1,916 research outputs found

    An Interactive Fuzzy Satisficing Method for Multiobjective Stochastic Integer Programming Problems through Simple Recourse Model

    Get PDF
    Two major approaches to deal with randomness or impression involved in mathematical programming problems have been developed. The one is called stochastic programming, and the other is called fuzzy programming. In this paper, we focus on multiobjective integer programming problems involving random variable coefficients in constraints. Using the concept of simple recourse, such multiobjective stochastic integer programming problems are transformed into deterministic ones. As a fusion of stochastic programming and fuzzy one, after introducing fuzzy goals to reflect the ambiguity of the decision maker's judgments for objective functions, we propose an interactive fuzzy satisficing method to derive a satisficing solution for the decision maker by updating the reference membership levels

    An Interactive Fuzzy Satisficing Method for Fuzzy Random Multiobjective 0-1 Programming Problems through Probability Maximization Using Possibility

    Get PDF
    In this paper, we focus on multiobjective 0-1 programming problems under the situation where stochastic uncertainty and vagueness exist at the same time. We formulate them as fuzzy random multiobjective 0-1 programming problems where coefficients of objective functions are fuzzy random variables. For the formulated problem, we propose an interactive fuzzy satisficing method through probability maximization using of possibility

    Fuzzy Random Noncooperative Two-level Linear Programming through Absolute Deviation Minimization Using Possibility and Necessity

    Get PDF
    This paper considers fuzzy random two-level linear programming problems under noncooperative behaviorof the decision makers. Having introduced fuzzy goals of decision makers together with the possibiliy and necessity measure, following absolute deviation minimization, fuzzy random two-level programin problems are transformed into deterministic ones. Extended Stackelberg solutions are introduced andcomputational methods are also presented

    Interactive Fuzzy Random Two-level Linear Programming through Fractile Criterion Optimization

    Get PDF
    This paper considers two-level linear programming problems involving fuzzy random variables. Having introduced level sets of fuzzy random variables and fuzzy goals of decision makers, following fractile criterion optimization, fuzzy random two-level programming problems are transformed into deterministic ones. Interactive fuzzy programming is presented for deriving a satisfactory solution efficiently with considerations of overall satisfactory balance

    Interactive Fuzzy Programming for Stochastic Two-level Linear Programming Problems through Probability Maximization

    Get PDF
    This paper considers stochastic two-level linear programming problems. Using the concept of chance constraints and probability maximization, original problems are transformed into deterministic ones. An interactive fuzzy programming method is presented for deriving a satisfactory solution efficiently with considerations of overall satisfactory balance

    Possibility/Necessity-Based Probabilistic Expectation Models for Linear Programming Problems with Discrete Fuzzy Random Variables

    Get PDF
    This paper considers linear programming problems (LPPs) where the objective functions involve discrete fuzzy random variables (fuzzy set-valued discrete random variables). New decision making models, which are useful in fuzzy stochastic environments, are proposed based on both possibility theory and probability theory. In multi-objective cases, Pareto optimal solutions of the proposed models are newly defined. Computational algorithms for obtaining the Pareto optimal solutions of the proposed models are provided. It is shown that problems involving discrete fuzzy random variables can be transformed into deterministic nonlinear mathematical programming problems which can be solved through a conventional mathematical programming solver under practically reasonable assumptions. A numerical example of agriculture production problems is given to demonstrate the applicability of the proposed models to real-world problems in fuzzy stochastic environments

    Observation of temporary accommodation for construction workers according to the code of practice for temporary construction site workers amenities and accommodation (ms2593:2015) in Johor, Malaysia

