝑂𝑝𝑡 , then it will decrease. That 

means the partial derivative of the formula, over d, will become 0 when 𝑑 =  𝑑𝑂𝑝𝑡 . Then we 

have the equation: 

 

𝜕𝑓𝐵(𝜃𝑚𝑎𝑥 , 𝜃𝑚𝑎𝑥 , 𝑑𝑂𝑝𝑡) =  (𝑚(2𝜃𝑚𝑎𝑥)𝑑𝑂𝑝𝑡
−2 − 𝑛)𝑒

−(𝑚
2𝜃𝑚𝑎𝑥

𝑑𝑂𝑝𝑡
+𝑛𝑑𝑂𝑝𝑡)

= 0    (3) 

 

As 𝑒
−(𝑚

2𝜃𝑚𝑎𝑥
𝑑𝑂𝑝𝑡

+𝑛𝑑𝑂𝑝𝑡)
 is always over 0, so (𝑚(2𝜃𝑚𝑎𝑥)𝑑𝑂𝑝𝑡

−2 − 𝑛) = 0, and we get: 

 

𝑚 =  
𝑑𝑂𝑝𝑡

2

2𝜃𝑚𝑎𝑥
𝑛    (4) 

 

And we would expect the benefit function to have the following properties: (1) when tangent 

angles both reach 𝜃𝑚𝑎𝑥, even if 𝑑 =  𝑑𝑂𝑝𝑡 making the function maximize in 𝑒−(𝑛𝑑𝑂𝑝𝑡) part, 

the value of the benefit function is still a small value 𝜖𝐵1, indicating nearly no benefit of 

linking the 2 end points; (2) when  𝑑 =  𝑑𝑚𝑎𝑥 , even if the 2 tangent angles are both 0 

maximizing the 𝑒
−(𝑚

2𝜃𝑚𝑎𝑥
𝑑𝑂𝑝𝑡

)
 part, the value of benefit function is still a small value 𝜖𝐵2 , 

which also suppresses the linking of 2 end points; and (3) we want 𝜖𝐵1 =  𝜖𝐵2, to make the 

above 2 situations comparable. So, according to (1) and (4) we get equation: 
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𝑑𝑂𝑝𝑡
2

2𝜃𝑚𝑎𝑥
𝑛 ×  

2𝜃𝑚𝑎𝑥

𝑑𝑂𝑝𝑡
+  𝑛𝑑𝑂𝑝𝑡 = 𝑛𝑑𝑚𝑎𝑥   (5) 

 

Apparently, we get 𝑑𝑚𝑎𝑥 = 2 ×  𝑑𝑂𝑝𝑡 , to make 𝜖𝐵 reasonably small, here we took n = 0.1. 

 

After the linkage benefit matrix was established between any pair of end points within 

reasonable distance, the function ‘linear_sum_assignment’ from Python library scipy was 

used to calculate the optimal assignment of end points which maximize the benefit. This 

function is implemented by a modified Jonker-Volgenant algorithm299. The factors considered 

by the method describe above was shown in Figure 4.12 B, Left. The result of LAP-based 

stitching is shown in Figure 3.4 B Right, where the calculated and stitched linkages between 

end points were colored in dark blue. 

 

We then asked if there are any more refinements to be made. A first possible refinement is to 

introduce the concept of structure tensor eigenvalue into the skeleton image analysis. The 

structure tensor is generated by matrix multiplying the 2D gradient of an image with the 

transpose of itself. So typically for a 2D image, its structure tensor has the shape (Height, 

Width, 2, 2) (Figure 4.13 A, Top). By the decomposition of the structure tensor, we get two 

proportional eigenvectors (which means we can just take one of them, that also contains the 

information of the other one) and two eigenvalues. The major eigenvalue from decomposition 

represents the local directionality and the minor one represents local anisotropy. The 

arctangent value of the eigenvector represents the local direction (Figure 4.13 A, Middle). In 

this way, we can not only quantify the direction of skeleton segments but also look into the 

local isotropy of an image, which could be quite useful when analyzing neuronal skeletons 

because highly anisotropic regions usually refer to the cell colonies, and highly isotropic 

regions refer to processes and process bundle structure (Figure 4.13 A, Bottom right). 

 

Another possible refinement of skeleton stitching is to apply a path finding algorithm when 

linking the end points. By taking the rectangle region between 2 end points and regarding all 

pixels in this region (usually small) as nodes in a graph, establishing edges between every 2 
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neighboring pixels and finding a path which maximizes the summed intensity from all the 

nodes on it (of which the intensity value is from the original microtubules channel image), 

will result in a linked skeleton segment with much more ‘natural’ shape, which goes along the 

trace with highest intensity on original microtubules images. We implemented this function in 

the stitching algorithm using the function ‘route_through_array’ in the Python module 

‘skimage graph’. The linking result using Dijkstra path finding algorithm is shown in Figure 

4.13 B, indicated by the blue curves. 
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Figure 4.13. Further refinements of skeleton image quantification and stitching. (A) 
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Calculations of image structure tensor (top), examples of major eigenvalue, minor eigenvalue 

and arctangent eigenvector image (middle), applying structure tensor to quantify the skeleton 

image on its direction and isotropy. (B) An example of stitching broken skeleton by a more 

sophisticated path find algorithm, note that the linked segment now has more natural shape 

compared to that in Figure 4.12.  

 

5. Conclusions 

 

In this chapter, we further expanded the analysis workflow in Chapter 3 in two ways:  

 

(a) Considering the complex 3D structure of neurites, we adopted the concept of MFIF and 

established a workflow generating fused image from multi-Z-layer image stack, using a 

few focusing measures which was introduced in relevant publications. The result of the 

fusion was satisfying, providing much more details and better image qualities compared 

to the best-focus Z-layer image or the averaged stack. In further testing experiments, 

MFIF outperformed maximum Z-projection and average Z-projection in dealing with (1) 

messy image backgrounds and (2) bright-field images. Moreover, using HSV color 

rendering algorithm, MFIF can generate a Z-position map which makes complex 

overlapping 3D neurite structures visible on 2D images.  

 

However, MFIF was found to retain less details in bright field image compared to best-

focus Z layer image. This is probably due to 2 reasons: (1) the bright-field images are 

relatively flat, where most of the best-focused pixels are in the same layer, therefore 

MFIF tends to bring less benefits; (2) the current MFIF workflow tends to detect 2 

flanking Z positions of the real ‘best-focused’ position, which have opposite intensity 

phase for each pixel, and counteracted during the fusion thus eliminated image details. 

This could be due to the intrinsic nature of focusing measures we currently use for bright 

field image MFIF, suggesting a need for better focusing measures. 
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To answer the question ‘what is a good focusing measure’, we performed probability 

sampling across the fused image, followed by PCA reduction and curve plot of the 

sampling points. Using above visualization methods, we may be able to figure out what 

focusing measures are behaving abnormally (such as the wavelet variance discussed 

above), and what focusing measure will generate a 'sharp' probability distribution which 

may probably mean a better quality of fused images. Nevertheless, the current 2 methods 

discussed are still insufficient of making a convincing comparison between the 

performance of different focusing measures, which raised the needs of better metrics for 

this comparison. 

 

(b) To address the problem of microtubules crosslinking and loss-of-detection which makes 

neuron process skeleton quantification problematic, we introduced a pipeline which 

extracts the endpoints, branching points and segments from skeleton images, assigning 

direction information to pixel on skeletons, and used the distance/direction information to 

stitch the broken skeletons. The stitching algorithm used LAP solver to get the most 

probable linking between endpoint pairs, which to our knowledge is novel. We also 

discussed about the possible refinements for this pipeline, including (1) using structure 

tensor to calculate the direction of pixels. Due to the ‘averageable’ nature of structure 

tensor, it makes the computation of pixel direction considering a larger range possible, 

without the need of large Sobel-like filters, as these filters usually requires a very careful 

and sophisticated value design to avoid bring bias in using; (2) using path-finding 

algorithm to get a more natural linking along the trace on original image with highest 

intensity value. 
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Chapter 5. Tracking Non-linearity in Continuity: Biological image 

temporal interpolation using STREAM  

 

1. Quality Control and Visualization of Tracks from Live Cell Image Tracking and 

Lineaging 

 

This last chapter of my work describes work I did in the context of a collaborative project led 

by Dr Saad Mohamad on a novel method for super-temporal resolution image interpolation 

termed Super-Temporally Resolved Augmentation Microscopy or STREAM (manuscript 

submitted and in revision nearly ready for re-submission; I am second author on the revised 

manuscript, see confidential cover page and Abstract in Annex B). 

 

Similarly to what we described in the context of our work using MFIF described in Chapter 4, 

investigating how morphological and proliferation dynamics are functionally linked with 

differentiation dynamics imposes strong and often incompatible requirements on imaging, as 

it involves carrying out short timescale imaging (to be able to capture both morphological and 

proliferative information, which takes place in order of minutes or tens of minutes) for long 

periods of time (as required to capture differentiation dynamics and information, which takes 

place throughout days). The STREAM technology solves all of those requirements. 

 

STREAM possesses 3 key parts: (1) A Data Augmentation architecture, which uses a Rare 

Event Augmentation module (REA) and a Temporal Augmentation module (TA) to generate 

biologically-relevant augmented training datasets from large scale data automatically; (2) A 

Learning architecture, which combines a  3D U-Net as employed in FLAVR300 and an 

improved Generative Adversarial Network namely WGAN-GP discriminator network301 

together to learn spatiotemporal dynamics from augmented datasets; and (3) A Multi-Scale 
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Interpolation architecture, which predicts image sequence augmentation of up to 25x yielding 

super-temporally resolved image sequences. This enables us to achieve high temporal-

resolution imaging through low physical sampling rate, and therefore overcomes the 

hardware limit of imaging instruments on imaging frequency as well as the cell phototoxicity 

brought by intense and long-time live imaging. 

 

A particular challenge emerging from the STREAM work as well as other collaborative work 

from our group called DEEP-MAP (where I am also co-author 302, see attached bioRxiv 

preprint in Annex C) has to do with doing quality control of cell lineage tracks derived from 

live images. 

 

Usually, the quality control of the tracks relies on manual review and correction, which is still 

acceptable at a low cell density but apparently not suitable for high-throughput image 

profiling of 10^3 power level of cells over hundreds of sequential time points, which is often 

found to be the case in live imaging of hPSCs and other stem cells, which have a compact 

colony. In the recent DEEP-MAP article from our lab, I tried to manually track and correct a 

few cell lineage tracks in segmentation & tracking software LEVER (developed by the group 

of our collaborator Professor Andrew Cohen, Drexel University, USA), through hundreds of 

time points and in a crowded cell colony, which proved to be extremely time-consuming, 

labor-intensive and error-prone (an example shown in Figure 5.1 A). The corrected tracks and 

segmentations were then reused for the training of deep learning models in LEVER. 

 

In the case of STREAM, we attempted to evaluate the effect on cell tracking from the Deep 

Learning based image interpolation. The cell nucleus images were fed into STREAM (Super-

Temporally REsolved Augmentation Microscopy), a 3D U-Net based Deep Learning model 

developed by Dr. Saad Mohamad (manuscript in revision), which learns the dynamics of 

objects in the image and makes interpolation between frame up to 25X temporal 

augmentation (Figure 5.1 B). To evaluate the tracking result, the interpolated and original 

image stack were segmented and tracked by software LEVER, of which the track and 
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segment data was extracted by specialized Python scripts and the track properties were 

calculated and plotted into charts in R environment. 

 

Intuitively, the interpolated images should give longer tracks of higher quality, as the cell 

movements became smoother after interpolation. Contrary to our expectations, a density plot 

of the track lengths showed that, compared to 5-minute-interval original image stack, the 

tracking on interpolated 1-minute-interval image stack gave a higher ratio of shorter tracks 

(track lengths calculated in natural time) (Figure 5.1 C, Up). We wondered therefore whether 

interpolation might actually be harming instead of benefiting cell image tracking. To 

investigate further this question, we generated a ‘real’ 1-minute-interval movie on microscopy, 

and re-sampled it every 5 minutes to get a 5-minute-interval ‘origin’ image stack, which was 

then interpolated into ‘artificial’ 1-minute-interval stack. The tracking on these 3 stacks 

showed that, the AI interpolated movie has an intermediate performance among the 3 movies, 

better than the ‘real’ 1-minute-interval image stack but worse than 5-minute-interval stack 

(Figure 5.1 C, Bottom). These results suggested that it was the shorter sampling interval, 

instead of interpolation, that lead to shorter tracks probably because of accumulated 

possibility of segmentation/detection error. 
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Figure 5.1. Problems that bringing up the need for track quality control. (A) An example of 

manual tracking and correction of cell lineage tracks on LEVER, number showing the track 

id. (B) The interpolation process of STREAM, where the trained network model considers 

the information from previous and consequent 2 frames in the movie to deduce the frames 

between the middle 2 frames. 

 

We then looked deeper into how the tracks were interrupted. We could do this by multiple 

ways: (a) we could find the location and time point of where the tracks end, and marked the 

relevant segmentation region on the image. We implemented this idea by extracting track and 
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segmentation information from LEVER database file, and use the information to generate an 

ImageJ ROI group, where the normal and problematic segmentations, with different ROI 

colors, can be viewed using the built-in ROI manager in ImageJ (Figure 5.2 A); (b) we could 

plot the tracks in a 3D space, where axis T is the time across imaging, and axis X-Y 

represents the features of spots in the track, where the features can be X/Y location, or others 

(Figure 5.2 B). A similar idea was reported in 303, where the tracks can be either quality 

controlled by X-Y-T plot, or a heatmap showing how the features of cells change over time. 

However, their method has a limitation that, we could only consider one feature (location) for 

multiple tracks, or multiple features for only one track during the quality control. The X-Y-T 

plot is not necessarily representative of track quality, especially in a cell culture where a 

certain population of cells at certain period of time are moving in a faster speed compared to 

others. This is unfortunately the case in differentiating NSCs, where some of the cells are 

moving extremely fast along the axon structure.  

 

Therefore, taking into consideration 19 features of cells, we used t-SNE dimension reduction 

algorithm133 to plot cells as data points in PC1-PC2-T 3D space (Figure 5.2 C). The list of 

features is shown in Table 5.1: 

 

Property Type Property 

Size-based Area 

Shape-based Major-Axis 

Minor-Axis 

Eccentricity 

Orientation 

Convex Area 

Circularity 

Equivalent Diameter 

Perimeter 

Signal Based Mean Intensity 

Max Intensity 

Min Intensity 
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Median Intensity 

Standard Deviation of Intensity 

Movement 

Based 

Centroid X 

Centroid Y 

ΔX 

ΔY 

ΔS 

Table 5.1. The features used for quality control of cell tracks. 

 

The tracks can also be represented as curves in the feature space which link data points 

together. We found that comparing to simply plot tracks in X-Y-T space, the tracks plotted 

into feature space showed strong oscillations (Figure 5.2 D). By further looking at the T 

position of these oscillations, we found that these oscillations usually correspond to the 

segmentation errors in the track, as the example shows in Figure 5.3. 
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Figure 5.2. Two ways of monitoring lineage tracks. (A) By finding the spatial and temporal 

location of ‘break point’ of tracks, and marking the corresponding segmentations with other 

ROI color, we can quickly figure out what happened to a bad track. Here in the image, red 

ROI showed that track id 78071 accidentally broken because of a segmentation error where 

the cell in track was segmented into other cells. (B) The traditional quality tracking method of 

plotting tracks into X-Y-T space, apparently it is very hard to distinguish a ‘bad track’ or 

‘abnormal event in track’ from this chart. (C) Plotting single cells (segmentations) into t-SNE 

feature space plus T-axis. (D) Tracks as curves in feature + T 3D space. 
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Figure 5.3. An example of how oscillations of tracks in feature space correspond to 

segmentation errors which can be validated using the UI in LEVER software. 
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2. Quantifying the Non-Linearity of Biological Structure Movement 

 

We next tried to explore if STREAM interpolation could fit fast-non-linear movement of 

biological objects. One classic example of fast-non-linear movement is the mitosis of cell 

nuclear. We got the original image and interpolated image of H9 cells, where a local mitosis 

event was recorded between time point 126 and 176. The interpolated movie was established 

based on the frame from original movie on time point 126, 151 and 176. 

