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Abstract—Two major approaches to deal with randomness
or impression involved in mathematical programming problems
have been developed. The one is called stochastic programming,
and the other is called fuzzy programming. In this paper, we focus
on multiobjective integer programming problems involving ran-
dom variable coefficients in constraints. Using the concept of sim-
ple recourse, such multiobjective stochastic integer programming
problems are transformed into deterministic ones. As a fusion of
stochastic programming and fuzzy one, after introducing fuzzy
goals to reflect the ambiguity of the decision maker’s judgments
for objective functions, we propose an interactive fuzzy satisficing
method to derive a satisficing solution for the decision maker by
updating the reference membership levels.

I. I NTRODUCTION

In constructing mathematical models of actual decision
making situation in the real world, we often need to reflect
the randomness or the imprecision involved in the situation
since we cannot always know exact values of all parameters.

Stochastic programming based on the probability theory, has
been developed in various ways [2], [25], e.g., two stage prob-
lem or recourse model [6], [23], chance constrained program-
ming [4], [5], [9]. In particular, for multiobjective stochastic
linear programming problems, Stancu-Minasian [20] consid-
ered the minimum risk approach, Teghem et al. [21] and
Urli et al. [22] proposed interactive methods. Furthermore,
efficient solution concepts for them and their relations have
been discussed by Caballero et al. [3].

On the other hand, fuzzy mathematical programming repre-
senting the ambiguity in decision making situations by fuzzy
concepts has attracted attention of many researchers [13], [15].
Fuzzy multiobjective linear programming, first proposed by
Zimmermann [26], has been rapidly developed [11], [18], [19].

As a hybrid of the stochastic approach and the fuzzy one,
Wang et al. [24] dealt with mathematical programming prob-
lems with fuzzy random variables and Liu et al. [10] studied
chance constrained programming involving fuzzy parameters
and many researches about this issue have been reported
[12], [14]. In particular, for multiobjective stochastic linear
programming problems, Hulsurkar et al. [8] discussed an
approach based on fuzzy programming. However, in their
method, since membership functions for the objective func-
tions are supposed to be aggregated by minimum operator
or product operator, obtained solutions may not sufficiently

reflect the decision maker’s preference. To overcome this
drawback, Sakawa et al. [16], [17] showed that satisfic-
ing solutions to multiobjective stochastic linear programming
problems sufficiently reflecting the decision maker’s prefer-
ence can be derived through the interactive fuzzy satisficing
method based on chance constrained programming models.
In these existing methods for multiobjective stochastic linear
programming problems [8], [16], [17], constraints including
random variables are reduced to chance constrained conditions
which mean that the constraints need to be satisfied with a
certain probability (satisficing level). Then, the loss or cost
caused by the violation of constraints for observed values is
not reflected in the formulation and solution.

Under these circumstances, in this paper, focusing on the
simple recourse model to consider the penalty reflecting on
the degree of violation of constraints for observed values
[7], we transform a multiobjective stochastic integer program-
ming problems into equivalent deterministic multiobjective
integer programming problems. After introducing fuzzy goals
to reflect the ambiguous judgment of the decision maker on
objective functions, we propose an interactive fuzzy satisficing
method to derive a satisficing solution for the decision maker
by updating the reference membership levels.

II. M ULTIOBJECTIVE STOCHASTIC INTEGER

PROGRAMMING PROBLEM

In this paper, we deal with multiobjective integer program-
ming problems involving random variable coefficients in the
right-hand side of constraints formulated as:

minimize zl(x) = clx, l = 1, 2, . . . , k
subject to Ax = b(ω)

xj ∈ {0, 1, . . . , νj}, j = 1, 2, . . . , n

 (1)

wherex is ann dimensional integer decision variable column
vector, cl, l = 1, 2, . . . , k are n dimensional coefficient row
vectors,A is anm × n coefficient matrix, andb(ω) is anm
dimensional random variable column vector.

We are often faced with optimization problems involving
randomness like (1). For instance, in a company producing
m products by n processes, there may exist a multiob-
jective optimization problem that the decision maker hopes
to minimize the production cost and minimize the amount
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of wastessimultaneously under the situation that for each
decision variablexj representing the discrete production level
for the j th process,j = 1, 2, . . . , n, the unit production cost
coefficientc1j or the unit waste amount coefficientsc2j and
unit production amount coefficientsaij of the i th product,
i = 1, 2, . . . ,m, are known while each demandbi for the i th
product,i = 1, 2, . . . ,m varies randomly.

