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SUMMARY 

Machine learning (ML) algorithms have been developed to build predictive models 

in medicine and healthcare. In most cases, the performance of ML models/algorithms is 

measured by predictive accuracy or accuracy-related measures only. In medicine, the 

model results are intended to guide physicians to make critical decisions regarding patient 

care. This means that quantifying and mitigating the uncertainty of the output is also very 

important as it will allow decision makers to know how much they can rely on the model 

output. 

My dissertation focuses on studying model uncertainty of image-based ML in the 

context of precision medicine of brain cancer. Specifically, I focus on developing ML 

models to predict intra-tumor heterogeneity of genomic and molecular markers based on 

multi-contrast magnetic resonance imaging (MRI) data for glioblastoma (GBM) – the most 

aggressive type of brain cancer. Intra-tumor heterogeneity has been found to be a leading 

cause of treatment failure of GBM. Devising a non-invasive approach to map out the 

molecular/genomic distribution using MRI helps develop treatment with high precision. 

My dissertation research addresses the model uncertainties due to high-dimensional and 

noisy features, sparsity of labeled data, and utility of domain knowledge.  

In the first study, we developed a Semi-supervised Gaussian Process with 

Uncertainty-minimizing Feature-selection (SGP-UF), which can incorporate selected 

unlabeled samples (i.e. unbiopsied regions of a tumor) in the model training, and integrate 

feature selection with a new criterion of seeking features that minimize the prediction 

uncertainty.  



 xi 

In the second study, we developed a Knowledge-infused Global-Local data fusion 

(KGL) framework, which optimally fuses three sources of data/information including 

biopsy samples (labeled data, local/sparse), images (unlabeled data, global), and 

knowledge-driven mechanistic models.   

In the third study, we developed a Weakly Supervised Ordinal Support Vector 

Machine (WSO-SVM), which aims to leverage a combination of data sources including 

biopsy/labeled samples and unlabeled samples from the tumor and image data from the 

normal brain, as well as their intrinsic ordinal relationship.  

We demonstrate that these novel methods significantly reduce prediction 

uncertainty while at the same time achieving higher accuracy in precision medicine, which 

can inform personalized targeted treatment decisions that potentially improve clinical 

outcome. 
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CHAPTER 1. INTRODUCTION 

1.1 Background 

1.1.1 Machine Learning and Model Uncertainties 

Thanks to advances in computing power and the increasing availability of digital 

data, machine learning (ML) is gaining great popularity in recent years. It is widely applied 

to various fields, like weather forecasting, financial services, social media services and 

healthcare. In most cases, the performance of ML models/algorithms is measured by 

predictive accuracy or accuracy-related measures only. Recently, more and more research 

has started to address the importance of understanding the uncertainties of ML models. 

Since the output of ML models is typically used to facilitate subsequent decision-making, 

it is critical for decision makers to know how much they can rely on the model output.    

Uncertainty is usually classified into two distinct categories: aleatoric uncertainty 

and epistemic uncertainty. The decomposition of different uncertainty is shown in Figure 

1.1. Aleatoric uncertainty is also known as numerical uncertainty, discrete uncertainty, 

physical variability, irreducible uncertainty, inherent uncertainty, stochastic uncertainty 

and uncertainty due to chance [1][2]. This type of uncertainty comes from the variability 

due to numerical measurement errors or numerical approximations from the experimental 

systems. It is the variation inherent to the system. Epistemic uncertainty is also known as 

systematic uncertainty, reducible uncertainty, subjective uncertainty, and uncertainty due 

to lack of knowledge [3]. It stems from incomplete knowledge (lack of knowledge from 

the insufficient or biased data) about some characteristic of a system or phenomenon in 



 2 

any phase or activity of the modeling process [4]. The epistemic uncertainty of a model is 

reducible with more collected data or increased information [5]. According to [6], 

epistemic uncertainty can be classified into three categories: parametric uncertainty, 

structural or model uncertainty, and subjective judgment. Parametric uncertainty comes 

from the variability of model parameters under the condition that the model is almost 

always well given [7]. Structural or model uncertainty is associated with the accuracy a 

mathematical model has to describe the real-world problem [7]. Subjective judgment 

comes from uncertainties in experts’ opinions on the interpretations of data [6]. My 

dissertation focuses on studying model uncertainty of image-based ML in the application 

of precision medicine of brain cancer.  

 

Figure 1.1 – Summary of different types of uncertainty 

 

1.1.2 Application Background  

The study of images becomes popular in the field of ML with the rapid development 

of computer vision and image recognition. The ability for ML techniques with strong subtle 

imaging patterns discrimination can support better decision making, especially in health 
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care with medical imaging (e.g., CT or MRI) for diagnostic accuracy improvement and 

clinical efficiency. 

My dissertation research focuses on developing imaging-based ML models to 

characterize intra-tumor heterogeneity of brain cancer, in particular glioblastoma (GBM). 

GBM is the most aggressive type of brain tumor with median survival of 15 months [8]. 

Intra-tumor molecular heterogeneity has been found to be one of the leading causes of 

treatment failure. The invasive nature of biopsy makes it impossible to sample every sub-

region to understand the regionally-specific molecular characteristics. Neuroimaging such 

as magnetic resonance imaging (MRI) portrays the entire brain non-invasively, providing 

the opportunity to estimate/predict the spatial molecular distributions across each 

individual tumor, such as the spatial distributions of tumor cell density and aberrations of 

driver genes. Such capability will enable unprecedented precision of treatment: radiation 

therapy can be spatially optimized to avoid over- and under-treating certain regions of the 

brain, gene therapy can be adapted to regional aberration patterns, etc.  

On the other hand, since critical therapeutic decisions would heavily rely on the 

spatial molecular maps predicted by ML based on imaging, it is critically important to 

understand and reduce the uncertainty of the ML models. This will enable greater 

confidence of the clinicians in using the ML output to assist their decision making and lead 

to greater transferability of the models into clinical practice. 

1.1.3 Subtypes of Model Uncertainty Driven by the Application Need 

1) High-dimensional and noisy features: To build an ML model that uses MRI to 

predict spatial molecular distribution, the first step is to extract features from MRI images. 
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Many features can be extracted by applying various kinds of texture analysis algorithms. 

However, not all the features will contribute to the prediction of regional molecular status, 

i.e., they are noise. While feature selection has been studied by many ML researchers, the 

majority of the existing work focuses on selecting features to enhance accuracy, but not to 

reduce the uncertainty of the model prediction.   

2) Sparsity of labeled data: In contrast with the large number of features, the 

labeled data is sparse in our application. Here, labeled data refers to biopsy samples 

acquired from the tumoral area of each patient’s brain, which provide direct measurement 

for the molecular marker of interest. Due to the invasive nature of biopsy, only a few 

samples can be obtained from each patient. The small sample size leads to greater 

uncertainty of the ML model.  

3) Uncertainty in domain knowledge: Domain knowledge is the background 

knowledge of a specific, specialized discipline or field or environment. However, domain 

knowledge usually has multiple sources of uncertainty, such as the approximate or 

incomplete estimation from mechanistic models, useful knowledge unexplored, and 

intuitive uncertainty in assessment of physical uncertainty by experts.  It is a significant 

challenge for ML to take advantage of the domain knowledge. 

1.2 Expected Original Contribution 
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My dissertation research develops ML models to address the aforementioned 

subtypes of model uncertainty within the context of using imaging to characterize intra-

tumor heterogeneity of GBM to facilitate precision medicine. The following original 

contributions are expected:  

• Development of a Semi-supervised Gaussian Process with Uncertainty-

minimizing Feature-selection (SGP-UF) (Chapter 2).  The methodological 

contributions are: SGP-UF is an extension of GP with two innovations: 1) 

While GP is a supervised learning model (i.e., the model is the trained using 

labeled samples only), SGP-UP can additionally incorporate selected unlabeled 

samples (i.e. unbiopsied regions of a tumor) in the model training. Since 

unbiopsied regions are also what the trained model will predict for, including 

the image features from these regions help mitigate the risk of extrapolation and 

therefore reduce the prediction uncertainty. 2) SGP-UP integrates feature 

selection with a new criterion of seeking features that minimize the prediction 

uncertainty. The practical impact of this work is: we apply both SGP-UP to the 

prediction of regional EGFR amplification status for each GBM tumor using 

MRI. EGFR is a well-known GBM driver gene and serves as a common 

therapeutic target for many clinically available drugs. We demonstrate that, by 

incorporating unlabeled samples and a uncertainty-driven criterion of features 

selection in model training, SGP-UP significantly reduces prediction 

uncertainty while at the same time achieving higher accuracy (i.e., lower 

prediction error between the true EGFR status and the predictive mean of the 

EGFR status in the predictive distribution).   
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• Development of a Knowledge-infused Global-Local data fusion (KGL) 

framework (Chapter 3): The methodological contributions are: KGL 

optimally fuses three sources of data/information including biopsy samples 

(labeled data, local/sparse), images (unlabeled data, global), and knowledge-

driven mechanistic models.  The key idea of KGL is to build a predictive model 

that uses global imagery to predict the regional distribution for molecular 

markers, where the model parameters are optimized to simultaneously serve 

three purposes: 1) maximizing the accuracy on labeled samples (i.e., regions 

with direct measurement); 2) reducing the prediction uncertainty on unlabeled 

samples (i.e., regions without direct measurement but only imagery); 3) being 

consistent with the trend or patterns conveyed by domain knowledge. The 

practical impact of this work is: We present a real-data application of predicting 

the spatial distribution of Tumor Cell Density (TCD)—an important molecular 

marker for brain cancer. A total of 82 biopsy samples were acquired from 18 

patients with glioblastoma, together with 6 MRI contrast images from each 

patient and biological knowledge encoded by a PDE simulator-based 

mechanistic model called Proliferation-Invasion (PI). KGL achieved 12-14% 

reduction of prediction error and over 60% reduction of prediction uncertainty 

compared with competing methods. The result has important implications for 

providing individualized, spatially-optimized treatment for each patient.  

• Development of a Weakly Supervised Ordinal Support Vector Machine 

(WSO-SVM) model (Chapter 4): The methodological contributions are: 

WSO-SVM aims to leverage a combination of data sources including 
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biopsy/labeled samples and unlabeled samples from the tumor and image data 

from the normal brain, as well as their intrinsic ordinal relationship. The key 

idea of WSO-SVM is to leverage unlabeled samples in tumor ROI and impose 

a mathematical constraint to “teach” the model that these samples should not 

be classified to normal brain even though their true membership is unknown. 

The practical impact of this work is: WSO-SVM was applied to a unique dataset 

of 318 image-localized biopsies with spatially matched multiparametric MRI 

from 74 GBM patients. The model was trained to predict the regional genetic 

alteration of three GBM driver genes (EGFR, PDGFRA and PTEN) based on 

features extracted from the corresponding region of five MRI contrast images. 

WSO-SVM achieved higher accuracies, outperforming the existing ML 

algorithms. The accuracies improved with higher certain prediction. The 

prediction maps revealed a great amount of variability between patients in terms 

of the genetic alteration patterns. Within each individual’s tumor, there was also 

region-to-region variation for the genetic alteration patterns. 
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CHAPTER 2. SEMI-SUPERVISED GAUSSIAN PROCESS WITH 

UNCERTAINTY-MINIMIZING FEATURE SELECTION FOR 

INTRA-TUMOR GENOMIC PREDICTION USING MRI 

 This chapter is based on my published paper “*Hu, L.S., *Wang, L., Hawkins-

Daarud, A., …, *Swanson, K.R., *Li, J. (2021) Uncertainty Quantification in the 

Radiogenomics Modeling of EGFR Amplification in Glioblastoma. Scientific Reports, 

11(1): 1-14. (*Contributed equally)”.  

2.1 Background 

The field of machine-learning (ML) has exploded in recent years, thanks to 

advances in computing power and the increasing availability of digital data. Some of the 

most exciting developments in ML have centered on computer vision and image 

recognition, with broad applications ranging from e-commerce to self-driving cars.  But 

these advances have also naturally dovetailed with applications in healthcare, and in 

particular, the study of medical images. The ability for computer algorithms to discriminate 

subtle imaging patterns has led to myriad ML tools aimed at improving diagnostic accuracy 

and clinical efficiency [9].  

One of the most transformative applications of imaging-based ML is to use images 

such as MRI to predict genetic aberrations of the tumor of each patient with cancer. This 

field is known as radiogenomics [10]. In the context of individualized oncology, 

radiogenomics non-invasively diagnoses the unique genetic drug sensitivities for each 
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patient’s tumor, which can inform personalized targeted treatment decisions that 

potentially improve clinical outcome.  

My dissertation research focuses on the most aggressive type of brain tumor called 

GBM. One of the leading factors of treatment failure of GBM is intra-tumoral genomic 

heterogeneity, meaning that different sub-regions of each tumor may have different genetic 

status. As a result, the different sub-regions may respond to the treatment differently. This 

means that the treatment needs to be adapted to not only patient difference but also regional 

difference within each individual tumor. Although radiogenomics has been a popular 

research area, there is less research that uses images to predict the genetic status across 

different sub-regions of each tumor, while the majority of the existing research has focused 

on predicting an average/overall genetic status of the tumor [11][12][13].  

My research aims to develop an ML model to predict regional genetic status using 

images (e.g., MRI). Given the training model, the ultimate goal is to produce a predicted 

map for the regional genetic distribution of each tumor. This map can assist physicians to 

make appropriate treatment decisions for each patient. However, there are several 

challenging issues for accomplishing this goal:  

1) The sample size of labeled data is inherently small. Labeled data in this context 

refers to biopsy samples from each patient. Due to the invasive nature of 

biopsy, only a few samples can be obtained per patient. If a model is trained 

on the limited biopsy samples and used to generate predictions on the large 

number of unbiopsied regions of a tumor, the predictions may be highly 

uncertainty due to the risk of extrapolation. As with any data-driven approach, 
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the scope of training data establishes the upper and lower bounds of the model 

domain, which guides the predictions for all new unseen test cases. In the ideal 

scenario, the new test data will fall within the distribution of the training 

domain, which allows for interpolation of model predictions, and the lowest 

degree of predictive uncertainty. If the test data fall outside of the training 

domain, then the model must extrapolate predictions, at the cost of greater 

model uncertainty. In our application, since the predictions on test samples 

(i.e., the large number of unbiopsied samples from each tumor) will be used to 

guide treatment decisions, it is critically important to reduce the risk of 

extrapolation and the prediction uncertainty.  

2) Many features can be extracted from an image and some (or even majority of 

them) may be noise. Selecting the right features is important for building the 

ML model to predict regional genetic status. As uncertainty reduction of the 

model prediction is critical in our application, feature selection shall be geared 

toward this objective. However, although feature selection is a popular 

research area in ML [14][15], most existing algorithms were designed to 

maximize the accuracy of prediction (i.e., minimizing the prediction error 

between the true and predicted response variables), but not to reduce the 

uncertainty of the prediction.   

To address these challenges, we propose a new model called Semi-supervised 

Gaussian Process with Uncertainty-minimizing Feature selection (SGP-UF). GP is a well-

known model for its capability of generating a predictive distribution to quantify the 

uncertainty of the prediction [16][17]. The proposed SGP-UF is an extension of GP with 
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two innovations: 1) While GP is a supervised learning model (i.e., the model is the trained 

using labeled samples only), SGP-UP can additionally incorporate selected unlabeled 

samples (i.e. unbiopsied regions of a tumor) in the model training. Since unbiopsied regions 

are also what the trained model will predict for, including the image features from these 

regions help mitigate the risk of extrapolation and therefore reduce the prediction 

uncertainty. 2) SGP-UP integrates feature selection with a new criterion of seeking features 

that minimize the prediction uncertainty.  

As a case study, we apply both SGP-UP and GP (as a competing method) to the 

prediction of regional EGFR amplification status for each GBM tumor using MRI. EGFR 

is a well-known GBM driver gene and serves as a common therapeutic target for many 

clinically available drugs. We demonstrate that, by incorporating unlabeled samples and a 

uncertainty-driven criterion of features selection in model training, SGP-UP significantly 

reduces prediction uncertainty while at the same time achieving higher accuracy (i.e., lower 

prediction error between the true EGFR status and the predictive mean of the EGFR status 

in the predictive distribution).  Our overarching goal of this work is to provide a pathway 

to clinically integrating reliable regional genomic predictions and intra-tumor 

heterogeneity characterization as part of decision support within the paradigm of 

individualized oncology. 

2.2  Introduction of Gaussian Process (GP) 

A GP model offers the flexibility of identifying nonlinear relationships between 

input and output variables [18][19]. More importantly, it generates a probability 
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distribution for each prediction, which quantifies the uncertainty of the prediction. This 

capability is important for using the prediction result to guide clinical decision making.  

Next we illustrate how GP works. GP is a supervised learning mode, which required 

a labeled dataset for training. Assume the training dataset includes 𝑁 samples, which are 

to 𝑁 biopsy samples in our application. Let {𝑦1, … , 𝑦𝑁} be the response variables (e.g., 

measurements of the EGFR gene) of the 𝑁 samples. Let {𝐱1, … , 𝐱𝑁} be the input variables, 

where 𝐱𝑖 contains the image features extracted from the region of the 𝑖-th biopsy sample, 

𝑖 = 1, … ,𝑁. GP assumes a set of random functions corresponding to the samples, 

{𝑓(𝐱1),… , 𝑓(𝐱𝑁)}. This is called a Gaussian Process because any subset of 

{𝑓(𝐱1),… , 𝑓(𝐱𝑁)} follows a joint Gaussian distribution with zero mean and the covariance 

between two samples 𝐱𝑖 and 𝐱𝑗 computed by a kernel function 𝐾(𝐱𝑖, 𝐱𝑗). The input 

variables are linked with the response by 𝑦𝑖 = 𝑓(𝐱𝑖) + 𝜖𝑖, where 𝜖𝑖~𝑁(0, 𝜎
2 ) is a 

Gaussian noise.  

Let {𝐗𝐿 , 𝐲𝐿} denote a training dataset, where 𝐗𝐿 is a matrix containing the input 

variables of all training samples and 𝐲𝐿 is a vector containing the response variables of 

these samples. Here, we use a subscript “𝐿” to highlight that GP is trained using labeled 

data only. This is to distinguish with our proposed model in the next section that can 

additionally incorporate unlabeled data. Furthermore, let 𝛉 contain the parameters to be 

estimated for a GP model. �̂� can be estimated by maximizing the marginal likelihood of 

the labeled samples, 

min𝛉 𝑙(𝛉) = min𝛉 − log 𝑝(𝐲𝐿|𝐗𝐿, 𝛉))                              (2.1) 
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After the parameters are estimated, the trained GP model can be used to generate a 

predictive distribution for a new test sample 𝐱∗ (e.g., 𝐱∗ is the image feature vector 

corresponding to an unbiopsied region), which takes the following form: 

𝑓(𝐱∗)~𝑁(𝜇∗, 𝜎∗2),                                                   (2.2) 

where 

 𝜇∗ = 𝐾(𝐱∗, 𝐗)(𝐾(𝐗, 𝐗) + 𝜎2 𝐈)
−1
𝐘,                                     (2.3) 

𝜎∗2 = 𝐾(𝐱∗, 𝐱∗) − 𝐾(𝐱∗, 𝐗)(𝐾(𝐗, 𝐗) + 𝜎2 𝐈)
−1
𝐾(𝐱∗, 𝐗)𝑇.              (2.4) 

The predictive mean in (2.2) can be used as a point estimator for the EGFR of the new 

sample, while the predictive variance in (2.3) reflects the uncertainty of the prediction.  

2.3 Development of the proposed SGP-UF 

We first discuss the SGP for a given set of features in Section 2.3.1, and then discuss 

how to integrate feature selection for uncertainty minimization with SGP in Section 2.3.2. 