 

To evaluate the model’s ability of fitting non-linearity, we would want to generate an 

interpolation of linearity. To achieve this goal, we manually annotated the cell area by ImageJ 

ROI manager, and we implemented the ImageJ ‘Interpolate ROI’ function on Python, by 

making some modifications on the algorithm, allowing it to interpolate a splitting event, 

which, to our knowledge, is not possible to be done by its ImageJ prototype. In detail, this 

modified interpolation algorithm makes linear interpolation on T-axis of the distance-

transformed images from the original ROI binary images.  After being interpolated, the 

distance-transformed images were made reverse transformed back into binary images of ROI. 

Different to the ImageJ algorithm, our algorithm performs local minima detection on the 

interpolated distance transformed images, followed by a flooding and thresholding algorithm, 

which is inspired by Watershed segmentation algorithm. The interpolation algorithm was 

therefore able to separate the ROI region into 2, when there is a trend of separating distance 

transformed minima center.  

 

With this modified algorithm, we were able to make a comparison between the original 

images, STREAM interpolated images and linear interpolated images visually. We also 

evaluated and compared the features of cells, including X/Y position, Hu moments, perimeter, 

solidity, eccentricity and orientation during the mitosis concluded from different movies. 
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Figure 5.4. Comparing the non-linear interpolation with linear during the cell mitosis. (A) 

The comparison between the same frame in original movie (top left), 25X STREAM 

interpolated movie (top right), cell segmentations from linear interpolation (bottom left), cell 

segmentations from STREAM interpolation (bottom right). The yellow ROI contour in all 4 

parts is the contour from original image segmentation in this frame, in order to make 

comparison easier. The image clearly showed that STREAM performed superior in fitting 
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non-linear motions. (B) The line plot for different morphological and signal features of cells 

during mitosis, in original or interpolated movie. The curve for linear reference is calculated 

directly by linear linking the cell features in original movie at the sparsely sampled time 

points spacing 25 frames (on which the interpolated movie was generated), not from the 

linear interpolated movie as shown in (A). 

 

Despite the highly automatic workflow of ROI interpolation, the manual annotation of cell 

area was proven to be time-consuming. As we focused mainly on the cell movement instead 

of nuclear morphology, a segmentation-free detection, which uses local-maxima of intensity 

instead of centroid from segmentation area to represent cell location, was adopted.  

 

Specifically, the gray level image of cell nucleus was Gaussian-filter smoothed using a high 

sigma value (in our case, sigma = 10), and local maxima were found using the function 

‘peak_local_max’ from module ‘feature’ in Python library scikit-image. The coordinates of 

detected maxima were converted to ImageJ ROI file using Python library roifile. In ImageJ 

user interface, we manually removed irrelevant maxima point ROIs which fell out of the 

cellular regions. In this way the remaining maxima points represent the cell location with 

relatively objective (and automatic) determination (Figure 5.5, A), and the non-linear 

movement in dividing cells can then be represented as the distances between the 2 maxima 

points in daughter cells (Figure 5.6). 

 

We also tried to evaluate the non-linear movement in the live image recording neuron cell 

process. As it is hard to determine the centroid/location of a skeleton segment, after using the 

‘Ridge Detection’ in ImageJ Plugin and acquiring the skeleton of the axon-like structure 

(Figure 5.5 B), we used 2 metrics to represent its movement: (a) The longer axis length of 

skeleton, calculated by the position of segment tips; and (b) the average orientation value on 

6 sampling points along the longer axis, of which the orientation on skeleton pixels was 

calculated using the ImageJ Plugin OrientationJ (written by Daniel Sage at the Biomedical 

Image Group, webpage http://bigwww.epfl.ch/demo/orientation/). The quantification results 

http://bigwww.epfl.ch/demo/orientation/
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are shown in Figure 5.7. Altogether, these results indicated a strong ability of STREAM to 

infer non-linear movement from limited sampling points from original movie. 

 

 

Figure 5.5. Examples of detected cell nuclear maxima points which represent the cell location 

during mitosis (top) and detected ridge skeletons representing the morphology of neuron cell 

axons (bottom). 
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Figure 5.6. Representing nuclear movement of cell mitosis be plotting the distances between 

the maxima points in 2 daughter cells. Upper part recorded this non-linear movement in 20 

different mitosis events, lower summarized the common feature of mitosis cell movement by 

averaging the distance across time, with error bar plotted. We could find from the figure that, 

STREAM interpolated movies very well mimic the non-linear movement in original movies 

even using an ultra-low sampling rate. 
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Figure 5.7. The quantification results of neuron process movement, regarding the dynamics 

of 2 metrics: (top) longer axis skeleton segment length and (bottom) average orientation 

value on multiple sampling points. 

 

3. Conclusions 

 

In this chapter, we discussed some of our work collaborative work in two ongoing 

publications from our group, DEEP-MAP and STREAM. In the case of STREAM, we carried 

out work to evaluate the performance of a 3D U-Net based Deep Learning model, which 

learns the dynamics of objects in the image, making interpolation between frames resulting in 

super-frame-resolution movie. There is no need to emphasize the great value of this 

STREAM model in bioimaging, especially on the fast-moving structures or those structures 
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prone to phototoxicity under frequent laser exposure. The author’s contribution to the work in 

STREAM paper can be concluded in 3 parts: (1) We performed cell segmentation and 

tracking on the cell nucleus image sets which were interpolated by STREAM deep learning 

model. After the tracking, we performed statistical analysis on the cell tracking results from 

interpolated 1-minute-interval movie, not-interpolated 5-minute-interval movie, and that from 

'natural' 1-minute-interval movie. The analysis aims to compare the length and quality of cell 

lineages from tracking, and evaluate how smooth and natural the interpolated movies are. 

(2) We also manually labelled the mask of cell nucleus in a short movie recording mitosis, 

both original (5-minute interval) and STREAM interpolated (12-second interval), meanwhile 

generated 'linear' interpolation of cell masks by linearly interpolating the distance map of the 

original cell mask. We compared the mask generated by linear interpolation and the mask 

labelled on interpolated movie, by calculating their morphology and movement features 

across time, which clearly showed the superiority of STREAM on fitting non-linear motions. 

As an alternative and fully-automatic method of this comparison, we also tried to detect the 

nucleus position by finding the local maxima of intensity signal, followed by the comparison 

as mentioned above, which also showed accurate detection results. (3) We generated the 

neurite live imaging dataset (in which neurites were labelled by SiR-tubulin) using our 

established NSC cell line. We performed vessel structure detection on the original and 

interpolated image set and compared the morphology features of detected neurite skeletons. 

Again the results indicate a strong ability of STREAM to infer non-linear movement from 

limited sampling points from original movie. In section (1), due to the need for a quality 

control on cell tracks, which are easily influenced by cell segmentation errors, we tried to 

extract the features of cells in track, and plot the dimension reduced feature as a function of 

time. In this feature space, any segmentation errors will be represented as oscillations of the 

track curve. Although a manual checking of oscillations is not applicable to high-throughput 

data, it is not difficult to think of that, we could automize this ‘oscillation detection’ process 

by calculating the second-order derivative of the reduced track feature as function of time, 

𝐹′′
𝑡𝑟𝑎𝑐𝑘(𝑡) , of the track curve, where a high absolute value of 𝐹′′

𝑡𝑟𝑎𝑐𝑘(𝑡)  indicates the 

oscillation. It is useful to recall that in Chapter 3 we described a cell track quality control 
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method which use the standard deviation of a few metrics on tracks as criteria for filtration. If 

we could combine the 2 methods it may probably provide a more satisfying tool to get good 

quality tracks, as well as detecting abnormal events (such as segmentation error) during the 

tracking. 

In section (2) and (3), we used a few metrics to measure the ability of STREAM of predicting 

non-linear movement from limited sampling number (here in our case, it is 25 times 

interpolation which means it tried to predict the movement status of a structure on 25 time 

points between every 2 sampling points. The local-maxima based centroid detection provided 

a segmentation-free method of detecting cell nucleus location, from which we evaluated the 

distances between the daughter cells during mitosis; for neuron process skeleton, of which the 

movement is hard to define and describe, here we used (1) the location of tip and (2) the 

mean orientation at sampling points with certain spacing, to convert the movement evaluation 

problem into a morphology description problem, and from all of these evaluation results, it is 

natural to conclude that, STREAM provides an accurate prediction of such non-linear 

movements. 
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Discussion and Perspectives 

 

In this thesis, we established novel quantitative microscopy and Machine Learning 

technological pipelines aiming to enable the integration of spatial-temporal microscopy 

information with transcriptional information, as well the investigation of the spatiotemporal, 

morphological and cell cycle dynamics of cell fate transitions in human stem cells. In Chapter 

1 we described our attempt to design an approach termed ‘POPH’ for POsitional 

PHotoprinting as a means to link single-cell transcriptomic information with information 

derived from ‘live’ microscopy imaging-based analysis by spatial encoding of (𝑥, 𝑦) cell 

coordinates using photoactivation/photobleaching technologies. In Chapter 2 we established a 

conceptual machine-learning model ‘Selection-seq’ to map transcriptome to certain 

phenotypes by multiple selective photoprinting, and analyzed published scRNA-seq dataset 

and protein interaction database information to extract the expression pattern and possible 

interaction network among a set of genes of interest. In Chapter 3 we established workflows 

to process and quantify ‘live’ imaging data to explore the dynamics and spatiotemporal 

coordination between cell cycle and neurite outgrowth during neuronal differentiation, and 

used qPCR to profile RNA expression of cells sampled throughout differentiation and seek to 

explain the possible underlying mechanisms responsible for the observed cell dynamics. In 

Chapter 4 we made refinements on our image analysis workflows by MFIF and LAP 

modelled (neuron process) skeleton stitching. Finally in Chapter 5 we described methods to 

quality control cell/object lineage tracks and to evaluate the quality of Deep Learning aided 

super-temporal resolution image interpolation. We discuss further about each of these topics 

below. 

POPH as an alternative method to enable spatial transcriptomics 

As a possible means to enable linking single-cell transcriptional information to ‘live’ 

microscopy derived single-cell spatial location and dynamical information, in Chapter 1, we 

prototyped POPH, a new technology for cellular POsitional PHotoprinting. Experimentally 
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speaking this involved aiming to establish cell lines with stably expressing 2 different photo-

activatable proteins (PA-proteins) using CRISPR-Cas9 knock-in technology. hPSC and hNSC 

lines co-expressing stably nuclear PA-GFP and H2B-miRFP670 were successfully generated, 

while the generation of cell lines (also co-) expressing nuclear KFP1, either H2B-tagged or 

NLS-tagged, proved to be problematic. KFP1 likely formed tetrameric structures in cells 

which in turn likely produced toxic aggregates, which meant we ultimately could not use this 

second PA-protein for POPH. As an alternative to co-expressing 2 different PA-proteins in 

cells we later tested whether this could be accomplished by using a modified POPH approach 

to photoprint cells using a combination of nuclear PA-GFP and nuclear HaloTag expression 

followed by plasma membrane-permeable HaloTag fluorescent ligand coupling, as a way to 

enable photoactivation and photobleaching to encode positional information in cultured cells. 

We found that printed cells can be separated from non-printed cells in a population, but that 

the resolution of photoprinting and the subsequent FACS is not sufficient to separate 

photoprinted cells at more than 2 intensity levels. As H9 cell lines with PA-GFP expression 

were generated from pooled clones, the heterogeneity of photoactivation gradient could be 

due to the random donor plasmid integration. Although narrow selection gates during FACS 

was used to avoid intensity variations of desired fluorescence in single cells, it is not 

sufficient of eliminating random integration. More sophisticated imaging-and-picking tools, 

such as Yokogawa Cellome system, can be adopted to get single cell clones of H9 cell line by 

image tracking and cell culture microdissection, and address the problem of random 

integration. 

 

This problem of low resolution and heterogeneity of PA-GFP/HaloTag ligand printing, as 

well as the high death rate of cells expressing nuclear KFP1 and its semi-reversible 

photoactivation, could in the future potentially be solved by the biochemical refinement of 

protein functional structures, like modifications on certain amino-acids to influence the 

polymerization status of proteins in cell (i.e. to change the current tetramer polymerization of 

KFP1). This prospective idea was raised during discussions with our collaborator Dr George 

Patterson at NIH, a pioneer of photo-activatable fluorescent proteins and one of the co-
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creators of PALM super-resolution microscopy which utilized PA-GFP to obtain sub-

diffraction limit positional information in cells. Unfortunately, George tragically passed away 

on June 20, 2021 due to cancer, and together with the profound sadness of his passing this 

meant also that our collaborative project was discontinued. 

 

To computationally address the problem of low printing resolution of POPH, we proposed a 

thought experiment model ‘Selection-seq’ which was constructed with one 1D convolution 

layer followed by MLP architecture, proving that even labeling cells by photoprinting at only 

1 level, if having enough replicate numbers of labeling populations, it is still possible to link 

the phenotype information from live imaging to the single-cell transcriptome, and vice versa. 

A major limitation of the Selection-seq model is that the model assumes a gene to have the 

same function in different cells and therefore uses a 1D convolution layer to extract higher 

order transcriptional features in all cells which efficiently reduces the scale of the model. 

However, this assumption is not always the case, as there is a complex gene crosstalk 

network in cells where the function of a gene expression may greatly be influenced by the 

global transcription pattern. This limitation can be overcome by: (1) finding coexpression 

modules and dimension-reducing the genes in the module into single eigen-genes304, and 

feeding the model with eigen-gene expression data which is already a representation of a set 

of highly correlated genes; and (2) adopting transformer-like architecture with self-attention 

mechanism into the model, which consider the contribution weight of a eigen-gene to higher-

order features not only by the expression pattern of itself, but also by its correlation with 

other eigen-genes. 

 

 

Since 2020, the fast-emerging technologies of spatial transcriptome profiling have become 

one of the hottest breakthroughs in the fields of next-generation sequencing and microscopy 

199, which have brought new possibilities to single-cell analysis, as it links spatial information 

directly to transcriptome in single cell or in situ, as we have reviewed in the Introduction of 

this thesis. We may then wonder, given so many powerful new tools in spatial transcriptomics, 
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is the concept of PA-protein enabled positional photoprinting still useful in the field?  

 

Our answer is yes. For example, a recent study also used photoactivatable probes to label cell 

types of interest in tissues, and the application of multiplexing PA-probes allowed them to 

track the cells by live imaging, followed by FACS and sequencing of single-cell 

transcriptome 182. The advantage of PA-probes here is making the live imaging and scRNA-

seq an ‘end-to-end’ process, where the dynamic cell behaviors from live imaging movies, 

instead of a fixed, static end point cell image, were linked to transcription profiles. However, 

their success of applying multiplexed PA-probes to spatial transcriptomics also remind us that, 

instead of a grid-wise photoprinting, multiplexing of a few photoactivatable probes (either 

stains or proteins) could increase the throughput of profiling while avoiding the 

disadvantages brought by low-resolution/high-heterogeneity nature of post-activation 

fluorescence. Also, as we concluded in Chapter 1, current spatial transcriptome profiling 

technologies require the fixation of tissue for transcript capture or in situ probing, making it 

impossible to establish a dynamics transcriptional atlas in tissue without the aid of extra live 

imaging approaches, where photoprinting could serve as landmark linking the image 

information to mapped transcriptome. Therefore we see future scope for POPH-type 

technologies and future efforts should focus on solving the challenges we failed to overcome 

in Chapter 1 and pursuing avenues to overcome them. 