Since (1) contains random variable coefficients, we can-
not directly apply solution methods or solution concepts for
ordinary mathematical programming problems to it. If the
decision maker wishes to take the cost of the shortage or
surplus of products caused by the randomness of demand into
account, recourse models to consider the penalty depending
on the degree of violation of constraints for observed val-
ues seem more desirable than chance constrained condition
programming models [4], [5], [9] where chance constrained
conditions mean that the constraints need to be satisfied
with a certain probability (satisficing level). In this paper,
we adopt the simple recourse model [7] which would be
the most fundamental and practical among recourse models
for situation that the shortage or surplus of products can be
directly compensated by purchase of equivalent alternative
products or the disposal of products.

III. M ULTIOBJECTIVE INTEGER SIMPLE RECOURSE

PROBLEMS

In problem (1), we assume that the decision maker must
make a decision before he knows observed values of random
variables. In recourse approaches, the penalty of violation of
constraints is incorporated into objective functions in order to
consider the loss caused by randomness.

To be more specific, denoting the difference betweenAx
and b(ω) by two random vectorsy+ = (y+

1 , y+
2 , . . . , y+

m)T

andy− = (y−
1 , y−

2 , . . . , y−
m)T , (1) can be reformulated as the

following multiobjective integer simple recourse problem.

minimize wl(x) = cl + Rl(x), l = 1, 2, . . . , k
subject to Ax + y+ − y− = b(ω)

xj ∈ {0, 1, . . . , νj}, j = 1, 2, . . . , n
y+ ≥ 0, y− ≥ 0

 (2)

In (2),

Rl(x) = E

{
min

y+,y−
(ply

+ + qly
−)

}
(3)

is called the expectation of a recourse for thel th objective,
wherepl andql are constant row vectors. Since each element
of y+ = (y+

1 , y+
2 , . . . , y+

m)T means the shortage of each
product and each element ofy− = (y−

1 , y−
2 , . . . , y−

m)T means
the surplus of each product, each element ofpl is regarded
as the unit cost to compensate the shortage of each product
and each element ofql is regarded as the unit cost to dispose
the surplus of each products. Forpl and ql, the assumption
pl + ql ≥ 0 seems natural because we could improve the
objective function value infinitely by increasingy+

i and y−
i

infinitely if pli + qli < 0 for somei.
From the assumption, complementary relations

ŷ+
i > 0 → ŷ−

i = 0, ŷ−
i > 0 → ŷ+

i = 0, i = 1, 2, . . . ,m

hold for optimal recourse variable vectorŷ+, ŷ−. Then, the
following equations

ŷ+
i = bo

i −
n∑

j=1

aijxj , ŷ−
i = 0, if bo

i ≥
n∑

j=1

aijxj

ŷ+
i = 0, ŷ−

i =
n∑

j=1

aijxj − bo
i if bo

i <

n∑
j=1

aijxj

are led fori = 1, 2, . . . ,m , wherebo
i is the observed value

of bi(ω).
If bi(ω), i = 1, 2, . . . ,m are mutually independent, the

expectation of the recourse E

{
min

y+,y−
(ply

+ + qly
−)

}
can be

calculated as:

E

{
min

y+,y−
(ply

+ + qly
−)

}
= E

{
plŷ

+ + qlŷ
−}

=
m∑

i=1

E
{
pliŷ

+
i + qliŷ

−
i

}
=

m∑
i=1

pliE{ŷ+
i } +

m∑
i=1

qliE{ŷ−
i }

=
m∑

i=1

pli

∫ +∞∑n

j=1
aijxj

bi −
n∑

j=1

aijxj

 dFi(bi)

+
m∑

i=1

qli

∫ ∑n

j=1
aijxj

−∞

 n∑
j=1

aijxj − bi

 dFi(bi)

=
m∑

i=1

pliE{bi} −
m∑

i=1

(pli + qli)
∫ ∑n

j=1
aijxj

−∞
bidFi(bi)

−
m∑

i=1

pli

n∑
j=1

aijxj

+
m∑

i=1

(pli + qli)

 n∑
j=1

aijxj

Fi

 n∑
j=1

aijxj


whereFi(·) is the probability distribution function ofbi(ω).
Then, (2) is equivalent to the following problem.