2.3.1 Semi-supervised Gaussian Process (SGP) 

Expanding upon the notations of Section 2.2, we use {𝐗𝐿 , 𝐘𝐿} and {𝐗𝑈} to denote 

the labeled and unlabeled samples used in training, respectively. For a new test sample 𝐱∗, 

denote the predictive distribution by 

𝑓𝑆𝐺𝑃(𝐱
∗)~𝑁(𝜇𝑆𝐺𝑃

∗ ,  𝜎𝑆𝐺𝑃
∗ 2).                                           (2.5) 
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The predictive variance of a GP model does not utilize the response variables in the training 

data but only the input variables, as can be seen from (2.4). Because of this, we can combine 

the input variables of both labeled and unlabeled samples and derive  𝜎𝑆𝐺𝑃
∗ 2

 using a similar 

formula as (2.4), i.e.,  

 𝜎𝑆𝐺𝑃
∗ 2 = 𝐾(𝐱∗, 𝐱∗) − (

  𝐾(𝐱∗, 𝐗𝐿)

𝐾(𝐱∗, 𝐗𝑈)
)
𝑇

(
𝐾(𝐗𝐿 , 𝐗𝐿) + 𝜎

2 𝐈               𝐾(𝐗𝐿 , 𝐗𝑈)

𝐾(𝐗𝐿 , 𝐗𝑈)
𝑇     𝐾(𝐗𝑈 , 𝐗𝑈) + 𝜎

2 𝐈
)

−1

(
  𝐾(𝐱∗, 𝐗𝐿)

𝐾(𝐱∗, 𝐗𝑈)
).(2.6) 

We consider 𝜇𝑆𝐺𝑃
∗  to be weighted sum of the labeled and unlabeled samples, i.e., 

𝜇𝑆𝐺𝑃
∗ = 𝐰𝐿

𝑇𝑘(𝑥∗, 𝐗𝐿) + 𝐰𝑈
𝑇𝑘(𝑥∗, 𝐗𝑈) with the weights being 𝐰𝐿 = (𝐾(𝐗𝐿, 𝐗𝐿) +

𝜎2𝐼)−1𝐘𝐿 and 𝐰𝑈 = (𝐾(𝐗𝑈, 𝐗𝑈) + 𝜎
2𝐼)−1𝐘𝑈. Since 𝐘𝑈 is unknown, we use the predictive 

means of the unlabeled samples based on a GP trained on the labeled samples as an 

estimate, i.e., �̂�𝑈 = 𝐾(𝐗𝐿, 𝐗𝑈)(𝐾(𝐗𝐿 , 𝐗𝐿) + 𝜎
2𝐼)−1𝐘𝐿. Using this estimate and through 

some algebra, we get the final formula for 𝜇𝑆𝐺𝑃
∗ , i.e.,   

𝜇𝑆𝐺𝑃
∗ = 𝐾𝑆𝐺𝑃(𝐾(𝐗𝐿 , 𝐗𝐿) + 𝜎

2𝐼)−1𝐘𝐿, 

with 

𝐾𝑆𝐺𝑃 = 𝐾(𝐱
∗, 𝐗𝐿) + 𝐾(𝐱

∗, 𝐗𝑈)(𝐾(𝐗𝑈, 𝐗𝑈) + 𝜎
2𝐼)−1𝐾(𝐗𝑈, 𝐗𝐿). 

The SGP model was originally proposed by [20] as an empirical procedure, but no 

theoretical justification was provided as to why and in which aspects SGP outperforms GP. 

We provide some theoretical analysis in Theorem 2.1 and 2.2. The proofs are shown in 

Appendices A and B. 
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Theorem 2.1: When applying both GP and SGP to predict a test sample 𝐱∗, the predictive 

variance of SGP is no greater than GP, i.e.,  𝜎𝑆𝐺𝑃
∗ 2 < 𝜎∗2.  

Theorem 2.2: Consider a test sample 𝐱∗. Let {𝐗𝐿 , 𝐘𝐿} be the set of labeled samples used in 

training by GP. Let {𝐗𝑈} be the set of unlabeled samples used in training by SGP in addition 

to the labeled set. If 𝐾(𝐗𝑈, 𝐗𝐿) → 𝟎 and 𝐾(𝐗𝑈, 𝐱
∗)→ 𝟎, i.e., the distances of the unlabeled 

samples with respect to the labeled samples and the test sample go to infinity, then the 

predictive distribution for 𝐱∗ by SGP, 𝑓𝑆𝐺𝑃(𝐱
∗), converges to that by GP, 𝑓(𝐱∗), with 

respect to Kullback–Leibler divergence , i.e., 𝑓𝑆𝐺𝑃
𝐷
→ 𝑓. 

A final note in this section is that although in theory SGP-UF can include any 

samples from unbiopsied regions of a tumor as unlabeled data, we found a reasonable 

subset of unbiopsied regions to include are the 8 closest neighboring regions of each biopsy 

region. This approach is used in our application case study.   

2.3.2 Integration of SGP and Uncertainty-Minimizing Feature Selection (SGP-UF) 

Note that the SGP was proposed under a given set of features. When there is a high-

dimensional feature set and many of them may be noise, a feature selection algorithm is 

needed. There are two key components in a feature selection algorithm: the optimal 

criterion and the search path. For the former, most existing feature selection algorithms use 

prediction accuracy. We propose to use prediction uncertainty, i.e., an optimal feature 

subset is one that minimizes the prediction uncertainty. Specific to SGP, the predictive 

variance  𝜎𝑆𝐺𝑃
∗ 2

 reflects the prediction uncertainty. Alternatively, the uncertainty can be 

computed as a p value from a hypothesis test on the predictive mean. For example, if the 
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interest is to know whether the predictive mean is smaller or greater than a pre-specified 

value (considered as 𝐻0 and 𝐻1 of a hypothesis test, respectively), the 𝑝 value reflects the 

uncertainty of the test result. The smaller the 𝑝 value, the less uncertainty for rejecting 𝐻0 

(i.e., acknowledging that the predictive mean is greater than the pre-specified value). 

Although both the predictive variance and the 𝑝 value reflect uncertainty of the prediction, 

we found that the 𝑝 value criterion has a better performance in our application, which will 

be focused on in the remainder of our discussion in this section.    

The second key component of a feature selection algorithm is to design a search 

path, such that different subsets of the features can be efficiently evaluated using the 

optimal criterion to find the optimal subset. There are many existing algorithms such as 

forward selection, backward selection, evolutionary algorithms (e.g., GA), and swarm 

intelligence algorithms (e.g., PSO). We adopt forward selection due to its capability of 

generating parsimonious features with fast computation and reasonably good results. Other 

algorithms are also possible.  

A final note is that, to avoid overfitting in feature selection, a commonly used 

strategy is to evaluate each feature subset along the search path under a cross-validation 

(CV) scheme. We adopt a specific CV schemed called leave-one-patient-out cross 

validation (LopoCV), due to the natural grouping of samples within patients. Specifically, 

for each feature subset on the search path, the samples from 𝑁 − 1 patients are used to train 

an SGP model using the feature subset. Then, the trained model is used to predict the 

samples of the remaining patient and the 𝑝 value of the prediction for each sample can be 

computed. This training-prediction process is iterated for 𝑁 times, so that the samples of 
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each patient can be predicted using other patients’ samples for training. In the end, there is 

a 𝑝 value associated with the prediction of every sample for each of the 𝑁 patients. These 

𝑝 values are summed together as a metric to reflect the uncertainty/certainty of the given 

feature subset. Different feature subsets on the search path can be compared to find the 

optimal one with the smallest sum of 𝑝 values.  

Once the optimal feature subset is selected, we re-estimate the SGP model 

parameters using the selected features to maximize the LopoCV prediction accuracy for 

those samples with low uncertainty (𝑝 value<0.05, 0.1, etc.).   

2.4 Application  

2.4.1 Acquisition and Processing of Clinical MRI and Histologic Data 

Patient recruitment and Surgical biopsies:  We recruited 25 patients with clinically 

suspected GBM undergoing preoperative stereotactic MRI for surgical resection as 

previously described [21]. We confirmed histologic diagnosis of GBM in all cases.  We 

obtained institutional review board approval and informed consent from each subject prior 

to enrollment. Neurosurgeons used pre-operative conventional MRI, including T1-

Weighted contrast-enhanced (T1+C) and T2-Weighted sequences (T2W), to guide multiple 

stereotactic biopsies as previously described [21][22]. In short, each neurosurgeon 

collected an average of 3-4 tissue specimens from each tumor using stereotactic surgical 

localization, following the smallest possible diameter craniotomies to minimize brain shift.  

Neurosurgeons selected targets separated by at least 1 cm from both enhancing core (ENH) 

and non-enhancing T2/FLAIR abnormality in pseudorandom fashion, and recorded biopsy 

locations via screen capture to allow subsequent coregistration with multiparametric MRI 
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datasets. In this study, a dataset of 95 image-localized biopsies from these 25 GBM patients 

was collected. 

Histologic analysis and tissue treatment:  Tissue specimens (target volume of 

125mg) were flash frozen in liquid nitrogen within 1-2 min from collection in the operating 

suite and stored in -80oC freezer until subsequent processing. Tissue was retrieved from 

the freezer and embedded frozen in optimal cutting temperature (OCT) compound.  Tissue 

was cut at 4 um sections in a  -20 degree C cryostat (Microm-HM-550) utilizing microtome 

blade [23][24]. Tissue sections were stained with hematoxylin and eosin (H&E) for 

neuropathology review to ensure adequate tumor content (≥50%).    

Genetic Profiling and Analysis: We performed DNA isolation and determined copy 

number variant (CNV) for all tissue samples using array comparative genomic 

hybridization (aCGH) and exome sequencing as previously published [21][25][26][27]. 

This included application of previously described CNV detection to whole genome long 

insert sequencing data and exome sequencing [21][25][26][27].     

Copy Number Variant Aberrations for EGFR: TCGA has previously identified a 

set of highly recurrent and biologically significant DNA gains and losses through copy 

number analysis, which comprise known therapeutic targets and/or core GBM pathways 

[28][29]. For this study, we focused on amplification of the receptor tyrosine kinase 

epidermal growth factor receptor (EGFR), given the high number of clinically tested and 

available drug inhibitors against this target [30]. 

MRI protocol, parametric maps, and image coregistration:  Conventional MRI 

and general acquisition conditions:  We performed all imaging at 3 Tesla  field strength 
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(Sigma HDx; GE-Healthcare Waukesha Milwaukee; Ingenia, Philips Healthcare, Best, 

Netherlands; Magnetome Skyra; Siemens Healthcare, Erlangen Germany) within 1 day 

prior to stereotactic surgery.  Conventional MRI included standard pre- and post-contrast 

T1-Weighted (T1-C, T1+C, respectively) and pre-contrast T2-Weighted (T2W) sequences.  

T1W images were acquired using spoiled gradient recalled-echo inversion-recovery 

prepped (SPGR-IR prepped) (TI/TR/TE=300/6.8/2.8ms; matrix=320×224; FOV=26cm; 

thickness=2mm). T2W images were acquired using fast-spin-echo (FSE) 

(TR/TE=5133/78ms; matrix=320x192; FOV=26cm; thickness=2mm).  T1+C images were 

acquired after completion of Dynamic Susceptibility-weighted Contrast-enhanced (DSC) 

Perfusion MRI (pMRI) following total Gd-DTPA (gadobenate dimeglumine) dosage of 

0.15 mmol/kg as described below [21][22][31]. Diffusion Tensor (DTI): DTI imaging was 

performed using Spin-Echo Echo-planar imaging (EPI) [TR/TE 10000/85.2ms, matrix 

256x256; FOV 30cm, 3mm slice, 30 directions, ASSET, B=0,1000].  The original DTI 

image DICOM files were converted to a FSL recognized NIfTI file format, using 

MRIConvert (http://lcni.uoregon.edu/downloads/mriconvert), before processing in FSL 

from semi-automated script. DTI parametric maps were calculated using FSL 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/), to generate whole-brain maps of mean diffusivity 

(MD) and fractional anisotrophy (FA) based on previously published methods [32].  DSC-

pMRI: Prior to DSC acquisition, preload dose (PLD) of 0.1 mmol/kg was administered to 

minimize T1W leakage errors.  After PLD, we employed Gradient-echo (GE) EPI 

[TR/TE/flip angle=1500ms/20ms/60o, matrix 128x128, thickness 5mm] for 3 minutes.  At 

45 sec after the start of the DSC sequence, we administered another 0.05 mmol/kg i.v. 

bolus Gd-DTPA [21][22][31]. The initial source volume of images from the GE-EPI scan 
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contained negative contrast enhancement (i.e., susceptibility effects from the PLD 

administration) and provided the MRI contrast labeled EPI+C.  At approximately 6 minutes 

after the time of contrast injection, the T2*W signal loss on EPI+C provides information 

about tissue cell density from contrast distribution within the extravascular, extracellular 

space [22][33]. We performed leakage correction and calculated relative cerebral blood 

(rCBV) based on the entire DSC acquisition using IB Neuro (Imaging Biometrics, LLC) 

as referenced [34][35]. We also normalized rCBV values to contralateral normal appearing 

white matter as previously described [21][22][31]. Image coregistration:  For image 

coregistration, we employed tools from ITK (www.itk.org) and IB Suite (Imaging 

Biometrics, LLC) as previously described [21][22][31]. All datasets were coregistered to 

the relatively high quality DTI B0 anatomical image volume.  This offered the additional 

advantage of minimizing potential distortion errors (from data resampling) that could 

preferentially impact the mathematically sensitive DTI metrics. Ultimately, the 

coregistered data exhibited in plane voxel resolution of ~1.17 mm (256x256 matrix) and 

slice thickness of 3mm.  

ROI segmentation, Image feature extraction and Texture Analysis Pipeline: We 

generated regions of interest (ROIs) measuring 8×8×1 voxels (9.6×9.6×3mm) for each 

corresponding biopsy location. A board-certified neuroradiologist (L.S.H.) visually 

inspected all ROIs to ensure accuracy [21][22]. From each ROI, we employed our in-house 

texture analysis pipeline to extract a total of 336 texture features from each sliding window. 

This pipeline, based on previous iterations [21][22], included measurements of first-order 

statistics from raw image signals (18 features): mean (M) and standard deviation (SD) of 

gray-level intensities, Energy, Total Energy, Entropy, Minimum, 10th percentile, 90th 
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percentile, Maximum, Median,  Interquartile Range, Range, Mean Absolute Deviation 

(MAD), Robust Mean Absolute Deviation (rMAD), Root Mean Squared (RMS), 

Skewness, Kurtosis,  Uniformity [36]. We mapped intensity values within each window 

onto the range of 0–255. This step helped standardize intensities and reduced effects of 

intensity nonuniformity on features extracted during subsequent texture analysis. Texture 

analysis consisted of two separate but complementary texture algorithms:  gray level co-

occurrence matrix (GLCM) [37][38], and Gabor Filters (GF) [39], based on previous work 

showing high relevance to regional molecular and histologic characteristics [21][22]. The 

output from the pipeline comprised a feature vector from each sliding window, composed 

of 56 features across each of the 6 MRI contrasts, for a total of 336 (6*56) features.   

EGFR CNV data transformation: As shown in prior work, the log-scale CNV data 

for EGFR status can also exhibit heavily skewed distributions across a population of biopsy 

samples, which can manifest as a long tail with extremely large values (up to  22-fold log 

scale increase) in a relative minority of EGFR amplified samples [40]. Such skewed 

distributions can present challenges for model training. We adopt a data transformation 

driven by domain knowledge. It is a reasonable belief that CNV>3.5 corresponds to EGFR 

amplification [41], which is an abnormal genetic status that is highly valuable to be 

detected [42][43]. Driven by this, we transformed the original CNV data that maintained 

identical biopsy sample ordering between transformed and original scales, but condensed 

the spacing between samples with extreme values on the transformed scale, such that the 

distribution width of samples with CNV>3.5 approximated that of the samples with CNV< 

3.5.  
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Table 2.1 – Differences in Image features and model complexity when comparing 

GP and SGP-UF 

 SGP-UF GP 

Selected 

image 

texture 

features 

1.T2.Information.Measure.of.Cor

relation.2_Avg_1 

2.T2.Angular.Second.Moment_

Avg_1 

3.T2.Kurtosis 

4.rCBV.Contrast_Avg_1 

1.T2.Difference.Entropy_Avg_3 

2.T2.Contrast_Avg_1 

3.T2.Entropy_Avg_1 

4.SPGRC.Sum.Variance_Avg_3 

5.SPGRC.Gabor_Std_0.4_0.1 

6.rCBV.Angular.Second.Moment_Avg_1 

7.rCBV.Difference.Variance_Avg_1 

8.rCBV.Kurtosis 

9.EPI.Gabor_Mean_0.4_0.1 

10.EPI.Angular.Second.Moment_Avg_1 

11.FA.Angular.Second.Moment_Avg_1 

12.FA.Skewness 

13.FA.Difference.Variance_Avg_3 

14.FA.Entropy_Avg_1 

15.FA.Sum.Variance_Avg_1 

16.FA.Information.Measure.of.Correlation.1_Avg_1 

17.FA.Range" 

 

2.4.2 Application of GP and SGP-UF 

We applied both GP and SGP-UF to the dataset, aiming at training a model that 

predicts regional EGFR using MRI features and then using the model to predict unbiopsied 

regions of each tumor to produce a predicted EGFR map to facilitate clinical decision 

making. Since GP does not have an inherent mechanism for feature selection like SGP-UP, 

we used a commonly adopted feature selection algorithm called “Boruta” [44] for GP. 

Boruta is a powerful feature selection algorithm that uses random forest to warrant the 

selection of a robust feature subset. It is a wrapper algorithm so it can be integrated with 

any supervised learning model. We also tried other wrapper algorithms to integrate with 

GP, but Boruta turned out to have the best performance.  
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  Once the GP and SGP-UF models are trained, the models are used to generate 

predictions for all the unbiopsied regions of each tumor. The predictions are in forms of 

predictive distributions. Because our special interest here is to detect CNV>3.5 (i.e., EGFR 

amplification) versus CNV< 3.5, the predictive distribution of each unbiopsied region is 

used to test the hypothesis of CNV>3.5 versus CNV< 3.5. Using a cutoff on the p value of 

this test, e.g., 0.05, the prediction can be converted to a binary classification result (EGFR 

amplification versus non-amplification/wildtype).  

 

Figure 2.1 – Predicted EGFR amplification vs. wildtype maps using SGP-UF resolve 

the regional intratumoral heterogeneity of EGFR amplification status in GBM 

 

SGP-UF achieved an overall LopoCV accuracy of 75% (77% sensitivity, 74% 

specificity) across the entire cohort (n=95). Figure 2.1 illustrates how the spatially resolved 

predictive maps correspond with stereotactic biopsies from the regionally distinct genetic 

subpopulations that can co-exist within a single patient’s GBM tumor.  According to Figure 

2.1, it shows two different image-localized biopsies (Biopsy #1, Biopsy #2) from the same 
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GBM tumor in a single patient.  For each biopsy, T1+C images (left) demonstrate the 

enhancing tumor segment (dark green outline, T1W+Contrast) and the peripheral non-

enhancing tumor segment (light green outline, T2W lesion).  Color maps for each biopsy 

(right) also show regions of predicted EGFR amplification (amp, red) and EGFR wildtype 

(wt, blue) status overlaid on the T1+C images.  For biopsy #1 (green square), the map 

correctly predicted low EGFR copy number variant (CNV) and wildtype status with high 

predictive certainty (p<0.05).  Conversely for biopsy #2 (green circle), the maps correctly 

predicted high EGFR CNV and amplification status, also with high predictive certainty 

(p<0.05).   Note that both biopsies originated from the non-enhancing tumor segment, 

suggesting the feasibility for quantifying EGFR drug target status for residual 

subpopulations that are typically left unresected followed gross total resection. 

We observed substantially different sizes in feature sets and overall model 

complexity when comparing the GP and SGP-UF models, as summarized in Table 2.1. 

While the GP model selected 17 image features (across 5 different MRI contrasts), the 

SGP-UF  model selected only 4 features (across 2 MRI contrasts).  The lower complexity 

of the SGP-UF  model likely stemmed from a key difference in model training: the  SGP-

UF model first prioritized feature selection that minimized average predictive uncertainty 

(i.e., lowest sum of p-values), which helped to narrow candidate features to a relevant and 

focused subset. Only then did the model prioritize predictive accuracy, within this smaller 

feature subset.  Meanwhile, the GP model selected from the entire original feature set to 

maximize predictive accuracy, without constraints on predictive uncertainty. Although the 

accuracy was optimized on training data, the GP model could not achieve the same level 
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of cross validated model performance (60% accuracy, 31% sensitivity, 71% specificity) 

compared to the S GP model, due largely to lack of control of extrapolation risks.  