 

Spatiotemporal and transcriptional coordination between cell cycle control and early 

neurogenesis 

To explore the possible functions and interactions of a gene set related to cell cycle control, 

microtubules dynamics, centrosome activity and neuronal development, we turned to a 

published dataset of hPSC neuronal differentiation. By analyzing the time-sequenced single-

cell transcriptome data, we found there was a negative correlation during neurogenesis, 

between the gene coexpression modules of neurogenesis and cell cycle control. We found 
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corresponding gene expression patterns of some genes of interest which are involved in cell 

cycle control, microtubules assembly, centrosome regulation and neurogenesis. We further 

referred to STRING database and their co-expression score, and we constructed their 

interaction network based on both of the factors. We adopt some concept from WCGNA and 

graph theory during the gene interaction network establishment, like scale-free network and 

shortest path finding and created a novo method in generating such networks. By establishing 

such an interaction graph, we found a potential relationship between our interesting gene list 

and RPL22-related cell ribosome translational activity. To further validate the interaction 

network from in silicon analysis, we can try molecular experimental methods such as co-

immunoprecipitation, or imaging methods like fluorescence colocalization and fluorescence 

resonance energy transfer (FRET). Additionally, to validate the protein interactions in this 

network at a larger scale, spatial proteomics tools can be adopted, which increase the 

throughput to profiling over a hundred of proteins in a single experiment. 

 

However, limitations also exist in the scale-free network construction and its further analysis. 

First, the higher edge weights calculated in the network do not necessarily represent a 

neighborhood in biological pathway or higher likelihood of physical interaction. To construct 

a network which could be more biologically meaningful, we may probably need to consider 

other databases such as DIP 305, BIND 306 or KEGG 307 which store data of protein binding 

and protein pathways. Secondly, after constructing such network, we did not dig further 

global information from it, such as graph structures and local clusters, which could provide 

valuable insights into the gene modules. Graph learning approaches308 could be useful for this 

purpose. 

 

Based on the results from scRNA-seq data analysis, in Chapter 3, we performed neuronal 

differentiation and long timelapse imaging of hNSCs. We performed image flat-filed 

correction, cell nuclear segmentation, nuclear tracking, vessel detection, neurite skeleton 

profiling on the images we got, with both mature technologies (StarDist, TrackMate, ilastik, 

meijering filter) and some new methods we developed (Random Forest-regression based flat-
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field correction). We found there was a shift from G2-M phase population to G1/G0 

population, as well as an increase of FUCCI signal ratio log10 R2G (red to green) in the 

neuronal differentiation groups compared to undifferentiated group (NSCs). This dynamics in 

G0 cell cycle signal was consistent across experimental groups (normal differentiation and 

Longdaysin treated differentiation), and may potentially correlate to the signal of 

microtubules temporally, which roughly represented the neuronal process generation. We also 

performed segmentation-free image analysis and found a stronger spatial correlation of 

microtubule signal to FUCCI red signal, compared to that of FUCCI green signal. By 

performing RT-qPCR on genes of interest from the neuronal differentiating cells, we found a 

similar expression dynamic of some cell cycle and microtubule assembly related factors, 

which to some extent is consistent with the result from published scRNA-seq data, and the 

dynamics may also explain the cell cycle / microtubules signal dynamics in the live images. 

 

We think one major drawback of the experiment in Chapter 3 is that the imaging lacks a 

biological replicate group. Although we visually confirmed the cells in different wells of 

same conditions showed similar extent of differentiation, we did not image multiple wells of 

same condition under confocal microscopy, to check the FUCCI signal. On the aspect of 

image analysis, another drawback is the lack of in-depth analysis in (1) cell tracks of nuclear 

images, as well as the (2) colony morphology and population. The reason for (1) is the 

inaccessibility of a stable nuclear signal. Although the available NSC lines for imaging had 

the endogenous expression of either H2B-miRFP670 or H2B-HaloTag, both of them emit 

670nm fluorescence (non-far-red HaloTag ligands showed high phototoxicity in live imaging) 

which was shielded by SiR-tubulin staining signal used to label neuron processes. Therefore, 

the nuclear signal of cells was generated from the merged FUCCI red and green signal, which 

will disappear during mitosis. This prevented us from tracking cells along their whole lineage 

with mitosis events. Further efforts should be made in (2) to check the colony properties on 

differentiating NSCs, especially their correlation with surrounding neuron processes.  
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Multi-Focus Image Fusion and Skeleton Stitching  

 

In Chapter 4, we discussed about some attempts of refining image analysis workflows to 

make their results more informative and reliable, including the developed workflow of MFIF 

and its applications to live imaging. Although the concept of MFIF has been proposed for 

tens of years in the image processing field, the attempts of applying MFIF to biological 

imaging are few (although not none). A ‘recent’ publication applying MFIF into the analysis 

of neurite images was in 2014 309. It is for certain that in many cases, 3D reconstruction of 

multi-Z layer images is usually considered to be the best choice, as it retains most of the 

information on Z-axis. However, 3D reconstruction is not always applicable, for the 

following 2 reasons: (1) 3D reconstruction is hungry in computational resources, which is not 

always accessible; (2) 3D reconstruction requires tens of, or even over a hundred of Z layer 

images to get detailed structures in Z axis, while such intensive 3D imaging requires light-

sheet microscopy to avoid the excessive phototoxicity during live imaging, and light-sheet 

microscopy is also not always accessible. As a conclusion, MFIF provides a more affordable 

option to analyze third-dimensional Z axis information. In the MFIF workflow we established, 

the fused images outperformed the average-projected and MIP (maximum-projected) images 

in terms of image quality, detail retention, and versatility. We then tried to figure out what is a 

good focus measure and what is not, by sampling the probability assignment on fused images 

and plot the sampling points either as curves or reduced principal components. Although our 

attempt was not completely successful, it indeed provided de novo insights into evaluating 

MFIF images. We expect the evaluation and selection of proper focus measures for MFIF 

could be achieved in an automatic and self-supervised, learnable way in the future, which 

could be the aim of our next step. 

 

The second part in Chapter 4 was an extension of skeleton analysis, including vertex 

separation and skeleton segmentation, calculation of pixel directions and stitching of broken 

skeletons by a LAP solver. Further refinements include using structure tensors instead of 



192 

 

 

Sobel-like filters in calculating direction, and applying path-finding algorithms in stitching. 

Currently a main limitation for skeleton stitching is the calculation of end point direction. As 

now it only considers the tangent of the last 2 pixels, the result is prone to any perturbance in 

skeleton pixels (which is often the case). Further improvements may include using the 

similarity of structure tensor value at 2 end points, instead of tangent angles, to evaluate the 

likelihood of linking. 

 

Tracking and temporal image interpolation in biological image sequences  

 

Finally in Chapter 5, we discussed about collaborative work and papers we have been 

involved in, in particular our work on Super-Temporally REsolved Augmentation Microscopy 

or STREAM. From the need of evaluating the performance of STREAM, we established a 

pipeline for visualizing and quality controlling cell lineage tracks, by plotting the dimension-

reduced cell feature as a function of time. When combined with the standard-deviation based 

QC method described in Chapter 3, this should be able to provide a deeper view into the 

description and evaluation of cell tracking results.  

 

It worth mentioning that, just very recently (September 2022), a paper published on Nature 

Methods described their workflow of identify problematic cell tracking assignment by 

evaluating a Fourier transformed feature (fingerprints) of images in cell segmentation 

bounding box 310. It could be interesting to make a comparison on whether the high-order 

features used in our workflow, or the low-order features used in their workflow, works better 

on describing/detecting the cell lineage track abnormality. 

 

We also evaluated the performance of STREAM on different biological structures, including 

mitotic cell nucleus and neuron processes. STREAM proves to be powerful at augmenting 

non-linear movements even at a very high resolution, which could also be useful for our 

future research. 
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Final Remarks on the Cell Cycle and Neurogenesis and Future Perspectives 

 

Since the establishment of the FUCCI reporter system 67, a key role of the cell cycle 

regulatory network - including Cyclin/CDK, Rb and E2F family proteins - in hPSCs 

pluripotency and cell fate decision has been identified, though it is still not clear how the 

members of those two distinct signaling networks interact and regulate together the 

expression of genes maintaining pluripotency or initiating differentiation. It is also not yet 

completely elucidated what roles cell cycle related factors play during any downstream 

differentiation of hPSCs, such as neurogenesis. It is also worth exploring if there are any 

other regulatory networks, such as cytoskeleton related signals, working together with cell 

cycle in deciding the cell fate commitment during the differentiation. 

 

Compared to other more dedicated and differentiated cell lines, hPSCs and by extension 

hPSC-derived cells/tissues has an expression pattern of higher ambiguity, which allows them 

to commit to a series of different cell fate, while in the meantime contribute to the population 

heterogeneity, which greatly limited their clinical applications. For example, hPSCs have 

been reported as harboring tumorigenic potential, where a small population of hPSCs during 

differentiation will instead become cancer cells, which limits the application of hPSCs 

technologies in regenerative medicine 311. It is well known that cell cycle checkpoint proteins 

play an essential role in oncogenesis. Could the tumorigenicity of hPSCs be explained by a 

dysregulation of the cell cycle-pluripotency network? Addressing this question will require 

the dynamic quantification of marker genes during the tumor cell transition of hPSCs, 

together with a global expression profiling to screen for candidate signaling pathway.  

 

It is also a problem of heterogeneity in in vitro neuronal differentiation, as usually people 

would want to get a certain neuronal cell line from in vitro neurogenesis, such as motor 

neurons or CNS neurons, Dopaminergic neurons or Glutamatergic neurons. However, current 
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in vitro differentiation protocols usually give rise to a mosaic of neuron cell populations, 

varying in gene transcriptional profile and electrical activity. Now that the duration of 

neuronal induction time may matter in the fate commitment, it would also be interesting to 

explore whether the timing of the induction onset, for example, the cell cycle phase of the cell 

being induced, will also lead to the heterogeneity during differentiation. For any further study 

on this topic, single-cell transcriptome tools, especially the spatial transcriptomics/ 

proteomics tools, such as GeoMx 312 or Slide-seq 313 could be quite effective in solving the 

problem. It would be important to apply single-cell technologies into the further study of 

hPSCs and its derivatives, in order to overcome current barriers to their medical application. 

 

Our work aimed to explore among others the relation between cell cycle and cell fate 

commitment propensities or heterogeneities using a combination of imaging technologies, 

fluorescent dyes and proteins, image analysis techniques and gene expression profiling. We 

may not have accomplished our goal of linking spatial information to gene expression 

profiles, however, some results we obtained and workflows we established may provide a 

brand-new perspective and innovative powerful tools for further exploring this question. It 

worth mentioning that we were planning to make spatial transcriptomic profiling on 

differentiating NSCs through the collaboration with Omer Bayraktar’s lab in Wellcome Trust 

Sanger Institute, using their RNAScope ISH platform. Our planned work began November 

2021 however it was suspended until the present moment for different reasons including 

extremely protracted legal paperwork and delays in Material Transfer Agreements between 

the University of Bristol and (principally into) the Sanger Institute. As a perspective view, we 

would expect a combinatorial study to link the information of live imaging on hNSC 

differentiation as described in Chapter 4 into spatially mapped cellular expression, which will 

integrate single-cell spatial ’omics with imaging ’omics from HCMS. This will now be work 

for the future.  
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Annex A. Supplementary Information 

 

1. Key Methods 

 

Cell Line Maintenance 

a)  H9 cell line 

Costar TC-Treated 6/12-well plates was coated by 1:100 diluted Gibco Geltrex LDEV-

free reduced growth factor basement membrane matrix. H9 cell was seeded into the 

coated plates and Gibco Essential 8 media system were used for the feeder-free 

culturing. Rock inhibitor Y-27632 was applied with 1:1000 dilution into medium in 

occasion of single-cell culture, to improve cell survival. 

b) hNSC line 

Costar TC-Treated 6/12-well plates was coated by 1:100 diluted Gibco Geltrex LDEV-

free reduced growth factor basement membrane matrix.  

To differentiate hPSC to hNSC, Gibco Neurobasal Medium with 2% Neural Induction 

Supplement was applied to newly seeded H9 cell on day 1. On day 7, the cell was split 

and kept in neural expansion medium, which contains 49% Neurobasal Medium, 49% 

Advanced DMEM/F12 and 2% Neural Induction Supplement. A cell scraper was used 

to remove colonies with undesired morphology. 

To differentiate hNSC to neuron, Gibco Neurobasal Medium with 2% B-27 Insulin-free 

Supplement and 1% L-GlutaMAX was applied to newly seeded NSCs. 

c) U2OS cell line 

Cells were cultured in Costar TC-Treated 6-well plates with DMEM high glucose 

GlutaMAX medium with 10% Fetal Bovine Serum. 

 

CRISPR-Cas9 Knock-in System for Nuclear Expression of Photoactivatable Proteins 

a) The All-in-One Cas9-Nickase/ROSA26 sgRNA/GFP plasmid, as well as ROSAH2B-
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miRFP670 & ROSA-H2B-HalTag donor plasmid were provided by Dr. Kim S. and 

amplified by QIAGEN Plasmid Maxi Kit. 

b) mPA-GFP-H2B-6 plasmid is a gift from Michael Davidson (Addgene plasmid #57137; 

http://n2t.net/addgene:57137; RRID: Addgene_57137) 

c) pKindling-Red-N (KFP1) is provided by Lukyanov KA. Group 5 and purchased from 

Evrogen (Cat. #FP301) 

d) To construct an H2B-paGFP/H2B-KFP1 donor plasmid for ROSA26 safe harbor 

knock-in, a PCR was performed on mPA-GFP-H2B-6/pKindling-Red-N with primers: 

1) mPA-GFP-H2B-6: 

i. 5’-AATTCGGATCCTTTAATTAATCGACGGTACCGCCACCAT-3’ 

ii. 5’-TCAGCGAGCTACGCGTTACTTGTACAGCTCGTCCATGCCG-3’ 

2) pKindling-Red-N: 

i. 5’-CTAAGGATCCACCGGTCG-3’ 

ii. 5’-TCAGCGAGCTACGCGTGATCTAGAGTCGCGGC-3’ 

The amplified fragment was inserted to ROSA-H2B-miRFP670 backbone (double 

enzyme cut with NEB Restriction Enzyme AgeI and MluI-HF) using BD In-Fusion 

PCR Cloning Kit. 

e) To construct an KFP1-NLS plasmid for nuclear localization of KFP1 without being 

integrated into chromatin, a PCR was performed on pKindling-Red-N with 2 steps: 

1) With primers 

i. 5’-TACCTTTCTCTTCTTTTTTGGACCGTTGTGGCCCAGCT-3’ 

ii. 5’-GCCACCATGGCCTCCCTGCT-3’ 

to get the first construct, then 

2) With primers 

i. 5’-CTCAAGCTTCGAATTCGCCACCATGGCCT-3’ 

ii. 5’-TTAACAACAACAATTGTACCTTTCTCTTCTTTTTTGG-3’ 

to get the second construct 

The amplified fragment was inserted to pKindling-Red-N backbone (double enzyme 

cut with NEB Restriction Enzyme EcoRI-HF and MfeI) using BD In-Fusion PCR 
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Cloning Kit. 