minimize Zl(x), l = 1, 2, . . . , k
subject to xj ∈ {0, 1, . . . , νj}, j = 1, 2, . . . , n

}
(4)

where

Zl(x) =
m∑

i=1

pliE{bi} +
n∑

j=1

(
clj −

m∑
i=1

aijpli

)
xj

m∑
i=1

(pli + qli)


 n∑

j=1

aijxj

 Fi

 n∑
j=1

aijxj


−

∫ ∑n

j=1
aijxj

−∞
bidFi(bi)

}
,

and let X = {x | xj ∈ {0, 1, . . . , νj , }, j = 1, 2, . . . , n}

In general, there rarely exists a complete optimal solution
that simultaneously optimizes all objective functions for a
multiobjective programming problem.
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As a reasonablesolution concept for (4), we define the
following R-Pareto optimal solution.
Definition 3.1. (R-Pareto optimal solution).x∗ ∈ X is said to
be anR-Pareto optimal solution if there does not exist another
x ∈ X such thatZl(x) ≤ Zl(x∗) for any l ∈ {1, 2, . . . , k}
and Zj(x) < Zj(x∗) for at least onej ∈ {1, 2, . . . , k}.

IV. A N INTERACTIVE FUZZY SATISFICING METHOD

In order to consider imprecise nature of the decision maker’s
judgment for each objective functionZl(x) in (4), we intro-
duce fuzzy goals such as “Zl(x) should be substantially less
than or equal to a certain value.” Then, (4) can be rewritten
as:

maximize µl(Zl(x)), l = 1, 2, . . . , k
subject to xj ∈ {0, 1, . . . , νj}, j = 1, 2, . . . , n

}
(5)

whereµl(·) is a membership function to quantify the fuzzy
goal for thel th objective function in (4). To be more specific,
if the decision maker feels thatZl(x) should be less than or
equal to at leastZl,0 andZl(x) ≤ Zl,1(< Zl,0) is satisfactory,
the shape of a typical membership function is shown in Fig.
1.

Fig. 1. An example of a membership functionµl(Zl(x))

Since (5) is regarded as a fuzzy multiobjective decision
making problem, there rarely exists a complete optimal solu-
tion that simultaneously optimizes all membership functions.

As a reasonable solution concept for such fuzzy multiobjec-
tive decision making problems, Sakawa et al. [18] defined M-
Pareto optimality on the basis of membership function values
by directly extending the Pareto optimality for multiobjective
programming problems.
Definition 4.1. (M-Pareto optimal solution).x∗ ∈ X, where
X is the feasible region of the problem, is said to be an M-
Pareto optimal solution if and only if there does not exist
another x ∈ X such thatµl (zl(x)) ≥ µl(zl(x∗)) for any
l ∈ {1, 2, . . . , k} andµj(zj(x)) > µj(zj(x∗)) for at least one
j ∈ {1, 2, . . . , k} wherezl(·)s stand for objective functions.

Based on the concept ofR-Pareto optimal solution and
that of M-Pareto optimal solution, we now define M-R-Pareto
optimal solution.
Definition 4.2. (M-R-Pareto optimal solution).x∗ ∈ X is
said to be an M-R-Pareto optimal solution to (5) if and
only if there does not exist anotherx ∈ X such that
µl (Zl(x)) ≥ µl(Zl(x∗)) for all l ∈ {1, 2, . . . , k} and

µj(Zj(x)) > µj(Zj(x∗)) for at least onej ∈ {1, 2, . . . , k}
in (5).

Introducing an aggregation functionµD(x) for k member-
ship functions in (5), problem (5) can be rewritten as:

maximize µD(x)
subject to xj ∈ {0, 1, . . . , νj} j = 1, 2, . . . , n

}
(6)

The aggregation functionµD(x) represents the degree of
satisfaction or preference of the decision maker for whole of
k fuzzy goals.