Existing published studies have used predictive accuracy to report model 

performance, but have not yet addressed model uncertainty. Our data suggest that 

leveraging both accuracy and uncertainty can further optimize model performance and 

applicability. When stratifying SGP sample predictions based on predictive uncertainty, 

we observed a striking difference in model performance. The subgroup of sample 

predictions with the lowest uncertainty (i.e., the most certain predictions) (p<0.05) (n=72) 

achieved the highest predictive performance (83% accuracy, 83% sensitivity, 83% 

specificity) compared to the entire cohort as a whole (75% accuracy, n=95). This could be 

explained by the substantially lower performance (48% accuracy, 63% sensitivity, 40% 

specificity) observed amongst the subgroup of highly uncertain sample predictions 

(p>0.05) (n=23). These discrepancies in model performance persisted even when 

stratifying with less stringent uncertainty thresholds (e.g., p<0.10, p<0.15), which we 

summarize in Table 2.2. Together, these results suggest that predictive uncertainty can 

inform the likelihood of achieving an accurate sample prediction, which can help 

discriminate model outputs, not only across patients, but at the regional level within the 

same patient tumor (Figure 2.2). We obtained two separate biopsies (#1 and #2) from the 

same tumor in a 44 year-old male patient with primary GBM. The (A) T2W and (B) T1+C 

images demonstrate the enhancing (dark green outline, T1W+Contrast) and peripheral non-

enhancing tumor segments (light green outline, T2W lesion). The (C) color map shows 

regions of predicted EGFR amplification (amp, red) and EGFR wildtype (wt, blue) status 

overlaid on the T1+C images. For biopsy #1 (green circle), the SGP-UF model predicted 
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EGFR wildtype status (blue) with high certainty, which was concordant with biopsy results 

(green box). For biopsy #2 (yellow circle), the SGP-UF model showed poor certainty (i.e., 

high uncertainty), with resulting discordance between predicted (red) and actual EGFR 

status (yellow box). 

We collected separate dataset of 24 image-localized biopsies from a cohort of 7 

primary high-grade glioma patients. The same MRI techniques and processing pipeline as 

the training set were adopted. We applied the transductive learning GP model developed 

on the training set to validate model performance. The transductive learning model 

achieved an overall accuracy of 67% across the entire pooled cohort (n=24), without 

stratifying based on the predictive certainty. When stratifying transductive learning GP 

sample predictions based on predictive uncertainty, we observed an increase in model 

performance, which was the same trend observed in the training cohort.  Specifically, the 

subgroup of sample predictions with the lowest uncertainty (i.e., the most certain 

predictions) (p<0.05) (n=18) achieved the highest predictive performance (78% accuracy, 

75% sensitivity, 79% specificity) compared to samples with high uncertainty (p>0.05) 

(33% accuracy, n=6) and the entire cohort as a whole (67% accuracy, n=24) (Table 2.3).   

2.5 Conclusion and Discussion  

In this study, we highlight the challenges of predictive uncertainty in radiogenomics 

and present a novel approach, SGP-UF, that not only quantifies model uncertainty, but also 

leverages it to enhance model performance and interpretability. This work offers a pathway 

to clinically integrating reliable radiogenomics predictions as part of decision support 

within the paradigm of individualized oncology. 
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Table 2.2 –  Differences in predictive accuracy related to certain versus uncertain 

sample predictions by SGP-UF 

Uncertainty threshold Number of samples (n) Overall accuracy Sensitivity/Specificity (%/%) 

Entire pooled cohort 95 75% 77/74 

p<0.05 (certain) 72 83% 83/83 

p>0.05 (uncertain) 23 48% 63/40 

p<0.10 (certain) 78 79% 83/78 

p>0.10 (uncertain) 17 53% 63/44 

p<0.15 (certain) 81 79% 84/77 

p>0.15 (uncertain) 14 50% 57/43 

 

 

 

 Figure 2.2 – Model uncertainty informing the likelihood of achieving an accurate 

prediction for EGFR amplification status by SGP-UF 
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Table 2.3 – Differences in predictive accuracy related to certain versus uncertain 

sample predictions in the validation set   

Uncertainty threshold Number of samples (n) Overall accuracy Sensitivity/Specificity (%/%) 

Entire pooled cohort 24 67% 43/76 

p<0.05 (certain) 18 78% 75/79 

p>0.05 (uncertain) 6 33% 0/67 
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CHAPTER 3. KNOWLEDGE-INFUSED GLOBAL-LOCAL DATA 

FUSION FOR SPATIAL PREDICTION OF TUMOR CELL 

DENSITY USING MRI  

This chapter is based on my published paper “Wang, L., Hawkins-Daarud, A., Swanson, 

K.R., Hu, L.S., Li, J. (2021) Knowledge-infused Global-Local Data Fusion for Spatial 

Predictive Modeling in Precision Medicine. IEEE Transactions on Automation Science 

and Engineering, 19 (3): 2203-2215”.  

3.1 Background 

In many science and engineering domains, the automated capability for generating 

a spatial prediction map of a variable of interest is critical for decision making. Here we 

give three examples:  

• In Precision Medicine of cancer, one leading cause of treatment failure is intra-

tumor heterogeneity [45] [22]. This means that molecular markers, which are 

typically used to guide treatment decisions, do not uniformly distribute across a 

tumor. Existing treatments do not adapt well to this regional heterogeneity, leading 

to sub-optimal treatment outcomes. If the spatial molecular distribution could be 

precisely mapped out for each tumor, cancer treatments could be greatly improved.  

• In forest fire management, the ability for predicting regional fire risk across the 

forest is important for early detection and prevention [46].   

• In poverty management and reduction, one important first step is to map out 

regional poverty status across a developing world. This information can help 
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optimally allocate resources [47]. 

The challenge is that direct measurement for the variable of interest at every spatial 

location is impossible due to feasibility and cost constraints. Related to the above examples, 

direct measurement for molecular markers must be done through biopsy. Due to its 

invasive nature, only a few biopsy samples from a patient can be obtained. Similarly, direct 

measurement for fire risk must be done through aerial or ground survey, which can only 

sample a few locations of the forest. For the same reason, survey data that directly reflects 

poverty levels may only be available for some regions across a developing world. As a 

result of these constraints, many spatial locations do not have direct measurement data for 

the variable of interest, i.e., these locations are “blank”. This creates a tremendous 

difficulty for decision making.     

On the other hand, indirect or proxy measurement data may be available global-

wide. One typical form of such data is imagery. In medicine, clinical imaging such as CT 

and MRI has been widely used to support diagnosis and treatment. Imaging can be taken 

non-invasively and portrays the entire host organ of the tumor. Also, imaging of different 

kinds is designed to measure microscopic tissue structure, morphology, microvasculature, 

and metabolism, which provide insight into the phenotypic presentation of the molecular 

characteristics of the tumor. In the other two examples, global proxy data is provided by 

satellite imagery: spectroradiometer satellite images can help detect fire risk across a forest; 

regional poverty levels can be reflected in satellite nightlight images portraying power 

density and daytime images portraying infrastructure, housing, etc. 

In addition to sparsely-sampled local data and global imagery, another important 

source of information is domain knowledge. For example, in cancer biology, mechanistic 
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models exist for some molecular markers based on biological knowledge and principles 

[48][49]. These models take the form of algebraic equations, PDEs, or ODEs, and can 

produce a prediction map for the spatial distribution of some molecular markers across a 

tumor. However, these models are typically based on simplified assumptions. As a result, 

the prediction map may only capture some general trend of the molecular distribution but 

lacks localized precision. In forest fire management, similar forms of domain knowledge 

exist from forest fire simulators and bio-ecological models [50]. Furthermore, domain 

knowledge may exist in a looser form. For example, it may be known that some molecular 

characteristics are more likely to be present at certain regions of a tumor. In the poverty 

example, there may be historical knowledge that certain regions are less or more wealthy 

than others.  

In summary, with the final objective of generating a spatial prediction map for a 

variable of interest, there are three sources of pertinent data and information. Please see 

Table 3.1 for what these data/information sources are in different science and engineering 

applications. Using a single data/information source by itself does not lead to an optimal 

solution. This paper proposes a novel computational machine learning framework to 

optimally fuse the multiple sources of data/information, which is called the methodology 

of knowledge-infused global-local data fusion (KGL). Please see Figure 3.1 for a schematic 

overview of the KGL framework. The key idea of KGL is to build a predictive model that 

uses global imagery to predict the regional distribution for the variable of interest, where 

the model parameters are optimized to simultaneously serve three purposes: 1) maximizing 

the accuracy on labeled samples (i.e., regions with direct measurement); 2) reducing the 

prediction uncertainty on unlabeled samples (i.e., regions without direct measurement but 
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only imagery); 3) being consistent with the trend or patterns conveyed by domain 

knowledge.     

 

Figure 3.1 – A schematic overview of the multi-data/information fusion framework 

by the proposed KGL methodology 

 

The contributions of this paper are summarized as follows: 

• New fusion framework: To our best knowledge, KGL is the first methodology that 

optimally fuses local and global data together with domain knowledge. There is no 

existing machine learning framework that immediately targets to achieve this goal.  

• Novel machine learning development: KGL primarily intersects with two sub-

fields in statistical modeling and machine learning: semi-supervised learning (SSL) 

and Gaussian Process (GP) model. The intersection with SSL is that KGL uses both 

labeled and unlabeled samples to train the predictive model. Leveraging unlabeled 

samples to alleviate the sample size limitation is the core idea of SSL. The 

intersection with GP is that KGL uses a GP to relate regional image features with 



 33 

the regional variable of interest. While in theory this relationship may be built by 

some other models, GP is chosen due to its advantages of being non-parametric, 

non-linear, and most importantly the capacity for generating a predictive 

probability distribution instead of just a point estimator. This allows for uncertainty 

quantification and reduction. However, as shown in the next section of Related 

Works, the existing models in SSL and GP do not provide the capability of KGL.  

• Theoretical insight: We demonstrate that the formulation of KGL belongs to the 

machine learning paradigm called Posterior Regularization (PostReg) [47] [46] . 

PostReg was motivated by the need of integrating domain knowledge with data-

driven machine learning algorithms. In probabilistic models, a typical way to 

incorporate domain knowledge is via Bayesian inference, in which the knowledge 

is imposed through specification of the prior. However, in many applications such 

as the examples mentioned in Table 3.1 of this paper, it is difficult to encode the 

knowledge in a Bayesian Prior. PostReg provides a flexible mechanism to 

incorporate the knowledge by constraining the posterior distribution. Although 

PostReg has been existing as a theoretical framework, our paper is the first effort 

that demonstrates its practical utility in integrating local data, global data, and 

domain knowledge for spatial prediction.    

Contribution to Precision Medicine of cancer treatment: We apply KGL to a 

real-data application for predicting the spatial distribution of an important molecular 

marker called tumor cell density (TCD) for each patient with glioblastoma (GBM) – the 

most aggressive type of brain cancer. KGL generates predictions with higher accuracy and 

lower uncertainty than a variety of competing methods. The results have important 
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implication for improving the spatial treatment precision of each GBM tumor. 

Table 3.1 – Examples in science and engineering domains that demand the proposed 

KGL methodology to support critical decision making 

 Variable of 

interest  

Available sources of data/information 

Local data 

(direct measure)  

Global data 

(proxy) 

Domain knowledge 

Precision Medicine 

of cancer 

Regional molecular 

status 

Biopsy samples Clinical imaging  Mechanistic models 

 

Early detection of 

forest fire 

Regional fire 

potential 

 

Ground or aerial 

survey 

Spectro-radiometer 

satellite images 

Forest fire simulators; 

ecological model 

Resource allocation 

for poverty 

reduction   

Regional poverty 

level 

 

Household survey Daytime and nightlight 

satellite images 

Macro-level statistics 

(country-level GDP) 

 

 

Figure 3.2 – Mathematical formulation of KGL as a constrained optimization  

 

3.2 Knowledge-infused Global-Local Data Fusion (KGL) Model 

   𝑓𝑖

 𝑓𝑖

? ??
?

?

?
?

   𝑓𝑗

 𝑓𝑗

Minimize negative log-

likelihood on biopsy samples

Predictive variance reduction 

on unbiopsied regions

Knowledge regularization 

under uncertainty
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3.2.1 Mathematical Formulation  

Adopt the notation in the Preliminaries section 2.2 and let {𝐱𝑖, 𝑦𝑖}𝑖=1
𝐿  be 𝐿 labeled 

samples. Let {𝐱𝑖}𝑖=𝐿+1
𝐿+𝑈  be 𝑈 unlabeled samples, e.g. image features extracted from 𝑈 

locations of an area of interest (e.g., a tumor, a forest, a developing world). 𝑦 ∈ ℝ is the 

measurement of a variable of interest (e.g., a molecular marker, fire risk, poverty level). 

Our objective is to build a model using {𝐱𝑖 , 𝑦𝑖}𝑖=1
𝐿  and {𝐱𝑖}𝑖=𝐿+1

𝐿+𝑈  together with domain 

knowledge in order to predict {�̂�𝑖}𝑖=𝐿+1
𝐿+𝑈 .  

Recall that the advantage of a GP model is that it can produce a predictive 

distribution, in which the predictive variance 𝜎∗2 reflects the certainty/uncertainty of the 

prediction. Also note that 𝜎∗2 can be computed using only the image features of an 

unlabeled sample. This leads us to an SSL extension of the GP: 

min𝛉   
1

𝐿
𝑙(𝛉)                                                          (3.1)  

s.t.      
1

𝑈
∑    (𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ≤ 𝑡,                                           (3.2) 

which minimizes the average negative marginal likelihood under a constraint that upper-

bounds the sum of predictive variances on unlabeled samples. Compared with the 

supervised learning model in (2.1), the SSL considers uncertainty reduction in predicting 

the unlabeled samples, not just maximizing the likelihood of labeled samples.  

Furthermore, considering that domain knowledge may exist, we add additional 

constraints to (3.2)  on the predictive means of unlabeled samples, i.e., (3.3) - (3.7) below:  



 36 

min𝛉   
1

𝐿
𝑙(𝛉)                                                        (3.3) 

s.t.        
1

𝑈
∑    (𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ≤ 𝑡,                                          (3.4)  

𝐠( (𝑓𝐿+1),… ,  (𝑓𝐿+𝑈)) ≤ 𝛏                                          (3.5) 

𝛏 ≥ 0                                                            (3.6)  

𝛏𝑇𝟏 ≤ 𝜖                                                           (3.7) 

where 𝟏 is a vector of 𝑚 ones. 𝐠(⋅) contains 𝑚 different functions, 𝑔1(⋅), … , 𝑔𝑚(⋅). Each 

𝑔𝑗(⋅) is a function of the predictive means of unlabeled samples, 𝑗 = 1, … ,𝑚. 𝛏 =

(𝜉1, … , 𝜉𝑚) contains the upper bounds of these functions. A special case is when 𝑚 = 1. 

Then, (3.5) reduces to a single function of 𝑔( (𝑓𝐿+1),… ,  (𝑓𝐿+𝑈)) ≤ 𝜉. Sometimes, a 

single function is not enough to represent different kinds of domain knowledge. Thus, we 

use a general notation in (3.5) to allow for 𝑚 functions of different forms. Also note that 

when the domain knowledge is in the form of an equation but not an inequality, i.e., 

𝑔( (𝑓𝐿+1),… ,  (𝑓𝐿+𝑈)) = 𝜉, the equation can always been represented by two 

inequalities of 𝑔1( (𝑓𝐿+1),… ,  (𝑓𝐿+𝑈)) ≤ 𝜉 and −𝑔2( (𝑓𝐿+1), … ,  (𝑓𝐿+𝑈)) ≤ −𝜉, 

which can be added to the constraint set in (3.5). Additionally, we consider that domain 

knowledge may not always be completely accurate. To accommodate this uncertainty, we 

use slack variables in specifying the constraints corresponding to domain knowledge, as 

shown in (3.5) - (3.7). 𝜖 controls the extent to which the domain k knowledge constraints 

can be violated. This adds the flexibility of allowing some small violations of these 
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constraints. To summarize, please see Figure 3.2 for a graphical illustration of the afore-

described constrained optimization framework for KGL.   

3.2.2 Optimization Algorithm for KGL Model Estimation  

To solve the optimization problem in (3.3) - (3.7), we first write the corresponding 

Lagrangian function, i.e.,  

ℒ =  
1

𝐿
𝑙(𝛉) + 𝛼1 (

1

𝑈
∑    (𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 − 𝑡) + ∑ 𝜇𝑗(𝑔𝑗(⋅) − 𝜉𝑗)

𝑚
𝑗=1 −∑ 𝑣𝑗𝜉𝑗

𝑚
𝑗=1 +

𝛼2(∑ 𝜉𝑗
𝑚
𝑗=1 − 𝜖),                                                                                                             (3.8) 

with Lagrange multipliers 𝝁 = (𝜇1, … , 𝜇𝑚), 𝒗 = (𝑣1, … , 𝑣𝑚), 𝛼1 ∈ ℝ and 𝛼2 ∈ ℝ, and 

𝑔𝑗(⋅) used to represent 𝑔𝑗( (𝑓𝐿+1),… ,  (𝑓𝐿+𝑈)) for notation simplicity. Then, the optimal 

solution of the primal problem in (3.3) - (3.7) is equivalent to the solution of the following 

optimization:  

inf𝛉,𝛏 sup𝝁≥0,𝒗≥0,𝛼1≥0,𝛼2≥0 ℒ .                                   (3.9) 

Theorem 3.1: Let  ℒ′ =
1

𝐿
𝑙(𝛉) + 𝜆1 (

1

𝑈
∑    (𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + ∑ 𝜇𝑗(𝑔𝑗(⋅) − 𝜉𝑗)

𝑚
𝑗=1 −

∑ 𝑣𝑗𝜉𝑗
𝑚
𝑗=1 + 𝜆2(∑ 𝜉𝑗

𝑚
𝑗=1 ), where 𝜆1 and 𝜆2 are tuning parameters. Then, for any 𝜆1 > 0 and 

𝜆2 > 0, there exist 𝑡 > 0 and 𝜖 > 0 such that the optimal solution of 

inf𝛉,𝛏sup𝝁≥0,𝒗≥0,𝛼1≥0,𝛼2≥0 ℒ is equal to that of inf𝛉,𝛏sup𝝁≥0,𝒗≥0 ℒ′ and vice versa. (Proof in 

Appendix C.)  

According to Theorem 3.1, (3.9) can be further simplified as: 

inf𝛉,𝛏 sup𝝁≥0,𝒗≥0 ℒ′ .                                               (3.10) 
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Since ℒ′ is a convex function of 𝜉𝑗 , 𝝁, 𝒗 (non-convex of 𝛉), (3.10) is equivalent to  

inf𝛉 sup𝝁≥0,𝒗≥0 inf𝛏 ℒ′ .                                            (3.11) 

Focus on the inner minimization in (3.11). The minimizer of 𝜉𝑗 must satisfy 

𝜕ℒ′ 

𝜕𝜉𝑗
= 𝜆2 − 𝑢𝑗 − 𝑣𝑗 = 0, 𝑗 = 1,… ,𝑚.                         (3.12) 

From (3.12), we can write 𝑣𝑗 = 𝜆2 − 𝑢𝑗. Inserting this into (3.11), we get 

inf𝛉 sup𝝁≥0 𝒥(𝑢𝑗; 𝑗 = 1,… . , 𝑚)                                 (3.13) 

s.t. 0 ≤ 𝜇𝑗 ≤ 𝜆2, 𝑗 = 1,… . ,𝑚.                                    (3.14) 

where  𝒥(𝑢𝑗; 𝑗 = 1,… . ,𝑚) =
1

𝐿
𝑙(𝛉) + 𝜆1(∑    (𝑓𝑖)

𝐿+𝑈
𝑖=𝐿+1 ) + ∑ 𝑢𝑗𝑔𝑗(⋅)

𝑚
𝑗=1 .      

It is clear that the solution of the inner maximization of (3.13) with (3.14) is 𝜇𝑗 =

{

                 𝜆2,                   𝑖𝑓 𝑔𝑗(⋅) > 0

 𝑛𝑦 𝑣 𝑙𝑢𝑒 𝑖𝑛 [0, 𝜆2], 𝑖𝑓 𝑔𝑗(⋅) = 0

                  0,                   𝑖𝑓 𝑔𝑗(⋅) < 0

. Then, the final objective function becomes 

inf𝛉 𝐿(𝛉) = inf𝛉  
1

𝐿
𝑙(𝛉) + 𝜆1 (

1

𝑈
∑    (𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)𝐼(𝑔𝑗(⋅) > 0)

𝑚
𝑗=1 , (3.15) 

The gradient of objective function in (3.15) can be written as   

             ∇𝐿𝛉 =
1

𝐿
∇ 𝑙(𝛉) + 𝜆1 (

1

𝑈
∑ ∇   (𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ ∇𝑔𝑗(⋅)𝐼(𝑔𝑗(⋅) > 0)

𝑚
𝑗=1 .         