We later found that the infused construct lacks a stop codon after KFP1-NLS sequence, 

therefore a site-directed mutagenesis was conducted using primers 

1) 5’-CCAAAAAAGAAGAGAAAGGTATAGCAATTGTTGTTGTTAAC-3’ 

2) 5’-TTTTGGACCGTTGTGGCCCAG-3’ 

to add a stop codon at the end of the sequence. 

 

Photoactivation/Photobleaching of Fluorescent Proteins on Laser Scanning 

Microscopy 

a) The Diode laser power (405nm) was configured to 75% and Tunable White Light Laser 

power was configured to 75%. The scanning speed was 200Hz. The gain of 

480~520nm/680~720nm channel was 810~850 each. The confocal software (Laica 

LAS X) was switched to FRAP mode. 

b) The photoactivation of pa-GFP protein was carried with 488nm and 646nm laser power 

specifically set to 5% each, and 405nm laser power was set to 75%. The 40* 

magnification oil lens was used. The photoactivation process repeated either 50 times 

or 20 times, each with one scanning frame of 405nm laser (activation) and one 

scanning frame of 488nm laser (post activation imaging). 

c) The images from photoprinting were analyzed by ImageJ and MATLAB. 

 

Simulated Bootstrap Generation of Single-cell RNA-seq Training Data and Prediction 

of Cell Type (Selection-seq) 

a) The single-cell RNA-seq data is “Peripheral Blood Mononuclear Cells (PBMC)” 

available from 10X Genomics, as well as from NCBI’s Gene Expression Omnibus 

GSE75748. The cell transcriptome data was sequenced on the Illumina NextSeq 500, 

preprocessed by Cell Ranger pipeline for quality control, adapter removal, transcript 

assembly and read counting. The count matrix was normalized and scaled by Seurat v3, 

1768 highly variable features of 2700 cells were automatically identified and selected. 

b) A cell sub-population consist of 50 cells was randomly selected from the total cell 
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population, among which 70%~90% belongs to a “main” type, and the rest are assigned 

to 2 “sub” types, ranging from 30%~70%. The order of the cells in the group was 

randomly augmented 15, 25, 50 or 150 times. The training sets were established by 100, 

300, 600, or 1000 sub-populations, with the varying augmentation numbers, the 

training sets are of the same size. 20% of the training data was isolated for validation of 

the trained model. 200 single cells were randomly selected, each repeated 50 times to 

form a sub-population, consisting evaluation dataset. 

c) The multi-layer perceptron (MLP) used for cell type prediction was constructed by 

KERAS API of python library Tensorflow2. The MLP contains: 

1) 1* 1D convolution layer, with 20*1*1768 kernels, L2 regularization 0.05, Drop-out 

rate 0.3. 

2) Flatten Layer. 

3) Fully connected layer with 100 nodes. L2 regularization 0.05, Drop-out rate 0.3. 

ReLU activation function. 

4) Fully connected layer with 7 nodes. L2 regularization 0.05, SoftMax activation 

function. 

5) The Poisson distribution loss function 𝑦𝑝𝑟𝑒𝑑 − 𝑦𝑡𝑟𝑢𝑒 × log 𝑦𝑝𝑟𝑒𝑑  was used to 

calculate the error rate of the prediction. 

6) 50 epochs were trained across the data, with loss and accuracy was recorded. 

7) The model was finally evaluated on the 200-single-cell evaluation dataset. 

 

Preprocess of Image Data for Track Quality Control in Chapter 5 

(1) The distance measure of local maxima in mitotic cells 

Data: The mitotic cell clip was generated from original and interpolated image stacks 

(120-pixel * 120-pixel size, 60 frames).  

Preprocessing: For each frame in the clip, the image was (a) Gaussian blurred with 

sigma=10; (b) element-wise multiplied with a large Gaussian filter, which has the same 

size of frame (120 * 120), and with sigma=40, to suppress signal in border; (c) use 

scikit-image function peak_local_max to detect local maxima, the footprint=3, the 
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threshold was set as the mode of image, to suppress signal on background. 

An example of Gaussian filter in (c): (sigma=40) 

 

Manual Removal of Undesired Maxima Points: The maxima points detected in 

previous step were converted into ImageJ ROI object using Python library ‘roifile’, and 

maxima points which did not fall on/around mitotic cells were removed, these points 

include: (a) points fell on other cells which did not go through mitosis (b) points fell on 

background/debris which is far from mitotic cells by visual judgement. Note: no new 

points were added or got position changed; points fall on/around mitotic cells were 

retained, even there were multiple points detected in single cell, or the points did not 

fall in the center of cell. This is to avoid manipulation-bias. 

Mean Distance Calculation: For frames which have 0~1 maxima points, the mean 

distance is zero; otherwise, the distance is calculated by (a) computing the centroid of 

all the maxima points (b) calculating the distance from any of the maxima points to 

centroid as mean distance. 

 

(2) The length and orientation estimation of axon skeleton 

The Detection of Process Skeleton: the skeleton of the axon-like structure was 

acquired using the ‘Ridge Detection’ in ImageJ Plugin. The ROI from Ridge Detection 

was read in Python and converted to binary mask. 

Calculation of Orientation (in degree) of Skeleton Pixels: the skeleton images 
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(binary mask) got processed by ‘OrientationJ’ ImageJ Plugin (written by Daniel Sage at 

the Biomedical Image Group, webpage http://bigwww.epfl.ch/demo/orientation/). The 

Plugin calculates orientation map based on structure tensor, the local window sigma=2, 

the gradient calculation used Cubic Spline. The calculated degrees were between -90 to 

+90, to make them averageable, 90 was added to the degrees, making the range (0, 180). 

The orientation skeleton was calculated by multiplying the skeleton with orientation 

map. 

Calculation of Axon Length Dynamics: the skeleton mask got summed on every time 

points, the time-series summed pixel area was plotted as Gaussian smoothed curve, 

with sigma=5. (For the reason of easier viewing, the pixel intensity on skeleton is 16, so 

the number on Y axis of plot should be divided by 16, however this scale number 

doesn’t influence the result.) 

Calculation of Axon Tip Dynamics: for clip 3 and clip 6 which has a clear tip 

structure, the tip location was calculated in skeleton mask, as the maximum row index 

which has non-zero value. The location was then plotted against time. 

Calculation of Pixel Orientation: The orientation skeleton calculated was averaged to 

the longest axis (firstly summed and then divide by the non-zero-pixel number on this 

row/column), which generated a 300pixel/600pixel long orientation plot-profile vector. 

6 sampling points were selected with equal distance on the vector. For example, if 

vector length is 300, the sampling points are: 49, 99, 149, 199, 249, 299; if vector 

length is 600, the sampling points are: 99, 199, 299, 399, 499, 599. The mean 

orientation value on each sampling points were then plot against time, with Gaussian 

smooth sigma=5. 

  

http://bigwww.epfl.ch/demo/orientation/
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2. Abbreviations in Thesis 

Abbrev. Full 

AD Alzheimer Disease 
AIS Axon Initial Segment 

ALS Amyotrophic Lateral Sclerosis 

AMD Age-Related Macular Degeneration 

aNSC Adult NSC 

ASE Allele-Specific Expression 

bHLH Basic Helix-Loop-Helix 

BWT Burrows-Wheeler Transform 

CDF Cumulative Distribution Functions 

Cdk Cyclin-Dependent Kinase 

CNN Convolutional Neural Network 

CNS Central Neural System 

CoSE Compound Spring Embedder 

DEG Differentially Expressed Genes 

EB Embryoid Body 

ECM Extra-Cellular Matrixes 

EM Expectation-Maximization 

FACS Fluorescence-Activated Cell Sorting 

FCN Fully Convolutional Network 

FOV Field Of View 

FRAP Fluorescence Recovery After Photobleaching 

FRET Fluorescence Resonance Energy Transfer 

GO Gene Ontology 

HCMS High-Content Microscopy-Based Screen 

hESCs Human Embryonic Stem Cells 

hiPSCs Human Induced Pluripotent Stem Cells 

hPSCs Human Pluripotent Stem Cells 

ICM Inner Cell Mass 

IHC Immunohistochemistry 

KS test Kolmogorov–Smirnov Test 

LAP Linear Assignment Problem 

LSCM Laser Scanning Confocal Microscopy 

mEpiSC Mouse Epiblast Stem Cell 

mESC Mouse Embryonic Stem Cell 

MFIF Multi-Focus Image Fusion 

MLP Multi-Layer Perceptron 

MND Motor Neuron Disease 

MTOC Microtubule Organizing Center 

NE Neuroectodermal 

NGS Next-Generation Sequencing 

NPC Neural Progenitor Cell 

NSC Neural Stems Cell 

PA- Photoactivatable- 

PALM Photo-Activated Localization Microscopy 

PBMC Peripheral Blood Mononuclear Cells 

PCA Principal Component Analysis 

PD Parkinson Disease 
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polyA Polyadenylated 

PTM Post-Translation Modification 

ReLU Rectified Linear Unit 

RNAi RNA Interference 

ROI Region Of Interest 

RPE Retinal Pigmented Epithelium 

RPN Region Proposal Network 

SCP Single-Cell Proteomics 

scqPCR Single-Cell Quantitative PCR 

scRNA-seq Single-Cell RNA Sequencing 

SiR Silicon Rhodamine 

smFISH In Situ Hybridization 

SNP Single Nucleotide Polymorphism 

SNV Single Nucleotide Variation 

ST Spatial Transcriptomics 

WGS Whole-Genome Sequencing 

ZINB Zero-Inflated Negative Binomial 
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Annex B.  Participated Study: Super-Temporally Resolved Augmentation 

Microscopy by Deep Learning 
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SUMMARY 17 

18 

The past decades have seen outstanding progress toward visualising cellular structures ‘live’ with 19 

high spatial resolution thanks to super-resolution microscopy and deep learning-enhanced 20 

microscopy, however temporal resolution improvements remained limited. Here we establish 21 

STREAM –  super-temporally resolved augmentation microscopy – a deep learning approach that 22 

combines non-linear frame interpolation and generative adversarial networks to fully-learn the 23 

dynamics of biological image sequences and increase their temporal resolution twenty-five-fold, 24 

thereby achieving temporal super-resolution. Using chromatin as biological paradigm, we 25 

demonstrate that STREAM super-temporally resolves with fidelity all cell-cycle changes in 26 

chromatin structure, including notably the highly non-linear dynamics of mitotic chromosome 27 

segregation. Moreover, we show that a STREAM model trained with human cell images can 28 

readily generate fly embryo videos with super-temporal resolution >1Hz, demonstrating that 29 

STREAM is robust, image source-agnostic and knowledge-portable. By affording infrequent 30 

imaging without sacrificing temporal resolution STREAM makes longer-term, viable, higher-31 

throughput super-temporal resolution cell imaging achievable across many applications. 32 

33 

34 

35 

36 

37 

38 

KEYWORDS: Temporal super-resolution, Super-temporal augmentation, Non-linear frame 39 

interpolation, Time-lapse fluorescence microscopy, Generative Adversarial Networks, Deep 40 

Learning, Rare Event Augmentation, Temporal Augmentation, Chromosome segregation 41 

dynamics, human Pluripotent Stem Cells, Drosophila melanogaster syncytial blastoderm. 42 
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2 

INTRODUCTION 45 

Visualising how cells proliferate, die, move or interact in living tissues and organisms with ever 46 

increasing spatiotemporal resolution is key to enable future biological discoveries as well as to 47 

power countless applications in biomedicine, from precision diagnostics in cancer to predictive 48 

synthetic tissue design in regenerative medicine 1. 49 

50 

In the past two decades outstanding progress has been made to beat the spatial resolution limits 51 

of light microscopy and cellular imaging. Super-resolution microscopy (SRM) techniques like 52 

STED, SIM, PALM, STORM and others have successfully taken fluorescence microscopy – both 53 

fixed and live – beyond the physical diffraction limit and into the realm of nanometer-scale 54 

observation 2,3. These advances have enabled applications previously considered impossible, 55 

such as super-resolved fluorescence imaging and structural reconstruction of cells in 2D and 3D 56 
4,5 (including within pluripotent stem cell-derived organoids 6), stoichiometric characterization of 57 

macromolecular complexes in intact cells 2, and even super-resolution imaging based high-58 

content screening 7. 59 

60 

More recently Deep Learning (DL) has emerged as a powerful approach to obtain very high spatial 61 

resolution images from low-resolution or sparse image data thereby helping to mitigate sample 62 

photobleaching and phototoxicity 8, critical issues often associated with long-term ‘live’ imaging 63 
9,10. For instance the CARE (content-aware image restoration) algorithm 11 enables SRM-level 64 

restoration of images acquired with 60-fold less photons by exploiting U-Nets 12 and encoder-65 

decoder network approaches. Similarly, the ANNA-PALM (artificial neural network accelerated 66 

PALM) framework 13 enables super-resolution reconstruction of images from two orders of 67 

magnitude less frames using U-Nets and generative adversarial networks (GANs 14). Thus, these 68 

and a growing number of similar DL-enabled super-resolution microscopy approaches (e.g. 15 and 69 
16) are making it possible to significantly minimize sample exposure while preserving highly70 

spatially-resolved data quality, bringing the goal of long-term high-resolution imaging within much 71 

closer reach. 72 

73 

Relative to those breakthroughs, little progress has been made toward explicitly beating the limits 74 

of temporal resolution 3. That is, while reducing exposure time allows in principle to collect many 75 

more images from a given specimen through time without damaging its viability, there are 76 

‘hardware-imposed’ upper limits to the frequency at which images can be physically collected by 77 

a given instrument, which the above approaches cannot help overcome. For instance, shutter 78 
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Annex C.  Participated Study: Deep Learning-Enhanced Morphological 

Profiling Predicts Cell Fate Dynamics in Real-Time In hPSCs 
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SUMMARY   
 
Predicting how stem cells become patterned and differentiated into target tissues is key for 

optimising human tissue design. Here, we established DEEP-MAP - for deep learning-

enhanced morphological profiling - an approach that integrates single-cell, multi-day, multi-

colour microscopy phenomics with deep learning and allows to robustly map and predict cell 

fate dynamics in real-time without a need for cell state-specific reporters. Using human 

pluripotent stem cells (hPSCs) engineered to co-express the histone H2B and two-colour 

FUCCI cell cycle reporters, we used DEEP-MAP to capture hundreds of morphological- and 

proliferation-associated features for hundreds of thousands of cells and used this information 

to map and predict spatiotemporally single-cell fate dynamics across germ layer cell fates. We 

show that DEEP-MAP predicts fate changes as early or earlier than transcription factor-based 

fate reporters, reveals the timing and existence of intermediate cell fates invisible to fixed-cell 

technologies, and identifies proliferative properties predictive of cell fate transitions. DEEP-

MAP provides a versatile, universal strategy to map tissue evolution and organisation across 

many developmental and tissue engineering contexts.   

 

   

 

 

   

 

 

 

 

 

 

 

KEYWORDS: human Pluripotent Stem Cells, Single-cell microscopy phenomics, 

Morphological profiling, Live multi-colour microscopy, Multiday imaging, High-content 

microscopy, Computational image analysis, Deep Learning, Neural networks, Cell fate 

dynamics prediction.   