Following conventional fuzzy approaches, as the aggre-
gation function, Hulsurkar et al. [8] adopted the minimum
operator [1] define by

µD(x) = min
l=1,2,...,k

µl(Zl(x)) (7)

and the product operator [26] defined by

µD(x) =
k∏

l=1

{µl(Zl(x))}. (8)

Although these operators are widely used as an aggregation
function, the usefulness of the minimum operator or the
product operator is limited since the preference of the decision
maker is not always well expressed by them in general decision
situations. It would be desirable to identify an appropri-
ate aggregation function which well represents the decision
maker’s preference, but it is rarely possible to identify such the
aggregation function explicitly and exactly. As an alternative,
interactive methods which derive the local information of the
decision maker’s preference through interactions and find a
satisficing solution for the decision maker without the explicit
identification of the aggregation function seem promising to
(5). In this paper, we develop an interactive fuzzy satisficing
method to derive a satisficing solution for the decision maker
through interaction proposed by Sakawa et al. [18]. In their
method, in order to derive a satisficing solution, the decision
maker interactively updates aspiration levels of achievement
for membership values of all fuzzy goals, called reference
membership levels, until he is satisfied [18].

To be more specific, for the decision maker’s reference
membership levels̄µl, l = 1, 2, . . . , k, the following aug-
mented minimax problem is repeatedly solved.

minimize max
l=1,...,k

[µ̄l − µl(Zl(x))

+ρ
k∑

i=1

(µ̄i − µi(Zi(x)))]

subject to xj ∈ {0, 1, . . . , νj}, j = 1, 2, . . . , n

 (9)

In (9), ρ is a sufficiently small positive number and the
corresponding optimal solution to (9) is nearest to the require-
ments in the augmented minimax sense or better than them if
the reference membership levels are attainable.

The relationship between an optimal solution to (9) and the
M-R-Pareto optimality can be characterized by the following
theorems.
Theorem 4.1. If x∗ ∈ X is an optimal solution to (9) for
someµ̄l, l = 1, 2, . . . , k, thenx∗ is an M-R-Pareto optimal
solution to (5).
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Theorem 4.2. If x∗ ∈ X is an M-R-Pareto optimal solution
to (5), then there exists̄µl, l = 1, 2, . . . , k such thatx∗ is an
optimal solution to (9).

We now summarize the interactive algorithm.
Interactive fuzzy satisficing method
Step 1: Calculate individual minimaZl,min of objective func-
tions Zl(x), l = 1, 2, ..., k, in (5) by solving the following
problems.

minimize Zl(x)
subject to xj ∈ {0, 1, . . . , νj}, j = 1, 2, . . . , n

}
(10)

Then, calculateZl,min from optimal solutionsxl
min, l =

1, 2, . . . , k to (10). Go to step 2.
Step 2: Ask the decision maker to subjectively determine
membership functionsµl(Zl(x)) for objective functions,
based on minimal valuesZl,min calculated in step 1. Go to
step 3.
Step 3: Ask the decision maker to set the initial reference
membership levels (they are often set asµ̄l = 1, l =
1, 2, . . . , k). Go to step 4.
Step 4: Solve the following minimax problem for given
reference membership levels̄µl, l = 1, 2, . . . , k.

minimize max
l=1,...,k

[µ̄l − µl(Zl(x))

+ρ
k∑

i=1

(µ̄i − µi(Zi(x)))]

subject to xj ∈ {0, 1, . . . , νj}, j = 1, 2, . . . , n

 (11)

Then, calculate membership function valuesµl(Zl(x∗)),
l = 1, 2, . . . , k corresponding to the optimal solutionx∗

to (11), which is guaranteed to be an M-R-Pareto optimal
solution to (5). Go to step 5.
Step 5: If the decision maker is satisfied withµl(Zl(x∗)),
l = 1, 2, . . . , k obtained in step 4, stop. Otherwise, ask the
decision maker to update the reference membership levelsµ̄l,
l = 1, 2, . . . , k in consideration of the current membership
function valuesµl(Zl(x∗)). Go to step 4.

V. CONCLUSIONS

In this paper, we focused on multiobjective integer program-
ming problems involving random variable coefficients. After
we reformulated them as multiobjective simple recourse prob-
lems based on the concept of simple recourse, we introduced
fuzzy goals for objective functions to consider the ambigious
or fuzzy judgments of the decision maker. Then, we proposed
an interactive fuzzy satisficing method as a fusion of stochastic
approach and fuzzy one to derive a satisficing solution for the
decision maker.

As future problems, we are going to consider an illustrative
numerical example and show the efficiency of the proposed
method.
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