In this paper, this optimization is solved by a gradient descent algorithm implemented in 

R.  
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Discussion on the insight of the optimization: Note that the optimization in (3.15) 

simultaneously balances three aspects: maximizing the average marginal likelihood on 

labeled samples (recall that 𝑙(𝛉) is the negative marginal likelihood as defined in (2.1)); 

minimizing the predictive variances/uncertainty on unlabeled samples; optimizing the 

consistency with domain knowledge. The last term in (3.15) is particularly interesting: 

𝐼(𝑔𝑗(⋅) > 0) is an indicator function that takes the value of one if 𝑔𝑗(⋅) > 0 and zero 

otherwise. Recall that in the KGL formulation in (3.3)- (3.7), the consistency with domain 

knowledge is imposed by having the constraints of 𝑔𝑗(⋅) ≤ 𝜉𝑗 , 𝜉𝑗 ≥ 0, 𝑗 = 1,… ,𝑚, where 

we consider 𝑚 different types of domain knowledge. The utility of the indicator functions 

is to find which subset of these constraints must be satisfied. This is the subset 

corresponding to 𝑔𝑗(⋅) ≤ 0 or equivalently 𝐼(𝑔𝑗(⋅) > 0) = 0. For the remaining 

constraints corresponding to 𝑔𝑗(⋅) > 0 or equivalently 𝐼(𝑔𝑗(⋅) > 0) = 1, the model will 

try to satisfy these constraints as much as possible, but this needs to be traded off with the 

first two terms in the optimization, i.e., some degree of violations for these constraints is 

allowed. The appealing part of the model is that it does not require pre-specifying which 

subset of constraints must be satisfied and which not, and how much violation is allowed. 

All these will be automatically resolved through solving the optimization problem.  

A final note is that since the optimization problem in (3.15) is non-convex, the 

converged solution may not be the global optimal. This is a common problem for non-

convex optimization problems. A typical strategy is to use different initial values. More 

sophisticated non-convex optimization algorithms may be used but are left for future 

investigation.  
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3.3 Another View: KGL as Posterior Regularization (PostReg) 

To incorporate domain knowledge in probabilistic models, a common approach is 

to specify a prior of the model 𝑀 that reflects the domain knowledge, i.e., 𝜋(𝑀). This prior 

is then integrated with the data likelihood 𝑝(𝐷|𝑀) using the Bayes’ rule to obtain the 

posterior 𝑝(𝑀|𝐷). In this approach, domain knowledge does not directly impact or 

regularize the final model estimate, but only indirectly through prior specification. Due to 

the indirect nature, the final model estimate may not fully comply with the knowledge. In 

some applications, it may be preferred that domain knowledge can be used to directly 

regularize the posterior. This has led to the development of the PostReg framework [46]. 

The basic idea of PostReg is to use a variational distribution 𝑞(𝑀|𝐷) to approximate the 

posterior 𝑝(𝑀|𝐷), while at the same time regularizing 𝑞(𝑀|𝐷) according to domain 

knowledge. That is, PostReg aims to find the solution 𝑞∗(𝑀|𝐷) for the following 

optimization 

inf𝑞∈𝒫𝑝𝑟𝑜𝑏    𝐾𝐿(𝑞(𝑀|𝐷)‖𝑝(𝑀|𝐷)) + Ω(𝑞(𝑀|𝐷)).                     (3.16) 

The first term is the Kullback–Leibler (KL)-divergence, defined as the expected 

log-difference between the posterior and approximate distributions. Ω(∙) is a function of 

the approximate distribution, which regularizes this distribution to comply with domain 

knowledge. Because of the regularization effect,  𝑞(𝑀|𝐷) cannot be exactly equal to the 

posterior 𝑝(𝑀|𝐷), but is made close to 𝑝(𝑀|𝐷) while at the same time being consistent 

with the domain knowledge. 𝒫𝑝𝑟𝑜𝑏 denotes a proper variational family of distributions. The 

PostReg optimization in (3.16) is a general formulation. It has been realized for specific 
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models such as latent variable models under the EM framework [47], multi-view learning 

[47], and infinite Support Vector Machines [51].  

We demonstrate that solving the optimization in (3.3)- (3.7) is equivalent to solving 

a specific form of the PostReg optimization. In this specific form, the choice of the 

regularizer Ω(𝑞(𝑀|𝐷)) corresponds to variance minimization and consistency with 

domain knowledge in expectation. This theoretical result is summarized in Theorem 3.2. 

(Proof in Appendix D.) 

Theorem 3.2: The optimization in (3.3)- (3.7) is equivalent to a PostReg optimization 

taking the form of, i.e.,  

inf𝑞∈𝒫𝑝𝑟𝑜𝑏    𝐾𝐿(𝑞(𝑀|𝐷)‖𝑝(𝑀|𝐷)) + Ω(𝑞(𝑀|𝐷)),                     (3.17) 

with the following specific definitions for the notations: 𝑀 = (𝑓, 𝛉) is the model; 𝐷 =

({𝐱𝑖, 𝑦𝑖}𝑖=1
𝐿 , {𝐱𝑖}𝑖=𝐿+1

𝐿+𝑈 ) is the data; 𝒫𝑝𝑟𝑜𝑏 = {𝑞 | 𝑞(𝑓, 𝛉|𝐷) = 𝑝(𝑓|𝛉, 𝐷)𝛿�̅�(𝛉|𝐷), �̅� ∈ Θ} is 

a variational family of distributions where 𝑞(𝑓|𝛉,𝐷) = 𝑝(𝑓|𝛉, 𝐷) and 𝑞(𝛉|𝒟) = 𝛿�̅�(𝛉|𝐷) 

which is a Dirac delta function centered on �̅� in the parameter space Θ; Ω(𝑞(𝑓, 𝛉|𝐷)), 

denoted by a simple form of Ω(𝑞) hereafter, is given by 

Ω(𝑞) = inf𝑡,𝛏  

{
 
 

 
 

(𝜆1𝑡 +

𝜆2∑ 𝜉𝑗
𝑚
𝑗=1 ) |

|

1

𝑈
∑ (∫ 𝑞 × (𝑓(𝐱𝑖) −  𝑞[𝑓(𝐱𝑖)])

2

𝑓,𝛉
𝑑𝜂(𝑓, 𝛉))𝐿+𝑈

𝑖=𝐿+1 ≤ 𝑡;

 𝐠 (∫ 𝑞 × 𝑓(𝐱𝐿+1)𝑓,𝛉
𝑑𝜂(𝑓, 𝛉), … , ∫ 𝑞 × 𝑓(𝐱𝐿+𝑈)𝑓,𝛉

𝑑𝜂(𝑓, 𝛉)) ≤ 𝛏;

𝛏 ≥ 0 }
 
 

 
 

. 
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(3.18)  

By demonstrating that KGL is a specific instance within the general PostReg 

framework, we can gain two insights: First, we obtain another angle to explain how domain 

knowledge is integrated with global and local data in KGL, i.e., domain knowledge is 

imposed to regularize the posterior of the model (not the prior nor by any other means). 

Second, KGL provides a realization of the general PostReg framework and enriches the 

problem set PostReg can potentially address. Although PostReg has been existing as a 

theoretical framework, KGL is the first effort that demonstrates practical utility of using 

the concept of PostReg to integrate local data, global data, and domain knowledge for 

spatial estimation. 

 

Figure 3.3 – Model training procedure for KGL 
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3.4 Application  

3.4.1 Data Collection and Pre-processing 

Glioblastoma (GBM) is the most aggressive type of brain tumor with median 

survival of 15 months [52]. Intra-tumor molecular heterogeneity has been found to be one 

of the leading causes of treatment failure. Tumor cell density (TCD) is an important 

molecular marker to inform surgical intervention and radiation therapy. TCD is the 

percentage of tumor cells within a spatial unit of the tumor. It is well-known that TCD is 

spatially heterogeneous, meaning that TCD varies significantly across different sub-

regions of each tumor [53] [54]. Mapping out the spatial distribution of TCD across each 

tumor is important for a neurosurgeon to determine where to resect. The mapping will also 

help radiation treatment planning by informing a radiation oncologist on how to optimize 

the spatial dose distribution according to the regional TCD. Such optimal decision is 

critical to avoid overtreating some areas of the brain – causing functional impairment, and 

undertreating other areas – leading to tumor recurrence. To know the TCD at each sub-

region of a tumor, biopsy is the gold-standard approach. However, due to its invasive 

nature, only a few biopsy samples can be taken. MRI portrays the entire brain non-

invasively. But MRI does not directly measure TCD while only providing proxy data. In 

this experiment, we apply KGL to predict regional TCD of each tumor by integrating MRI, 

biopsy samples, and mechanistic model/domain knowledge. 

Patients and biopsy samples: This study includes the data of 18 GBM patients 

provided by our collaborators at Mayo Clinic with IRB approval. Each patient has 2-14 

biopsy samples, making a total of 82 samples. Pre-operative MRI including T1-weighted 
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contrast-enhanced (T1+C) and T2-weighted sequences (T2) was used to guide biopsy 

selection. The neurosurgeons recorded biopsy locations via screen capture to allow 

subsequent co-registration with multiparametric MRI. The TCD of each biopsy specimen 

was assessed by a neuropathologist. 

MRI pre-processing and feature extraction: Each patient went through an MRI 

exam prior to treatment. The MRI exam produced multiple contrast images such as T1+C, 

T2, dynamic contrast enhancement (EPI+C), mean diffusivity (MD), fractional anisotropy 

(FA), and relative cerebral blood volume (rCBV). Detailed MRI protocols and image co-

registration can be found in our prior publications [55], [56]. To extract features, an 8x8 

pixel2 window was placed at each pixel as the center within a pre-segmented tumoral 

Region of Interest (ROI), which is the abnormality visible on T2. The window was slid 

throughout the entire ROI, and at each pixel, the average gray-level intensity was computed 

within the 8x8 pixel2 window from each of the six contrast images and used as features. 

Therefore, six image features were included in model training. 

Labeled and unlabeled samples: Biopsy samples are labeled samples as they have 

TCD. Samples corresponding to the sliding windows, except the windows at biopsy 

locations, are unlabeled as they only have image features not TCD.  

Mechanistic model: We integrate a well-known mechanistic model called 

Proliferation-Invasion (PI) [55] [57]. PI is a PDE-based simulator driven by biological 

knowledge of how GBM tumor cells proliferate and invade to sounding brain tissues. The 

PDE for the PI model is: 
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, 

where 𝑐(𝑥, 𝑡) is the TCD at location 𝑥 of the brain and time 𝑡, 𝐷(𝑥) is the net rate of 

diffusion, 𝜌 is the net rate of proliferation and K is the cell carrying capacity. Solutions to 

this model are known to asymptotically set up a traveling wave in spherical symmetry. This 

wave has two key properties 1) the radial wave speed, known to be 2√𝐷𝜌, and 2) the 

gradient of the wave front, which is known to be related to the ratio 𝐷/𝜌. By assuming 

different imaging sequences of T1+C and T2 correlate with different thresholds of density 

on the traveling wave, one can estimate the 𝐷/𝜌 and generate estimations of the current 

gradient/shape of the tumor cell density profile [58], [59]. In line with previous papers, the 

T1+C and T2 images of a patient are used to calibrate the model parameters assuming the 

abnormality on the T1+C image corresponds to the 80% tumor cell density threshold and 

the T2 image to the 16% tumor cell density. By estimating 𝐷/𝜌, we can generate the current 

TCD estimate at each pixel. The PI map can capture some general trend of the spatial TCD 

distribution but may lack localized precision due to simplified assumptions and with only 

𝐷/𝜌 estimated cannot be used to predict future growth. We run the PI simulator for each 

patient and generate a PI map to be integrated with KGL for this single time point of interest 

(see the next section).  

3.4.2 Application of KGL 

3.4.2.1 Integration of domain knowledge encoded by PI map  
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In KGL, domain knowledge is incorporated through imposing constraints on the 

predictive means of unlabeled samples, i.e., 𝐠( (𝑓𝐿+1), … ,  (𝑓𝐿+𝑈)) ≤ 𝛏. Due to the 

aforementioned properties of the PI map, we propose to use it to regularize the general 

spatial trend of the TCD predictions. Specifically, based on the pixel-wise estimates of 

TCD generated by PI, we compute the average estimate over 64 pixels within each 8x8 

pixel2 window corresponding to an unlabeled sample. Denote this average estimate for 

each unlabeled sample 𝑖 by 𝑃𝐼𝑖, 𝑖 = 𝐿 + 1, . . . , 𝐿 + 𝑈. The proposed constraints are: 

  {
𝑔1( (𝑓𝐿+1), … ,  (𝑓𝐿+𝑈)) ≜ | (𝑓𝐿+1) − 𝑃𝐼𝐿+1| ≤ 𝜉1

⋮
𝑔𝑈( (𝑓𝐿+1), … ,  (𝑓𝐿+𝑈)) ≜ | (𝑓𝐿+𝑈) − 𝑃𝐼𝐿+𝑈| ≤ 𝜉𝑈

,                           (3.19)  

𝑔𝑈+1( (𝑓𝐿+1), … ,  (𝑓𝐿+𝑈)) ≜ ∑ 𝑤𝑖𝑗 ( (𝑓𝑖) −  (𝑓𝑗))
2

𝑖=𝐿+1,…,𝐿+𝑈;𝑗>𝑖 ≤ 𝜉𝑈+1,     (3.20) 

     𝜉1, … , 𝜉𝑈+1 ≥ 0, ∑ 𝜉𝑖 ≤ 𝜖
𝑈+1
𝑖=1 ,                                         (3.21) 

where 𝑤𝑖𝑗 = 𝑒
−(𝑃𝐼𝑖−𝑃𝐼𝑗)

2

. The constraints in (3.19) encourage similarity between the 

predictive mean and the PI estimate at the same location (unbiopsied sample). Additionally, 

the constraint in (3.20) encourages the predictive means of two samples to be similar if 

their PI estimates are similar, where the PI similarity is reflected by 𝑤𝑖𝑗. Furthermore, 

considering that the PI map only provides approximates of the TCDs, a slack variable 

approach is used in (3.21) to make these constraints soft instead of hard constraints. 

3.4.2.2 Model training and competing methods  

Model training needs to determine the optimal parameter estimates 𝛉∗ of KGL and select 

the tuning parameters, 𝜆1 and 𝜆2. The training procedure is depicted in Figure 3.3. The 
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search for the optimal turning parameters is used as the outermost iteration. At fixed 𝜆1 

and 𝜆2, the KGL optimization is solved for each patient. The input to the patient-specific 

optimization includes labeled samples from other patients, unlabeled samples from this 

patient, and the PI map of this patient. To improve efficiency and robustness, a subset of 

the first 100 unlabeled samples with the smallest average distances from the labeled 

samples is included. The output is optimal parameters, 𝛉∗(𝜆1, 𝜆2). Then, the model under 

the optimal parameters is used to generate a predictive distribution of the TCD for each 

biopsy sample of this patient. The predictive means of all the biopsy samples are compared 

with the true TCDs to compute the Mean Absolute Prediction Error (MAPE). This process 

is iterated with every patient in the dataset treated as “this patient”, known as leave-one-

patient-out cross validation (LOPO-CV). While other types of CV schemes may be 

adopted, LOPO-CV aligns well with the natural grouping of samples in our dataset. Finally, 

the best tuning parameters 𝜆1
∗  and 𝜆2

∗  are selected as the ones minimizing the average MAPE 

over all the patients. Under the 𝜆1
∗  and 𝜆2

∗ , the KGL optimization is solved for each patient 

to generate the final optimal parameters 𝛉∗for the patient. 

For comparison, we applied a range of competing algorithms to the same dataset, 

including: 

1) The mechanistic model, i.e., PI; 

2) The standard GP [53], i.e., a GP model trained using only biopsy samples;  

3) Semi-GP: A semi-supervised GP model based on a data-dependent covariance 

function for unlabeled data [60]; 

4) Co-training SVR-KNN: an SSL algorithm based on co-training with support 

vector regression (SVR) and k-nearest neighbors (KNN) [61]; 
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5) SSRR-AGLP: semi-supervised ridge regression with adaptive graph-based label 

[62]; 

6) SS-RT: semi-supervised regression trees [63]; 

7) SAFER: SAFE semi-supervised Regression [64]; 

8) KGL with no variance reduction: this is a special case of KGL without the 

constraint on predictive variances; 

9) KGL with random unlabeled sample selection: this is a special case of KG by 

randomly selecting 100 unlabeled samples to include in model training. 

The two GP models in 2) and 3) were chosen to form the baseline to compare with KGL. 

4)-7) are existing SSL algorithms, each representing a major category of SSL: co-training, 

graph-based, and low-density separation for 4)-6), respectively, and an integrated 

framework to combine multiple SSL algorithms for 7). These algorithms were developed 

in recent years. 8) and 9) are two special cases of KGL: 8) intends to show the benefit of 

bias-variance tradeoff of KGL. 9) adopts an alternative strategy by randomly selecting 100 

unlabeled samples to include in training, as opposed to selecting the top 100 unlabeled 

samples with the smallest average distances from the labeled samples. The parameters of 

each algorithm were optimized based on the same LOPO-CV criterion as KGL.  

B.3 Generation of predicted TCD maps and uncertainty quantification 

For the three GP-based methods, the trained model of each method can be used to 

generate a predictive distribution of the TCD for each sample (i.e., each sliding window) 

within the ROI. The predictive means of all the samples can be visualized by a color map 
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overlaid on the ROI. Also, we can use the predictive variances to quantify prediction 

uncertainty. 

3.4.2.3 Results 

Table 3.2 compares all methods for MAPE. Only GP-based methods can produce 

predictive variance, so they are additionally compared in terms of average predictive 

variance for biopsy samples. The last three KGL methods have the smallest MAPE. Their 

average predictive variances are also much smaller than the two existing GP-based 

methods. Among the three KGL methods, the last one performs the best, implying the 

benefit of including the variance constraint and adopting a more robust unlabeled sample 

selection strategy.  

Figure 3.4 compares standard GP, semi-GP, and KGL in terms of the average 

predictive variance for all samples (i.e., sliding windows) within the ROI for each patient. 

KGL has a smaller MAPE. The predictive variances by KGL are much reduced for all 

samples and across all patients, implying greater certainty in the prediction (Averages 

across all patients: Standard GP=0.032; Semi-GP=0.032; KGL=0.014 (56% variance 

reduction compared with the other two methods)).  

Furthermore, Figure 3.5 shows the predictive TCD maps from two patients as 

examples. Colors represent predictive means of the TCD from 0 (darkest blue) to 100% 

(darkest red). Below each map, we also show the distribution of the predictive variances 

for samples within the ROI. Patient A has one biopsy sample shown on this slice of the 

MRI. Both standard GP and semi-GP underestimate the TCD of this sample by a large 

margin, whereas KGL has a higher accuracy. Patient B has two biopsy samples for which 
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KGL estimates with higher accuracy. Also, the color maps produced by KGL show better 

spatial smoothness and aligns better with the expected tumor cell distributions from known 

biology, especially for the color map of patient B. This is a benefit due to incorporation of 

the PI map/domain knowledge in model training. Furthermore, the predictive variance 

distribution by KGL is much more concentrated at the low variance range, whereas 

standard GP and semi-GP produce predictions with large variances (large uncertainty). In 

all, KGL outperforms the other two methods in both prediction accuracy, prediction 

certainty, and compliance to biological knowledge.   

 

Figure 3.4 – Comparison of methods on average predictive variance of unlabeled 

samples for each patient 
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Figure 3.5 – Predicted means of TCD within a ROI shown as a color map overlaid 

on the patient’s T2 MRI; predicted variances shown in distribution 

 

3.4.2.4 Discussion on utilities of the results to decision making in Precision Medicine 

With the predicted TCD map for each patient, the neurosurgeon can have a better 

reference to decide where of the brain to take out more (or less) cancerous tissues. Areas 

with high TCD should be maximally resected. Areas with little TCD should be preserved 

so as to protect the integrity of brain functions. This level of spatial precision is highly 

valuable for optimizing the surgical outcomes of GBM. Furthermore, the predicted TCD 

maps can also help radiation oncologists decide how to optimize the spatial radiation dose 

in radiation therapy. Areas with higher TCD should be irradiated more to kill the cancer 

cells, whereas areas with lower TCD should receive less dose to minimize radiation-

induced complications. This level of spatial precision is much desirable for radiation 

treatment planning optimization. Finally, we like to point out that since KGL also generates 

a predictive variance in addition to the mean for each sample, the variance can be used to 
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quantify the uncertainty of the prediction to guide more informed and risk-conscious 

clinical decision making.  