 

INTRODUCTION  
How to define cellular states and state transitions remains a fundamental question in stem cell 

biology. In recent years, approaches that can quantify properties of stem cells and their 

differentiated derivatives have become broadly recognised for their pivotal roles in predictable 

and robust synthetic tissue design (Brassard and Lutolf, 2019; Del Sol et al., 2017; Prochazka 

et al., 2017). Although RNAseq- and DNA barcoding-based single-cell technologies are used 

extensively for cell state mapping and lineage analysis (Cahan et al., 2014; Kinney et al., 

2019; Rackham et al., 2016; VanHorn and Morris, 2021), these have critical limitations: cells 

are killed and their characteristics are measured only at that point in time. Hence, historical 

cell state information that might be key to fate evolution – e.g. transient cell states that 

disappear before the endpoint observation, dying cells at the time of observation, cell tissue 

context and density prior fate acquisition – is lost. Furthermore, for single-cell technologies 

time is an implicit variable that can only be inferred mathematically. This is important, because 

the true dynamical and temporal variables (individual and collective/reciprocal cell 

movements, the actual duration and longevity of cell states, and how cell heterogeneity 

changes and co-evolves with fate) is lost as well (Villoutreix, 2021). 

 

In contrast, continuous live cell imaging provides a non-interventional interrogation of cell state 

dynamics, including historical information of cell states and cell state transitions, in real-time 

(Chessel and Carazo Salas, 2019). ‘Live’ tracking of cell states has so far relied on using 

fluorescently-tagged transcription factors to reveal cell fate/state (Etzrodt and Schroeder, 

2017; Filipczyk et al., 2015; Strebinger et al., 2019; Wolff et al., 2018), although newer 

strategies using indirect reporters of transcription factor status are emerging (Kim et al., 2021). 

Crucially, each differentiation or other experimental scenario requires the establishment of a 

tailor-made reporter. This limitation becomes prohibitive when aiming to study cell 

differentiation into multiple target fates, as the possible reporters that can be co-expressed 

and imaged ‘live’ simultaneously in cells are relatively few (Kim et al., 2021). Developing 

technologies to quantitatively monitor cell state dynamics in real-time and without the need for 

specialised cell state reporters would overcome these limitations and provide a powerful 

solution to study and predict cell state transitions. 

 

In the past 15 years, high-dimensional, image-based morphological profiling enhanced by 

machine learning has been used successfully by many groups including ours in a variety of 

model systems to systematically identify and characterise genes/gene-network states (Chong 

et al., 2015; Collinet et al., 2010; Fuchs et al., 2010; Graml et al., 2014; Neumann et al., 2010), 

to identify and enhance signalling networks (Bakal et al., 2007; Evans et al., 2013; Horn et al., 

2011), to characterise small molecule treatments (Bray et al., 2017; Bray et al., 2016) and to 



 

infer context-dependent gene functions (Sailem et al., 2020). To date, however, machine 

learning-enhanced ‘live’ morphological profiling has not been used to identify and predict cell 

fate transitions in real-time.  

  

Here, we established DEEP-MAP, an approach that combines optimised multi-day, multi-

colour microscopy phenomics with deep neural networks, and allows to harness high-

dimensional morphological profiling information obtained from hundreds of thousands of ‘live’ 

cells, to map and predict cell fate dynamics in real-time. We applied DEEP-MAP to human 

pluripotent stem cells (hPSCs) co-expressing broadly used cell proliferation and cell cycle 

reporters and asked whether phenotypic profiling alongside proliferation information can be 

used to identify cell states and monitor multi-fate dynamics. We show that based only on 

morphological and proliferative features DEEP-MAP can reliably map and spatiotemporally 

predict, at a single-cell level, cells’ fate and fate dynamics during differentiation into the three 

basic germ layer fates, without a need for customised cell state reporters specific to the cell 

fates and lineages being monitored. We show that DEEP-MAP predicts fate changes with high 

temporal sensitivity - comparable to what is currently technically possible using fluorescently-

labelled transcription factor reporters. Moreover, we show that DEEP-MAP can reveal the 

timing of phenotypic transitions associated with cell fate conversions and the existence of cell 

fate intermediates, and be used to identify proliferative properties predictive of cell fate 

transitions.   

 

 

  



 

RESULTS  

Establishing a multi-day, multi-colour microscopy phenomics pipeline for dynamical 
phenotyping of hPSCs in real-time and at single-cell resolution.     

To monitor hPSC morphology and proliferation dynamics at single-cell resolution, we 

generated a CRISPR knock-in three-colour hPSC line co-expressing a fluorescently-tagged 

histone H2B reporter, H2B-miRFP670 (Kim et al., 2021; Shcherbakova et al., 2016) (far red 

fluorescence emitting), and the two-colour FUCCI cell cycle reporter (Pauklin and Vallier, 

2013; Sakaue-Sawano et al., 2008) (red/green fluorescence emitting) (Fig. 1A) (see STAR 

Methods for detailed descriptions from here on). When considering choice of reporters, we 

took into account that (1) hPSCs form very compact colonies; therefore fluorescent nuclear 

reporters would give the best shot at unequivocal single-cell identification and morphological 

profiling (2) FUCCI and H2B are robust cell proliferation reporters that together enable 

quantitative monitoring of detailed aspects of cell proliferation, cell cycle progression, mitosis 

and cell death and (3) the H2B signal specifically never disappears from cells, allowing 

uninterrupted cell visualisation. We then set out to establish a multi-colour, time-lapse high-

content microscopy pipeline enabling us to image cells continuously over time, in a way that 

would be compatible with daily media change, high-temporal resolution imaging (to allow 

automated cell detection and tracking) and multi-day imaging, required to observe fate 

transitions occurring on a time scale of days as cells continue to proliferate normally (Fig. 1B).

   

 

Frequent and extended time-lapse imaging is highly phototoxic (Loeffler and Schroeder, 2019; 

Piltti et al., 2018; Schroeder, 2011), particularly for stem cells, prohibiting imaging many 

reporters with high temporal frequency. To overcome this limitation, we developed an 

optimised imaging modality by which we imaged the H2B-miRFP670 signal every 5 minutes 

and the FUCCI signal only every 30 minutes. This scheme allowed us to achieve multi-day 

imaging of healthily proliferating cells for at least 3-5 days or more, limited only by cell 

confluence. In this manner, we captured multi-colour time-lapse images of cell populations 

across multiple image fields over time, and then used a customised image analysis pipeline 

to (A) digitally stitch neighbouring fields into larger images containing multiple hPSC colonies  

(B) detect all cells in all colonies through time (using nuclei as proxies; from here onwards 

cells/nuclei are used interchangeably) (C) where possible, track individual cells through time, 

and (D) detect and track all colonies through time (Fig. 1C). Typically, time series captured in 

this way consisted of 800-1000 images (timesteps), with each imaging field leading to 

>100,000 detected nuclei data points throughout the entire multi-day imaging sequence. After 

data capture, we used a trained multi-class Support Vector Machine (SVM) to classify and 

assign probabilities by machine learning to different types of nuclear events (interphase, 



 

metaphase, anaphase, cell death) (Fig. 1D), and then extracted, in addition to the SVM-

derived features (i.e. probability assignments), >550 different morphological, intensity and 

texture features across the multi-channel signals on a single-cell basis (Fig. 1E). Ultimately, 

this analysis yielded >550-dimensional phenoprints for hundreds of thousands of cells for each 

experimental condition analysed, capturing the morphological and spatiotemporal phenotype 

of that condition (Fig. 1F). 

 

Live morphological profiling of hPSCs during pluripotency and early germ layer 
differentiation.     

Next, we used this strategy to dynamically phenotype the evolution of hPSCs, either while 

maintaining pluripotency or when triggered to undergo early directed differentiation. Given that 

hPSCs have the capacity to differentiate into all three basic germ layers, we chose to trigger 

cells to undergo directed differentiation into primitive neural stem cells (NSCs), cardiac 

mesoderm-induced cells, and definitive endoderm, mimicking early ectoderm (EC), mesoderm 

(ME) and endoderm (EN), respectively (Fig. S1; hereafter referred to as EC, ME and EN for 

shorthand). In our conditions, pluripotent hPSCs co-expressing H2B-miRFP670 and FUCCI 

formed colonies that grew exponentially and divided with a typical cell doubling time of 18 

hours, in agreement with an average cell cycle duration of ~15 hours (Pauklin and Vallier, 

2013), with most cells in S/G2/M (FUCCI-green) phases of the cell cycle (Fig. S1A and Movie 

S1). Similarly, hPSCs triggered to initiate EC differentiation initially grew exponentially with a 

typical doubling rate of 18 hours in the first 48 hours, after which they visibly slowed their 

doubling time while gradually increasing the proportion of cells in G1 (FUCCI-red) (Fig. S1B 

and Movie S2), coincident with differentiation onset. By contrast, cells triggered to differentiate 

into ME (Fig. S1C and Movie S3) and EN (Fig. S1D and Movie S4) changed their appearance 

after 24h of imaging, becoming more spread out and altering their nuclear shape and cell cycle 

reporter characteristics, especially in EN triggered cells (Figs. S1C- S1D).   

 

To compare the phenotypic evolution of the four different cell populations quantitatively, we 

sought to map the high-dimensional phenoprints of the four cell populations. We found that 

linear dimensionality reduction by principal component analysis (PCA, (Pearson, 1901) did not 

separate the four populations well. This outcome suggested that population variance in feature 

space was overall comparable and overlapping (Fig. 2A), possibly due to the low signal-to-

noise (SNR) ratio imposed by the low exposure times necessary in our time-lapse imaging to 

keep cells healthy (Weigert et al., 2018). Similarly, when we used non-linear embeddings 

commonly used for single-cell transcriptomics analysis (Kobak and Berens, 2019), t-

distributed stochastic neighbour embedding (tSNE (van der Maaten and Hinton, 2008)) and 

Uniform Manifold Approximation and Projection (UMAP, (McInnes et al., 2018), we found that 



 

(with the exception a subset of EN triggered cells) the four cell populations largely overlapped 

in those embedding spaces (Figs. 2B-2C).   

 

Using neural networks to map phenotypic diversity.    

To overcome these methodological limitations, we developed a supervised neural network 

(NN) embedding model that first uses the >550-dimensional feature datasets to learn to predict 

and spatially embed different cell state classes as separate as possible on a plane knowing 

their class labels, and can then be used subsequently to map new data points based on their 

feature phenoprints without knowledge of the class labels (Fig. 2D). We trained the model with 

four input classes: ‘pluripotent’, ‘ectoderm’, ‘mesoderm’ and ‘endoderm’. ‘Pluripotent’ 

consisted of 2,675 early pluripotent datapoints (t=0h-6h, i.e. 0 days, when colonies are small) 

and 23,492 late pluripotent datapoints (t=60h40min-66h40min, i.e. 2.5 days, when colonies 

are visually large and dense). Importantly, the ‘pluripotent’ training class contained both early 

and late pluripotent cell datapoints to eliminate cell density as a potential confounding factor. 

‘Ectoderm’ consisted of 23,659 late EC datapoints (t=77h20min-83h20min i.e. 3.5 days, when 

cells acquire SOX1+, denoting early EC fate (Kim et al., 2021)). ‘Mesoderm’ consisted of 

15,278 late ME datapoints (t=77h20min-83h20min i.e. 3.5 days, when cells have been 

reported to exit the T+ state en route to becoming early cardiac mesoderm fate (Rao et al., 

2016)). ‘Endoderm’ consisted of 1’296 late EN datapoints (t=60h40min-66h40min i.e. 2.5 

days, when cells have been shown to become SOX17+ denoting early EN fate (Ogawa et al., 

2013; Teo et al., 2011)). This approach proved to be pivotal for clearly separating the different 

cell states (Fig. 2E). Crucially, we were able to reproducibly do so across different datasets 

(Fig. S2A-S2I), showing that the NN model is both predictive and robust.   

 

To visualise the dynamic evolution of the different cell populations and exploit the real-time 

nature of our data, we then computed the average coordinates of each cell population at every 

time point for the entire 3.5 days to generate their real-time phenotypic trajectories (Fig. 2F). 

As expected, at early timepoints (0-1 days), all four cell populations were close to each other 

and located around the pluripotent embedding area, corresponding to the fact that they were 

all phenotypically pluripotent (Fig. 2F, bottom half). However, as time progressed, their 

temporal trajectories diverged, coincident with differential cell fate acquisition (Fig. 2F, top 

half). Similarly, by plotting the trajectories of single-cells tracked early in differentiation as 

vectors on the embedding (Fig. 2G), we observed that individual cells’ trajectories started in 

the pluripotent area of the embedding and gradually diverged on the fate map as time 

progressed. Thus, multi-day, high-dimensional, image-based morphological profiling 

enhanced by deep learning allows to robustly map and predict cell fate evolution toward 

multiple, different cell fate outcomes, both at the population and at the single-cell level. We 



 

call our approach DEEP-MAP, for deep learning-enhanced morphological profiling.  

 

Proliferative features predictive of cell fate.    

With the DEEP-MAP NN model in place, we asked what features allows discrimination among 

different cell fate classes. Focusing on a small subset of biologically interpretable features, we 

carried out Bayesian network statistics and linear correlation analysis of the features and 

found that several features correlated directly with the cell fate class/label, indicating that they 

may be linked with the phenotypic states associated with the different cell fates (Fig. 3A). We 

then computed mutual information to quantitatively measure the mutual dependency between 

every feature and cell fate, as a way to estimate the importance of each feature to cell fate. 

Overall, we found that cell density and G1 status (as assessed by FUCCI-red signal intensity) 

were the features with the highest importance for predicting the different cell state classes 

(Fig. 3B), with different features displaying different degrees of importance across the different 

cell states. Specifically, cell density, G1 status and cell speed had high importance in both 

pluripotent and EC cells, with cell speed and nuclear area taking on increased importance in 

EC cells relative to pluripotent cells. These data suggest that cell speed and nuclear area are 

features that are discriminant of EC cells with respect to pluripotent cells, and that changes in 

cell migration control and shape/size may accompany pluripotency exit and onset of early 

ectodermal fate (Fig. 3C, top). By contrast, we found in ME cells that G1 status and cell speed 

had lower importance, and that the average distance of cells from the border of colonies 

(another measure of cell density) had a higher importance relative to pluripotent cells. This 

suggests that G1 status, cell speed and cell density discriminate ME cells, and that changes 

in cell cycle progression, migration and adhesion may accompany the onset of early 

mesodermal fate (Fig. 3C, bottom left). Finally, in EN cells we found that G1 status and cell 

speed had higher importance, and the average distance of cells from the border of colonies 

and cell density had a lower importance, relative to pluripotent cells, suggesting that those 

features are discriminant of EN cells and that changes in the control of cell cycle progression, 

migration and cell density are key at the onset of early endodermal fate (Fig. 3C, bottom right). 

Mapping of high importance features on the NN embedding (Fig. 3D) as well as overlaying 

them on image sequences (Fig. S3A-S3D and Movies S5-S6) confirmed visually that those 

features change coincident with fate changes. Hence, DEEP-MAP-derived phenotypic 

profiling information can be used to quantitatively identify, in an unbiased manner, 

morphological and proliferative properties predictive of cell fate transitions and point to 

possible mechanisms that cause or accompany commitment to different cell fates. 

  

 

Proliferative state predicts single-cell fate dynamics, transition timing and fate 



 

intermediates.  