    Get PDF
    The Malaysian government is currently improving the quality of workers temporary accommodation by introducing MS2593:2015 (Code of Practice for Temporary Site Workers Amenities and Accommodation) in 2015. It is in line with the initiative in the Construction Industry Transformation Programme (2016-2020) to increase the quality and well-being of construction workers in Malaysia. Thus, to gauge the current practice of temporary accommodation on complying with the particular guideline, this paper has put forth the observation of such accommodation towards elements in Section 3 within MS2593:2015. A total of seventeen (17) temporary accommodation provided by Grade 6 and Grade 7 contractors in Johor were selected and assessed. The results disclosed that most of the temporary accommodation was not complying with the guideline, where only thirteen (13) out of fifty-eight (58) elements have recorded full compliance (100%), and the lowest compliance percentage (5.9%) are discovered in the Section 3.12 (Signage). In a nutshell, given the significant gap of compliance between current practices of temporary accommodation and MS2593:2015, a holistic initiative need to be in place for the guideline to be worthwhile

    Improved two-phase solution strategy for multiobjective fuzzy stochastic linear programming problems with uncertain probability distribution

    Get PDF
    Multiobjective Fuzzy Stochastic Linear Programming (MFSLP) problem where the linear inequalities on the probability are fuzzy is called a Multiobjective Fuzzy Stochastic Linear Programming problem with Fuzzy Linear Partial Information on Probability Distribution (MFSLPPFI). The uncertainty presents unique difficulties in constrained optimization problems owing to the presence of conflicting goals and randomness surrounding the data. Most existing solution techniques for MFSLPPFI problems rely heavily on the expectation optimization model, the variance minimization model, the probability maximization model, pessimistic/optimistic values and compromise solution under partial uncertainty of random parameters. Although these approaches recognize the fact that the interval values for probability distribution have important significance, nevertheless they are restricted by the upper and lower limitations of probability distribution and neglected the interior values. This limitation motivated us to search for more efficient strategies for MFSLPPFI which address both the fuzziness of the probability distributions, and the fuzziness and randomness of the parameters. The proposed strategy consists two phases: fuzzy transformation and stochastic transformation. First, ranking function is used to transform the MFSLPPFI to Multiobjective Stochastic Linear Programming Problem with Fuzzy Linear Partial Information on Probability Distribution (MSLPPFI). The problem is then transformed to its corresponding Multiobjective Linear Programming (MLP) problem by using a-cut technique of uncertain probability distribution and linguistic hedges. In addition, Chance Constraint Programming (CCP), and expectation of random coefficients are applied to the constraints and the objectives respectively. Finally, the MLP problem is converted to a single-objective Linear Programming (LP) problem via an Adaptive Arithmetic Average Method (AAAM), and then solved by using simplex method. The algorithm used to obtain the solution requires fewer iterations and faster generation of results compared to existing solutions. Three realistic examples are tested which show that the approach used in this study is efficient in solving the MFSLPPFI

    Manufacturing cell formation in a fuzzy environment

    Get PDF
    The main objective of this study is to develop useful mathematical programming (FMP) models to solve cell formation (CF) problems in fuzzy environments. The dissertation was divided into three major parts. First, two mathematical programming models were developed to formulate the cell formation problems under consideration. The first model was a linear programming (LP) model for grouping parts and machines simultaneously into cells and solving the CF problem for dealing with exceptional elements (EEs). In second, a goal programming (GP) model to obtain a trade off between minimizing total cost of dealing with EEs and maximizing GE, a new similarity coefficient formula between parts also has been developed;In the second part, the fuzzy linear programming (FLP) methodology was applied to solve CF problems involving fuzzy situations. A new fuzzy operator, add-min, was proposed and its performances evaluated against the other six operators. Robustness and excellent performance in terms of clustering results and CPU executing time were verified for the FLP with the new operator. Fuzzy multiobjective linear programming (FMLP) then was used (1) to find the optimal trade-off between multiple goals in the proposed goal programming and (2) to compare the performance with the GP results. Numerical illustrations show that FMLP with the proposed operator performed much better than the GP did in terms of computational efficiency;Finally, an efficient heuristic genetic algorithm (HGA) was developed to solve all mathematical programming models, including the fuzzy models, presented in this dissertation. New heuristic crossover and mutation operators based on the special characteristics of CF were proposed to enhance computational performance. Our experiment showed that the proposed GA heuristic outperformed both the traditional GA approach and the mathematical programming models in terms of clustering results, computational time, and ease of use
    corecore