Table 3.2  –  Comparison of methods on prediction of biopsy samples 

Methods MAPE Average predictive variance  

PI 0.252 - 

Standard GP 0.191  0.038 

Semi-GP 0.189 0.039 

Co-training SVR-KNN 0.243 - 

SSRR-AGLP 0.201 - 

SS-RT 0.231 - 

SAFER 0.223 - 

KGL (no variance reduction) 0.174 0.023 

KGL (random unlabeled sample 

selection) 

0.171 0.018 

KGL 0.165 0.015 

 

3.5 Conclusion and Discussion  

We proposed a novel machine learning framework, KGL, to optimally fuse multiple 

sources of data/information to predict the spatial distribution for a variable of interest. KGL 

was demonstrated in an application of predicting the spatial TCD distribution for GBM, 

and showed superior performance over competing methods. Future research includes 

methodological extension to non-numerical response variables, optimal selection of 

unlabeled samples, and development of more efficient optimization solvers.  
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CHAPTER 4. WEAKLY SUPERVISED ORDINAL LEARNING 

FOR INTRA-TUMOR MULTI-GENE PREDICTION USING MRI  

This chapter is based on paper “Quantifying Intra-tumoral Genetic Heterogeneity of 

Glioblastoma toward Precision Medicine using MRI and a Data-inclusive Machine 

Learning Algorithm”, submitted to Computer Methods and Programs in Biomedicine, 

2022.  

4.1 Background 

Glioblastoma (GBM) remains one of the most aggressive and lethal of all human 

cancers.  The current treatment regimen only increases the median overall survival to about 

15 months [65]. This lack of substantial survival benefit, despite best available standard 

therapy, has motivated efforts to identify the underlying factors contributing to poor 

clinical outcomes.  

One of the important factors contributing to GBM complexity is the intra-tumoral 

genetic heterogeneity [56] [66], which been cited as a clinical challenge for treatment [67]. 

Each tumor is comprised of genetically distinct subpopulations with different sensitivities 

to treatment. As a result, genetic targets from one biopsy location may not accurately reflect 

those from other parts of the same tumor [66]. Worse yet, given the invasive nature of the 

disease, diffusely invaded GBM cells are always left behind in the brain even after 

resection, and these remaining regions may be genetically distinct to the biopsy samples 

collected during surgery [68]–[70]. The region-to-region genetic variability provides 

potential mechanisms for therapeutic escape and makes single targeted therapies less 
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effective [71]. For instance, EGFR represents the one of the most common gene driver 

alterations in GBM and has been implicated in several pathogenic mechanisms.  Targeted 

drug therapies directed at EGFR as well as other receptor tyrosine kinases (RTKs) such as 

PDGFRA have been developed  [72] [73]. However, co-expression of other common 

genetic driver alterations such as PTEN loss/deletion/mutation have been implicated as a 

mechanism of resistance against RTK inhibitors by upregulation of the PI3K signaling 

pathway [74] [75].  This resistance mechanism with enhanced PI3K signaling could 

explain the poor clinical outcomes despite EGFR targeted drug therapies in previous 

clinical trials [75] [76]. This underscores the importance of identifying how the key genetic 

alteration combinations vary from region to region across each individual tumor to inform 

future treatment regimens. 

There are substantial challenges for quantifying intra-tumoral genetic heterogeneity 

of GBM. Ideally, one would need to have biopsy samples taken from many different 

regions of a tumor and perform genetic analysis of each sample. This, however, is 

infeasible due to the invasive nature of biopsy. Although the central tumor mass can often 

be surgically removed, the invasive portions of the tumor are often left unresected and 

unbiopsied given the risk to adjacent neurologic structures. Thus, biopsy alone is 

insufficient to characterize the full landscape of the intra-tumoral heterogeneity [10][14].  

Neuroimaging such as MRI provides a non-invasive means to evaluate the whole 

tumor (indeed the entire brain), which may be used to help quantify intra-tumoral genetic 

heterogeneity. Genetic variations of GBM result in alterations in biological characteristics 

of the tumor that may include changes in apoptosis, cellular proliferation, cellular invasion, 

and angiogenesis [77]. These biological changes, in turn, manifest physiological changes 
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that are detectable by a combination of MRI sequences [66].  Thus, developing a machine 

learning (ML) model that utilizes MRI features to predict genetic characteristics could 

provide a non-invasive means to quantify intra-tumoral genetic heterogeneity [78] [66] 

[79].  

The emerging field of radiogenomics has shown the feasibility of using MRI 

features to predict genetic status in individualized oncology. Previous studies have 

investigated the use MRI features to predict the EGFR status of GBM patients. Akbari et 

al. [80] extracted multiparametric MRI features from tumor regions and trained a Support 

Vector Machine (SVM) to predict EGFRvIII Mutation. Tykocinski et al. [81] used 

multivariable logistic regression to predict EGFRvIII mutation based on features extracted 

from perfusion-weighted MRI. Kickingereder et al. [82] used common classifiers such as 

stochastic gradient boosting machine, random forest, and logistic regression to predict the 

copy number variant (CNV) status of several GBM driver genes such as EGFR, PDGFRA, 

and PTEN based on multiparametric MRI. Chen et al. [83] built a convolutional neural 

network to predict PTEN mutation using multiparametric MRI. There are also studies to 

classify GBM tumors into subtypes in terms of IDH mutation status [84] [85] or MGMT 

methylation status [86] as these subtypes have been reported to have different prognoses 

[87].  

However, most of these published studies are non-localized, which extracted MRI 

features from large tumoral regions to predict the overall genetic status of the tumor. They 

remain incapable of resolving the intra-tumoral/regional genetic heterogeneity of a GBM 

tumor. The study by Hu et al. [78] is among the first ones to train ML models to predict 
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regional CNV status of several driver genes within each tumor based on localized 

multiparametric MRI features. In a more recent work, Hu et al. [79] developed a 

transductive learning algorithm to reduce the uncertainty of ML in predicting regional 

CNV of EGFR. Two recent review papers pointed out the importance of having more 

studies like these to resolve intra-tumoral genetic heterogeneity [23] [24].  

The ML algorithms used in these existing studies are mainly supervised learning 

models, in which the model training uses biopsy samples (a.k.a. labeled samples) only. The 

limitation is that only a small number of biopsy samples can be acquired from each patient. 

On the other hand, since MRI images are readily available for the whole tumoral area 

(indeed the entire brain), there is an opportunity to include MRI features outside the 

biopsied regions of the tumor as unlabeled samples. Integrating unlabeled and labeled 

samples is known as semi-supervised learning (SSL). In our application, including 

unlabeled samples is not only possible but also necessary. This is because our final goal is 

to generate predictions for the large amount of unbiopsied regions, which will help 

understand the full landscape of regional genetic heterogeneity to drive treatment decision 

for each patient. If the predictive model was trained using only biopsy samples, the 

generalization performance of the model could be unsatisfactory. SSL is known to improve 

generalization performance [90]. Existing SSL algorithms fall into several categories such 

as generative methods [91], low-density separation [92], disagreement-based [93] and 

graph-based algorithms [94]. If directly using these algorithms, one could include 

biopsy/labeled samples and unlabeled samples from the parts of the tumor not being 

biopsied. However, this strategy is still not optimal as it overlooks the MRI features outside 

the tumoral area, i.e., the normal brain. Training an ML model to differentiate the normal 
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brain from tumor may help the model further learn how to differentiate the regions with 

and without a particular genetic alteration within the tumor. This motivates us to develop 

a data-inclusive ML algorithm called Weakly-Supervised Ordinal SVM (WSO-SVM), 

which integrates all sources of data to train a robust model. The contributions of this paper 

are summarized as follows:  

• We target an emerging biomedical field that aims to quantify the intra-tumoral 

genetic heterogeneity of GBM. There is limited existing work. The biomedical 

impact of this work is to allow non-invasive prediction of regional genetic alteration 

using MRI for each patient, which can inform future development of adaptive 

therapies for individualized oncology.   

• We propose a new data-inclusive ML model, WSO-SVM, that trains robust 

classifiers to predict regional genetic alteration status within each GBM tumor 

using MRI. The novelty of this model is to leverage a combination of data sources 

including biopsy/labeled samples and unlabeled samples from the tumor and image 

data from the normal brain. This capability differentiates WSO-SVM from existing 

supervised learning and SSL algorithms.  

• Based on a real-world dataset of 74 GBM patients, we demonstrate that WSO-SVM 

works significantly better than a variety of existing ML algorithms for predicting 

the regional genetic alteration of several GBM driver genes.  

4.2 Weakly-Supervised Ordinal SVM (WSO-SVM) 
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We first discuss the WSO-SVM specially for GBM data in Section 4.2.1, and then 

interpret uncertainty qualification in Section 4.2.2. Finally we will discuss the extension of 

WSO-SVM to general case on weakly supervised learning in Section 4.2.3. 

4.2.1 Mathematical Formulation  

WSO-SVM integrates three sources of data: (a) Labeled/biopsy samples, (𝑥𝑖, 𝑦𝑖), 

where 𝑦𝑖 = 1 𝑜  2 denotes the altered or non-altered class of a gene for the 𝑖-th biopsy 

sample and 𝑥𝑖 contains image features extracted from the sliding window at the biopsy 

location. For notation convenience, we denote the collection of biopsy samples by 𝐷(1) ∪

𝐷(2) = (𝑥𝑖
(1)
)
𝑖=1

𝑛1
∪ (𝑥𝑖

(2)
)
𝑖=1

𝑛2
, where 𝑥𝑖

(1)
 and 𝑥𝑖

(2)
 denote the image features from class 1 

and 2 with 𝑛1 and 𝑛2 samples, respectively. (b) Unlabeled samples from t-ROI, 𝐷(12) =

(𝑥𝑗
(12)
)
𝑗=1

𝑚12
′

; we do not know if these samples belong to class 1 or 2. (c) Normal brain 

samples from c-ROI, 𝐷(3) = (𝑥𝑘
(3)
)
𝑘=1

𝑚3
, which are assigned to class 3.  

Our ultimate goal is to build a robust classifier to differentiate class 1 and 2. A 

conventional supervised learning algorithm would use the data in (a) alone. A conventional 

SSL algorithm would use (a) and (b) alone. Our proposed WSO-SVM integrates all the 

data in (a), (b), (c) by exploiting the intrinsic order of class 1, 2, 3, which correspond to 

decreasing abnormality, to build an ordinal classifier. Different from conventional ordinal 

classification algorithms trained using labeled samples in each class, WSO-SVM 

additionally leverages unlabeled samples in (b) and imposes a mathematical constraint to 

“teach” the model that these samples should not be classified to class 3 even though their 

true membership to class 1 or 2 is unknown.  
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Next, we introduce the details of the WSO-SVM design. WSO-SVM aims to build 

two discriminant functions, 𝑓1 and 𝑓2, to differentiate altered samples (class 1) vs. non-

altered samples (class 2) and tumoral samples (class 1&2) vs. normal brain samples (class 

3), respectively, with a constraint of 𝑓1 ≤ 𝑓2 to retain the intrinsic order of the three classes. 

Let 𝑓1 = ℎ + 𝑏1, 𝑓2 = ℎ + 𝑏2, with 𝑏1 ≤ 𝑏2 and ℎ being a shared function. We adopted 

the support vector formulation for ℎ due to the success of SVM in various applications, 

and let ℎ(𝑥) = 𝑤𝑇𝜙(𝑥), which 𝜙 contains non-linear transformations of the features. 

Then, we construct WSO-SVM as the following optimization problem:  

min
1

2
𝑤𝑇𝑤 

subject to:                                                                         

𝑤𝑇𝜙(𝑥𝑖
(1)
) + 𝑏1 ≥ 1 − 𝜉𝑖

(1)
;  𝑖 ∈ 1,… , 𝑛1  (𝑥𝑖

(1)
∈ 𝐷(1))

𝑤𝑇𝜙(𝑥𝑖
(2)
) + 𝑏1 ≤ −1 + 𝜉𝑖

(2)
;  𝑖 ∈ 1,… , 𝑛2  (𝑥𝑖

(2)
∈ 𝐷(2))         

∑ 𝜉𝑖
(1)𝑛1

𝑖=1 + ∑ 𝜉𝑖
(2)𝑛2

𝑖=1 ≤ 𝜖                                             

𝜉𝑖
(1)
≥ 0,  𝑖 = 1,… , 𝑛1;       𝜉𝑖

(2)
≥ 0,  𝑖 ∈ 1,… , 𝑛2           }

 
 

 
 𝑚 𝑥 −𝑚  𝑔𝑖𝑛 𝑠𝑒𝑝   𝑡𝑖𝑜𝑛
 𝑏𝑒𝑡𝑤𝑒𝑒𝑛  𝑙𝑡𝑒 𝑒𝑑 (𝑐𝑙 𝑠𝑠 1) 
𝑣𝑠. 𝑛𝑜𝑛 −  𝑙𝑡𝑒 𝑒𝑑 (𝑐𝑙 𝑠𝑠 2) 

𝑠 𝑚𝑝𝑙𝑒𝑠
 
  

𝑤𝑇𝜙(𝑥𝑗
(12)
) + 𝑏2 ≥ 1 − 𝜁𝑗

(12);  𝑗 = 1,… ,𝑚12( 𝑥𝑗
(12)

∈ 𝐷(1) ∪ 𝐷(2) ∪ 𝐷(12))

𝑤𝑇𝜙(𝑥𝑘
(3)
) + 𝑏2 ≤ −1 + 𝜁𝑘

(3);  𝑘 ∈ 1,… ,𝑚3(𝑥𝑘
(3)
∈ 𝐷(3))                             

    

             ∑ 𝜁𝑗
(12)𝑚12

𝑗=1 + ∑ 𝜁𝑘
(3)𝑚3

𝑘=1 ≤ 𝑒                                                                          

𝜁𝑗
(12)

≥ 0, 𝑗 = 1, … ,𝑚12;  𝜁𝑘
(3) ≥ 0, 𝑘 ∈ 1,… ,𝑚3                                }

  
 

  
 
𝑚 𝑥 − 𝑚  𝑔𝑖𝑛 𝑠𝑒𝑝   𝑡𝑖𝑜𝑛
 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑡𝑢𝑚𝑜  𝑙 (𝑐𝑙 𝑠𝑠 

1&2) 𝑣𝑠. 𝑛𝑜 𝑚 𝑙 𝑏  𝑖𝑛

(𝑐𝑙 𝑠𝑠 3) 𝑠 𝑚𝑝𝑙𝑒𝑠 

  

𝑏1 ≤ 𝑏2                                                                  
 

}      
 𝑜𝑏𝑒𝑦 𝑖𝑛𝑡 𝑖𝑛𝑠𝑖𝑐 𝑜 𝑑𝑒  𝑜𝑓 

𝑜 𝑑𝑖𝑛 𝑙 𝑐𝑙 𝑠𝑠𝑒𝑠 
  

(4.1) 
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All notations in (4.1) have been previously defined except that 𝑚12 = 𝑛1 + 𝑛2 +

𝑚12
′  is the total sample size of labeled and unlabeled samples from t-ROI. WSO-SVM 

minimizes the model complexity under a set of constraints. The first block of constraints 

aims to achieve max-margin separation between class 1 and class 2, where 𝜉𝑖
(1)

 and 𝜉𝑖
(2)

 

are slack variables to achieve soft-margin similar to SVM. The second block aims to 

achieve max-margin separation between class 1&2 and class 3 with  𝜁𝑗
(12)

 and 𝜁𝑘
(3)

 being 

slack variables. 𝜖 and 𝑒 are tuning parameters. The last constraint is to enforce the 

discriminant functions to obey the intrinsic order of the three ordinal classes.   

It is easier to solve the WSO-SVM optimization in its dual form which is given in 

Proposition 4.1 (See the proof in Appendix E).  

Proposition 4.1: The dual form of the primal WSO-SVM optimization problem in (4.1) is:  

𝑚𝑖𝑛
𝛼,𝛽

  
1

2
𝛾𝑇𝑌𝐾𝑌𝛾 − ∑ 𝛼𝑖

(1)𝑛1
𝑖=1 − ∑ 𝛼𝑖

(2)𝑛2
𝑖=1 − ∑ 𝛽𝑗

(12) 
𝑚12
𝑗=1 − ∑ 𝛽𝑘

(3) 
𝑚3
𝑘=1 , 

      subject to:   

∑ 𝛼𝑖
(1)𝑛1

𝑖=1 − ∑ 𝛼𝑖
(2)𝑛2

𝑖=1 +∑ 𝛽𝑗
(12)𝑚12

𝑗=1 − ∑ 𝛽𝑘
(3)𝑚3

𝑘=1 = 0,                                 

∑ 𝛼𝑖
(1)𝑛1

𝑖=1 − ∑ 𝛼𝑖
(2)𝑛2

𝑖=1 ≥ 0, 

0 ≤ 𝛼𝑖
(1) ≤ 𝐶1, 𝑖 = 1, . . . , 𝑛1; 0 ≤ 𝛼𝑖

(2) ≤ 𝐶1, 𝑖 = 1, . . . , 𝑛2,                        

0 ≤ 𝛽𝑗
(12) ≤ 𝐶2, 𝑗 = 1, . . . , 𝑚12;  0 ≤ 𝛽𝑘

(3) ≤ 𝐶2, 𝑘 = 1, . . . , 𝑚3,                         

where 𝛾 = (𝛼1
(1)
, … , 𝛼𝑛1

(1)
, 𝛼1
(2)
, … , 𝛼𝑛2

(2)
, 𝛽1
(12)
, … , 𝛽𝑚12

(12)
, 𝛽1
(3)

 , … , 𝛽𝑚3
(3)
),  
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𝑌 = 𝑑𝑖 𝑔 (1, . . . ,1⏞    
𝑛1

, −1, . . . , −1⏞      
𝑛2

, 1, . . . ,1⏞    
𝑚12

 ,  −1, . . . , −1⏞      
𝑚3

), and 𝐾 is a covariance matrix with 

𝐾𝑖𝑗 = 𝜙(𝑥𝑖)
𝑇𝜙(𝑥𝑗) = 𝑘(𝑥𝑖, 𝑥𝑗) that can be computed by a kernel function defined on the 

feature space. 𝐶1 and 𝐶2 are tuning parameters.  

The dual problem is a convex quadratic programming problem, which can be solved 

by a standard quadratic optimization solver such as CPLEX. 

Once the optimal solutions of 𝛼 and 𝛽 in the dual problem are obtained, we can 

obtain the optimal coefficients in the primal problem, 𝑤, and further get ℎ(𝑥) =

∑ 𝛼𝑖
(1)
𝑘(𝑥, 𝑥𝑖

(1)
)

𝑛1
𝑖=1 −  ∑ 𝛼𝑖

(2)
𝑘(𝑥, 𝑥𝑖

(2)
)

𝑛2
𝑖=1 +

∑ 𝛽𝑗
(12)
𝑘(𝑥, 𝑥𝑗

(12)
)

𝑚12
𝑗=1 −  ∑ 𝛽𝑘

(3)
𝑘(𝑥, 𝑥𝑘

(3)
)

𝑚3
𝑘=1 . Also, 𝑏1 and 𝑏2 can be estimated as: 𝑏1 =

𝑦 − ℎ(𝑥) for any (𝑥, 𝑦) ∈ 𝐷(1) (or 𝐷(2)) whose corresponding 𝛼
(1)

 (or 𝛼
(2)
) satisfies 0 <

𝛼
(1)(or 𝛼

(2) < 𝐶1); 𝑏2 = 𝑦 − ℎ(𝑥) for any (𝑥, 𝑦) ∈ 𝐷(1) ∪ 𝐷(2) ∪ 𝐷(12)(or 𝐷(3)) whose 

corresponding 𝛽
(12)

 ( or 𝛽
(3)
) satisfies 0 < 𝛽

(12)(𝑜  𝛽
(3) < 𝐶2). Then, we can obtain the 

discriminant functions for any new sample 𝑥∗, i.e.,   𝑓1(𝑥
∗) = 𝑠𝑖𝑔𝑛(ℎ(𝑥∗) + 𝑏1) and 

𝑓2(𝑥
∗) = 𝑠𝑖𝑔𝑛(ℎ(𝑥∗) + 𝑏2). The decision rule for classifying the new sample 𝑥∗ is: it 

belongs to class 1 if 𝑓1(𝑥
∗) ≥ 0, to class 2 if 𝑓1(𝑥

∗) < 0 & 𝑓2(𝑥
∗) ≥ 0, and to class 3 if 

𝑓2(𝑥
∗) < 0.  

4.2.2 Uncertainty Quantification   

Calibration in statistics aims to calibrate the predictive uncertainty of individual 

samples. It can be applied to both regression and classification problems. In regression, it 

aims to estimate other values of the independent variable from the new observations of 



 62 

dependent variable, which is also well known as inverse regression [96]. Calibration in 

classification aims to infer the classification probability with the classification score. There 

are various methods for calibrating, including assignment value approach [97], Bayes 

approach [98], Isotonic regression [99], Beta calibration [100]. In this chapter, Beta 

calibration via logistic regression will be adopted, which is a most popular, well-founded 

and easily implemented method for calibrating compared to other methods [100]. Beta 

calibration via logistic regression takes advantage of training data, model output score 

vectors on training instances, as well as output score vector on test instances, with the 

detailed algorithm shown in [100]. 