Next, we sought to exploit the predictive capacity of DEEP-MAP to observe single-cell fate 

dynamics in real-time. To this end, we used the NN cell fate class predictions to visually 

augment image sequences by displaying on the images the predominant (highest probability) 

predicted class for each single-cell through time. As expected, we observed that the 

overwhelming majority of pluripotent, EC, ME and EN triggered cells were predicted initially to 

be pluripotent (Fig. 4A-4D, left most image panels and Movies S7-S10), and that as time 

proceeded pluripotent cells maintained that predicted fate even as colonies grew larger and 

denser (Fig. 4A). By contrast, after the trigger, EC cells began losing the pluripotent phenotype 

~1 day later and began acquiring ectoderm phenotype by 2.5 days (Fig. 4B). Importantly, both 

of these timepoints are earlier than those at which pluripotency exit (e.g. OCT4 and NANOG 

loss, ~2-3 days (Li et al., 2011)) and ectodermal fate onset (e.g. Nestin and PAX6 gain (Li et 

al., 2011) and SOX1 gain (Kim et al., 2021), ~3-5 days) have been detected by quantitatively 

monitoring transcription factor levels. Hence, by using solely indirect proliferative readouts, 

DEEP-MAP is capable of detecting cell fate changes in ‘live’ cells earlier than what is currently 

technically possible. We were surprised to see that within only a few hours of receiving the 

differentiation trigger, ME and EN cells began losing the pluripotent phenotype (Fig. 4C-4D). 

ME cells began to acquire the mesoderm phenotype within 1 day of receiving the 

differentiation trigger and increasingly acquired that predicted fate for multiple days (Fig. 4C). 

By contrast, EN cells acquired the endoderm phenotype 2.5 days after trigger (Fig. 4D). Both 

of these differentiation onset timings are as early and possibly earlier than those at which early 

mesoderm (e.g. T gain, ~1-2 days; (Rao et al., 2016)) and early endoderm (e.g. FOXA2 and 

SOX17 gain, ~3 days; (Ogawa et al., 2013; Teo et al., 2011)) fate onset have been reported 

to occur. Taken together, these data indicate that DEEP-MAP can detect ‘live’ and dynamical 

cell fate-associated phenotypic changes earlier than previously possible, with unprecedented 

sensitivity and predictive power.   

 

To gain further insights into the dynamics of lineage differentiation, we used the DEEP-MAP 

NN embedding to map real-time phenotypic trajectories of different EC colonies, by computing 

the average coordinates of each cell colony at every point in time through the 3.5 days of 

imaging (Fig. 4E). While most EC colonies’ trajectories began in the pluripotency domain and 

later evolved toward the ectoderm domain, they appeared to do so heterogeneously. By 

computing the predominant (highest probability) cell fate assignment for each separate colony 

as a function of time, we confirmed that colonies differed in the time of departure from 

pluripotency as well as in the time of acquisition of the majority ectodermal phenotype (Fig. 

4F). By contrast, we found that EN colonies’ trajectories proceeded much more 

homogeneously through the DEEP-MAP fate map, suggestive of a much more tightly 



 

controlled response of cells and colonies to differentiation triggers (Fig. 4G). Strikingly, all EN 

trajectories appeared to go through the mesoderm domain en route to acquisition of the 

endoderm phenotype, suggesting that acquisition of an early mesoderm-like state could be an 

intermediate in acquiring endodermal fate. This was evident when we looked at the colonies’ 

predominant cell fate assignment as a function of time, which showed that EN-triggered 

colonies departed pluripotency early and almost synchronously, then acquired and maintained 

a predicted mesodermal phenotype for 1-1.5 days, and subsequently acquired an endodermal 

phenotype 40 hours later (Fig. 4H). Altogether, our findings demonstrate that, by integrating 

high-dimensional, image-based morphological profiling with deep learning, DEEP-MAP can 

predict cell fate dynamics ‘live’ in real-time with high temporal sensitivity across multiple fates. 

Hence, this technology can be leveraged to reveal differences in cell fate dynamics between 

lineages, cells and colonies and can reveal the history, timing, and existence of cell fate 

intermediates, which can be elusive to fixed-cell technologies. 

 

DISCUSSION  

We have established DEEP-MAP, a deep learning-enhanced morphological profiling 

approach, which enables ‘live’ large-scale microscopy imaging and phenotyping of hPSC 

populations at single-cell level and predicts cell fate dynamics and transitions in real-time over 

several days. We generated by CRISPR knock-in hPSC lines stably co-expressing ‘live’ cell 

proliferation reporters and then established multicolour time-lapse imaging compatible with 

long-term cell viability and health, and compatible with proliferation and differentiation under 

the microscope. Our pipeline integrates image processing, machine learning and statistical 

analysis workflows to enable time-resolved, high-dimensional phenotyping of 100’000s of 

single-cells, as well as deep learning methods allowing robust visualisation, mapping, 

phenotypic clustering and prediction of cell fate dynamics toward multiple fate outcomes. We 

show that based on two very general and commonly used cell proliferation reporters - FUCCI 

and fluorescent H2B – DEEP-MAP yields rich, deep and continuous information about 

morphological and proliferative state that can predict and reveal cell fate dynamics ‘live’ in 

real-time and at single-cell level without a need for customised cell state reporters specific to 

the fates and lineages being monitored. The fact that the reporters used here are universally 

present and visible across developmental and cell differentiation contexts makes our approach 

highly versatile and broadly applicable.   

 

Our choice to use nuclear-localised fluorescent reporters for morphological profiling was not 

fortuitous: hPSC colonies are very compact and therefore we used nuclear reporters to be 

able to unequivocally detect and, where possible, track cells through time. However, DEEP-



 

MAP could be adapted to use other ‘live’ Cell Painting-type (Bray et al., 2016) morphological 

reporters, both genetically encoded and membrane permeable (e.g. fluorogenic probes 

(Mishra et al., 2019)), and applied to other cell types of choice. Similarly, DEEP-MAP could 

form the basis of methodologies to carry out label-free cell fate mapping and prediction 

(Christiansen et al., 2018; Ounkomol et al., 2018), by applying it to cells that are spatially 

sparse and can be unequivocally identified without the need for fluorescent reporters (Al-

Zaben et al., 2019) or by using label-free imaging optical modalities (Kallepitis et al., 2017; 

Marrison et al., 2013).   

 

Previous efforts have used deep learning to detect and predict cell states ‘live’ before. For 

instance, convolutional neural networks (CNNs) can detect morphological differences 

between unlabelled pluripotent and early epiblast-like differentiating cell patches of mouse 

embryonic stem cells just 20 minutes after onset of differentiation (Waisman et al., 2019). 

Similarly, CNNs and recurrent neural networks (RNNs) can predict lineage choices of 

individual, disaggregated primary mouse hematopoietic stem and progenitor cells (HSPCs) 

up to three generations before molecular marker annotation, based on their morphological 

and displacement characteristics (Buggenthin et al., 2017). By combining morphological 

profiling applied to simple nuclear-localised cell proliferation readouts with supervised neural 

networks, DEEP-MAP goes significantly further. Our method captures the evolving dynamics 

of cell fate transitions over several days across entire colonies of highly compact human stem 

cells, demonstrating the suitability of our approach to large-scale, tissue-level fate dynamics’ 

prediction with single-cell resolution.   

 

Using DEEP-MAP we found that, upon receiving a differentiation trigger, hPSCs initiate 

pluripotency exit between 8 and 24 hours. This is as early and possibly earlier than previously 

detected using ‘live’ fluorescently-labelled transcription factor reporters in hPSCs (Kim et al., 

2021; Wolff et al., 2018). Furthermore we found that early endoderm-triggered colony 

trajectories appear to transiently go through a predicted mesoderm phenotype, suggesting 

that acquisition of an early mesoderm-like fate could be an intermediate in acquiring 

endodermal fate. This is in agreement with previous observations in mouse embryonic stem 

cells (Kubo et al., 2004; Mahmood and Aldahmash, 2015; Tada et al., 2005), and suggests 

that our approach can reveal the existence of cell fate intermediates that would be invisible 

without real-time phenomics information.  

  

In addition, our analysis also resolved visible differences in the real-time cell fate dynamics 

within and between early EC and EN lineages. This suggests that DEEP-MAP could become 



 

a general framework to quantify the heterogeneity, noise and speed of different cell fate 

transitions. Accordingly, DEEP-MAP could help identify the origins of variability in synthetic 

tissue generation, as well as give insights into how to engineer tissues predictably and robustly 

(Brassard and Lutolf, 2019; Prochazka et al., 2017).   

 

In sum, DEEP-MAP provides a framework to quantitatively investigate the dynamics of cell 

fate decisions at single-cell level within tissues in real-time and at scale. By enabling the 

generation of spatiotemporal, predictive maps of tissue formation, this approach can help to 

measure, benchmark and, ultimately, predict and control complex tissue design. 

  

Limitations of Study   

 

In this study we used differentiation triggers known to result in high cell fate conversion rates. 

This allowed us to assume at the endpoint that all cells acquired pseudo-homogeneously the 

intended fates. This assumption simplified the deep learning strategy, as it enabled us to use 

a common neural network architecture to both learn to spatially map cells as well predict cell 

fate dynamics. Such a strategy - where we constrain the network to simultaneously learn cell 

fate prediction while generating a spatial map - could be limiting when investigating more 

complex tissues or heterogenous cell populations, where differentiation may be less efficient 

or specific and might lead to generation of a variety of differentiation products (including cells 

of unknown fate).  In that case using separate network architectures to learn mapping and 

visualisation could significantly help increase the cell fate predictive power required by the 

biology. In addition, combination of the approach described here with spatially resolved 

transcriptomics approaches (Marx, 2021) might also become possible in the future, providing 

a way to obtain a more detailed landscape of the resulting cell types generated, as well as 

quantitative, deep readouts on the transcriptional status of cells. Such a combined approach 

could lead to the generation of ‘time machine’-type models of cell fate dynamics with 

increasingly precise, diverse, temporally-resolved and sensitive predictive power.  

 

 

 

 

 

  



 

STAR METHODS 
  
Construction of plasmids for CRISPR/Cas9 mediated knock-in 
Each pair of sgRNAs to target Rosa26 locus cloned into All-In-One (AIO) CRISPR/Cas9 

nickase plasmids (#74119, Addgene). Sequence of sgRNA 1 and sgRNA 2 is 5’-

GTCGAGTCGCTTCTCGATTA-3’ and 5’-GGCGATGACGAGATCACGCG-3, respectively. 

For donor constructs of H2B-miRFP670 and FUCCI, the fragments of 5’ and 3’ homology arms 

of ROSA26 locus were subcloned into H2B-670 (modified from pmiRFP670-N1, #79987, 

Addgene) and FUCCI (kind gift from Ludovic Vallier’s lab, U. of Cambridge). All of the cloning 

procedures were performed using In-fusion HD Cloning kit (639650, Takara) for seamless 

DNA cloning. 
 
Generation of FUCCI/H2B-miRFP670 reporter hESCs lines 

To establish hESCs that contain FUCCI (Sakaue-Sawano et al., 2008) and H2B (Kim et al., 

2021; Shcherbakova et al., 2016) reporters, reporter constructs were introduced to one of the 

genomic safe harbour regions, ROSA26 locus by using CRISPR/Cas9 nickase to minimise 

insertional mutagenesis. Cells were transfected with both AIO CRISPR/Cas9 nickase and 

donor vectors with ROSA26 homology arms using lipofectamine stem transfection reagent 

(STEM00008, Thermo Fisher Scientific) according to the manufacturer’s protocol. Briefly, 1 

μg of each plasmid, total 2 μg was diluted into 7.5 μl of reagent in the 200 μl of Opti-MEM I 

medium (31985062, Thermo Fisher Scientific) and incubated for 10 min at RT. Transfected 

cells were sorted on a BD Influx and collected into 1.5 ml microcentrifuge tubes containing 

500 ul of Knock-out serum replacement (10828028, Thermo Fisher Scientific). hESCs were 

maintained under essential 8 (A1517001, Thermo Fisher Scientific) medium on Geltrex 

(A1413301, Thermo Fisher Scientific)-coated plates and changed the medium every day.  

 



 

Differentiation of hESCs into multiple lineages 

To differentiate into neuroecto lineages, hESCs were applied to PSC neural induction medium 

(A1647801, Thermo Fisher Scientific) according to the manufacturer’s instruction. Briefly, cells 

were grown in the induction medium (Neurobasal medium containing 50x PSC supplement) 

for 5 days of time-lapse experiment and the medium changed every other day. To differentiate 

into mesodermal lineage, hESCs were applied to PSC cardiomyocyte differentiation kit 

(A2921201, Thermo Fisher Scientific) according to the manufacturer’s instruction. Briefly, cells 

were grown in cardiomyocyte differentiation medium A for the first 2 days then it was changed 

into cardiomyocyte differentiation medium B for 3 days. Medium changed every other day. To 

differentiate into definitive endodermal lineages, cells were applied PSC definitive endodermal 

induction kit (A3062601, Thermo Fisher Scientific) according to the manufacturer’s instruction. 

Briefly, cells were grown in PSC definitive endoderm induction medium A for 1 day, then 

changed to definitive endoderm induction medium B till the end of experiment.  

  

Time-lapse imaging 

Established FUCCI/H2B hESC lines were plated onto Geltrex-coated CellCarrier-96 Ultra 

Microplates (6055302, Perkin Elmer) a day before imaging. Differentiation trigger was applied 

by gently changing to the differentiation medium before imaging. Cells were imaged using a 

Yokogawa CV7000 high throughput confocal microscope (Wako). FUCCI signal was captured 

every 30 min using both 488 and 561 nm at 150 and 350 ms of exposure time and H2B-

miRFP670 signal was captured using 640 nm at 500 ms of exposure time every 5 min, 

respectively. Time-lapse imaging was performed for 5 days.   

 
LEVER Processing 
The open source LEVER software package (Cohen, 2014; Wait et al., 2014; Winter et al., 

2016) (https://leverjs.net) is utilised to segment and track cells from hPSC time-lapse image 

sequences. The H2B channel TIFF files generated from the microscopy experiments are 

imported into the LEVER file format, and an ensemble-based segmentation algorithm and a 

cell tracking algorithm are then applied to the image sequences. The segmentation algorithm 

separates foreground and background regions through combining an adaptive intensity 

thresholding with a Laplacian of Gaussian filter. The only parameter to the algorithm is the 

minimum cell radius, here set at 2.5μm. Following the segmentation, cells are tracked and 

mitotic events identified as described previously (Winter et al., 2015).   

 

Feature Extraction 



 

Feature extraction is carried out using a custom script MATLAB (MathWorks). The 

segmentation results generated by LEVER are read into MATLAB and correlated with the 

original TIFF images generated by the microscopy experiment across the H2B and FUCCI 

channels. The script then advances frame by frame, using the segmentation results as a 

registration method to record features from the original images. Feature extraction only occurs 

at timepoints where all 3 channels are present. Images undergo local background subtraction 

using a 50x50 pixel sized rolling average filter in order to correct for spatial variations in 

microscopy illumination.   