4.2.3 Extension and Discussion 

The work can be extended to the general framework of weakly supervised ordinal 

learning with 𝐾 ordinal classes. Let 𝒳 = ℝ𝑑 be the 𝑑-dimensional feature space and 𝒴 = 

{1, … , 𝐾} be the label space. Different from multi-class classification, the consecutive 

integers in {1, … , 𝐾} follow an order. In this dissertation, we use ‘labels’ and ‘classes’ 

interchangeable to refer to the integers contained in 𝒴.  

A typical ordinal model consists of a set of ranking functions, 𝑓𝑘, 𝑘 = 1, . . . , 𝐾 − 1, 

which satisfy the constraint of 𝑓1 ≤ ⋯ ≤ 𝑓𝐾−1 . To predict the label for a sample 𝐱, one 

can compute the outputs from the ranking functions for this sample, 𝑓1(𝐱),…, 𝑓𝐾−1(𝐱). 

Then, the predicted label can be obtained by 

𝐽(𝐱) =   𝑔 𝑚𝑖𝑛
𝑘=1,...,𝐾−1

{𝑘: 𝑓𝑘(𝐱) ≥ 0} = 1 + ∑ 𝐼(𝑓𝑘(𝐱) < 0)
𝐾−1
𝑘=1 .               (4.2) 
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where 𝐼(∙) is an indicator function. That is, the predicted label is the number of negative 

ranking functions in the sequence plus one. For example, if all ranking functions are non-

negative, the predicted label is 1; if all ranking functions are negative, the predicted label 

is 𝐾; if the first k (1 ≤ 𝑘 < 𝐾 − 1) ranking functions are negative and the remaining ones 

are non-negative, the predicted label is 𝑘 + 1.   

Furthermore, the ranking functions can be decomposed into a common function 

and class-specific intercepts, 𝑓𝑘(𝐱) = ℎ(𝐱) + 𝑏𝑘 with 𝑏1 ≤ ⋯ ≤ 𝑏𝐾−1. ℎ(𝐱) = 𝜼
𝑇𝜙(𝐱), 

where 𝜙 includes transformations of the feature vector 𝐱 and 𝜼 contains the combination 

coefficients. Depending on the form of 𝜙, the WSO model can be linear or non-linear. A 

training dataset is needed to learn the parameters such as 𝜼, 𝑏1, . . . , 𝑏𝐾−1.   

Consider a training dataset of 𝑛 samples, {(𝐱𝑖, ℱ𝑖), 𝑖 = 1, … . , 𝑛}. In the 

conventional ordinal learning setting, every training sample must have one and only one 

label. WSO allows the training set to include samples with interval labels, i.e., ℱ𝑖 =

[𝑌𝑖
𝑙 , 𝑌𝑖

𝑟] ⊆ 𝒴. For example, a sample may have an interval label of [2,4], meaning that the 

sample can be from class 2, 3, or 4, but we do not know which precise class it is from. HOL 

can incorporate samples with both interval and precise labels. When 𝑌𝑖
𝑙 < 𝑌𝑖

𝑟, ℱ𝑖 denotes 

the interval label. When 𝑌𝑖
𝑙 = 𝑌𝑖

𝑟, ℱ𝑖 denotes the precise label.  

The goal of WSO is to learn an ordinal learning model based on a training set with 

the aforementioned characteristics. This can be formulated as the following optimization 

problem:  

                              𝑚𝑖𝑛
𝐟=(𝑓1,...,𝑓𝐾−1)

∑ 𝐿(𝐽(𝐱𝑖), ℱ𝑖)
𝑛
𝑖=1 + 𝜇||𝐟||

ℋ
,                                         
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s.t., 𝑓1 ≤ ⋯ ≤ 𝑓𝐾−1,                                                               (4.3) 

where 𝐿 is a loss function defined on the training set, ||∙||
ℋ

 is a norm in a metric space ℋ 

to regularize the complexity of the ranking functions, and 𝜇 controls the trade-off between 

the loss and model complexity. Because ℱ𝑖 can be an interval, commonly used loss 

functions for supervised learning models are not applicable.  

In this dissertation, we focus on one specific form of the loss function for 

computational ease, i.e., the 0/1 loss: A loss of ‘1’ is incurred if the predicted label 𝐽𝑖 falls 

outside the true interval ℱ𝑖, and the loss is ‘0’ otherwise, i.e.,  

𝐿0/1(𝐽𝑖, ℱ𝑖) = 𝐼(𝐽𝑖 ∉ ℱ𝑖).                                              (4.4) 

Here we provide an example to illustrate these loss functions. Consider a sample 

with true label interval [2,4]. Under the 0/1 loss, if the predicted label is 6, the loss is 1.   

It is difficult to solve the WSO optimization in (4.3) especially when the ranking 

functions 𝑓1, . . . , 𝑓𝐾−1 are non-linear. This is because the ranking functions are embedded 

in the loss functions in a complicated form, which makes the optimization intractable. To 

tackle this challenge, we propose a conversion method that converts the original WSO 

optimization into an equivalent formulation of learning 𝐾 − 1 binary classifiers with 

coupled parameters. Because binary classification has been much better studied in the 

literature, this conversion allows us to borrow ideas from binary classification to effectively 

and efficiently solve the WSO optimization.   
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Specifically, consider each ranking function 𝑓𝑘 to be a binary classifier: if 𝑓𝑘(𝐱) >

0, 𝐱 is classified to the interval [1, 𝑘]; otherwise, 𝐱 is classified to the interval [ 𝑘 + 1,𝐾]. 

To train 𝑓𝑘, we use a subset of training samples whose label ℱ𝑖 is included in [1, 𝑘] or [ 

𝑘 + 1,𝐾]. This is a subset of the whole training set because we cannot include samples 

whose label interval includes 𝑘. Denote this subset by 𝐷𝑘 = {(𝐱𝑖, ℱ𝑖)| 𝑌𝑖
𝑟 = 𝑘 or 𝑌𝑖

𝑙 =

 𝑘 + 1;  𝑖 = 1,… , 𝑛}.  Next, we can define the loss function of training  𝑓𝑘 as: 

∑   𝐼(𝑍𝑘,𝑖𝑓𝑘(𝐱𝑖) < 0)𝑖∈𝐷𝑘
, 

where 𝑍𝑘,𝑖 = 1 𝑜  − 1 corresponds to ℱ𝑖 ⊆ [1, 𝑘] or ℱ𝑖 ⊆ [ 𝑘 + 1, 𝐾], respectively. A 

loss of ‘1’ is incurred for a sample if the predicted and the true classes of the sample do not 

agree.  Finally, we can sum up the loss of each 𝑓𝑘 and get the total loss for training the 𝐾 −

1 binary classifiers simultaneously, i.e.,  

ℬ(𝑓, 𝑍) ≜ ∑ ∑   𝐼(𝑍𝑘,𝑖𝑓𝑘(𝐱𝑖) < 0)𝑖∈𝐷𝑘
𝐾−1
𝑘=1 .                         (4.5) 

Theorem 4.1 proves that ℬ(𝑓, 𝑍) is equivalent to the WSO loss in (4.3).  

Theorem 4.1: Let 𝐿(𝐽, ℱ) ≜ ∑ 𝐿(𝐽(𝐱𝑖), ℱ𝑖)
𝑛
𝑖=1  denote the WSO loss in (4.3). ℬ(𝑓, 𝑍) is the 

total loss of 𝐾 − 1 binary classifiers based on 𝑓1, . . . , 𝑓𝐾−1, as defined in (4.5). Then, 

𝐿(𝐽, ℱ) = ℬ(𝑓, 𝑍).  

Based on Theorem 1, we can convert the WSO optimization in (4.3) into an 

equivalent form as: 

                     𝑚𝑖𝑛
𝐟=(𝑓1,...,𝑓𝐾−1)

∑ ∑   𝐼(𝑍𝑘,𝑖𝑓𝑘(𝐱𝑖) < 0)𝑖∈𝐷𝑘
𝐾−1
𝑘=1 + 𝜇||𝐟||

ℋ
,                                                
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s.t., 𝑓1 ≤ ⋯ ≤ 𝑓𝐾−1.                                                              (4.6) 

To solve this optimization problem is to train 𝐾 − 1 binary classifiers with coupled 

parameters in 𝑓1, . . . , 𝑓𝐾−1, which is more tractable than solving the original optimization. 

To solve the optimization in (4.6), we first propose to use a hinge loss as a surrogate for 

the indicator function in (4.6) to make the optimization more tractable and efficient to 

solve. The hinge loss is a convex upper bound of the indicator function. Using the hinge 

loss and spelling out the ranking functions as 𝑓𝑘(𝐱𝑖) = 𝜼
𝑇𝜙(𝐱𝑖) + 𝑏𝑘, (4.6) becomes:  

        𝑚𝑖𝑛
𝜼,𝑏1,...,𝑏𝐾−1

∑ ∑  max (0,1 − 𝑍𝑘,𝑖(𝜼
𝑇𝜙(𝐱𝑖) + 𝑏𝑘))𝑖∈𝐷𝑘

𝐾−1
𝑘=1 + 𝜇||𝜼||

ℋ
,                                                

s.t., 𝑏1 ≤ ⋯ ≤ 𝑏𝐾−1.                                                              (4.7) 

The constraint in (4.7) enforces the set of discriminative ranking functions. It is clear to see 

that WSO-SVM for GBM data is a special case of the formulation of (4.7) with three 

ordinal classes, i.e., 𝐾 = 3. 

Next, we will present the algorithms for solving (4.7) under the 0/1 loss. It is easier 

to solve the WSO optimization in its dual form which is given in Proposition 4.2.  

Proposition 4.2: The dual form of the primal WSO-SVM optimization problem in (4.7) is:  

𝑚𝑖𝑛
𝜼,𝝃

1

2
||𝜼||

2
+ 𝐶 ∑ ∑ 𝜁𝑖

𝑘
𝑖∈𝐷𝑘

𝐾−1
𝑘=1   

s.t.,  𝑍𝑘,𝑖(𝜼
𝑇𝜙(𝐱𝑖) + 𝑏𝑘) ≥ 1 − 𝜁𝑖

𝑘; 

𝜁𝑖
𝑘 ≥ 0; 
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𝑖 ∈ 𝐷𝑘 , 𝑘 = 1,… , 𝐾 − 1; 

𝑏1 ≤ ⋯ ≤ 𝑏𝐾−1.  

The dual problem is a convex quadratic programming problem. When the sample 

size is small, it can be solved directly by a standard quadratic optimization solver such as 

CPLEX. When the sample size is large, we can use Sequential minimal optimization 

(SMO) algorithm for efficient computation [101]. 

4.3 Application  

4.3.1 Data Collection 

This study used data from a cohort of 74 GBM patients with IRB approval from 

Barrow Neurological Institute (BNI) and Mayo Clinic Arizona (MCA). A total of 318 

biopsy samples were acquired from these patients (average: 4; range: 1-13). Array CGH 

data on a subset of biopsy samples was available as previously described [15] [16]. Whole 

exome sequencing (WES) was performed on the remaining biopsy samples and their paired 

blood samples. Quality control was performed on raw sequencing data using the MultiQC 

toolkit. Paired-end clean reads were aligned to GRCh37/hg19 human reference using 

Burrows-Wheeler Aligner2, and further processed by GATK3 to remove low mapping 

quality reads and to re-align around the indels. Somatic SNVs and indels were identified 

by integrating the results from six algorithms for variants calling: Freebayes5, MuTect26, 

TNhaplotyper7, TNscope7, TNsnv7, and VarScan28. Somatic copy number and tumor 

purity were estimated from WES by PureCN12. GISTIC213 analysis was then applied to 
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integrate results from individual patients and identify genomic regions recurrently 

amplified or deleted in glioma samples. 

 We focused on three GBM driver genes: EGFR, PDGFRA, and PTEN. For each 

gene, we considered the gene is altered (class 1) if it has an abnormal CNV or is mutated, 

and non-altered (class 2) otherwise. For EGFR and PDGFRA, we followed the literature  

[78] and considered amplification as abnormal CNV; for PTEN, deletion or loss was 

considered as abnormal CNV [102]. To maximize the sample size in ML training, we 

included all available samples for each gene. There are 130/171, 53/238, and 206/109 

biopsy samples with altered/non-altered EGFR, PDGFRA, and PTEN, respectively.  

4.3.2 Image Pre-processing and Feature Extraction 

Each patient went through a pre-operative multiparametric MRI exam, from which 

we obtained five contrast images: T1-weighted contrast-enhanced image (T1+C), T2-

weighted image (T2), mean diffusivity (MD), fractional anisotropy (FA), and relative 

cerebral blood volume (rCBV). Detailed MRI protocols and pre-processing steps can be 

found in our prior publications [56] [55]. It is well-known that a GBM tumor contains a 

contrast-enhancing portion (CE) and a non-enhancing portion (NE). CE and NE were 

manually segmented following standard procedures [56] [78]. The union of CE and NE 

composes the whole tumoral Region of Interest (t-ROI) for which we wanted to ultimately 

generate predictions of sub-regional genetic alterations to characterize the intra-tumoral 

heterogeneity for each patient. Additionally, we ran an automatic algorithm to find the 

contralateral ROI (c-ROI) of the t-ROI to represent the normal brain.  

A sliding window of 8×8 pixel2 (the size approximately of a biopsy sample) was 
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placed at each pixel within the t-ROI. For each sliding window, we computed texture 

features using Gray-Level Co-occurrence Matrix (GLCM) [103] and Gabor Filters [104], 

two commonly used texture analysis algorithms, and 1st-order statistical features. 

Collectively, our pipeline generated 280 features from multiparametric MRI images for 

each sliding window. Additionally, we included two location-related features: the (𝑥, 𝑦, 𝑧) 

coordinates for the center of a sliding window; a binary variable that indicates whether a 

sliding window is in NE or CE. We applied the same sliding window approach and 

extracted features from the c-ROI.   

4.3.3 Application of WSO-SVM 

4.3.3.1 Training and cross validation (CV)  

All biopsy samples were divided into 10 folds. In each iteration of the CV, WSO-

SVM was trained based on 9 folds of the biopsy samples, together with randomly selected 

unlabeled samples and samples from c-ROI of the same size. After the model was trained, 

it was applied to the remaining fold of biopsy samples to compute the classification 

accuracy of class 1 vs. class 2. It was also applied to all samples from t-ROI and c-ROI 

excluding those used in training to compute the classification accuracy of class 1&2 vs. 

class 3. This latter classification was not hard and multiple tuning parameters could achieve 

>80% accuracy for every patient. Among these parameters, we chose those with the highest 

CV accuracy on biopsy samples. We ran this CV scheme for 30 times and reported the 

averaged accuracy.  

4.3.3.2 Predictive map generation within t-ROI 
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For each patient, we re-trained WSO-SVM by including randomly selected 

unlabeled samples and samples from c-ROI to personalize the model under the previously 

found optimal tuning parameters. Then, we applied the model to predict the gene status for 

every sample/sliding window within the t-ROI of the patient, which composed the 

predictive maps.    

4.3.3.3 Comparative methods  

We compared the performance of WSO-SVM with a range of existing algorithms, 

such as: 

• Supervised learning, including typical algorithms such as SVM, random 

forest, and logistic elastic net regression; 

• SSL, including popular algorithms such as T-SVM [105], Laplacian SVM 

[106], and co-training [107];  

• Multi-task learning (MTL), including regularized MTL [108] and multi-task 

Gaussian Process (GP) [109], which couple the model trainings of the three 

genes together.  

4.3.3.4 Results 

Table 4.1-4.3 show the CV classification accuracy of each gene by different 

algorithms. WSO-SVM achieved the highest accuracy, sensitivity, and specificity for all 

three genes. For EGFR, the accuracy of WSO-SVM is 0.8, whereas the range of accuracies 

by the other algorithms is 0.60-0.74. For PTEN, the accuracy of WSO-SVM is 0.8, whereas 

the range of accuracies by the other algorithms is 0.51-0.67. For PDGFRA, the accuracy 
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of WSO-SVM is 0.71, whereas the range of accuracies by the other algorithms is 0.52-

0.65. Among the three genes, WSO-SVM achieved a better performance for classifying 

EGFR and PTEN than PDGFRA, due to the class imbalance of PDGFRA.  

 

Table 4.1 – Classification accuracy of EGFR 

ML algorithms Accuracy Sensitivity Specificity 

 

Supervised 

learning 

SVM 0.69 0.56 0.79 

Random forest 0.74 0.66 0.79 

Logistic elastic 

net regression 

0.60 0.54 0.64 

 

Semi-

supervised 

learning 

T-SVM 0.60 0.61 0.59 

Laplace-SVM 0.68 0.64 0.70 

Co-training 0.69 0.73 0.66 

Multi-task  

learning 

Multi-task GP 0.68 0.67 0.68 

Regularized MTL 0.64 0.64 0.64 

WSO-SVM 0.80 0.79 0.81 

 

Table 4.2 – Classification accuracy of PDGFRA 

ML algorithms Accuracy Sensitivity Specificity 

 

Supervised 

learning 

SVM 0.65 0.63 0.65 

Random forest 0.65 0.60 0.66 

Logistic elastic 

net regression 

0.61 0.50 0.63 

Semi-

supervised 

learning 

T-SVM 0.54 0.57 0.53 

Laplace-SVM 0.58 0.64 0.57 

Co-training 0.62 0.62 0.62 

Multi-task  

learning 

Multi-task GP 0.59 0.69 0.57 

Regularized MTL 0.52 0.65 0.49 

WSO-SVM 0.71 0.70 0.72 
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Table 4.3 – Classification accuracy of PTEN 

ML algorithms Accuracy Sensitivity Specificity 

 

Supervised 

learning 

SVM 0.60 0.57 0.66 

Random forest 0.67 0.65 0.70 

Logistic elastic 

net regression 

0.51 0.45 0.61 

 

Semi-

supervised 

learning 

T-SVM 0.57 0.56 0.58 

Laplace-SVM 0.58 0.56 0.60 

Co-training 0.62 0.62 0.62 

Multi-task  

learning 

Multi-task GP 0.61 0.62 0.61 

Regularized MTL 0.54 0.47 0.65 

WSO-SVM 0.80 0.78 0.83 

 

Our data suggest that leveraging both normal samples in contralateral ROI and 

ordering relationship can further optimize model performance and applicability. When 

stratifying WSO-SVM sample predictions based on predictive uncertainty, we observed a 

striking difference in model performance. For PDGFRA modeling, the subgroup of sample 

predictions with lower uncertainties achieved the better predictive performance as shown 

in Figure 4.1: compared to the entire cohort as a whole (71% accuracy, 100% biopsy 

samples), 71% biopsy samples achieved 78% accuracy with predictive probabilities greater 

than 0.6; 45% biopsy samples achieved 82% accuracy with predictive probabilities greater 

than 0.7; 26% biopsy samples achieved 85% accuracy with predictive probabilities greater 

than 0.8; the subgroup of sample predictions with the lowest uncertainty (predictive 

probabilities greater than 0.9) achieved the highest predictive performance (94% accuracy).  

Similar findings can be observed from the modeling of EGFR and PTEN in Figure 4.1. 

These results suggest that predictive uncertainty can inform the likelihood of achieving an 

accurate sample prediction. 
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Figure 4.1 –  Differences in predictive accuracy related to certain versus uncertain 

sample predictions by WSO-SVM 

 

Finally, the trained WSO-SVM models were used to generate prediction maps for 

each patient. For demonstration, Figure 4.2 shows the prediction maps for four different 

patients (Yellow dots represent biopsy samples whose predicted gene statuses by WSO-

SVM are reported underneath the maps (all predictions are correct)). The alterations in 

EGFR and PDGFRA promote tumor growth. Thus, we showed their co-alteration patterns 

in one map. PTEN is a tumor suppressor gene, whose alteration is shown in a separate map. 