 

Colonies of cells are identified using the DBScan algorithm (Sander et al., 1998) and tracked 

through time using shared cell identities between time frames. The script iterates through each 

colony and then through each cell belonging to that colony in order to extract a suite of 

numerical features. Features extracted include: fluorescence distribution features, texture 

features such as the Haralick Features (Haralick et al., 1973), Hu’s Invariant Moments 

(Flusser, 2000; Marchant, 2021; Ming-Kuei, 1962), Zernike moments (Saki et al., 2013; 

Tahmasbi et al., 2011), Gray Level Run Length Matrices (Galloway, 1975; Wei, 2021), Gray 

Level Size Zone Matrices (Thibault et al., 2013), Neighborhood Grey Tone Difference Matrices 

(Amadasun and King, 1989; Vallières et al., 2015), shape descriptors, colony based features 

such as distance from the colony centroid and border, and cell density features. Haralick 

features are calculated by cropping each segmented cell and calculating the texture features 

of the cropped image. The Haralick features calculated for the H2B channel are used to predict 

the cell (i.e. nuclear or chromatin) state of a cropped cell using a trained Support Vector 

Machine (Allwein et al., 2000). The Support Vector Machine assigns the most likely class to 

each segmented cell from 5 different classes: ‘interphase’, chromatin is decondensed and 

occupies a mostly round nucleus, implying that the cell is in G1, S or G2 phases of the cell 

cycle; ‘metaphase’, condensed chromatin with chromosomes aligned on a metaphase plaate; 

‘anaphase’, two nearby masses of condensed chromatin corresponding to the cell having 

undergone the metaphase to anaphase transition; ; ‘apoptosis’, nuclear debris, i.e. fragments 

of apparently condensed chromatin typical of cell death; and ‘mis-segmented’, the H2B signal 

segmentation is poor and corresponds possibly to more than one cell’s nucleus (Note: this 

latter class is not shown in Figure 1 or mentioned in Figure 1 legend for simplicity). The SVM 

was trained manually with 500 cells in each class and has a prediction accuracy on the training 

set of >90% across all classes. Dynamical features such as cell speed, and cell size change 

are calculated by referencing the previous frame where a cell is detected and calculating the 

difference in features between the two timepoints. 

 



 

Extracted features are stored in an SQLite database for downstream processing.   

 

Feature Pre-processing 
Dynamical features are not present in a significant proportion of data points as cell tracking 

does not occur at 100% efficiency. As a result, the stored database contains NaN values for 

certain features, which the downstream Neural Network deals with poorly. To prevent failure 

in the Neural Network, features that commonly contain NaN values such as cell speed and 

cell size change are filtered out, as well as any rare individual data points that have NaN 

values due to failures in calculating other features. Other features such as cell XY coordinates, 

the colony identity, and parameters used to calculate shape features that are deemed 

unnecessary for cell fate prediction are also removed. This filtering step filters the number of 

available features for the neural network (NN; see later for NN implementation) to train on, 

from the 603 originally recorded features to 564 features used for actual training and 

embedding. The filtered data points are assigned labels according to which experimental 

condition the datapoint is derived from, in order to facilitate downstream training of the NN. 

 

Neural Network Embeddings 
After feature pre-processing, datasets are fed into the NN embedding pipeline (see later), 

generating an XY coordinate for each datapoint that is recorded along with the cell ID, frame, 

label, and classification probabilities of belonging to each differentiation class. Neural network 

embeddings are plotted using MATLAB using the scatter function, with the data points being 

coloured according to the recorded dataset label. Real time cell population trajectories are 

plotted by calculating the mean XY coordinates at each timepoint for a given experimental 

condition. The mean XY coordinates are then averaged using a rolling window of 2.5 hours to 

reduce the effect of random noise and fluctuations in the dataset. The averaged population 

trajectory is plotted over the embedded datapoints with markers indicating the starting and 

ending time point. Vectorial single cell trajectories are calculated by identifying the 20 longest 

sequential tracks of cells generated by the LEVER tracking algorithm for each experimental 

condition. For these 20 tracks, an arrow is plotted from the start to the endpoint of that cell’s 

tracked trajectory. Proliferative feature distributions are displayed on the embedding plot by 

changing the method of colouring individual embedded data points to a chosen extracted 

feature. Features chosen to be plotted are pulled from the extracted feature database and 

correlated with the XY embedding coordinates using the stored cell ID and frame information. 

The features are standardised using the Z-score method and the selected feature is used to 

individually colour the scatter points.   

 

Visualising changes in proliferative features and cell fate 



 

Pseudocolor images displaying the proliferative features for each cell are generated using the 

stored segmented cell boundaries generated by the LEVER segmentation package. The cell 

segments generated by LEVER are correlated with the extracted feature data points for an 

individual time point. The cell segments are displayed in a MATLAB figure, coloured using a 

selected proliferative feature, and then saved to generate sequential images of proliferative 

features changing through time. Changes in cell fate are visualised using the classification 

probabilities generated by the NN embedding, with the original microscopy images of the H2B 

channel and the segments generated by LEVER. The microscopy image is displayed in 

MATLAB, and the segments generated by LEVER are plotted and overlayed over the 

microscopy image. The colour of the segmentation outline is determined by the cell fate class 

with the highest classification probability as calculated by the NN classifier. The resulting 

image is written into a TIFF file and sequential frames are concatenated to the TIFF file to 

generate an image stack that displays the cell fate transitions of the experimental population 

through time.   

 

Cell Fate Probability Tracks 
Cell fate probability tracks for individual colonies are plotted using the classification 

probabilities assigned to each data point in that colony by the NN embedding. To compare the 

level of differentiation each colony has undergone, the classification probabilities of the non-

pluripotent states are summed together to represent the degree of differentiation. The 

classification probabilities of all data points at a given frame within a colony is averaged 

together and the mean probability is plotted over time. The differentiated probability plot is 

coloured according to which differentiated state has the highest classification accuracy at that 

given frame. A rolling average window of 2.5 hours is applied to the classification probabilities 

in order to minimise the amount of noise in the trajectories. 

 

Embedding and prediction by Deep Neural Network 

Overview of the idea 

Given the poorly separable embedding obtained by the unsupervised machine learning (ML) 

algorithms namely PCA (Abdi and Williams, 2010), t-SNE (van der Maaten and Hinton, 2008) 

and UMAP (McInnes et al., 2018), we devised a supervised deep learning approach capable 

of extracting an embedding and performing predictions. The advantage is two-fold, the DL 

model's powerful representation boosted by the guiding label information brought by the 

supervised learning approach.  

Although our framework is pipeline-based involving multiple stages with engineering-based 

feature extraction, the DL embedding model refines the extracted features by learning 

informative/discriminative representations. Its multi-layers progressively reduce the features’ 



 

dimensionality with each layer as it learns higher-levels of feature abstraction and finally 

outputs a two dimensional representation at the last layer. This final representation serves as 

our 2D visualisable embedding of the input features.  

Unlike unsupervised DL embedding extraction methods (David and James, 1987; Vincent et 

al., 2008) that use reconstruction loss for training, our loss exploits the available label providing 

sharper training guidance. That is, our learning approach is fully supervised with labels used 

to project the embedding of different classes in different separable clusters/regions. This is 

done by replacing the standard hyper-plane classification layer by a clustering classification 

one. That is, a cluster is assigned to each class and the input’s class is predicted with 

probability proportional to its distance from the clusters’ centre. This alters the loss function to 

penalise clusters close to each other and embeddings not falling in its assigned cluster (more 

details further below).    

 

Detailed Pipeline  

Fig. 2D shows the DL-based embedding pipeline, which can be divided into three stages. First, 

the raw input image data are segmented and tracked using LEVER (see LEVER Processing 

section) to produce cell patches, which are further processed to extract morphological, 

fluorescence intensity and texture features at single-cell resolution (see Feature Extraction 

section). We then established a multi-layer DL NN to learn an informative/discriminative 

representation from the features. Although DL can be used to learn features from raw data in 

a fully automated way without experts’ involvement, in our case, we used DL to refine the 

features by further reducing the dimensionality and noise before generating a 2D embedding 

at its last layer.  

As stated above, training this embedding pipeline was done in a supervised way where labels 

were used to establish the objective function of the optimisation problem. To enforce 

separable embedding outputs in cloud shape, we replaced the classification layer normally 

attached to the NN by a clustering one. Nevertheless, our embedding-clustering network can 

still provide predictions as well as an embedding representation. In the following, we provide 

details of our NN architecture including both the embedding and the clustering components. 

 

Network architecture 

Our embedding network consists of 5 fully connected layers (the number of layers was chosen 

based on optimal performance), each followed by a ReLu non-linear function. The first layer 

reduces the input dimensions to hidden_dim dimensions that are then progressively reduced 

by 2 and finally to 2D at the last layer. Thus, the outputs of layers 2,3,4, and 5 are 

hidden_dim/2, hidden_dim/4, hidden_dim /8 and 2 respectively. These multi-layers of non-

linear transformations represent multi-levels of automatic feature extractions, where the input 



 

features at each layer are further refined so as to end up with an optimal features’ output for 

the purpose of embedding representation expressed in the objective function. Denote 𝒆 ∈ 𝑅2 

the embedding of input 𝒙 ∈ 𝑅𝑛  where 𝑛 is the number of input features.  We express the 

embedding network transformation by  𝜙𝒘 governed by the network layers weight 𝒘. The 

embedding 𝒆 = 	𝜙𝒘(𝒙)	are then fed to the clustering network serving two purposes, prediction 

and to build the learning objective function. To force the embedding of a given class to fall in 

an isolated cloud, the clustering layer assigns a cluster centre to each class and expresses a 

probability distribution for each embedding over the classes, which is proportional to the 

distance from the classes’ centres. Denote 𝒐" ∈ 𝑅# the centre of the cluster corresponding to 

class 𝑖, thus, the prediction 𝑦 ∈ {1,… , 𝐶} of embedding 𝒆 is distributed according to a 

categorical distribution governed by parameters 𝒑 = (𝑝1, … 𝑝𝐶) where 𝐶 is the number of 

classes and 𝑝" ∝ 1 − ||𝑐𝑖 	− 𝑒|| such that ∑ 𝑝"&
"'( = 1. To meet this probability condition (𝑝𝑖 ≥

0	∀𝑖 ∈ {1,… , 𝐶}	𝑎𝑛𝑑	∑ 𝑝"&
"'( = 1), we utilise a Softmax non-linear function on the distance 

vector from the embedding to all centres (||𝒐1 − 𝒆||, . . . ||𝒐𝐶 	− 𝒆||)	, 𝑝(𝑦|𝒆; 𝒐(, . .𝒐& 	) =

9 )*+	(−||𝒐1−𝒆||
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!#$
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: 𝐼6	where 𝐼6 ∈ {0,1}& is a vector with all dimensions set to 

zeros except that at position 𝑦 is set to one. Although norm 2 function penalisation of the 

embedding quadratically diminishes as it gets closer to its corresponding centre, an even more 

relaxed penalisation around the centre similar to that of SVM hyperplane soft separation would 

result in more aesthetically satisfying embedding. This relaxation can be achieved by adding 

a nonlinear function -tanhshrink (≡ −𝑡𝑎𝑛ℎ𝑠(𝑥) = tanh(𝑥) − 𝑥) before the softmax function, 

thus the parameters of the categorical probability distribution over classes become, 

𝑝(𝑦|𝒆; 𝒐(, . . 𝒐& , 𝑣	) = K
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L 𝐼6 where parameters 

𝑣 controls the  relaxation  margin.  Given the probability distribution of a given embedding over 

the classes, we can now either sample the prediction 	𝑦M	~	𝐶𝑎𝑡(𝒑>,{A!}$",C𝒘(𝒙))  or take an 

argmax over the classes probabilities 𝑦M = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑝(, … 𝑝&), where 𝒑>,{A!}$",C𝒘(𝒙) =

(𝑝(, … 𝑝&)=	K
)*+7/9:;<=.>0|𝒐$/C𝒘(𝒙)|028	
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Training method 

So far, we have focused on the inference/feed-forward part of the model assuming the 

embedding parameters 𝒘 and the clustering ones 𝒐, 𝑣 fixed. Next, we present the learning 

part (third stage in Fig 2D) of the method. As stated above, our approach is supervised, that 

is the ground truth (labels) are presented during learning. Thus, considering the model 



 

parameters as variables, we can use cross entropy as a loss function between the ground 

truth and the prediction outputs. Cross entropy loss is useful for training classification 

problems when the predicted output is governed by a multinomial/categorical distribution: 

𝑙𝑜𝑠𝑠(𝑞, 𝑝) = −𝐸F[𝑙𝑜𝑔(𝑝)] = −𝑖 ∑ 𝑞(𝑦 = 𝑖)log	(𝑝(𝑦 = 𝑖))&
"'(    where 𝑞 is the true probability. 

Since, our ground truth is deterministic, we can write the loss as −∑ log	(𝑝"&
"'( ) ∗ 1{𝑦 = 𝑖}. 

Having defined the objective function, the learning is achieved by solving this optimisation 

problem with respect to embedding and clustering parameters. We used the Adam optimiser 

(Kingma and Ba, 2014) with weight decay regularisation. 

 

Datasets and Implementation 

We split our dataset into three portions, 80 % for training, 15 % for validation and 5 % for 

testing. The validation is used for parameter tuning. We performed a grid search over different 

learning rates, weight decays, number of network layers, hidden dimensions and batch size. 

The parameters that gave the best results on the validation set were taken, namely, 0.0001 

learning rate, 0.0001 weight decays, 512 hidden dimension, 64 batch size and 5 total fully 

connected layers. Our embedding-prediction code is implemented in Python 3.8 and using 

Pytorch 1.6. We trained on RTX  2080TI GPU on 53,120 (80 % of 66,400 total datapoints) 

datapoints consisting of four classes 20,933 Pluri, 18,927 Ecto, 1,036 Endo and 2,222 Meso. 

The quantitative prediction results on the testing set as well as on data from an independent 

biological experiment are shown below:  

Datasets precision recall   f1-

score 

# of points Accuracy  

Testing set from training 

experiment. 

Pluri 

Ecto 

Endo 

Meso        

 

0.85 

0.88 

0.85 

0.86 

 

0.89 

0.71 

0.83 

0.87 

 

0.87 

0.79 

0.84 

0.86 

 

10403 

1749 

9382 

8465 

0.85 

Dataset form new experiment  

Pluri 

Ecto 

Endo 

Meso        

 

0.72 

0.85 

0.69 

0.48 

 

0.90 

0.31 

0.75 

0.67 

 

0.80  

0.46 

0.71 

0.56 

 

206945 

158067 

198148 

80491 

0.68 

 

 



 

 
Correlation and features importance by Bayesian statistics 
Given the black-box nature of NN outputs, we sought to recall biological interpretability for our 

prediction/embedding pipeline. Supported by the pipeline’s hybrid approach involving both 

manual feature extraction and DL feature learning components, we employed Bayesian 

statistics to provide declarative representation of how the input extracted features interact with 

each other. For this analysis, we only selected biologically interpretable features.  

The methodology is divided into two main steps. Firstly, we learn a Bayesian network (i.e, 

Directed Acyclic Graph (DAG) representation) (Koller and Friedman, 2009) consisting of 

nodes representing the biologically interpretable features as random variables and edges 

expressing the conditional  independency among these features. Doing so makes it 

computationally feasible to perform/approximate inference across the variables. Secondly, we 

use the trained network to perform inference, allowing us to compute linear correlations 

(Benesty et al., 2009)  among the variables as well as the mutual information with the different 

fates. 

The step of learning the Bayesian network is divided into two tasks. First, we learn the 

Bayesian network structure from the data using Hill-Climb Search (Koller and Friedman, 

2009). The learned network structure expresses the conditional independency among 

features, but it does not encompass the optimal numerical parameters needed to compute the 

joint distributions and perform inference. To learn the network parameters, we maximize the 

expected log likelihood (Koller and Friedman, 2009) of the joint distribution defined by the 

learned network structure over the data with respect to its parameters.  