Patient A demonstrates predominant regions with EGFR alteration, with scattered regions 

of PDGFRA co-alteration; the PTEN map shows largely non-alteration. For patient B, the 

PTEN map shows an opposite pattern, whereas the EGFR & PDGFRA map demonstrates 

a similar pattern as patient A. In contrast to patient A and B, patient C demonstrates 
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predominant regions with PDGFRA alteration. For patient D, the regions with EGFR & 

PDGFRA co-alteration are relatively concentrated compared to the other patients. These 

examples demonstrated the great extent of intra-tumoral genetic heterogeneity for each 

patient.  
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Figure 4.2 – EGFR & PDGFRA prediction map (left column) and PTEN prediction 

map (right column) in t-ROI for four patients (rows) 
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(a) EGFR 

 

 
(b) PDGFRA 

 

 
(c) PTEN 

Figure 4.3 – Patient-wise proportions of alteration vs. non-alteration for (a) EGFR, 

(b) PDGFRA, and (c) PTEN within t-ROI 
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4.3.3.5 Discussion 

We proposed a new ML algorithm, WSO-SVM, to predict regional genetic 

alteration within each GBM tumor using MRI. WSO-SVM outperformed supervised 

learning, SSL, and multi-task learning algorithms, which suggested that the data-inclusive 

strategy adopted by WSO-SVM was effective. 

Due to space limit, we only showed the predictions maps for four patients in Figure 

4.2. In Fig. 4.3, we aggregated the prediction map of every patient in our dataset into a pie 

chart. These results revealed a great amount of variability between patients in terms of the 

genetic alteration patterns. Within each individual patient’s tumor, there is also region-to-

region variation for the genetic alteration patterns. This is consistent with findings that 

point out the intra-tumoral genetic heterogeneity as a contributing factor to the 

ineffectiveness of current treatment approaches [56] [66] [67] [23] [24].  

This study has several limitations. First, there are uncertainties in the upstream 

processes to ML, such as image pre-processing, spatial matching of biopsy locations to the 

MRI space, and genetic analysis. While we have attempted to mitigate these uncertainties 

by following well-established protocols, it will be beneficial to evaluate the robustness of 

WSO-SVM to these uncertainties in future study. Secondly, we randomly selected 

unlabeled samples an samples from c-ROI. More efficient sample selection strategies may 

be tried to enhance classification performance. Thirdly, we noted that the PDGFRA 

classification was not as accurate as EGFR\PTEN due to the heavy class imbalance of 

PDGFRA. More PDGFRA altered samples need to be collected to improve performance. 

Lastly, our model was trained and validated using a dataset composed of 318 biopsy 
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samples from 74 patients. Further validation will be needed to assess reproducibility in the 

context of other independent datasets.  

4.4 Conclusion  

We developed a data-inclusive WSO-SVM model to predict regional genetic 

alteration status within each GBM tumor using MRI. This study demonstrated the 

feasibility of using MRI and WSO-SVM to enable non-invasive prediction of regional 

genetic alteration for each patient, which can inform future adaptive therapies for 

individualized oncology.  
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CHAPTER 5: CONCLUSION  

The goal of this work is to study model uncertainty of image-based ML in the 

context of precision medicine of brain cancer. Specifically, we focus on developing ML 

models to predict intra-tumor heterogeneity of genomic and molecular markers based on 

multi-contrast MRI data for GBM.  

In Chapter 2, we developed a Semi-supervised Gaussian Process with Uncertainty-

minimizing Feature-selection (SGP-UF), which can incorporate selected unlabeled 

samples (i.e. unbiopsied regions of a tumor) in the model training, and integrates feature 

selection with a new criterion of seeking features that minimize the prediction uncertainty.  

The model generated predictions for regional EGFR amplification status to resolve the 

intratumoral genetic heterogeneity across each individual tumor. The model used 

probability distributions for each sample prediction to quantify uncertainty, and used 

transductive learning to reduce the overall uncertainty. We demonstrated that SGP-UP 

significantly reduces prediction uncertainty while at the same time achieving higher 

accuracy.  This should help integrate more reliable radiogenomics models for improved 

medical decision-making. 

In Chapter 3, we proposed a novel machine learning framework, KGL data fusion 

model, to fuse the three sources of data/information to generate a spatial prediction. A 

novel mathematical formulation was proposed and solved with theoretical study. We 

presented a real-data application of predicting the spatial distribution of tumor cell density 

—an important molecular marker for brain cancer. A total of 82 biopsy samples were 

acquired from 18 patients with glioblastoma, together with six MRI contrast images from 
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each patient and biological knowledge encoded by a PDE simulator-based mechanistic 

model – PI model. KGL achieved the highest prediction accuracy and minimum prediction 

uncertainty compared with a variety of competing methods. The result has important 

implications for providing individualized, spatially optimized treatment for each patient. 

In Chapter 4, we proposed a data-inclusive machine learning model, Weakly 

Supervised Ordinal (WSO) learning, to predict regional genetic alterations of each tumor. 

The novelty of WSO is to leverage the vast amount of MRI data including unlabeled data 

outside the sparsely sampled biopsies within brain tumor and normal brain samples outside 

the brain tumor to improve accuracies. Our study included a unique dataset of 318 biopsies 

with spatially matched MRI from 71 GBM patients. 10-fold cross validation accuracies for 

predicting alterations of driver genes including EGFR, PDGFRA and PTEN outperformed 

a variety of existing ML methods. We generated regional genetic alteration maps for each 

patient within the tumoral areas. 

The work presented in this thesis demonstrates that these proposed novel methods 

significantly reduce prediction uncertainty while at the same time achieving higher 

accuracy in precision medicine, which can inform personalized targeted treatment 

decisions that potentially improve clinical outcome. The proposed models can be applied 

to multiple application domains including robotics and autonomous systems, prosthetics 

and human enhancement, economics and so on. 
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Appendix A: Proof of Theorem 2.1 

Let 𝐷𝑈 = {𝐗𝑈} denote samples from a test set (e.g., a patient of interest). Consider 

the prediction for a test sample 𝐱∗. Let 𝜎∗2 and  𝜎𝑡𝑟𝑎𝑛
∗ 2

 denote the predictive variances from 

the standard GP and SGP models, respectively. Our objective is to prove  𝜎𝑡𝑟𝑎𝑛
∗ 2 < 𝜎∗2.  

Let 𝑀 = (
𝐾(𝐗𝐿 , 𝐗𝐿) + 𝜎

2 𝐈               𝐾(𝐗𝑈, 𝐗𝐿)
𝑇

𝐾(𝐗𝑈, 𝐗𝐿)     𝐾(𝐗𝑈, 𝐗𝑈) + 𝜎
2 𝐈

) ≜ (
𝐴             𝐵
𝐵𝑇         𝐷

). Its inverse matrix 𝑀−1 

can be partitioned into 4 sub-matrices 

𝑀 ≜ (
             𝐹
𝐹𝑇       𝐻

) 

where  = 𝐴−1 + 𝐴−1𝐵(𝐷 − 𝐵𝑇𝐴−1𝐵)−1𝐵𝑇𝐴−1; 𝐹 = −𝐴−1𝐵(𝐷 − 𝐵𝑇𝐴−1𝐵)−1; 𝐻 =

(𝐷 − 𝐵𝑇𝐴−1𝐵)−1. 

 𝜎𝑡𝑟𝑎𝑛
∗ 2

= 𝐾(𝐱∗, 𝐱∗) − (
  𝐾(𝐱∗, 𝐗𝐿)

𝑇

𝐾(𝐱∗, 𝐗𝑈)
𝑇 )

𝑇

(
𝐾(𝐗𝐿, 𝐗𝐿) + 𝜎

2 𝐈               𝐾(𝐗𝑈, 𝐗𝐿)
𝑇

𝐾(𝐗𝑈, 𝐗𝐿)     𝐾(𝐗𝑈, 𝐗𝑈) + 𝜎
2 𝐈

)
−1

(
  𝐾(𝐱∗, 𝐗𝐿)

𝑇

𝐾(𝐱∗, 𝐗𝑈)
𝑇 ) 

   = 𝐾(𝐱∗, 𝐱∗) − (
  𝐾(𝐱∗, 𝐗𝐿)

𝑇

𝐾(𝐱∗, 𝐗𝑈)
𝑇 )

𝑇

(
             𝐹
𝐹𝑇       𝐻

) (
  𝐾(𝐱∗, 𝐗𝐿)

𝑇

𝐾(𝐱∗, 𝐗𝑈)
𝑇 ) 

   = 𝐾(𝐱∗, 𝐱∗) − (𝐾(𝐱∗, 𝐗𝐿) 𝐾(𝐱
∗, 𝐗𝐿)

𝑇 + 2 𝐾(𝐱∗, 𝐗𝐿)𝐹𝐾(𝐱
∗, 𝐗𝑈)

𝑇 + 𝐾(𝐱∗, 𝐗𝑈)𝐻𝐾(𝐱
∗, 𝐗𝑈)

𝑇) 

   = 𝐾(𝐱∗,𝐱∗) − 𝐾(𝐱∗, 𝐗𝐿)𝐴𝐾(𝐱
∗, 𝐗𝐿)

𝑇 − 𝐾(𝐱∗, 𝐗𝐿)𝐴
−1𝐵(𝐷 − 𝐵𝑇𝐴−1𝐵)−1𝐵𝑇𝐴−1𝐾(𝐱∗, 𝐗𝐿)

𝑇 

+2𝐾(𝐱∗, 𝐗𝐿)𝐴
−1𝐵(𝐷 − 𝐵𝑇𝐴−1𝐵)−1𝐾(𝐱∗, 𝐗𝑈)

𝑇 − 𝐾(𝐱∗, 𝐗𝑈)(𝐷 − 𝐵
𝑇𝐴−1𝐵)−1𝐾(𝐱∗, 𝐗𝑈)

𝑇 

= 𝜎∗2 − (𝐾(𝐱∗, 𝐗𝐿)𝐴
−1𝐵 −𝐾(𝐱∗, 𝐗𝑈))(𝐷 − 𝐵

𝑇𝐴−1𝐵)−1(𝐵𝑇𝐴−1𝐾(𝐱∗, 𝐗𝐿)
𝑇 − 𝐾(𝐱∗, 𝐗𝑈)

𝑇) 

   = 𝜎∗2 − 𝑍𝑇(𝐷 − 𝐵𝑇𝐴−1𝐵)−1𝑍   
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where 𝑍 = 𝐵𝑇𝐴−1𝐾(𝐱∗, 𝐗𝐿)
𝑇 − 𝐾(𝐱∗, 𝐗𝑈)

𝑇. 

Since the kernel matrix is positive semi-definite, then its inverse matrix 𝑀 is also positive 

semi-definite. Then its leading principal sub-matrix 𝐻 is also positive semi-definite. That 

is, (𝐷 − 𝐵𝑇𝐴−1𝐵)−1 is positive semi-definite. Then we can know 𝑍𝑇(𝐷 − 𝐵𝑇𝐴−1𝐵)−1𝑍 ≥

0. Hence,  𝜎𝑡𝑟𝑎𝑛
∗ 2 ≤ 𝜎∗2. 
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Appendix B: Proof of Theorem 2.2  

Let 𝐷𝐾𝐿(𝑓
∗, 𝑓𝑡𝑟𝑎𝑛

∗ ) denote Kullback–Leibler divergence of 𝑓𝑡𝑟𝑎𝑛
∗  from 𝑓∗. 

𝐷𝐾𝐿(𝑓
∗, 𝑓𝑡𝑟𝑎𝑛

∗ ) = ∫𝑓𝑙𝑜𝑔 (
𝑓

𝑓𝑡𝑟𝑎𝑛
)𝑑𝒙 ≤ ∫𝑓|𝑙𝑜𝑔 (

𝑓

𝑓𝑡𝑟𝑎𝑛
) |𝑑𝒙 

= ∫𝑓|
1

2
𝑙𝑜𝑔(𝜎∗2) +

(𝑦∗ − 𝐾(𝐱∗, 𝐗𝐿)(𝐾(𝐗𝐿 , 𝐗𝐿) + 𝜎
2 𝐈)

−1
𝐲𝐿)

2

𝜎∗2
−
1

2
𝑙𝑜𝑔( 𝜎𝑡𝑟𝑎𝑛

∗ 2)

−
(𝑦∗ − 𝐾𝑡𝑟𝑎𝑛(𝐾(𝐗𝐿 , 𝐗𝐿) + 𝜎

2 𝐈)
−1
𝐲𝐿)

2

 𝜎𝑡𝑟𝑎𝑛
∗ 2 |𝑑𝒙 

≤ ∫𝑓(
1

2
|𝑙𝑜𝑔(𝜎∗2) − 𝑙𝑜𝑔( 𝜎𝑡𝑟𝑎𝑛

∗ 2)| + |
(𝑦∗ −𝐾(𝐱∗, 𝐗𝐿)(𝐾(𝐗𝐿 , 𝐗𝐿) + 𝜎

2 𝐈)
−1
𝐲𝐿)

2

𝜎∗2

−
(𝑦∗ − 𝐾𝑡𝑟𝑎𝑛(𝐾(𝐗𝐿 , 𝐗𝐿) + 𝜎

2 𝐈)
−1
𝐲𝐿)

2

 𝜎𝑡𝑟𝑎𝑛
∗ 2 |)𝑑𝒙 

According to Theorem 2.1, |𝑙𝑜𝑔(𝜎∗2) − 𝑙𝑜𝑔( 𝜎𝑡𝑟𝑎𝑛
∗ 2)| = |𝑙𝑜𝑔(𝜎∗2) − 𝑙𝑜𝑔(𝜎∗2 −

𝑍𝑇(𝐷 − 𝐵𝑇𝐴−1𝐵)−1𝑍)|.  

From the known conditions, i.e., 𝐾(𝐗𝑈, 𝐗𝐿) → 𝟎; 𝐾(𝐗𝑈, 𝐱
∗)→ 𝟎, then it is obvious 

that 𝑍 → 0. It’s easy to infer 𝑍𝑇(𝐷 − 𝐵𝑇𝐴−1𝐵)−1𝑍 → 0. Hence, |𝑙𝑜𝑔(𝜎∗2) −

𝑙𝑜𝑔( 𝜎𝑡𝑟𝑎𝑛
∗ 2)| → 0. Similarly, we can know 𝐾(𝐱∗, 𝐗𝑈)(𝐾(𝐗𝑈, 𝐗𝑈) + 𝜎

2 𝐈)
−1
𝐾(𝐗𝑈, 𝐗𝐿) →

𝟎. Then 𝐾𝑡𝑟𝑎𝑛(𝐾(𝐗𝐿 , 𝐗𝐿) + 𝜎
2 𝐈)

−1
𝐲𝐿 → 𝐾(𝐱∗, 𝐗𝐿)(𝐾(𝐗𝐿 , 𝐗𝐿) + 𝜎

2 𝐈)
−1
𝐲𝐿.  

Hence, |
(𝑦∗−𝐾(𝐱𝑗,𝐗𝐿)(𝐾(𝐗𝐿,𝐗𝐿)+𝜎

2 𝐈)
−1
𝐲𝐿)

2

𝜎∗2
−
(𝑦∗−𝐾𝑡𝑟𝑎𝑛(𝐾(𝐗𝐿,𝐗𝐿)+𝜎

2 𝐈)
−1
𝐲𝐿)

2

 𝜎𝑡𝑟𝑎𝑛
∗ 2 | → 0. 
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Finally 𝐷𝐾𝐿(𝑓
∗, 𝑓𝑡𝑟𝑎𝑛

∗ ) → 0. Thus 𝑓𝑡𝑟𝑎𝑛
∗

𝑑
→ 𝑓∗. 
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Appendix C: Proof of Theorem 3.1 

According to derivation process from (3.11) to (3.15), inf
𝛉,𝜉
super
𝝁≥0,𝒗≥0

ℒ′  can be 

simplified as  

𝑖𝑛𝑓
𝜽

1

𝐿
𝑙(𝛉) + 𝜆1(∑    (𝑓𝑖)

𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)𝐼(𝑔𝑗(⋅) ≥ 0)

𝑚
𝑗=1 .          (C.1) 

Similarly, inf
𝛉,𝜉

super
𝝁≥0,𝒗≥0,𝛼1≥0,𝛼2≥0

ℒ  can be simplified as 

inf
𝜽

super
𝛼1≥0,𝛼2≥0

{
1

𝐿
𝑙(𝛉) + 𝛼1(∑    (𝑓𝑖)

𝐿+𝑈
𝑖=𝐿+1 − 𝑡) + 𝛼2(∑ 𝑔𝑗(⋅)𝐼(𝑔𝑗(⋅) ≥ 0)

𝑚
𝑗=1 − 𝜖)}.  

(C.2) 

To prove Theorem 3.1, it means to prove (C.1) and (C.2) are equivalent. 

(a) For any choice of 𝜆1 and 𝜆2, consider the optimal solution 𝛉∗ from (C.1). It is not 

hard to see that 𝛉∗ will also be the optimal solution to (C.2) if 𝑡 =

1

𝑈
∑    𝛉∗(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 , and 𝜖 = ∑ 𝜉𝑗

𝑚
𝑗=1

∗
; else if there is some other 𝛉′ with 

1

𝑈
∑    (𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ≤ 𝑡 and ∑ 𝜉𝑗

𝑚
𝑗=1 ≤ 𝜖, but a better objective value than 𝛉∗ (Note 

since  the 𝑡 and 𝜖 is pre-setting, it becomes a hard-constraint optimization. It’s easy 

to know that  𝛼1 = 0; 𝛼2 = 0; and 
1

𝐿
𝑙(𝛉′) ≤

1

𝐿
𝑙(𝛉∗)). Then 

1

𝐿
𝑙(𝛉′) + 𝜆1 (∑    𝛉′(𝑓𝑖)

𝐿+𝑈

𝑖=𝐿+1
) + 𝜆2∑ 𝑔𝑗,𝛉′(⋅)𝐼(𝑔𝑗,𝛉′(⋅) ≥ 0)

𝑚

𝑗=1
 

≤
1

𝐿
𝑙(𝛉∗) + 𝜆1𝑡 + 𝜆2𝜖 

=  
1

𝐿
𝑙(𝛉∗) + 𝜆1(∑    𝛉∗(𝑓𝑖)

𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗,𝛉∗(⋅)𝐼(𝑔𝑗,𝛉∗(⋅) ≥ 0)

𝑚
𝑗=1 .                              
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This contradicts the optimality of 𝛉∗ in (C.1). Hence 𝛉∗ is also optimal in (C.2). 

(b) Conversely, for any choice of  𝑡 and 𝜖, let 𝛉∗ the optimal solution from (C.2), 

accompanied with the optimal 𝛼1
∗ and 𝛼2

∗. Hence 𝛉∗  is optimal in  

inf
𝜽
 
1

𝐿
𝑙(𝛉) + 𝛼1

∗(∑    (𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 − 𝑡) + 𝛼2

∗(∑ 𝑔𝑗(⋅)𝐼(𝑔𝑗(⋅) ≥ 0)
𝑚
𝑗=1 − 𝜖). 

Removing the constant term 𝛼1
∗𝑡 and  𝛼2

∗𝜖, and setting 𝜆1 = 𝛼1
∗ and 𝜆2 = 𝛼2

∗, we 

have that 𝛉∗ is the optimal solution for (C.1).                                                                  ■ 
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Appendix D: Proof of Theorem 3.2 

Proof: Our proof aims to show that the optimization in (3.17) is equivalent to (3.3)- (3.7). 

For notation simplicity, define Ω𝑖
1(𝑞) ≜ ∫ 𝑞 × (𝑓(𝐱𝑖) −  𝑞[𝑓(𝐱𝑖)])

2

𝑓,𝛉
𝑑𝜂(𝑓, 𝛉) and 

Ω𝑖
2(𝑞) ≜ ∫ 𝑞 × 𝑓(𝐱𝑖)𝑓,𝛉

𝑑𝜂(𝑓, 𝛉). Then the constraints in  

(3.18) become 
1

𝑈
∑ Ω𝑖

1(𝑞)𝐿+𝑈
𝑖=𝐿+1 ≤ 𝑡 and 𝑔𝑗(Ω𝐿+1

2 (𝑞),… , Ω𝐿+𝑈
2 (𝑞)) ≤ 𝜉𝑗, 𝑗 = 1,… ,𝑚. 

Using the Lagrange multiplier method, we know that (3.17) is equivalent to  

   inf    
𝑞∈𝒫𝑝𝑟𝑜𝑏

inf
𝑡,𝛏
  sup
𝛼1,𝛍,𝐯≥0

{
𝐾𝐿(𝑞‖𝑝(𝑓, 𝛉|𝐷)) + 𝜆1𝑡 + 𝜆2(∑ 𝜉𝑗

𝑚
𝑗=1 ) + 𝛼1 (

1

𝑈
∑ Ω𝑖

1(𝑞)𝐿+𝑈
𝑖=𝐿+1 − 𝑡) +

∑ 𝑢𝑗(𝑔𝑗(Ω𝐿+1
2 (𝑞), … , Ω𝐿+𝑈

2 (𝑞)) − 𝜉𝑗)
𝑚
𝑗=1 − ∑ 𝑣𝑗𝜉𝑗

𝑚
𝑗=1

}. 