Having learned the network structure and parameters, we are ready to infer needed 

information about the features’ correlations as well as their importance to the cell fate.  Fig 2A 

shows linear correlation among all interpretable features plus the cell fate. To compute this 

correlation, we first convert the Bayesian network to a Markov network using moralization 

(Koller and Friedman, 2009), and we then compute the covariance matrix using the marginal 

distribution induced by the network and take the values of connected variables. Linear 

correlation shows how features interact; however, they do not express the features importance 

to the cell fate. We used mutual information as a metric to measure the mutual dependency 

between every feature and the cell fate. The lower the mutual importance, the more 

independent the feature is from the cell fate, implying that less information is conveyed by the 

feature to the cell fate. That is, it expresses the feature’s importance to the cell fate. Computing 

the mutual information between two variables entails knowing the joint and marginal 

distribution of these variables. We used Belief Propagation method to compute these 

distributions. Fig. 2B presents this feature importance measure for all the biologically 



 

interpretable features. In this figure, we do not set the cell fate variable and measure the 

importance to cell fate in general. In Fig. 2C, we set the cell fate variable as evidence and 

provide the feature importance to each of the four cell fate classes. 

The Bayesian analysis code is implemented in Python.3.8 using the pgmpy 0.1 package. We 

adopt discrete Bayesian Network whose structure and parameters are learned using 391,725 

discretised datapoints. Discretisation was performed using sklearn pre-processing package.  
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FIGURE LEGENDS     

 

Figure 1. Establishing a multiday high-content microscopy pipeline to quantitively 
profile ‘live’ hPSC dynamics in real-time and at single-cell resolution. A. We used 

CRISPR knock-in to generate a three-colour, multi-reporter cell line co-expressing FUCCI and 

fluorescently-tagged H2B, enabling comprehensive monitoring of hPSCs morphology and 

proliferation during pluripotency and early differentiation. Scalebars: 100 μm. B. Multi-colour 

confocal imaging over up to five days was achieved by differential time-lapse sampling of 

fluorescence channels (fluorescently-tagged H2B every 5 min, FUCCI every 30 min), allowing 

us to capture both short-time information needed for cell detection and tracking as well as 

longer-time proliferative changes observed during fate transitions while keeping cells healthy 

under the microscope. Scalebar: 200 μm. C, D and E. Images from neighbouring fields, 

digitally stitched into larger images containing multiple hPSC colonies, were used to 

computationally detect and track colonies over time (C, right), where possible, detect and track 

cells over time (C, left), classify cells into interphase, metaphase, anaphase or dead cells by 

machine learning (D), and extract >550 different morphological, intensity and texture features 

across the multi-channel signals on a single-cell basis (E). F. This pipeline allowed us to obtain 

high-dimensional morphological and proliferation phenoprints for hundreds of thousands of 

cell datapoints for each experimental condition analysed. 

  





 

Figure 2. Mapping and clustering cell fate dynamics by deep learning. A, B and C. 

Mapping high-dimensional phenoprints of the four cell populations analysed (hPSC, EC, ME 

and EN) by PCA (A), tSNE (B), and UMAP (C) did not yield good clustering or population 

separation, likely due to the low SNR of the time-lapse imaging derived data. D. Flowchart 

outlining the design of a neural network architecture for predicting and generating a spatial 

mapping (embedding) of low SNR morphological profiling data. E. Neural networks allow clear 

mapping and separation of cell populations based on their morphological and proliferative 

phenoprints. F. Mapping the dynamic evolution and phenotypic diversity of the four cell 

populations in real-time. Solid lines: population trajectories; magenta/red/blue/green: 

hPSC/EN/EC/ME cell populations, correspondingly. Real-time trajectories are shown as solid 

lines overlaid on the neural network embedding in E (made partly transparent for visualisation 

purposes). G. Vectorial trajectories of single-cells tracked early in differentiation along the 

different lineages. Arrows: Vectorial trajectories; magenta/red/blue/green: hPSC/EN/EC/ME 

cell populations, correspondingly. Single-cell trajectories are shown as solid arrows overlaid 

on the neural network embedding in E (made partly transparent for visualisation purposes). 
 

  





 

Figure 3. Identifying proliferative features predictive of different cell fates. A, Correlation 

coefficients and linkages between pairs of biologically interpretable features (solid line: 

positive correlation, dotted line: negative correlation) and with respect to cell fate label. As can 

be seen in the diagram, most features have direct correlations with the cell fate class/label. B 

and C, Mutual information analysis between biologically interpretable features and cell fate as 

a way to measure the importance of each feature in capturing the phenotypic state, for all 

classes together (B) versus each of the four cell states analysed separately (hPSC, EC, ME 

and EN; C). Cell density and G1 status (as assessed by FUCCI-red signal intensity) are the 

features with the highest importance for predicting the different cell state classes overall (B), 

with different features displaying high importance for different cell states. D, Mapping of 

biologically interpretable feature values on the neural network embedding, confirming that 

features predicted in C as being important for specific fate changes can be seen to also 

change accordingly on the embedding, demonstrating that dynamical morphological profiling 

can be used to quantitatively identify morphological and proliferative properties predictive of 

the different cell fate transitions. 
 

  





 

Figure 4. Morphological and proliferative state predicts cell fate dynamics and 
transitions in real-time. Image galleries of FUCCI and H2B-miRFP670 co-expressing cells 

imaged continually by optimised, multi-day time-lapse microscopy for 5 days as they either 

maintain pluripotency (A) or after receiving trigger for ectoderm (B), mesoderm (C) or 

endoderm (D) differentiation at day 0.  FUCCI signal is not shown, only H2B signal is shown 

faintly in the images. Images are visually augmented by showing overlaid on the original 

images the predominant (highest probability) fate predicted by the DEEP-MAP neural network 

through time at single-cell level for each cell detected. Images are shown from the first 80 

hours of time-lapse. Magenta/blue/green/red: predicted hPSC/EC/ME/EN fate, 

correspondingly (colour code shown as image inset). hPSCs are robustly predicted correctly 

as hPSCs through time regardless of changes in colony size and density (A), while EC, ME 

and EN gradually lose predicted hPSC status after just ~1 day of differentiation trigger, and 

evolve differently toward different fates (B, C and D). E, Real-time phenotypic trajectories of 

different EC colonies (solid black lines corresponds to different colonies) showing most 

colonies’ trajectories beginning in the pluripotency domain (bottom centre of the plot) and 

evolving toward the EC domain (middle right of the plot) through time, with colonies showing 

visible heterogeneity in their trajectories. F, Plots showing the temporal evolution of the 

predicted cell fate assignment for three different EC colonies as a function of time. Magenta 

curves show the predicted probability of a colony having hPSC fate, as a function of time; 

blue/green/red curves show the predicted probability of the colony having EC/ME/EN fate 

respectively, with the colour displayed corresponding to the predominant (highest probability) 

fate only. As can be seen from the plots, EC colonies differ in their time of departure from 

pluripotency (dotted lines) as well as in the time of acquisition of the target EC (blue) 

phenotype, indicative of heterogeneity in the way the colonies acquire the target fate. G, Real-

time phenotypic trajectories of different EN colonies showing most colonies’ trajectories 

beginning in the pluripotency domain and evolving toward the EN domain (middle right of the 

plot) through time, with colonies showing low heterogeneity in their trajectories. H, Plots 

showing the temporal evolution of the predicted cell fate assignment for three different EN 

colonies as a function of time. Colour codes as before. As can be seen from the plots, EN 

colonies departed from pluripotency with similar timing (dotted lines) and also acquired the 

target EN (red) phenotype with similar timing (dashed lines), suggesting a possibly tighter 

controlled response of cells and colonies to the EN differentiation triggers. In G and H, EN 

colony trajectories appear to take an intermediate ME phenotype (green) before acquiring 

their final EN phenotype, suggesting that an early ME-like state might be a fate intermediate 

during EN differentiation. Scalebars: 50 μm. 
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SUPPLEMENTAL VIDEO CAPTIONS  
 
Supplemental Video 1 
3.5 day time-lapse video sequence of a hPSC cell line co-expressing FUCCI and H2B-

miRFP670, generated by CRISPR knock-in. FUCCI and H2B-miRFP670 co-expressing 

hPSCs are cultured in pluripotency maintaining conditions. To minimize phototoxicity to cells, 

an optimised imaging modality was used where H2B-miRFP670 signal was captured every 5 

minutes – to enable continued cell/colony detection and tracking - and FUCCI signal every 30 

minutes.  

 

Supplemental Video 2  
3.5 day time-lapse video sequence of FUCCI and H2B-miRFP670 co-expressing hPSCs, 

trigggered to undergo ectoderm (EC) differentiation at time 0. H2B-miRFP670 signal was 

captured every 5 minutes and FUCCI signal every 30 minutes.  

 

Supplemental Video 3 
3.5 day time-lapse video sequence of FUCCI and H2B-miRFP670 co-expressing hPSCs, 

trigggered to undergo mesoderm (ME)  differentiation at time 0. H2B-miRFP670 signal was 

captured every 5 minutes and FUCCI signal every 30 minutes.  

 

Supplemental Video 4 
3.5 day time-lapse video sequence of FUCCI and H2B-miRFP670 co-expressing hPSCs, 

trigggered to undergo endoderm (EN) differentiation at time 0. H2B-miRFP670 signal was 

captured every 5 minutes and FUCCI signal every 30 minutes.  

 

Supplemental Video 5  
3.5 day time-lapse video sequence of hPSCs triggered to undergo ectoderm (EC) 

diffferentiation at time 0, corresponding to the same EC cells and colonies shown in Figure 

S1. Images are fake coloured to display the feature value levels for cell density - a feature 

shown in Figure 3 to have high importance in distinguishing different cell fates  - through time 

at single-cell level for each cell detected. Note that EC cells show high density through time. 

 

Supplemental Video 6 
3.5 day time-lapse video sequence of hPSCs triggered to undergo endoderm (EN) 

diffferentiation at time 0, corresponding to the same EN cells and colonies shown in Figure 

S1. Images are fake coloured to display the feature value levels for cell density - a feature 

shown in Figure 3 to have high importance in distinguishing different cell fates  - through time 



 

at single-cell level for each cell detected. Note that in EN cells cell density changes 

dramatically through time. 

 

Supplemental Video 7 
Visually augmented 3.5 day time-lapse video sequence of hPSCs cultured in pluripotency 

maintaining conditions, displaying predicted single-cell fate in real-time. The sequence 

corresponds to the the same pluripotent cells and colonies shown in Figure S1 and Video S1. 

The cells’ FUCCI signal is not shown, only H2B signal is shown faintly in the images, which 

instead show overlaid on the original image sequences the predominant (highest probability) 

fate predicted by the DEEP-MAP neural network through time at single-cell level for each cell 

detected. Magenta/blue/green/red: predicted hPSC/EC/ME/EN fate, correspondingly (colour 

code shown as image inset).  hPSCs are robustly predicted correctly as hPSCs through time 

regardless of changes in colony size and density.   

 

Supplemental Video 8 
Visually augmented 3.5 day time-lapse video sequence of ectodermal-triggered hPSCs, 

displaying predicted single-cell fate in real-time. The sequence corresponds to the the same 

ectodermal (EC) triggered cells and colonies shown in Figure S1 and Video S2. The cells’ 

FUCCI signal is not shown, only H2B signal is shown faintly in the images, which instead show 

overlaid on the original image sequences the predominant (highest probability) fate predicted 

by the DEEP-MAP neural network through time at single-cell level for each cell detected. 

Magenta/blue/green/red: predicted hPSC/EC/ME/EN fate, correspondingly (colour code 

shown as image inset). EC triggered cells lose predicted hPSC status after just ~1 day 

following differentiation trigger and evolve gradually toward the EC fate.   

 

Supplemental Video 9  
Visually augmented 3.5 day time-lapse video sequence of mesodermal-triggered hPSCs, 

displaying predicted single-cell fate in real-time. The sequence corresponds to the the same 

mesodermal (ME) triggered cells and colonies shown in Figure S1 and Video S3. The cells’ 

FUCCI signal is not shown, only H2B signal is shown faintly in the images, which instead show 

overlaid on the original image sequences the predominant (highest probability) fate predicted 

by the DEEP-MAP neural network through time at single-cell level for each cell detected. 

Magenta/blue/green/red: predicted hPSC/EC/ME/EN fate, correspondingly (colour code 

shown as image inset).  ME triggered cells lose predicted hPSC status after just ~1 day 

following differentiation trigger and evolve gradually toward the ME fate.   

 

Supplemental Video 10 



 

Visually augmented 3.5 day time-lapse video sequence of endodermal-triggered hPSCs, 

displaying predicted single-cell fate in real-time. The sequence corresponds to the the same 

endodermal (EN) triggered cells and colonies shown in Figure S1 and Video S4. The cells’ 

FUCCI signal is not shown, only H2B signal is shown faintly in the images, which instead show 

overlaid on the original image sequences the predominant (highest probability) fate predicted 

by the DEEP-MAP neural network through time at single-cell level for each cell detected. 

Magenta/blue/green/red: predicted hPSC/EC/ME/EN fate, correspondingly (colour code 

shown as image inset).  EN triggered cells lose predicted hPSC status after just ~1 day 

following differentiation trigger and evolve gradually toward the EN fate apparently transiting 

through an intermediate ME fate.   

 

  

 

 

 

   





 

Supplemental Figure 1.  Changes in hPSC proliferation, morphology and cell cycle 
status during early differentiation. Image galleries of cells co-expressing FUCCI and the 

live chromatin reporter H2B-miRFP670 imaged continually by optimised, multi-day time-lapse 

microscopy for 5 days as they either maintain pluripotency (A) or after receiving trigger for 

ectoderm (B), mesoderm (C) or endoderm (D) differentiation at day 0. Dotted boxes in the top 

rows indicate areas magnified below. Images shown only from the first 80 hours of time-lapse. 

Scalebars: 100 μm. Note changes in the cells’ appearance after 24h of imaging among the 

different conditions, particularly ME and EN triggered cells that visibly become more spread 

out and alter their nuclear shape and cell cycle reporter characteristics.   
 

  





 

Supplemental Figure 2. Neural networks allow reproducible mapping of cell fate dynamics 

toward multiple fate outcomes. A, D and G, Morphological phenoprints from three independent 

biological experiments showing neural networks reproducibly allow to clearly map and 

separate cell populations based on their proliferative phenoprints. All three mappings use the 

same neural network embedding model, which was trained with a subsample of data from (A). 

B, E and H, Maps showing the dynamical evolution and phenotypic diversity of the different 

cell fate populations in real-time, across the three independent experiments. Solid lines: 

population trajectories; magenta/red/blue/green: hPSC/EN/EC/ME cell populations, 

correspondingly. Real-time trajectories are shown as solid lines overlaid on the neural network 

embedding in E (made partly transparent for visualisation purposes). C, F and I, Vectorial 

trajectories of single-cells tracked early in differentiation along the different lineages, for the 

three independent experiments. Arrows: Vectorial trajectories; magenta/red/blue/green: 

hPSC/EN/EC/ME cell populations, correspondingly. Single-cell trajectories are shown as solid 

arrows overlaid on the neural network embeddings in A, D and G correspondingly, which are 

made partly transparent for visualisation purposes.    

 

  

  





 

Supplemental Figure 3. Visualising morphological and proliferative feature changes 
linked to cell fate changes. Image galleries of FUCCI and H2B-miRFP670 co-expressing 

cells imaged continually by optimised, multi-day time-lapse microscopy for 5 days after 

receiving trigger for ectoderm (A, C) or endoderm (B, D) differentiation at day 0. Image gallery 

corresponds to the same cells and colonies shown in Figure S1. Images shown only from the 

first 80 hours of time-lapse. FUCCI and H2B signals are not shown, instead images are fake 

coloured to display the feature value levels for cell density (A, B) or cell death probability (C, 
D)  - two features shown in Figure 3 to have high importance in distinguishing different cell 

fates  - through time at single-cell level for each cell detected. Note that EC cells show high 

density throughout (A), while in EN cells density changes dramatically (B). By contrast cell 

death probability increases in both EC (C) and EN (D) cells through time.  Scalebars: 50 μm. 
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