(D.1) 

Since (D.1) is a convex function of 𝛏, 𝑡, 𝛼1, 𝝁, 𝒗, it is equivalent to  

    inf    
𝑞∈𝒫𝑝𝑟𝑜𝑏

sup
𝛼1,𝛍,𝐯≥0

 inf
𝑡,𝛏
{
𝐾𝐿(𝑞‖𝑝(𝑓, 𝛉|𝐷)) + 𝜆1𝑡 + 𝜆2(∑ 𝜉𝑗

𝑚
𝑗=1 ) + 𝛼1 (

1

𝑈
∑ Ω𝑖

1(𝑞)𝐿+𝑈
𝑖=𝐿+1 − 𝑡) +

∑ 𝑢𝑗(𝑔𝑗(Ω𝐿+1
2 (𝑞), … , Ω𝐿+𝑈

2 (𝑞)) − 𝜉𝑗)
𝑚
𝑗=1 − ∑ 𝑣𝑗𝜉𝑗

𝑚
𝑗=1

}.   

(D.2) 

Denote the function within the { } in (D.2) by 𝜑. Focus on solving the inner-most 

optimization with respect to 𝑡, 𝛏 by equating the derivatives of 𝜑 to zeros, i.e.,  

𝜕𝜑

𝜕𝑡
= 𝜆1 − 𝛼1 = 0, 

𝜕𝜑

𝜕𝜉𝑗
= 𝜆2 − 𝑢𝑗 − 𝑣𝑗 = 0, 𝑗 = 1,… ,𝑚. 
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From these equations we can get 𝛼1 = 𝜆1 and 𝑣𝑗 = 𝜆2 − 𝑢𝑗. Putting these back to 

(D.2), we get 

inf
𝑞∈𝒫𝑝𝑟𝑜𝑏

  sup
𝛍≥0

 {𝐾𝐿(𝑞‖𝑝(𝑓, 𝛉|𝐷)) + 𝜆 1 (
1

𝑈
∑ Ω𝑖

1(𝑞)
𝐿+𝑈

𝑖=𝐿+1
) +∑ 𝑢𝑗𝑔𝑗(Ω𝐿+1

2 (𝑞), … , Ω𝐿+𝑈
2 (𝑞))

𝑚

𝑗=1
} 

s.t. 0 ≤ 𝜇𝑗 ≤ 𝜆2, 𝑗 = 1,… . ,𝑚. 

That can be simplified as  

inf
𝑞∈𝒫𝑝𝑟𝑜𝑏

{
𝐾𝐿(𝑞‖𝑝(𝑓, 𝛉|𝐷)) + 𝜆 1 (

1

𝑈
∑ Ω𝑖

1(𝑞)𝐿+𝑈
𝑖=𝐿+1 ) +

𝜆2∑ 𝑔𝑗 (Ω𝐿+1
2 (𝑞),… , Ω𝐿+𝑈

2 (𝑞)) 𝐼 (𝑔𝑗 (Ω𝐿+1
2 (𝑞),… , Ω𝐿+𝑈

2 (𝑞)) > 0)𝑚
𝑗=1

}. (D.3) 

Denote the function within { } in Eq. (D.3) by 𝜒. Comparing (D.3) to that in 

Theorem 3.1, we know that the remaining task of this proof is to show that  inf
𝑞∈𝒫𝑝𝑟𝑜𝑏

𝜒 is 

equivalent to 

min
𝛉
   {

1

𝐿
𝑙(𝛉) + 𝜆 1 (

1

𝑈
∑    (𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)

𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0)}. 

Next, we show steps to prove this equivalency.  

inf
𝑞∈𝒫𝑝𝑟𝑜𝑏

 𝜒 

= inf
𝑞∈𝒫𝑝𝑟𝑜𝑏

{
∫ 𝑞𝑙𝑜𝑔

𝑞

𝑝(𝑓, 𝛉|𝐷)𝑓,𝛉
𝑑𝜂(𝑓, 𝛉) + 𝜆 1 (

1

𝑈
∑ Ω𝑖

1(𝑞)𝐿+𝑈
𝑖=𝐿+1 )

+𝜆2∑ 𝑔𝑗 (Ω𝐿+1
2 (𝑞),… , Ω𝐿+𝑈

2 (𝑞))𝑚
𝑗=1 𝐼(𝑔𝑗 (Ω𝐿+1

2 (𝑞),… , Ω𝐿+𝑈
2 (𝑞)) > 0)

}  

= inf
𝑞∈𝒫𝑝𝑟𝑜𝑏

{
 
 

 
 ∫ 𝑝(𝑓|𝛉, 𝐷)𝛿�̅�(𝛉|𝐷) 𝑙𝑜𝑔

𝑝(𝑓|𝛉,𝐷)𝛿�̅�(𝛉|𝐷)
𝑝(𝑓, 𝛉|𝐷)𝑓,𝛉

𝑑𝜂(𝑓, 𝛉) +

𝜆 1 (
1

𝑈
∑ Ω𝑖

1(𝑞)𝐿+𝑈
𝑖=𝐿+1 ) +

𝜆2∑ 𝑔𝑗 (Ω𝐿+1
2 (𝑞), … , Ω𝐿+𝑈

2 (𝑞))𝑚
𝑗=1 𝐼(𝑔𝑗 (Ω𝐿+1

2 (𝑞),… , Ω𝐿+𝑈
2 (𝑞)) > 0)}

 
 

 
 

.         (D.4) 
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Now focus on the third term within the inf { } in (D.4): 

      Ω𝑖
2(𝑞) = ∫ 𝑝(𝑓|𝛉,𝐷)𝛿�̅�(𝛉|𝐷)𝑓(𝐱𝑖)𝑑𝜂(𝑓, 𝛉)𝑓,𝛉

 

= ∫ 𝑓(𝐱𝑖)𝑓
∫ 𝑝(𝑓|𝛉, 𝐷)𝛿�̅�(𝛉|𝐷)𝛉

𝑑𝜂(𝑓, 𝛉) = ∫ 𝑓(𝐱𝑖)𝑓
𝑝(𝑓|�̅�, 𝒟)𝑑𝜂(𝑓) =  𝑝[𝑓(𝐱𝑖)], 

which is not related to 𝑓 or 𝛉.  Similarly,  

Ω𝑖
1(𝑞) = ∫ 𝑝(𝑓|𝛉,𝒟)𝛿�̅�(𝛉|𝐷) × (𝑓(𝐱𝑖) −  𝑝[𝑓(𝐱𝑖)])

2

𝑓,𝛉

𝑑𝜂(𝑓, 𝛉) 

                             = ∫ (𝑓(𝐱𝑖) −  𝑝[𝑓(𝐱𝑖)])
2

𝑓
∫ 𝑝(𝑓|𝛉, 𝐷)𝛿�̅�(𝛉|𝐷)𝛉

𝑑𝜂(𝑓, 𝛉) 

                 = ∫ (𝑓(𝐱𝑖) −  𝑝[𝑓(𝐱𝑖)])
2

𝑓
𝑝(𝑓|�̅�, 𝒟)𝑑𝜂(𝑓) =    𝑝(𝑓𝑖). 

Then, (D.4) becomes: 

inf
�̅�

{
 
 

 
 ∫ 𝑝(𝑓|𝛉, 𝒟)𝛿�̅�(𝛉|𝐷) 𝑙𝑜𝑔

𝛿�̅�(𝛉|𝐷)
𝑝(𝛉|𝐷)𝑓,𝛉

𝑑𝜂(𝑓, 𝛉) +

𝜆 1 (
1

𝑈
∑    𝑝(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) +

𝜆2∑ 𝑔𝑗(⋅)
𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0) }

 
 

 
 

          

= inf
�̅�
{∫ 𝛿�̅�(𝛉|𝐷) 𝑙𝑜𝑔

𝛿�̅�(𝛉|𝐷)
𝑝(𝛉|𝐷)𝛉

𝑑𝜂(𝛉) + 𝜆 1 (
1

𝑈
∑    𝑝(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)

𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0)}   

= inf
�̅�
{−∫ 𝛿�̅�(𝛉|𝐷) 𝑙𝑜𝑔 𝑝(𝛉|𝐷)𝛉

𝑑𝜂(𝛉) + 𝜆 1 (
1

𝑈
∑    𝑝(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)

𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0)}       

= inf
�̅�
{−∫ 𝛿�̅�(𝛉|𝐷) 𝑙𝑜𝑔

 𝑝(𝐲𝐿 , 𝛉|𝐗𝐿)
𝑝(𝐲𝐿|𝐗𝐿)𝛉

𝑑𝜂(𝛉) + 𝜆 1 (
1

𝑈
∑    𝑝(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)

𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0)}        

= inf
�̅�
{−∫ 𝛿�̅�(𝛉|𝐷) 𝑙𝑜𝑔 𝑝(𝐲𝐿 , 𝛉|𝐗𝐿)𝛉

𝑑𝜂(𝛉) + 𝜆 1 (
1

𝑈
∑    𝑝(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)

𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0)}   
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= inf
�̅�
{− log 𝑝(𝐲𝐿 , �̅�|𝐗𝐿) + 𝜆 1 (

1

𝑈
∑    𝑝(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)

𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0)}                                                  

= inf
�̅�
{− log 𝑝(𝐲𝐿|𝐗𝐿 , �̅�)𝑝(�̅�|𝐗𝐿) + 𝜆 1 (

1

𝑈
∑    𝑝(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)

𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0)}                                                  

= inf
�̅�
{− log𝑝(𝐲𝐿|𝐗𝐿 , �̅�) − log𝑝(�̅�|𝐗𝐿) + 𝜆 1 (

1

𝑈
∑    𝑝(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)

𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0)}  

= inf
�̅�
{− log 𝑝(𝐲𝐿|𝐗𝐿 , �̅�) + 𝜆 1 (

1

𝑈
∑    𝑝(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)

𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0)}                                                   

= inf
�̅�
{−

1

𝐿
log 𝑝(𝐲𝐿|𝐗𝐿 , �̅�) +

𝜆 1

𝐿
(
1

𝑈
∑    𝑝(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) +

𝜆2

𝐿
∑ 𝑔𝑗(⋅)
𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0)}                                                   

= inf
�̅�
{−

1

𝐿
log 𝑝(𝐲𝐿|𝐗𝐿 , �̅�) + 𝜆 1 (

1

𝑈
∑    𝑝(𝑓𝑖)
𝐿+𝑈
𝑖=𝐿+1 ) + 𝜆2∑ 𝑔𝑗(⋅)

𝑚
𝑗=1 𝐼(𝑔𝑗(⋅) > 0)}     
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Appendix E: Proof of Proposition 4.1 

Proof: Let 𝛼𝑖
(1)

, 𝛼𝑖
(2)
, 𝛽𝑗
(12), 𝛽𝑘

(3)
, 𝐴𝑖
(1)
, 𝐴𝑖
(2)
, 𝐵𝑗

(12)
, 𝐵𝑘

(3)
, 𝜇 ≥ 0 be Lagrangian multipliers 

and 𝐶1 and 𝐶2 be tuning parameters. The Lagrangian for the primal WSO-SVM 

optimization in (4.1) is 

𝐿 =
1

2
𝑤𝑇𝑤 − ∑ 𝛼𝑖

(1)
(𝑤𝑇𝜙(𝑥𝑖

(1)
) + 𝑏1 − 1 + 𝜉𝑖

(1)
)

𝑛1
𝑖=1 + ∑ 𝛼𝑖

(2)
(𝑤𝑇𝜙(𝑥𝑖

(2)
) + 𝑏1 +

𝑛2
𝑖=1

1 − 𝜉𝑖
(2)
) − ∑ 𝛽𝑗

(12) (𝑤𝑇𝜙(𝑥𝑗
(12)
) + 𝑏2 − 1 + 𝜁𝑗

(12))  
𝑚12
𝑗=1 + ∑ 𝛽𝑘

(3)
(𝑤𝑇𝜙(𝑥𝑘

(3)
) +

𝑚3
𝑘=1

𝑏2 + 1 − 𝜁𝑘
(3)
)  + 𝐶1(∑ 𝜉𝑖

(1)𝑛1
𝑖=1 + ∑ 𝜉𝑖

(2)𝑛2
𝑖=1 ) + 𝐶2(∑ 𝜁𝑗

(12)𝑚12
𝑗=1 + ∑ 𝜁𝑘

(3)𝑚3
𝑘=1 ) −

∑ 𝐴𝑖
(1)
𝜉𝑖
(1)𝑛1

𝑖=1 − ∑ 𝐴𝑖
(2)
𝜉𝑖
(2)𝑛2

𝑖=1 −∑ 𝐵𝑗
(12)
𝜁𝑗
(12)𝑚12

𝑗=1 − ∑ 𝐵𝑘
(3)
𝜁𝑘
(3)𝑚3

𝑘=1 + 𝜇(𝑏1 − 𝑏2). 

Then the optimal solution of the primal problem in (4.1) is equivalent to the solution of the 

following optimization: 

max
𝛼,𝛽,𝐴,𝐵,𝜇

 𝑚𝑖𝑛𝑤,𝑏,𝜉,𝜁𝐿.                                                     (E.1)                                                           

The KKT conditions for the primal problem require the following to hold: 

𝛻𝑤𝐿 = 𝑤 − ∑ 𝛼𝑖
(1)
𝜙(𝑥𝑖

(1)
)

𝑛1
𝑖=1 + ∑ 𝛼𝑖

(2)
𝜙(𝑥𝑖

(2)
)

𝑛2
𝑖=1 −

∑ 𝛽𝑗
(12)
𝜙(𝑥𝑗

(12)
)

𝑚12
𝑗=1  +  ∑ 𝛽𝑘

(3)
𝜙(𝑥𝑘

(3)
)

𝑚3
𝑘=1 = 0, 

                                                 𝛻𝑏1𝐿 = −∑ 𝛼𝑖
(1)𝑛1

𝑖=1 + ∑ 𝛼𝑖
(2)𝑛2

𝑖=1 + 𝜇 = 0, 

                                               𝛻𝑏2𝐿 = −∑ 𝛽𝑗
(12)𝑚12

𝑗=1 + ∑ 𝛽𝑘
(3)𝑚3

𝑘=1 − 𝜇 = 0, 

𝛻
𝜉𝑖
(1)𝐿 = −𝛼𝑖

(1)
+ 𝐶1 − 𝐴𝑖

(1)
= 0,  𝑖 = 1, . . . , 𝑛1, 
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𝛻
𝜉𝑖
(2)𝐿 = −𝛼𝑖

(2)
+ 𝐶1 − 𝐴𝑖

(2)
= 0, 𝑖 = 1, . . . , 𝑛2, 

𝛻
𝜁𝑗
(12)𝐿 = −𝛽𝑗

(12)
+ 𝐶2 − 𝐵𝑗

(12)
= 0,  𝑗 = 1, . . . , 𝑚12, 

𝛻
𝜁𝑘
(3)𝐿 = −𝛽𝑘

(3)
+ 𝐶2 − 𝐵𝑘

(3)
= 0, 𝑘 = 1, . . . , 𝑚3. 

Then we have 

𝑤 = ∑ 𝛼𝑖
(1)
𝜙(𝑥𝑖

(1)
)

𝑛1
𝑖=1 − ∑ 𝛼𝑖

(2)
𝜙(𝑥𝑖

(2)
)

𝑛2
𝑖=1 + ∑ 𝛽𝑗

(12)
𝜙(𝑥𝑗

(12)
)

𝑚12
𝑗=1 − ∑ 𝛽𝑘

(3)
𝜙(𝑥𝑘

(3)
)

𝑚3
𝑘=1 ,                   

(E.2) 

𝜇 = ∑ 𝛼𝑖
(1)𝑛1

𝑖=1 − ∑ 𝛼𝑖
(2)𝑛2

𝑖=1 ,                                                            (E.3) 

𝜇 = −∑ 𝛽𝑗
(12)𝑚12

𝑗=1 + ∑ 𝛽𝑘
(3)𝑚3

𝑘=1 ,                                                      (E.4)  

𝐴𝑖
(1)
= −𝛼𝑖

(1)
+ 𝐶1,  𝑖 = 1, . . . , 𝑛1,                                                     (E.5)                                            

𝐴𝑖
(2)
= −𝛼𝑖

(2)
+ 𝐶1,  𝑖 = 1, . . . , 𝑛2,                                                     (E.6) 

𝐵𝑗
(12)

= −𝛽𝑗
(12)

+ 𝐶2,  𝑗 = 1, . . . , 𝑚12,                                                (E.7) 

𝐵𝑘
(3)
= −𝛽𝑘

(3)
+ 𝐶2,  𝑘 = 1, . . . , 𝑚3.                                                  (E.8) 

Inserting (E.3),  (E.5)-(E.8) into the optimization in (E.1), after simplification we can get 

max
𝛼,𝛽

 𝐿 =
1

2
𝑤𝑇𝑤 − ∑ 𝛼𝑖

(1) (𝑤𝑇𝜙(𝑥𝑖
(1)) − 1)

𝑛1
𝑖=1 + ∑ 𝛼𝑖

(2) (𝑤𝑇𝜙(𝑥𝑖
(2)) + 1)

𝑛2
𝑖=1 −

∑ 𝛽𝑗
(12) (𝑤𝑇𝜙(𝑥𝑗

(12)) − 1)  
𝑚12
𝑗=1 + ∑ 𝛽𝑘

(3) (𝑤𝑇𝜙(𝑥𝑘
(3)) + 1)

𝑚3
𝑘=1 .                (E.9) 
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Furthermore, inserting (E.2) into the optimization in (E.9), we can have 

max
𝛼,𝛽

 𝐿 = −
1

2
𝛾𝑇𝑌𝐾𝑌𝛾+ ∑ 𝛼𝑖

(1)𝑛1
𝑖=1 + ∑ 𝛼𝑖

2𝑛2
𝑖=1 + ∑ 𝛽𝑗

(12)
 

𝑚12
𝑗=1 + ∑ 𝛽𝑘

(3)
 

𝑚3
𝑘=1 . 

Additionally, the conditions in (E.3)- (E.4) give rise to the constraints of  

∑ 𝛼𝑖
(1)𝑛1

𝑖=1 − ∑ 𝛼𝑖
(2)𝑛2

𝑖=1 + ∑ 𝛽𝑗
(12)𝑚12

𝑗=1 − ∑ 𝛽𝑘
(3)𝑚3

𝑘=1 = 0, 

∑ 𝛼𝑖
(1)𝑛1

𝑖=1 − ∑ 𝛼𝑖
(2)𝑛2

𝑖=1 ≥ 0. 

The conditions in (E.5)-(E.8) give rise to the constraints of 

0 ≤ 𝛼𝑖
(1) ≤ 𝐶1, 𝑖 = 1, . . . , 𝑛1; 0 ≤ 𝛼𝑖

(2) ≤ 𝐶1, 𝑖 = 1, . . . , 𝑛2, 

0 ≤ 𝛽𝑗
(12) ≤ 𝐶2, 𝑗 = 1, . . . , 𝑚12;  0 ≤ 𝛽𝑘

(3) ≤ 𝐶2, 𝑘 = 1, . . . , 𝑚3. 

Finally, the dual problem becomes 

min
𝛼,𝛽

 
1

2
𝛾𝑇𝑌𝐾𝑌𝛾 − ∑ 𝛼𝑖

(1)𝑛1
𝑖=1 − ∑ 𝛼𝑖

(2)𝑛2
𝑖=1 − ∑ 𝛽𝑗

(12) 
𝑚12
𝑗=1 −∑ 𝛽𝑘

(3)
 

𝑚3
𝑗=1 , 

 subject to  

∑ 𝛼𝑖
(1)𝑛1

𝑖=1 − ∑ 𝛼𝑖
(2)𝑛2

𝑖=1 + ∑ 𝛽𝑗
(12)𝑚12

𝑗=1 − ∑ 𝛽𝑘
(3)𝑚3

𝑘=1 = 0, 

∑ 𝛼𝑖
(1)𝑛1

𝑖=1 − ∑ 𝛼𝑖
(2)𝑛2

𝑖=1 ≥ 0, 

0 ≤ 𝛼𝑖
(1) ≤ 𝐶1, 𝑖 = 1, . . . , 𝑛1; 0 ≤ 𝛼𝑖

(2) ≤ 𝐶1, 𝑖 = 1, . . . , 𝑛2, 

0 ≤ 𝛽𝑗
(12) ≤ 𝐶2, 𝑗 = 1, . . . , 𝑚12;  0 ≤ 𝛽𝑘

(3) ≤ 𝐶2, 𝑘 = 1, . . . , 𝑚3.                  ▄  
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